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Abstract We describe an implementation of the Feasibility Pump heuristic
for nonconvex MINLPs. Our implementation takes advantage of three novel
techniques, which we discuss here: a hierarchy of procedures for obtaining an
integer solution, a generalized definition of the distance function that takes
into account the nonlinear character of the problem, and the insertion of lin-
earization cuts for nonconvex constraints at every iteration. We implemented
this new variant of the Feasibility Pump as part of the global optimization
solver Couenne. We present experimental results that compare the impact
of the three discussed features on the ability of the Feasibility Pump to find
feasible solutions and on the solution quality.
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1 Introduction

In this paper, we describe a new variant of the Feasibility Pump algorithm
to find feasible solutions for mixed integer nonlinear programming (MINLP)
problems. We consider an implementation of the Feasibility Pump within a
global solver, in our case Couenne.
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An MINLP is an optimization problem of the form

min cTx

s.t. gj(x) 6 0 for j = 1, . . . ,m,

Li 6 xi 6 Uifor i = 1, . . . , n,

xi ∈ Z for i ∈ I,

(1)

where I ⊆ {1, . . . , n} is the index set of the integer variables, d ∈ R
n, gj :

R
n → R for j = 1, . . . ,m, and L ∈ (R ∪ {−∞})n, U ∈ (R ∪ {+∞})n are

lower and upper bounds on the variables, respectively. Since fixed variables
can always be eliminated, we assume w.l.o.g. that Li < Ui for i = 1, . . . , n,
i.e., that the interior of [L,U ] is nonempty. Note that a nonlinear objective
function can always be reformulated by introducing one additional constraint
and variable. We chose the convention of assuming a linear objective for the
ease of presentation; the presented algorithm and the conducted experiments
address general MINLPs.

There are many subclasses of MINLP; the following four will play a role in
this article:

– If all constraint functions gj are convex, problem (1) is called a convex
MINLP .

– If all constraint functions gj are affine, problem (1) is called a mixed integer
linear program (MIP).

– If I = ∅, problem (1) is called a nonlinear program (NLP).
– If I = ∅ and all gj are affine, problem (1) is called a linear program (LP).

Primal heuristics are algorithms that try to find feasible solutions of good
quality for a given optimization problem within a reasonably short amount of
time. They are incomplete methods, hence there is usually no guarantee that
they will find any solution, let alone an optimal one.

For mixed-integer (linear) programming it is well-known that general-
purpose primal heuristics are able to find high-quality solutions for a wide
range of problems [8,27]. For mixed-integer nonlinear programming, research
in the last five years has shown an increasing interest in general-purpose primal
heuristics [9–12,15,16,19,20,33,36,37].

Discovering good feasible solutions at an early stage of the MINLP solving
process has several advantages:

– The bounding step of the branch-and-bound [32] algorithm depends on
the quality of the incumbent solution; a better primal bound leads to more
nodes being pruned and hence to smaller search trees.

– The same holds for presolving and domain propagation strategies such as
reduced cost fixing. Better solutions can lead to tighter domain reductions.
Besides cut generation, bound tightening is one of the most important
features for an efficient implementation of a branch-and-bound algorithm
for nonconvex MINLPs, see, e.g., [6,29].
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– In practice, it is often sufficient to compute a heuristic solution whose
objective value is within a certain quality threshold. For hard MINLPs
that cannot be solved to optimality within a reasonable amount of time, it
might still be possible to generate good primal solutions quickly.

– Improvement heuristics such as rins [21,14,12] or Local Branching [26,37,
12] need a feasible solution as starting point.

Feasibility Pump (fp) algorithms follow the idea of decomposing the set of
constraints of a mathematical programming problem into two parts: integer
feasibility and constraint feasibility. At least for MIP and convex MINLP,
both are “easy” to achieve: the former by rounding, the latter by solving an
LP or a convex NLP, respectively. Each can be done in polynomial time.
Two sequences of points {x̃k}Kk=1 and {x̄k}Kk=1, for K ∈ Z>0, are generated
such that x̃ contains integral points that may violate constraints gj(x) ≤ 0
for one or more j = 1, 2, . . . ,m and x̄ contains points that are feasible for a
continuous relaxation to the original problem but might not be integral. These
two sequences are related to each other in that the points of {x̃k} are obtained
through rounding of the integral coordinates of points in {x̄k} and these, in
turn, are obtained via projections of points in {x̃k}.

One focus of this chapter is the application of a Feasibility Pump inside
a global solver such as baron [41], Couenne [6], LindoGlobal [34], Bon-

min [14] or SCIP [2], whereas previous publications considered the Feasibility
Pump as a standalone procedure. This has an impact on the design choices
carried out in developing the heuristic, in particular balancing efficiency versus
completeness. If primal heuristics are applied as supplementary procedures in-
side a global solver, the overall performance of the solver is the main objective.
To this end, it is often worth sacrificing success on a small number of instances
for a significant saving in average running time. The enumeration phase of the
Feasibility Pump presented in [7] is a typical example of a component that is
crucial for its impressive success rate as a standalone algorithm, but it will not
be applied when the Feasibility Pump is used inside a global solver, see [8].

This paper features three novel contributions aimed at a more flexible use
of a Feasibility Pump within a nonconvex MINLP solver:

(i) a hierarchy of rounding procedures, ranked by efficiency (typically con-
verse to the quality of the provided points) for finding integral points;
which routine to use is decided and automatically adapted at runtime;

(ii) an improved and parameterized distance function for the rounding step,
taking into account second-order information of the continuous NLP re-
laxation; and

(iii) the separation of linearization cuts that approximate the convex envelope
of the nonconvex feasible set of the NLP relaxation of (1), as opposed
to employing Outer Approximation cuts [24] only for the convex part of
the problem. We know of no other fp that generates linearization cuts.
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2 Feasibility pumps for MINLP

The Feasibility Pump (fp) algorithm was originally introduced by Fischetti,
Glover, and Lodi in 2005 [25] for mixed binary programs, i.e., for the special
case of MIPs in which lj = 0 and uj = 1 for all j ∈ I. The principal idea is
as follows. The LP relaxation of a MIP is solved. The LP optimum x̄ is then
rounded to the closest integral point. This part of the fp algorithm is called
the rounding step. If x̃ is not feasible for the linear constraints, the objective
function of the LP is changed to an ℓ1 distance function:

∆(x, x̃) :=
∑

j∈I

|xj − x̃j | =
∑

j∈I : x̃j=0

xj +
∑

j∈I : x̃j=1

(1− xj) (2)

and a new x̄ is obtained by minimizing ∆(x, x̃) over the LP relaxation of the
MIP. The process is iterated until x̃ = x̄ which implies feasibility (w.r.t. the
MIP). The operation of obtaining a new x̄ from x̃ is known as the projection
step, as it consists of projecting x̃ to the feasible set of a continuous relaxation
of the MIP along the direction ∆(x, x̃).

The original work by Fischetti, Glover, and Lodi [25] led to many follow-up
publications [7,3,28,30,4,13,23,22] on Feasibility Pumps for MIP that improve
the performance mostly by extending one of the two basic steps of rounding
and projection. Most important for the present paper is the work by Achter-
berg and Berthold [3] who suggest to replace function (2) by a convex combi-
nation of (2) and the original objective cTx in order to produce higher-quality
solutions.

Versions of the Feasibility Pump fo convex MINLP have been presented
by Bonami et al. [15] and Bonami and Gonçalves [16]. The only publication
for nonconvex MINLP that we are aware of is D’Ambrosio et al. [20]. Bonami
and Gonçalves [16] keep the rounding step as in [25] and replace solving an
LP in the projection phase by solving a convex NLP, using again the distance
function (2) as an objective. Recently, Sharma et al. [38,39] presented an in-
tegration of the Objective Feasibility Pump idea by Achterberg and Berthold
and the algorithm of Bonami and Gonçalves: a scaled sum of the distance
function and the original objective is used as an objective for the convex NLP.
In [15], the authors suggest using an ℓ2 norm for the projection step. Further,
their implementation of the rounding step differs significantly from all previous
fp variants. Instead of performing an instant rounding to the nearest integer,
they solve an MIP relaxation which is based on an outer approximation [24]
of the underlying MINLP. The particular difficulty addressed in [20] is that of
handling the nonconvex NLP relaxation if adapting the algorithm of [15] to the
nonconvex case. The authors suggest using a stochastic multistart approach,
feeding the NLP solver with different randomly generated starting points, and
solving the NLP to local optimality as if it was a convex problem. In the follow-
ing three sections, we present our suggestions to extend the Feasibility Pump
for nonconvex MINLP. The first one mainly aims at saving computation time,
while the second and the third incorporate the nonlinear problem structure
directly into the fp algorithm.
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3 A hierarchy of rounding procedures

In the preceding publications on Feasibility Pump heuristics, several ideas have
been proposed to generate good integer points during the rounding step. The
original work [25] and one of the nonlinear fps [16] suggest plain rounding
in order to get a point which is closest w.r.t. the ℓ2 norm. The Feasibility
Pump 2.0 [28] uses an iterated “round-and-propagate” procedure in order to
get a point which is close w.r.t. the ℓ2 norm but “more feasible” for the relax-
ation. The nonlinear Feasibility Pumps suggested by [15,20] solve an MIP to
get the closest integer point w.r.t. the ℓ1 norm that fulfills all constraints of
the linear relaxation.

The observed shift from “stay close to the previous point” to “stay close,
but also fulfill the relaxation” leads us to the idea of trying several rounding
procedures which address these goals in various ways. Similar to other fps for
MINLP, the rounding step is performed by solving a MIP that is a relaxation
of the original MINLP. In convex MINLP, such a MIP can be obtained by
applying Outer Approximation [24] and maintaining integrality constraints,
while in the nonconvex case the MIP is obtained as a LP relaxation of the
MINLP with the integrality constraints.

In order to obtain a point x̃ that satisfies the integrality constraints, we
select a procedure from the following list:

(i) Solve the MIP relaxation with a node limit and an emphasis on good
solutions.

(ii) Solve the MIP relaxation with a node limit (smaller than in (i)), dis-
abling time-consuming cutting plane separation, branching and presolv-
ing strategies.

(iii) Solve the root node of the MIP relaxation of method (i), then apply the
rens heuristic, see [10].

(iv) Solve the root node of the MIP relaxation, then apply the Objective
Feasibility Pump 2.0 [28] for MIPs.

(v) Apply the round-and-propagate algorithm of [28]: selectively round a
fractional variable to the nearest integer and then apply a domain prop-
agation to restrict the feasible set, until either a feasible solution is found
or the remaining MIP is proven infeasible. In the latter case, round all
remaining unfixed variables to the nearest integer.

(vi) Choose an integral point from a solution pool (e.g. from suboptimal
solutions of applying procedure (i)), see below.

(vii) Apply a random perturbation to x̄k−1 and round to the nearest integer
x̃k.

Note that the integral points generated by procedures (v) to (vii) might be
infeasible for the MIP problem of the current iteration. While procedures (i)
to (iv) might terminate without an integral point, procedure (v) will always
produce an integral point. The last two procedures are implemented solely to
avoid cycling, i.e. for the case that a point constructed by procedure (v) is
identical to one visited in a previous iteration. Further, procedures (v) to (vii)
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are ordered by their expected running time and the expected likelihood to
produce a good integral point. The higher in the list a procedure is, the more
expensive it is and the more likely it is to produce high-quality (w.r.t. the
distance function) solutions.

Having this variety of options to produce integral points, the question
remains which to apply when. At the first iteration of the fp, we employ
procedure (ii). If the current procedure successfully provides us with a “new”
(not yet visited) integer point for three iterations in a row, we proceed with
the next (cheaper and less aggressive) method of the above list. If, at any
iteration, the current procedure does not terminate within the given limits or
produces a point that was already visited, we proceed with the previous (more
expensive and more powerful) method of the above list. Note that the list of
procedures from (i) to (vii) has decreasing complexity and, in general, declines
in solution quality. At subsequent iterations of the fp we use the procedure
that was successful previously, but switch down to a cheaper routine when
there were three successful iterations in a row.

In principle, the list could be prepended at the head to include methods
that capture constraint feasibility even better (and are most likely more time
consuming), for instance a convex (nonlinear) relaxation of the nonconvex
MINLP. However, computational results presented in [20] indicate that this
results in a significant computational overhead with little impact.

If procedures (i), (ii), or (iii) are used for the rounding step, these may
produce more than one MIP-feasible solution. The suboptimal points might
be used for later iterations, and are therefore stored in a solution pool. This
approach is motivated by two observations: first, in (i) we solve similar MIPs
over and over again, mainly using a different objective (plus some new cuts).
Each known feasible point from a previous call may be used as a starting solu-
tion in subsequent calls. Procedures (iii) and (iv) will also benefit from a given
upper bound as they consider a restricted search space. Second, considering
a point which was initially a candidate, but was then discarded carries more
information about the problem than one generated through random perturba-
tion. Thus, the previously collected points are used in (vi). We rank the points
in the pool by the value of the distance function at the current iteration.

4 Follow the Hessian: an improved distance function

Feasibility Pumps for MIP use the ℓ1 norm for the projection and the round-
ing step; the nonlinear fps by Bonami et al. [15] and D’Ambrosio et al. [20]
use ℓ2 for the projection and ℓ1 for rounding. De Santis et al. [22] present
variants of the distance function that help draw a connection with the Frank-
Wolfe algorithm and that show some computational advantage w.r.t. the more
traditional distance functions. Either way, exclusively using these norms as
objective functions for auxiliary optimization problems ignores the fact that a
“close” solution is not necessarily a good one: the original objective function is
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completely neglected and no information is used on how much the constraints
are violated.

To overcome this issue, we use the norm of a vector obtained from a linear
transformation applied to x−x̄k. As a motivating example, consider first an un-
constrained integer nonlinear optimization problem min{f(x) : x ∈ Z

n}, where
f ∈ C2(Rn,R). Note that this example diverges from our assumed MINLP for-
mulation in that it uses a nonlinear objective function. We find this digression
necessary to explain the idea expressed in this section, which ultimately refers
to the MINLP standard we specified in (1). Assume that x̄ is a local optimum
of the continuous relaxation min{f(x) : x ∈ R

n}. Level curves of the ℓ1 and
the ℓ2 distance functions w.r.t. x̄ are given in Figure 1. In either norm, x̃ is
the closest integer point (the result is norm-invariant on Z

n).

x̄

x̃

(a) ∆(x, x̄) = ||x− x̄||1

x̄

x̃

(b) ∆(x, x̄) = ||x− x̄||2

Fig. 1 Level curves (gray) of different norm functions ∆(x,x̄). The closest integer point to
x̄ is x̃. In 1(a) and 1(b), the norm || · ||p is used for p = 1 and p = 2 respectively.

Now consider the second-degree Taylor series approximation of f at x̄:

f(x) ≈ f(x̄) +∇f |Tx̄(x− x̄) +
1

2
(x− x̄)TH(x− x̄) (3)

which is convex and quadratic. We want to use (3) for constructing an im-
proved distance function which uses information about f . Since the problem
is unconstrained, the gradient of f is null, i.e., ∇f |x̄ = 0, and its Hessian is
positive semidefinite, i.e., H = ∇2f |x̄ � 0. Thus, minimizing (3) is equivalent
to minimizing (x− x̄)TH(x− x̄) given that the first two terms can be ignored.

As shown in Figure 2(b), the level curves of this new function are ellipsoids
whose axes and axis lengths are defined by the eigenvectors and eigenvalues of
H. Note that this relation is inverse proportional, i.e., the larger the eigenvalue,
the steeper the ascent, the shorter the corresponding axis. A convex, piecewise
linear approximation of this objective function is ||H

1

2 (x−x̄)||1. Its level curves
are represented in Figure 2(a). This is a distance function that incorporates
information about the original objective function. Both functions that are
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x̄

x̃′

(a) ∆(x, x̄) = ||H
1

2 (x −
x̄)||1

x̄

x̃′

(b) ∆(x, x̄) = ||H
1

2 (x −
x̄)||2

Fig. 2 Level curves (grey) of different norm functions using second order information as-
sociated with the objective function of the original problem. The distance function in 2(b)
and its piecewise linear approximation in 2(a) both lead to x̃′ as best integral point in the
vicinity of x̄.

displayed in Figure 2 find x̃′ as best (w.r.t. the Hessian) integral point near x̄.

Note that, in general, neither ||H
1

2 (x−x̄)||1 nor ||H
1

2 (x−x̄)||2 yield a minimum
in the hypercube [⌊x̄⌋, ⌈x̄⌉] containing x̄. Also, the closest point changes with

the norm as one could construct an example where argminx∈Zn ||H
1

2 (x− x̄)||p
depends on p.

The advantage of using the Hessian H, which incorporates second-order
information about the current optimal solution of the nonlinear problem, is
that a minimizer of ||H

1

2 (x − x̄)||1, while possibly far from x̄ in terms of the
ℓ1 norm, corresponds to an integer point whose objective function is close
to that of x̄, hence providing a “good” solution from the objective function
standpoint.

Let us now generalize this to the constrained version. If we consider an
MINLP with a nonlinear objective function, the Hessian of the objective func-
tion is, in general, indefinite at the optimum x̄ of the relaxation as there might
be active constraints. In case of a linear objective (as in our definition (1)),
the Hessian is constant zero. As an alternative, we use the Hessian of the
Lagrangian function of the NLP relaxation of the original MINLP:

H̃ =

(

∂2L

∂xi∂xj

)

i,j=1,2,...,n

.

While this is a straightforward generalization of the unconstrained case, it
must be pointed out that there might be one or more active constraints a
local optimum. Sufficient conditions for optimality in the constrained case dic-
tate that H̃ is only positive semidefinite on the null space of the gradient [5],
i.e., in {x ∈ R

n : cTx = 0}. We hence correct H̃ as follows: if an eigenvalue de-
composition of H̃ has q negative eigenvalues λ1, λ2, . . . , λq whose eigenvectors
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have non-zero component in the null space of the gradient, we replace each of
those eigenvalues with a value that is higher than the maximum eigenvalue of
H̃. This allows us to focus the search on solutions that are closer to the active
constraints rather than along the direction expressed by c.

Definition 1 (Hesse-distance) Let H̃ ∈ R
n×n be the Hessian of the La-

grangian (possibly modified as described above and a reference point x̄ ∈ [l, u]
be given. We call

∆̃int(x, x̄) = ||H̃
1

2 (x− x̄)||1

the ℓ1 Hesse-distance of x to x̄.

We suggest to incorporate the Hesse-distance into the objective functions
of the auxiliary MIPs that are solved in the rounding step of the nonlinear
Feasibility Pump. While there have been several publications for improving
the distance function for the projection step [3,15,20,22], this is, up to our
knowledge, the first attempt of drawing information from the constraint func-
tions into the distance function definition of a Feasibility Pump algorithm. In
the spirit of the Objective Feasibility Pump, we came up with the following
combination:

∆int(x, x̄) = αdist||x− x̄k||1 + αH∆̃int(x, x̄) + αorigc
Tx.

Typically, one would increase αdist in every iteration, making it converge to
one and fade out the other two, thereby shifting the focus from solution qual-
ity towards pure feasibility. Note that for any value of these parameters the
objective function is piecewise linear and convex. Note also that one can easily
extend the definition of the Hesse-distance to the Euclidean case and incor-
porate it into the objective function for the projection phase. Preliminary
experiments revealed, however, that this is not beneficial.

5 Separation of linearization cuts and postprocessing

Techniques to generate a linear relaxation of a MINLP can be used in an
incremental fashion as a separation procedure: given a solution x̃ to a MIP
relaxation that is not feasible for the MINLP itself, find a linear cut aTx ≤ d

that is fulfilled by all solutions of the MINLP, but aTx̃ > d (or show that no
such inequality exists). LP-based branch-and-bound solvers for MINLP, such
as Couenne or SCIP, typically solve such separation problems to improve
local dual bounds at each node. For details on branch-and-cut for MINLP, see,
e.g., [40,42]. In marked difference to previous nonlinear Feasibility Pumps, our
implementation also separates linear over- and underestimators for nonconvex
functions and not exclusively Outer Approximation cuts for convex parts of
the problem.

A typical problem occurring in iterative heuristics such as the fp is cy-
cling. Some versions prevent cycling by adding no-good cuts. Our fp variant
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attempts to avoid cycling in two ways. First, linear inequalities for noncon-
vex MINLPs are added to eliminate infeasible integer points. For convex con-
straints, Outer Approximation cuts are added. For nonconvex constraints, the
situation is more involved. As for most global optimization solvers Couenne

uses the standard approach of reformulating nonconvex constraints via an ex-
pression tree whose nodes are variables and elementary nonlinear functions.
For these nonlinear functions, underestimators are used to produce valid lin-
ear relaxations. For instance, nonconvex bilinear terms can be addressed via
McCormick underestimators [35]. This might still allow for permanently sep-
arating the MIP solution from the feasible region.

However, when the MIP terminates with an optimal solution that is infea-
sible for the (nonconvex) MINLP, but inside the convex hull of its feasible set,
no linear cut can be added to separate the solution from its feasible set. This
leads to the second way of avoiding cycling: we forbid particular assignments
to the integer variables by the use of a tabu list.

A final component of our Feasibility Pump implementation is the postpro-
cessing of feasible solutions. If a MINLP feasible solution x̃ is found, the values
for the continuous variables are only optimal for the distance objective used at
the last iteration. To check whether there are better solutions, we run a sim-
ple local search improvement heuristic: we obtain a restriction of the original
MINLP by fixing all integer variables to the values of the Feasibility Pump
solution x̃ and solve it to local optimality with a convex NLP solver such as
Ipopt.

6 Computational experiments

We implemented the Feasibility Pump within Couenne 0.4.7 [6], which is
a MINLP solver that uses cbc 2.8.9 [18] as a branch-and-bound manager.
Within our implementation, the auxiliary MIP problems are solved by SCIP

3.0.2 [2], linked against SoPlex 1.7.2 [44]. The auxiliary NLPs are solved by
Ipopt 3.11.7 [43,31]. The results were obtained on a cluster of 64bit Intel Xeon
X5672 CPUs at 3.20GHz with 12MB cache and 48GB main memory, running
an openSuse 12.3 with a gcc 4.7.2 compiler. Turboboost was disabled. In
all experiments, we ran only one job per node to reduce fluctuations in the
measured running times that might be caused by interference between jobs
that share resources, in particular the memory bus.

As a test set, we used the MinlpLib [17]. We excluded all instances that
were solved by Couenne before the Feasibility Pump was called or that got
linearized by presolving, and four instances for which Couenne triggered an
error. This resulted in a test set of 218 instances. We compared the following
six different settings of the nonlinear Feasibility Pump:

– default uses a Manhattan distance function, without contributions of the
Hessian of the Lagrangian or the original objective, i.e., αH = αorig = 0;
this setting does not add convexification cuts for non-convex parts of the
problem; the auxiliary MIP is always solved by running SCIP with a stall
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node limit of 1000 and aggressive heuristic settings; this resembles the
Feasibility Pump of [20].

– cuts uses cuts for nonconvex parts of the problem (in addition to standard
MIP cuts and Outer Approximation cuts); otherwise the same as default;

– hierarchy uses different algorithms to solve the MIP in different iterations
of the Feasibility Pump, see Section 3; otherwise the same as default;

– hessian constructs the objective of the auxiliary MIP as a combination of
the Manhattan distance and the Hessian of the Lagrangian, see Section 4;
we chose αdist = 1− 0.95k and αH = 0.95k at the k-th iteration; otherwise
the same as default;

– objective constructs the objective of the auxiliary MIP as a combination
of the Manhattan distance, the Hessian of the Lagrangian and a linear
approximation of the original objective; we chose αdist = 1 − 0.95k, αH =
0.95k, and αorig = 0.9k at the k-th iteration, otherwise the same as default;

– simple applies rounding to the nearest integer instead of solving an aux-
iliary MIP in the rounding phase, compare [16].

Table 1 shows aggregated results of our experiments. For each of the six
settings, we give three performance indicators: feas, the number of instances
(out of 218) for which this setting found a feasible solution; bet : wor, the
number of instances for which this setting found a better/worse solution (in
terms of the objective function value) as compared to the default setting; and
time, the running time in shifted geometric mean (see, e.g., [1,9]), including
Couenne’s presolving and reformulation algorithms being applied, i.e., the
time needed for processing the root node with one single call to the Feasibility
Pump algorithm. We used a shift of 10 seconds for the running time.

Table 1 Performance of different Feasibility Pump versions for a single call at the root
node (aggregated results)

setting feas bet : wor time

default 150 – 14.9

cuts 155 24 : 48 13.6

hierarchy 157 23 : 20 14.0

hessian 154 25 : 16 22.8

objective 138 45 : 30 23.9

simple 97 17 : 78 12.1

First of all, we observe that each of the five non-default settings outper-
forms the default in at least one of the three measures of performance. The
hierarchy setting is the only one to outperform the default in all three mea-
sures, albeit only slightly in the quality of the solution found.

We further see that the cuts and the hessian setting both lead to slightly
more solutions being found. This could be expected since both attempt to
better incorporate the structure of the nonlinear feasibility region into the
auxiliary MIP formulation. While using the Hessian leads to better solutions



12 Pietro Belotti, Timo Berthold

being found, applying cutting plane separation for nonconvex constraints de-
teriorates the quality of the solution found more often than it improves it.
Computing the Hessian of the Lagrangian itself might take considerable time,
both settings that make use of this feature show an increase in running time
by more than 50%.

Similar to results for linear Feasibility Pumps, using the original objective
often leads to better solutions being produced by the Feasibility Pump, but
at the same time reduces the number of solutions being found. Note that the
bet : wor statistic includes those cases for which only one of the settings found
a solution. Finally, the “simple” setting, which does not use an auxiliary MIP
at all, is only slightly faster than the default setting, but much worse in terms
of found solutions and solution quality. It can be seen as an implementation
of [16] for nonconvex MINLP.

In our implementation, we observe another behavior typical of Feasibility
Pumps: although they are very successful in finding feasible solutions (about
75% of the instances for the hierarchy setting), these solutions are often of a
mediocre quality. In geometric mean, the primal gap (as defined in, e.g., [9])
of the solutions found was 34%. This is almost in line with the Objective
Feasibility Pump for MIP that was shown in [3] to reduce the average gap
from 55% for the original Feasibility Pump to 29.5%.

From our results we conclude that within a global solver, one should use
the hierarchy setting and, at least in the initial runs of the fp (i.e., in the first
BB nodes), a dynamic setting of αH that makes use of the Hesse-distance.
For a standalone fp or when there is an emphasis on feasibility, a concurrent
run between the hierarchy (most solutions) and the objective setting (highest
solution quality) seems most promising.

7 Conclusion

We presented and evaluated three novel ideas for solving nonconvex MINLPs
with a Feasibility Pump: the generation of valid cutting planes for noncon-
vex nonlinearities, using a hierarchy of MIP solving procedures, and applying
an objective function for the auxiliary MIPs that incorporates second-order
information. For the latter, we introduced the so-called Hesse-distance.

In our computational experiments, the dynamic use of various MIP solving
strategies showed the favorable behavior to produce more solutions and better
solutions in a shorter average running time. A convex combination of the
Hesse-distance function and the Manhattan distance likewise improved the
number of solutions found and their quality.
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