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ABSTRACT

We present an overview of the lattice Boltzmann method (LBM), a parallel and
efficient algorithm for simulating single-phase and multiphase fluid flows and
for incorporating additional physical complexities. The LBM is especially useful
for modeling complicated boundary conditions and multiphase interfaces. Recent
extensions of this method are described, including simulations of fluid turbulence,
suspension flows, and reaction diffusion systems.

INTRODUCTION

In recent years, the lattice Boltzmann method (LBM) has developed into an
alternative and promising numerical scheme for simulating fluid flows and
modeling physics in fluids. The scheme is particularly successful in fluid flow
applications involving interfacial dynamics and complex boundaries. Unlike
conventional numerical schemes based on discretizations of macroscopic con-
tinuum equations, the lattice Boltzmann method is based on microscopic mod-
els and mesoscopic kinetic equations. The fundamental idea of the LBM is
to construct simplified kinetic models that incorporate the essential physics of
microscopic or mesoscopic processes so that the macroscopic averaged prop-
erties obey the desired macroscopic equations. The basic premise for using
these simplified kinetic-type methods for macroscopic fluid flows is that the
macroscopic dynamics of a fluid is the result of the collective behavior of many
microscopic particles in the system and that the macroscopic dynamics is not
sensitive to the underlying details in microscopic physics (Kadanoff 1986).
By developing a simplified version of the kinetic equation, one avoids solving
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complicated kinetic equations such as the full Boltzmann equation, and one
avoids following each particle as in molecular dynamics simulations.

Even though the LBM is based on a particle picture, its principal focus is
the averaged macroscopic behavior. The kinetic equation provides many of
the advantages of molecular dynamics, including clear physical pictures, easy
implementation of boundary conditions, and fully parallel algorithms. Because
of the availability of very fast and massively parallel machines, there is a current
trend to use codes that can exploit the intrinsic features of parallelism. The LBM
fulfills these requirements in a straightforward manner.

The kinetic nature of the LBM introduces three important features that dis-
tinguish it from other numerical methods. First, the convection operator (or
streaming process) of the LBM in phase space (or velocity space) is linear.
This feature is borrowed from kinetic theory and contrasts with the nonlinear
convection terms in other approaches that use a macroscopic representation.
Simple convection combined with a relaxation process (or collision operator)
allows the recovery of the nonlinear macroscopic advection through multi-scale
expansions. Second, the incompressible Navier-Stokes (NS) equations can be
obtained in the nearly incompressible limit of the LBM. The pressure of the
LBM is calculated using an equation of state. In contrast, in the direct nu-
merical simulation of the incompressible NS equations, the pressure satisfies a
Poisson equation with velocity strains acting as sources. Solving this equation
for the pressure often produces numerical difficulties requiring special treat-
ment, such as iteration or relaxation. Third, the LBM utilizes a minimal set of
velocities in phase space. In the traditional kinetic theory with the Maxwell-
Boltzmann equilibrium distribution, the phase space is a complete functional
space. The averaging process involves information from the whole velocity
phase space. Because only one or two speeds and a few moving directions are
used in LBM, the transformation relating the microscopic distribution func-
tion and macroscopic quantities is greatly simplified and consists of simple
arithmetic calculations.

The LBM originated from lattice gas (LG) automata, a discrete particle ki-
netics utilizing a discrete lattice and discrete time. The LBM can also be
viewed as a special finite difference scheme for the kinetic equation of the
discrete-velocity distribution function. The idea of using the simplified kinetic
equation with a single-particle speed to simulate fluid flows was employed by
Broadwell (Broadwell 1964) for studying shock structures. In fact, one can view
the Broadwell model as a simple one-dimensional lattice Boltzmann equation.
Multispeed discrete particle velocities models have also been used for studying
shock-wave structures (Inamuro & Sturtevant 1990). In all these models, al-
though the particle velocity in the distribution function was discretized, space
and time were continuous. The full discrete particle velocity model, where
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space and time are also discretized on a square lattice, was proposed by Hardy
et al (1976) for studying transport properties of fluids. In the seminal work of
the lattice gas automaton method for two-dimensional hydrodynamics, Frisch
et al (1986) recognized the importance of the symmetry of the lattice for the re-
covery of the Navier-Stokes equation; for the first time they obtained the correct
Navier-Stokes equation starting from the lattice gas automata on a hexagonal
lattice. The central ideas in the papers contemporary with the FHP paper in-
clude the cellular automaton model (Wolfram 1986) and the 3-D model using
the four-dimensional face-centered-hyper-cubic (FCHC) lattice (d’Humi`eres
et al 1986).

The lattice gas automaton is constructed as a simplified, fictitious molecular
dynamic in which space, time, and particle velocities are all discrete. From this
perspective, the lattice gas method is often called lattice gas cellular automata.
In general, a lattice gas automaton consists of a regular lattice with particles
residing on the nodes. A set of Boolean variablesni (x, t)(i = 1, · · · , M)
describing the particle occupation is defined, whereM is the number of direc-
tions of the particle velocities at each node. The evolution equation of the LG
automata is as follows:

ni (x + ei , t + 1) = ni (x, t) + �i (n(x, t)), (i = 0, 1 · · ·, M), (1)

whereei are the local particle velocities. Starting from an initial state, the
configuration of particles at each time step evolves in two sequential sub-steps,
(a) streaming, in which each particle moves to the nearest node in the direction
of its velocity, and (b) collision, which occurs when particles arriving at a node
interact and change their velocity directions according to scattering rules. For
simplicity, the exclusion principle (no more than one particle being allowed at
a given time and node with a given velocity) is imposed for memory efficiency
and leads to a Fermi-Dirac local equilibrium distribution (Frisch et al 1987).

The main feature of the LBM is to replace the particle occupation variables,ni

(Boolean variables), in Equation 1 by single-particle distribution functions (real
variables)fi = 〈ni 〉 and neglect individual particle motion and particle-particle
correlations in the kinetic equations (McNamara & Zanetti 1988), where〈 〉
denotes an ensemble average. This procedure eliminates statistical noise in the
LBM. In the LBM, the primitive variables are the averaged particle distributions,
which are mesoscopic variables. Because the kinetic form is still the same as
the LG automata, the advantages of locality in the kinetic approach are retained.
The locality is essential to parallelism.

An important simplification of the LBM was made by Higuera & Jim´enez
(1989) who linearized the collision operator by assuming that the distribution
is close to the local equilibrium state. An enhanced collision operator approach
which is linearly stable was proposed by Higuera et al (1989). A particular
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simple linearized version of the collision operator makes use of a relaxation time
towards the local equilibrium using a single time relaxation. The relaxation term
is known as the Bhatnagar-Gross-Krook (BGK) collision operator (Bhatnagar
et al 1954) and has been independently suggested by several authors (Qian
1990, Chen et al 1991). In this lattice BGK (LBGK) model, the local equilib-
rium distribution is chosen to recover the Navier-Stokes macroscopic equations
(Qian et al 1992, Chen et al 1992). Use of the lattice BGK model makes the
computations more efficient and allows flexibility of the transport coefficients.

LATTICE BOLTZMANN EQUATIONS

LBE: An Extension of LG Automata
There are several ways to obtain the lattice Boltzmann equation (LBE) from ei-
ther discrete velocity models or the Boltzmann kinetic equation. There are also
several ways to derive the macroscopic Navier-Stokes equations from the LBE.
Because the LBM is a derivative of the LG method, we will introduce the LBE
beginning from a discrete kinetic equation for the particle distribution function,
which is similar to the kinetic equation in the LG automata in Equation 1:

fi (x + ei 1x, t + 1t) = fi (x, t) + �i ( f (x, t)), (i = 0, 1 · · ·, M), (2)

where fi is the particle velocity distribution function along thei th direction;
�i = �i ( f (x, t)) is the collision operator which represents the rate of change of
fi resulting from collision.1t and1x are time and space increments, respec-
tively. When1x/1t = |ei |, Equations 1 and 2 have the same discretizations.
�i depends only on the local distribution function. In the LBM, space is dis-
cretized in a way that is consistent with the kinetic equation, i.e. the coordinates
of the nearest neighbor points aroundx arex + ei .

The densityρ and momentum densityρu are defined as particle velocity
moments of the distribution function,fi ,

ρ =
∑

i

fi , ρu =
∑

i

fi ei , (3)

where
∑

i ≡ ∑M
i =1,. �i is required to satisfy conservation of total mass and

total momentum at each lattice:∑
i

�i = 0,
∑

i

�i ei = 0. (4)

If only the physics in the long-wave–length and low-frequency limit are of
interest, the lattice spacing1x and the time increment1t in Equation 2 can
be regarded as small parameters of the same orderε. Performing a Taylor
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expansion in time and space, we obtain the following continuum form of the
kinetic equation accurate to second order inε:

∂ fi

∂t
+ ei · ∇ fi + ε

(
1

2
ei ei : ∇∇ fi + ei · ∇ ∂ fi

∂t
+ 1

2

∂2 fi
∂t2

)
= �i

ε
. (5)

To derive the macroscopic hydrodynamic equation, we employ the Chapman-
Enskog expansion, which is essentially a formal multiscaling expansion (Frisch
et al 1987),[

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
,

∂

∂x
= ε

∂

∂x1
.

]
The above formula assumes that the diffusion time scalet2 is much slower than
the convection time scalet1. Likewise, the one-particle distribution function
fi can be expanded formally about the local equilibrium distribution function
f eq
i ,

fi = f eq
i + ε f (neq)

i . (6)

Here f eq
i depends on the local macroscopic variables (ρ andρu) and should

satisfy the following constraints:∑
i

f eq
i = ρ,

∑
i

f eq
i ei = ρu. (7)

f (neq)
i = f (1)

i + ε f (2)
i + O(ε2) is the nonequilibrium distribution function,

which has the following constraints:∑
i

f (k)
i = 0,

∑
i

f (k)
i ei = 0, (8)

for bothk = 1 andk = 2.
Inserting fi into the collision operator�i , the Taylor expansion gives:

�i ( f ) = �i ( f eq) + ε
∂�i ( f eq)

∂ f j
f (1)

j

+ ε2

(
∂�i ( f eq)

∂ f j
f (2)

j + ∂2�i ( f eq)

∂ f j ∂ fk
f (1)

j f (1)
k

)
+ O(ε3). (9)

From Equation 5, we note that whenε → 0, we have:�i ( f eq) = 0. This leads
to a linearized collision operator,

�i ( f )

ε
= Mi j

ε

(
f j − f eq

j

)
, (10)

whereMi j ≡ ∂�i ( f eq)

∂ f j
is the collision matrix (Higuera & Jim´enez 1989), which

determines the scattering rate between directionsi and j . For a given lattice,
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Mi j only depends on the angle between directionsi and j and has a limited
set of values. For mass and momentum conservation collision,Mi j satisfy the
following constraints (Benzi et al 1992):

M∑
i =1

Mi j = 0,

M∑
i =1

ei Mi j = 0. (11)

If we further assume that the local particle distribution relaxes to an equilib-
rium state at a single rateτ ,

Mi j = −1

τ
δi j , (12)

we arrive at the lattice BGK collision term (Bhatnagar et al 1954),

�i

ε
= −1

τ
f neq
i = − 1

ετ

(
f (1)
i + ε f (2)

i

)
, (13)

and the LBGK equation:

fi (x + ei , t + 1) = fi (x, t) − fi − f eq
i

τ
. (14)

The BGK collision term (Qian 1990, Chen et al 1991, Qian et al 1992, Chen
et al 1992) was used previously in the full Boltzmann simulation for studying
shock formation (Chu 1965) and was used recently for a shock-capturing using
finite-volume methods (Xu & Prendergast). From Equation 5 one obtains the
following equations:

∂ f eq
i

∂t1
+ ei · ∇1 f eq

i = − f (1)
i

τ
, (15)

to orderε0 and
∂

∂t1
f (1)
i + ∂

∂t2
f eq
i + ei · ∇ f (1)

i + 1

2
ei ei : ∇ ∇ f eq

i

+ ei · ∇ ∂

∂t1
f eq
i + 1

2

∂2

∂t2
1

f eq
i = 1

τ
f (2)
i , (16)

to orderε1. Using Equation 15 and some algebra, we can rewrite the first order
equation as

∂ f (1)
i

∂t2
+
(

1 − 2

τ

)[
∂ f (1)

i

∂t1
+ ei · ∇1 f (1)

i

]
= − f (2)

i

τ
. (17)

From Equations 15 and 17 we obtain the following mass and momentum equa-
tions:

∂ρ

∂t
+ ∇ · ρu = 0, (18)
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∂ρu
∂t

+ ∇ · 5 = 0, (19)

which are accurate to second order inε for Equation 2. Here the momentum
flux tensor5 has the form:

5αβ =
∑

i

(ei )α(ei )β

[
f eq
i +

(
1 − 1

2τ

)
f (1)
i

]
, (20)

and(ei )α is the component of the velocity vectorei in theα-coordinate direction.
To specify the detailed form of5αβ , the lattice structure and the correspond-

ing equilibrium distribution have to be specified. For simplicity and without
loss of generality, we consider here the two-dimensional square lattice with
nine velocities: ei = (cos(π/2(i − 1), sin(π/2(i − 1)) for i = 1, 3, 5, 7,
ei = √

2(cos(π/2(i − 1) + π/4, sin(π/2(i − 1) + π/4) for i = 2, 4, 6, 8;
e0 = 0 corresponds to a zero-speed velocity. The requirement for using the
nine-velocity model, instead of the simpler five-velocity square lattice, comes
from the consideration of lattice symmetry: the LBE cannot recover the cor-
rect Navier-Stokes equations unless sufficient lattice symmetry is guaranteed
(Frisch et al 1986).

Note that the Navier-Stokes equations has a second-order nonlinearity. The
general form of the equilibrium distribution function can be written up toO(u2)

(Chen et al 1992):

f eq
i = ρ

[
a + bei · u + c(ei · u)2 + du2

]
, (21)

wherea, b, c andd are lattice constants. This expansion is valid only for small
velocities, or small Mach numbersu/Cs, whereCs is the sound speed. Using
the constraints in Equation 7, the coefficients in Equation 21 can be obtained
analytically (Qian et al 1992):

f eq
i = ρwi

[
1 + 3ei · u + 9

2
(ei · u)2 − 3

2
u2

]
, (22)

with w0 = 4/9, w1 = w3 = w5 = w7 = 1/9, andw2 = w4 = w6 = w8 =
1/36. Inserting the above formula into Equation 20 we have,

5
(0)
αβ =

∑
i

(ei )α(ei )β f eq
i = pδαβ + ρuαuβ,

5
(1)
αβ =

(
1 − 1

2τ

)∑
i

(ei )α(ei )β f 1
i = ν(∇α(ρuβ) + ∇β(ρuα)),

(23)

where p = ρ/3 is the pressure, which gives a constant sound speed,Cs =
1/

√
3, andν = (2τ − 1)/6 is the kinematic viscosity.
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The resulting momentum equation is

ρ

(
∂uα

∂t
+ ∇β · uαuβ

)
= −∇α p + ν∇β · (∇αρuβ + ∇βρuα), (24)

which is exactly the same as the Navier-Stokes equations if the density variation
δρ is small enough (Qian & Orszag 1993).

LBE: Approximation to the Continuum Boltzmann Equation
Although the LBE evolved from its Boolean counterpart, the LG automaton
method, it has been shown recently by two groups independently (He & Luo
1997, Abe 1997) that the LBE can be obtained from the continuum Boltzmann
equation for discrete velocities by using a small Mach number expansion. In
these derivations, the starting point is the Boltzmann BGK equation (Bhatnagar
et al 1954, Chu 1965, Xu & Prendergast 1994):

∂g

∂t
+ ξ · ∇g = − 1

ετ
(g − geq), (25)

whereg ≡ g(x, ξ, t) is the single-particle distribution function in continuum
phase space (x, ξ), andgeq is the Maxwell-Boltzmann equilibrium distribution
function:

geq ≡ ρ

(2π/3)D/2
exp

[
−3

2
(ξ − u)2

]
. (26)

HereD is the spatial dimension, and for simplicity, the particle velocityξ and
the fluid velocityu have been normalized by

√
3RT, giving a sound speed of

cs = 1/
√

3. T is the temperature. The macroscopic fluid variables are the
velocity moments of the distribution functiong:

ρ =
∫

gdξ, ρu =
∫
ξgdξ, ρε = 1

2

∫
(ξ − u)2gdξ, (27)

whereε = D
2 T is the internal energy. Assuming that the fluid velocity in Equa-

tion 26 is a small parameter (compared with the sound speed), the equilibrium
distributiongeq up to O(u2) has the following form (Koelman 1991):

geq = ρ

(2π/3)D/2
exp

(
−3

2
ξ2

)[
1 + 3(ξ · u) + 9

2
(ξ · u)2 − 3

2
u2

]
. (28)

For discrete velocity models, only a small set of particle velocitiesei = ξi

(i = 1, . . . , M), and their distribution functions at these velocities,gi (x, t) = g
(x, ei , t), are used; and the kinetic evolution in Equation 25 will only require
the solution ofgi . The first two definitions in Equation 27 can be approximated
using the discrete velocities in a Gaussian-type quadrature:

ρ(x, t) =
∑

i

Wi gi (x, t), ρu(x, t) =
∑

i

Wi ei gi (x, t). (29)
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This defines an effective distribution functionfi (x, t):

fi (x, t) = Wi gi (x, t), (30)

which satisfies the simple conservation relations in Equation 3.
Givenei , Wi is constant, andfi satisfies the same equation asg:

∂ fi

∂t
+ ei · ∇ fi = 1

ετ

(
f eq
i − fi

)
, (31)

with f eq
i = wi ρ[1 + 3(ei · u) + 9

2(ei · u)2 − 3
2u2] andwi = Wi /(2π/3)D/2

exp(− 3
2e2

i ).
To obtain the weightwi , He & Luo (1997) use a third-order Hermite formula

to approximate the integrals in Equation 27. Abe (1997) assumeswi has a
simple truncated functional form based onei . For the nine-velocity square
lattice, both papers found thatw0 = 4/9, wi (i = 1, 3, 5, 7) = 1/9 andwi (i =
2, 4, 6, 8) = 1/36, which give the same equilibrium distribution function as
the original lattice Boltzmann model in Equation 22.

If in Equation 31 the time derivative is replaced by a first order time difference,
and the first order upwind discretization for the convective termei · ∇fi is used
and a downwind collision term�(x−ei , t) for �(x, t) is used (Cao et al 1997),
then we obtain the finite difference equation forfi :

fi (x, t + 1t) = fi (x, t) − α
[

fi (x, t) − fi (x − 1xei , t)
]

− β

τ

[
fi (x − 1xei , t) − f eq

i (x − 1xei , t)
]
, (32)

whereα = 1t |ei |/1x, β = 1t/ε, and1t and1x are the time step and the
grid step, respectively. Choosingα = 1 andβ = 1, Equation 32 becomes the
standard LBE as shown in Equation 2.

From the discretization process, we note Equation 32 only has first order
convergence in space and time to Equation 31. However, as shown by Sterling
and Chen (1995), because Equation 32 has a Lagrangian nature in its spatial
discretization, the discretization error has a special form which can be included
in the viscous term, resulting in second-order accuracy both in space and time.

Boundary Conditions in the LBM
Wall boundary conditions in the LBM were originally taken from the LG
method. For example, a particle distribution function bounce-back scheme
(Wolfram 1986, Lavall´ee et al 1991) was used at walls to obtain no-slip ve-
locity conditions. By the so-called bounce-back scheme, we mean that when
a particle distribution streams to a wall node, the particle distribution scatters
back to the node it came from. The easy implementation of this no-slip veloc-
ity condition by the bounce-back boundary scheme supports the idea that the
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LBM is ideal for simulating fluid flows in complicated geometries, such as flow
through porous media.

For a node near a boundary, some of its neighboring nodes lie outside the
flow domain. Therefore the distribution functions at these no-slip nodes are
not uniquely defined. The bounce-back scheme is a simple way to fix these
unknown distributions on the wall node. On the other hand, it was found
that the bounce-back condition is only first-order in numerical accuracy at the
boundaries (Cornubert et al 1991, Ziegler 1993, Ginzbourg & Adler 1994).
This degrades the LBM, because numerical accuracy of the LBM in Equation 2
for the interior mesh points is second-order. He et al (1997) confirmed this
result by analyzing the slip velocity near the wall node for Poiseuille flow.

To improve the numerical accuracy of the LBM, other boundary treatments
have been proposed. Skordos (1993) suggested including velocity gradients
in the equilibrium distribution function at the wall nodes. Noble et al (1995)
proposed using hydrodynamic boundary conditions on no-slip walls by enforc-
ing a pressure constraint. Inamuro et al (1995) recognized that a slip velocity
near wall nodes could be induced by the bounce-back scheme and proposed
to use a counter slip velocity to cancel that effect. Maier et al (1996) modi-
fied the bounce-back condition to nullify net momentum tangent to the wall
and to preserve momentum normal to the wall. Zou and He (1997) extended
the bounce-back condition for the nonequilibrium portion of the distribution.
Ziegler (1993) noticed that if the boundary was shifted into fluid by one half
mesh unit, i.e. placing the nonslip condition between nodes, then the bounce-
back scheme will give second-order accuracy. Simulations demonstrated that
these heuristic models yield good results for fluid flows around simple wall
boundaries. The above boundary treatments were also analyzed by Zou et al
(1995) and He et al (1997) by solving the lattice BGK equation (Equation 2).
It appears, however, that the extension of these simple assumptions to arbi-
trary boundary conditions is difficult. Chen et al (1996) viewed the LBM as
a special finite difference scheme of the kinetic equation (Equation 31). They
adopted staggered mesh discretization from traditional finite difference meth-
ods and proposed using a second-order extrapolation scheme of distributions
in the flow to obtain the unknown particle distribution functions. Their extrap-
olation scheme is simple and can be extended to include velocity, temperature,
and pressure (Maier et al 1996, Zou & He 1997) boundary conditions and their
derivatives. In this treatment, boundary conditions can be assigned to grid nodes
or to any locations in space for little computational effort. Numerical simula-
tions including time-dependent Couette flow, a lid-driven square-cavity flow,
and flow over a column of cylinders were carried out, showing good agreement
with analytical solutions and finite difference solutions.
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Numerical Efficiency, Stability, and Nonuniform Grid
The discrete velocity equation (Equation 31) is a hyperbolic equation that
approximates the Navier-Stokes equation in the nearly-incompressible limit
(Majda 1984). The numerical accuracy depends on Mach number (Reider &
Sterling 1995). The advective velocityei in Equation 31 is a constant vec-
tor, in contrast to the spatial dependent velocity in compressible hydrodynamic
equations, which prevents the LBM from solving nonlinear Riemann problems.
From a numerical analysis point of view, the LBM, like other kinetic equations,
is a relaxation method (Cao et al 1997) for the macroscopic equations, which
has much in common with the explicit “penalty” or “pseudocompressibility
method” (Sterling & Chen 1996). This view was used by Ancona (1994) to
generalize the LBM to include fully Lagrangian methods for the solution of
partial differential equations. The advective velocityei in Equation 31 is con-
stant in contrast to the spatial dependent velocity in compressible hydrodynamic
equations. The kinetic-relaxation method for solving a hyperbolic conservation
system was proposed by Jin and Xin (1995). This approach uses the relaxation
approach to model the nonlinear flux terms in the macroscopic equations and
thus it does not require nonlinear Riemann solvers either. Using this relax-
ation method, Jin and Katsoulakis (1997) calculated curvature-dependent front
propagation. In principle, the LBM and the kinetic-relaxation method are very
much alike. The kinetic-relaxation was developed mainly for shock capture in
Euler systems, whereas the LBM is more focused on viscous complex flows in
the nearly-incompressible limit. Nadiga and Pullin (1994) proposed a simula-
tion scheme for kinetic discrete-velocity gases based on local thermodynamic
equilibrium. Their method seems more general and able to obtain high or-
der numerical accuracy. Their finite volume technique was further developed
(Nadiga 1995) to solve the compressible Euler equation by allowing the discrete
velocities to adapt to the local hydrodynamic state. Elton et al (1995) studied
issues of convergence, consistency, stability, and numerical efficiency for lat-
tice Boltzmann models for viscous Burgers’ equation and advection-diffusion
system.

The numerical efficiency of the LBM was studied by several authors. Succi
et al (1991) noted that the numberNf po of floating point calculations for the
LBM would be∼r N D, while Nf po ∼ (25 log2 N)ND for the pseudospectral
method, whereN is the number of lattice points along each direction inD
dimensions.r is 150 for the two-dimensional LBM using the full matrixMi j

in Equation 10 and 40 for the LBGK model. For 3-D low Reynolds number
simulations, an LBM performance of 2.5 times faster than the pseudo-spectral
method was reported (Chen et al 1992). The scalability of the LBM was studied
by Noble et al (1996). They found a better-than-linear scalability for the LBM
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when the number of processors increases while simultaneously increasing size
of the computational domain. For a 2-D problem with 21762 lattice points, they
achieved an overall 13.9 gigaflops using 512 processors of CM-5 machines.

In the continuum Boltzmann equation, the equilibrium distribution function
given by Equation 26 corresponds to the maximum entropy state. Thus, any
initial state will evolve towards a state of higher entropy. This result is known
as Boltzmann’s H-theorem, which ensures an increase of entropy and ensures
stability. An H-theorem has been derived also for the LG method (Frisch et al
1987). In the LBM, however, only a small number of discrete velocities is used
and usually the equilibrium distribution is truncated to O(u2) (see Equation
21). Consequently, one cannot simultaneously guarantee an H-theorem and
allow the correct form of the macroscopic equations. Therefore, the LBM,
although of a kinetic nature, is subject to numerical instability. Furthermore, we
know also that the traditional LBM equation (Equation 2) is a finite-difference
solution of the discrete-velocity Boltzmann equation in Equation 31 and the
discretization in Equation 32 withα = 1 marginally satisfies the Courant-
Friedrichs-Lewy condition. A von Neumann linearized stability analysis of the
LBM was carried out by Sterling & Chen (1996). In this analysis, they expanded
fi as fi (x, t) = f (0)

i + f ′
i (x, t), where the global equilibrium populationsf (0)

i
were assumed to be constants that depend only on a constant mean density and
constant velocity. Taylor-expanding Equation 2, they arrived at the following
linearized equation:

f ′
i (x + ei 1t, t + 1t) = Ji j f ′

j (x, t), (33)

whereJi j is the Jacobian matrix corresponding to the coefficient of the linear
term in Equation 2 and does not depend on location or time. Spatial dependence
of the stability analysis was carried out by taking the Fourier transformation of
Equation 33 and solving the eigenvalue problem for diag[exp(−i k · ei 1t)] Ji j .
Fork = 0, they found the linear stability condition:τ ≤ 1/2 which is consistent
with the positivity of viscosity. Detailed stability analysis were carried out
for the hexagonal 2-D LBM model (Chen et al 1992), the square 2-D LBM
model and the 3-D 15-velocity model (Qian et al 1992). They concluded
that a stable LBM requires that the mean flow velocity be below a maximum
velocity that is a function of several parameters, including the sound speedCs,
the relaxation timeτ , and the wave number. The numerical stability can also
be improved if one starts from the continuum kinetic equation (Equation 31)
(Ancona 1994, McNamara et al 1995, Cao et al 1997) using different finite
difference discretizations.

Until recently, one of the limitations to the numerical efficiency in the LBM,
as compared with other CFD methods, is that the discretization of Equation 31
was constrained on a special class of uniform and regular lattices. To increase
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numerical efficiency and accuracy, nonuniform grid methods have been devel-
oped. Koelman (1991) suggested including spatial nonuniformity in the lattice
structure. Nannelli & Succi (1992) and Amati et al (1997) developed the finite
volume LBM (FVLBM) based on Equation 31. They defined a nonuniform
coarse lattice whose cell typically contained several original lattice units. The
evolution equation for the mean valueFi ≡ V−1

C

∫
C fi d3x in the CellC re-

quires the evaluation of the flux across the boundaries ofC, whereVC is the
volume. A piece-wise constant or a piece-wise linear interpolation was used to
approximate the flux. This FVLBM has been used to study two-dimensional
flow past a bluff body (Succi & Nannelli 1994) and three-dimensional turbulent
channel flow (Amati et al 1997). The results of the 3-D channel flow simulation
reveal that the FVLBM is about one order of magnitude faster than the tradi-
tional nonuniform CFD methods. On the other hand, while most simulation
results agree well with other traditional methods, the comparison of simulation
results is correspondingly less satisfactory, owing partially to the low-order
interpolation schemes. Cao et al (1997) developed a nonuniform finite differ-
ence LBM for Equation 31 and simulated annular flows in polar coordinates.
He et al (1996) adhered to the LBM equation (Equation 2) and developed a
time-dependent interpolation scheme that increases grid density in high-shear
regions. They successfully simulated flows in the 2-D symmetric channel
with sudden expansion and flow around a circular cylinder (He & Doolen
1997).

LATTICE BOLTZMANN SIMULATION
OF FLUID FLOWS

Flows with Simple Boundaries
DRIVEN CAVITY FLOWS For two-dimensional cavity flows, there are many pa-
pers using traditional schemes, including finite-difference (Schreiber & Keller
1983, E & Liu 1996) and multigrid (Vanka 1986). The fundamental charac-
teristics of the 2-D cavity flow are the emergence of a large primary vortex
in the center and two secondary vortices in the lower corners. The values
of the stream function and the locations of the centers of these vortices as a
function of Reynolds numbers have been well studied. The lattice Boltzmann
simulation of the 2-D driven cavity by Hou et al (1995) covered a wide range
of Reynolds numbers from 10 to 10,000 using a 2562 lattice. They carefully
compared simulation results of the stream function and the locations of the
vortex centers with previous numerical simulations and demonstrated that the
differences of the values of the stream function and the locations of the vortices
between the LBM and other methods were less than 1%. This difference is
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within the numerical uncertainty of the solutions using other numerical meth-
ods. The spatial distributions of the velocity, pressure and vorticity fields were
also carefully studied. An error analysis of the compressibility effect from the
model was carried out. Two-dimensional cavity flow was also studied by Miller
(1995). Instead of using a uniform velocity on the top of the cavity, in Miller’s
work a shear-flow condition with certain velocity distribution was given which
allowed an analytical solution of the velocity for the whole cavity. Excellent
agreement between the LBM simulations and the analytical solutions for the
velocity and pressure fields was found. The effects of the variation of the cavity
aspect ratio on vortex dynamics were also studied.

Hou (1995) simulated three-dimensional cubic cavity flow using the three-
dimensional 15-velocity LBM (Qian et al 1992, Chen et al 1992). 1283 lattice
points were used with Re= 3,200. Flows at this Reynolds number had been
extensively studied earlier, including the finite-difference simulation and the
experimental work by Prasad & Koseff (1989). Flow structures, including
the velocity and vorticity fields in different planes were analyzed using the
LBM simulation. They compared well with previous numerical studies. The
correlation of the Taylor-G¨ortler-like vortices in theyz- and xz-planes was
reported for the first time. Figure 1 displays the mean velocity profiles from
3-D LBM, 2-D LBM simulations, and experimental work (Prasad & Koseff
1989) in the symmetry plane along the vertical and the horizontal centerlines
(left), and the root-mean-square (rms) velocity profiles (right). The agreement

Figure 1 Mean velocity profiles (left), ū
U and v̄

U , in the symmetry plane along the vertical and
the horizontal centerlines.Solid lineis for the 3-D LBE simulation,dotted lineis a 2-D simulation
(Hou 1995), andcircles represent experimental results (Prasad & Koseff 1989).rms velocities
(right), Urms andVrms, in the symmetry plane along vertical and horizontal centerlines.Solid line
is the LBE simulation,upward trianglesanddownward trianglesare experimental results (Prasad
& Koseff 1989).
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between the 3-D LBM results and experimental results shows that the LBM is
capable of simulating complex 3-D unsteady flows.

FLOW OVER A BACKWARD-FACING STEP The two-dimensional symmetric sud-
den expansion channel flow was studied by Luo (1997) using the LBM. The
main interest in Luo’s research was to study the symmetry-breaking bifurcation
of the flow when Reynolds number increases. In this simulation, an asymmet-
ric initial perturbation was introduced and two different expansion boundaries,
square and sinusoidal, were used. This simulation reproduced the symmetric-
breaking bifurcation for the flow observed previously, and obtained the critical
Reynolds number of 46.19. This critical Reynolds number was compared with
earlier simulation and experimental results of 40.45 and 47.3, respectively.
Qian et al (1996) used the flow over a backward-facing step as a benchmark
for validating the LBM. They studied the recirculation length as a function of
Reynolds number and the channel expansion ratio. The results from the LBM
compared well with previous results using finite-difference methods, spectral-
element methods, and experiments. The appearance of the second vortex and
the transition leading to turbulence were also studied.

FLOW AROUND A CIRCULAR CYLINDER The flow around a two-dimensional
circular cylinder was simulated using the LBM by several groups of people.
The flow around an octagonal cylinder was also studied (Noble et al 1996).
Higuera & Succi (1989) studied flow patterns for Reynolds number up to 80. At
Re= 52.8, they found that the flow became periodic after a long initial transient.
For Re= 77.8, a periodic shedding flow emerged. They compared Strouhal
number, flow-separation angle, and lift and drag coefficients with previous
experimental and simulation results, showing reasonable agreement. Pressure
distributions around the surface of the cylinder as a function of Reynolds number
were carefully studied by Wagner (1994). He concluded that the difference
between his Strouhal numbers and those from other simulations was less than
3.5%. Considering the compressible nature of the LBM scheme, this result is
significant. It demonstrates that in the nearly incompressible limit, the LBM
simulates the pressure distribution for incompressible fluids well (Martinez
et al 1994). The above two simulations were based on uniform lattices, which
poorly approximate circular geometry. The no-slip boundary was enforced at
the boundary mesh point which is jagged and not necessary on the cylinder.
He & Doolen (1997) revisited the problem of two-dimensional flow around a
circular cylinder based on the interpolation-supplement LBM (He et al 1996). In
this simulation, the underlying lattice was square, but a spatial interpolation was
used. A polar coordinate was constructed and the simulation domain consisted
of a circular region. The no-slip wall boundary condition was exactly enforced
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on the cylinder boundary. It is clear that the computational accuracy in this
simulation is better than previous LBM simulations. The streaklines showed
vortex shedding quite similar to experimental observation. The LBM calculated
Strouhal numbers. Lift and drag coefficients for flows at different Reynolds
numbers compared well with previous simulations using other schemes. The
error was within experimental uncertainty and is the same as errors among other
schemes.

Flows in Complex Geometries
An attractive feature of the LBM is that the no-slip bounce-back LBM boundary
condition costs little in computational time. This makes the LBM very useful for
simulating flows in complicated geometries, such as flow through porous media,
where wall boundaries are extremely complicated and an efficient scheme for
handing wall-fluid interaction is essential.

The fundamental problem in the simulation of fluid flows through porous
media is to understand and model the macroscopic transport from microscopic
fluid dynamics. A starting point for this problem is Darcy’s law, which assumes
a linear relation between the pressure gradient,1P/L, and the volume flow
rate per unit areaq: q = −K/(ρ0ν)1P/L. Here K is the permeability.
Previous numerical simulations, including finite-difference schemes (Schwarz
et al 1994) and networking models (Koplik & Lasseter), were either limited
to simple physics, small geometry size, or both. Lattice gas automata were
also used for simulating porous flows and verifying Darcy’s law in simple and
complicated geometries (Rothman 1988). Succi et al (1989) utilized the LBM to
measure the permeability in a 3-D random media. Darcy’s law was confirmed.
Cancelliere et al (1990) studied the permeabilityK as a function of solid fraction
η in a system of randomly positioned spheres of equal radii. The simulation
covered a wide range ofη (0.02 ≤ η ≤ 0.98). The values ofK from the LBM
compared well with the Brinkman approximation:K = K0[1 + 3/4η(1 −√

8/η − 3)] for η < 0.2, and agreed well with the semiempirical Kozeny-
Carman equation:K = (1 − η)3/(6s2). HereK0 is the effective permeability
for a single sphere ands is the specific surface area for the system. Later, Heijs
& Lowe (1995) confirmed this result independently. In addition, they studied
the validity of the Kozeny-Carman equation for soil samples where flow occurs
only through some specific continuous connected pore and flows occurring at
smaller scales are negligible. For this condition, the Kozeny-Carman equation
provided a much less successful estimate of the permeability. Flows through
sandstones measured using X-ray microtomography were simulated by Buckles
et al (1994), Soll et al (1994), and Ferr´eol & Rothman (1995). They found that
the permeability for these sandstones, although showing large variation in space
and flow directions, in general agreed well with experimental measurements
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within experimental uncertainty. Ferr´eol & Rothman (1995) also studied the
effect of grid resolution on permeability. They found that the permeability
strongly depends on the viscosity when the minimum channel in the pores is
several grid points wide.

Spaid & Phelan (1997) investigated the injection process in resin transfer
molding. For this heterogeneous porous media simulation, they used the LBM
simulation of full Navier-Stokes flows to model a flow around a circular cylinder.
Inside the cylinder, the velocity is governed by the Brinkman equation (ν∇2u−
βu = ∇ P/ρ, whereβ is a model parameter). Excellent agreement between the
LBM simulation and lubrication theory for cell permeabilities was reported.

Simulation of Fluid Turbulence
DIRECT NUMERICAL SIMULATION A major difference between the LBM and
the LG method is that the LBM can be used for smaller viscosities. Conse-
quently the LBM can be used for direct numerical simulation (DNS) of high
Reynolds number fluid flows. To validate the LBM for simulating turbulent
flows, Martinez et al (1994) studied decaying turbulence of a shear layer using
both the pseudospectral method and the LBM. The initial shear layer consisted
of uniform velocity reversing sign in a very narrow region. The initial Reynolds
number was 10,000. The simulation used a 5122 mesh and ran for 80 large-
eddy turnover times. Martinez et al carefully compared the spatial distribution,
time evolution of the stream functions, and the vorticity fields. Energy spectra
as a function of time, small scale quantities, including enstrophy, palinstrophy,
and 4th-order enstrophy as a function of time were also studied. The correla-
tion between vorticity and stream function was calculated and compared with
theoretical predictions. They concluded that the LBE method provided a so-
lution that was “accurate” in the sense that time histories of global quantities,
wavenumber spectra, and vorticity contour plots were very similar to those
obtained from the spectral method. In particular, they reproduced details of
the wavenumber spectra at high wavenumbers as well as the detailed structure
of vortex distributions. Their conclusions are significant for simulations of
turbulence in which small-scale dynamics are important. In that paper they
found discrepancies in the spatial locations of vortical structures at very late
stages.

Figure 2 (top left) compares the energy spectra from a pseudospectral method
(dotted line) and the LBM (solid line) for t = 5, and displays the time evolution
of the enstrophy function (bottom left). Figure 2 also depicts contour plots of
the vorticity function at the same time step (right). The agreement of these
two methods is excellent. Two-dimensional forced isotropic turbulence was
simulated by Benzi & Succi (1990) to study the enstrophy cascade range. Two-
dimensional forced turbulence was also simulated by Qian et al (1995) to study
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Figure 2 Velocity energy spectra versus wavenumber,k (top left). The enstrophy of the system,
〈ω2〉 (bottom left), as a function of time.Right, a comparison of the vorticity distributions from a
pseudospectral method and the LBM (Martinez et al 1994).

the energy inverse cascade range. They reproduced thek−5/3 inertial range
scaling, in good agreement with theoretical predictions (Kraichnan 1967).

Chen et al (1992) made a similar validation of LBM by comparing results
of three-dimensional isotropic turbulence using the LBM and the pseudospec-
tral method. In that work, they simulated three-dimensional Beltrami flows,
the decaying Taylor-Green vortex, and decaying three-dimensional turbulence.
The agreement between the two methods for spatial and time distributions of
velocities and vortices was good. This assessment was echoed by Trevi˜no &
Higuera (1994), who studied the nonlinear stability of Kolmogorov flows using
the pseudospectral method and the LBM at various Reynolds numbers.

The LBM is a useful direct numerical simulation (DNS) tool for simulating
nonhomogeneous turbulent flows. To validate the generalized extended self-
similarity for anisotropic flows where the simple extended self-similarity is not
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valid, Benzi et al (1996) used the LBM to simulate three-dimensional shear flow
where a sinusoidal force in thex direction varying along thez direction was
applied. This simulation generated useful velocity and vorticity information,
and the scaling exponents of the velocity increment and their dependence on
the shear rate were studied. Based on their analysis of this flow, they concluded
that the generalized extended self-similarity was valid for anisotropic flows.
Succi et al (1991) studied the bifurcation of a two-dimensional Poiseuille flow
and obtained the amplitude of the primary and secondary bifurcated models as
a function of the Reynolds number. Eggels (1996) utilized the LBM on the
FCHC lattice (d’Humières et al 1986) as a DNS method for simulating three-
dimensional channel flows with Re∗ = 180 (based on the friction velocity).
Their simulation results, including mean stream-wise velocity profiles and rms
velocities as functions of the distance from the wall, were compared with those
reported by Kim et al (1987), showing good agreement.

LBM MODELS FOR TURBULENT FLOWS As in other numerical methods for solv-
ing the Navier-Stokes equations, a subgrid-scale (SGS) model is required in the
LBM to simulate flows at very high Reynolds numbers. Direct numerical simu-
lation is impractical due to the time and memory constraints required to resolve
the smallest scales (Orszag & Yakhot 1986). Hou et al (1996) directly ap-
plied the subgrid idea in the Smagorinsky model to the LBM by filtering the
particle distribution function and its equation in Equation 2 using a standard
box filter. To account for the nonlinear term in the equilibrium distribution
(Equation 22), Hou et al (1996) replaced the relaxation timeτ in Equation 13
by (3ν0 + C2

s1
2|S|2) + 1/2, whereν0 = (2τ − 1)/6 is the kinetic viscosity,

1 is the filter width,|S| is the amplitude of the filtered large-scale strain-rate
tensor, andCs is the Smagorinsky constant. This simple Smagorinsky-type
LBM subgrid model was used to simulate flows in a two-dimensional cavity
at Reynolds numbers up to 106 using a 2562 mesh (Hou et al 1996). Three-
dimensional turbulent pipe flow was simulated by Somers (1993) using the
LBM SGS model at a Reynolds number of 50,000 for mesh sizes up to 803.
Friction as a function of Reynolds number compared reasonably well with the
Blasius power law for turbulent flows. Succi et al (1995) suggested using the
relaxation idea in the LBM to solve the turbulentK − ε equations. Hayot &
Wagner (1996) used a dependent relaxationτ(t) in the lattice BGK equation
(Equation 13), which leads to an effective turbulent viscosity. Eggels (1996)
and Eggels & Somers (1995) included the turbulent stress tensorσt directly
into the equilibrium distribution,f eq

i in Equation 22, by adding an extra term:
f σ
i = ρ[ei αeiβσt αβ − M

D tr(σt )]. Using this model, Eggels (1996) carried out
a large-eddy simulation of the turbulent flow in a baffled stirred tank reactor.
The impact of a mechanical impeller was modeled via a spatial and temporal
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dependent force on the momentum equation. It was reported that the subgrid
LBE turbulent model coupled with the impeller model produced satisfactory
results. Both mean flow and turbulent intensities compared well with exper-
imental data. This simulation demonstrated the potential of the LBM SGS
model as a useful tool for investigating turbulent flows in industrial applica-
tions of practical importance.

LBM SIMULATIONS OF MULTIPHASE
AND MULTICOMPONENT FLOWS

The numerical simulation of multiphase and multicomponent fluid flows is
an interesting and challenging problem because of difficulties in modeling
interface dynamics and the importance of related engineering applications, in-
cluding flow through porous media, boiling dynamics, and dendrite formation.
Traditional numerical schemes have been successfully used for simple inter-
facial boundaries (Glimm et al 1981, Brackbill et al 1992, Chang et al 1996).
The LBM provides an alternative for simulating complicated multiphase and
multicomponent fluid flows, in particular for three-dimensional flows.

Method of Gunstensen et al
Gunstensen et al (1991) were the first to develop the multicomponent LBM
method. It was based on the two-component LG model proposed by Rothman
& Keller (1988). Later, Grunau et al (1993) extended this model to allow
variations of density and viscosity. In these models, red and blue particle
distribution functions f (r )

i (x, t) and f (b)
i (x, t) were introduced to represent

two different fluids. The total particle distribution function (or the color-blind
particle distribution function) is defined as:fi = f (r )

i + f (b)
i . The LBM

equation is written for each phase:

f k
i (x + ei , t + 1) = f k

i (x, t) + �k
i (x, t), (34)

werek denotes either the red or blue fluid, and

�k
i = (�k

i

)1 + (�k
i

)2
(35)

is the collision operator. The first term in the collision operator,(�k
i )

1, rep-
resents the process of relaxation to the local equilibrium similar to the LBGK
model in Equation 13:(

�k
i

)1 = −1

τk

(
f k
i − f k(eq)

i

)
. (36)

Here, f k(eq)
i is the local equilibrium distribution depending on the local macro-

scopic variablesρ(k) andu(k). τk is the characteristic relaxation time for species
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k. The viscosity of each fluid can be selected by choosing the desiredτk. Con-
servation of mass for each phase and total momentum conservation are enforced
at each node during the collision process:

ρr =
∑

i

f r
i =

∑
i

f r (eq)
i , ρb =

∑
i

f b
i =

∑
i

f b(eq)
i ,

ρu =
∑
i,k

f k
i ei =

∑
i,k

f k(eq)
i ei ,

(37)

whereρ = ρr + ρb is the total density andρu is the local total momentum.
The form of f k(eq)

i can be chosen to be similar to Equation 22.
The additional collision operator(�k)2 contributes to the dynamics in the

interfaces and generates a surface tension:(
�k

i

)2 = Ak

2
|F|((ei · F)2/|F|2 − 1/2

)
, (38)

whereF is the local color gradient, defined as:

F(x) =
∑

i

ei (ρr (x + ei ) − ρb(x + ei )). (39)

Note that in a single-phase region of the incompressible fluid model,F vanishes.
Therefore, the second term of the collision operator(�k

i )
2 only contributes to

interfaces and mixing regions. The parameterAk is a free parameter, which
determines the surface tension. The additional collision term in Equation 38
does not cause the phase segregation. To maintain interfaces or to separate
the different phases, the LBM by Gunstensen et al follows the LG method of
Rothman & Keller (1988) to force the local color momentum,j = ∑

i ( f r
i −

f b
i )ei , to align with the direction of the local color gradient after collision. In

other words, the colored distribution functions at interfaces were redistributed
to maximize−j · F. Intuitively, this step will force colored fluids to move
toward fluids with the same colors.

The multicomponent LBM by Gunstensen et al (1991) has two drawbacks.
First, the procedure of redistribution of the colored density at each node requires
time-consuming calculations of local maxima. Second, the perturbation step
with the redistribution of colored distribution functions causes an anisotropic
surface tension that induces unphysical vortices near interfaces. D’ortona et al
(1994) modified the model of Gunstensen et al. In their model, the recoloring
step is replaced by an evolution equation forf k

i that increases computational
efficiency.

Method of Shan & Chen
Shan & Chen (1993) and Shan & Doolen (1995) used microscopic interactions
to modify the surface-tension–related collision operator for which the surface
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interface can be maintained automatically. In these models,(�k
i )

2 in Equation
38 was replaced by the following formula:(

�k
i

)2 = ei · Fk. (40)

HereFk is an effective force on thekth phase owing to a pairwise interaction
between the different phases:

Fk(x) = −
∑

k′

∑
i

Vkk′(x, x + ei )ei . (41)

HereVkk′ is an interaction pseudopotential between different phases (or com-
ponents):

Vkk′(x, x′) = Gkk′(x, x′)ψk(x)ψk′
(x′). (42)

Gkk′(x) is the strength of the interaction; andψk(x) is a function of density
for the k phase atx which has taken the following empirical form:ψ =
ρ0[1 − exp(−ρ/ρ0)], whereρ0 is a constant free parameter. It was shown that
this form of the effective densityψ gives a non-ideal equation of state, which
separates phases or two component fluids. Qian et al (1995) have recently
demonstrated that other pseudopotential forms, including fractional potential
and a van der Waals potential, will produce similar results.

It should be noted that the collision operator(�k
i )

2 in the Shan-Chen model
does not satisfy local momentum conservation. This treatment is physically
plausible because the distant pairwise interactions between phases change the
point-wise local momenta at the positions involved in the interactions. This
feature differs from the model of Gunstensen et al where the total local mo-
mentum is conserved (see the third operation in Equation 37). It is arguable
that this spurious conservation might be one reason why the model exhibits
unphysical features near interfaces.

For simplicity, only the nearest-neighbor interactions were involved in the
Shan-Chen model, in whichGkk′(x, x′) is constant whenx − x′ = ei , and zero
otherwise.Gkk′ acts like a temperature; whenG is smaller than the critical value
Gc (depending on the lattice structure and initial density), the fluids separate.
Theoretical calculations indicate (Shan & Chen 1994) that the surface tension
σ ∼ MG/[2D(D + 1)], which was also verified by numerical simulation.

In the Shan-Chen model, the separation of fluid phases or components is
automatic (Chen 1993). This is an important improvement in numerical effi-
ciency compared with the original LBM multiphase models. The Shan-Chen
model also improves the isotropy of the surface tension.

Free Energy Approach
The above multiphase and multicomponent lattice Boltzmann models are based
on phenomenological models of interface dynamics and are probably most
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suitable for isothermal multicomponent flows. One important improvement
in models using the free-energy approach (Swift et al 1995, 1996) is that the
equilibrium distribution can be defined consistently based on thermodynamics.
Consequently, the conservation of the total energy, including the surface energy,
kinetic energy, and internal energy can be properly satisfied (Nadiga & Zaleski
1996).

The van der Waals formulation of quasilocal thermodynamics for a two-
component fluid in thermodynamic equilibrium at a fixed temperature has the
following free-energy functional:

9(r) =
∫

dr [ψ(T, ρ) + W(∇ρ)]. (43)

The first term in the integral is the bulk free-energy density, which depends
on the equation of state. The second term is the free-energy contribution from
density gradients and is related to the surface tension. For simple multiphase
fluid flows, W = κ

2(∇ρ)2, whereκ is related to the surface tension. The full
pressure tensor in a nonuniform fluid has the following form:

Pαβ = pδαβ + κ
∂ρ

∂xα

∂ρ

∂xβ

. (44)

The pressure is obtained from the free energy:p(r) = ρ δ9
δρ

− 9(r) = p0 −
κρ∇2ρ − κ

2(∇ρ)2, wherep0 = ρψ ′(ρ) − ψ(ρ) is the equation of state. For a
van der Waals equation of state,ψ = ρT In ρ/(1 − ρb) − aρ2, wherea andb
are free parameters.

To incorporate the above formulation into the lattice Boltzmann equation,
Swift et al (1995) added a term to the original equilibrium distribution in Equa-
tion 21: f eq

i
′ = f eq

i + Gαβei αeiβ. They vary the coefficients inf eq
i (see Equa-

tion 21) andGαβ to guarantee the conservation of mass and momentum and to
obtain the following stress tensor condition:

∑
i f eq

i
′ei αeiβ = Pαβ + ρuαuβ.

Numerical Verification and Applications
Two fundamental numerical tests associated with interfacial phenomena have
been carried out using the multiphase and multicomponent lattice Boltzmann
models. In the first test, the lattice Boltzmann models were used to verify
Laplace’s formula by measuring the pressure difference between the inside and
the outside of a droplet:Pinner − Pouter = σ

R, wherePinner and Pouter denote
the pressures inside and outside of the droplet, respectively.R is the radius
of the droplet andσ is the surface tension. The simulated value ofσ has
been compared with theoretical predictions, and good agreement was reported
(Gunstensen et al 1991, Shan and Chen 1993, Swift et al 1995). Alternatively,
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the surface tension can also be measured using the mechanical definition

σ =
∫ ∞

−∞
(PN − PT )dz, (45)

wherePN andPT are the normal and the tangential pressure along a flat inter-
face, respectively, and the integration is evaluated in a direction perpendicular
to the interface. It is shown from LBM simulations (Gunstensen et al 1991,
Grunau et al 1993, Swift et al 1995) that the surface tension obtained from the
mechanical definition agrees with the Laplace formula definition.

In the second test of LBM interfacial models, the oscillation of a capillary
wave was simulated (Gunstensen et al 1991, Shan & Chen 1994, Swift et al
1995). A sine wave displacement of a given wave vector was imposed on an
interface that had reached equilibrium. The resulting dispersion relation was
measured and compared with the theoretical prediction (Laudau & Lifshitz
1959): ω2 = σ/ρk3. Good agreement was observed, validating the LBM
surface tension models.

Because the lattice Boltzmann multiphase and multicomponent models do
not track interfaces, it is easy to simulate fluid flows with very complicated
interfaces, such as the domain growth in the spinodal decomposition process for
binary fluids (Alexander et al 1993a, Rybka et al 1995). In these simulations,
hydrodynamics plays an important role and multiphase or multicomponent
fluids evolved from an initial mixed state owing to surface tension, viscosity,
and inertial force.

A convenient way to characterize the growth kinetics is to use the correlation
function of the order parameter,G(r, t) ≡ 〈φ(r )φ(0)〉, whereφ is the order
parameter, defined as(ρr − ρb)/(ρr + ρb). The Fourier transform ofG(r, t)
is then the structure function S(k,t). As time evolves, the structure function
becomes more sharply peaked, and its maximum value moves toward small
k. In a wide variety of phase segregating systems, S(k,t) has a simple form at
late times: S(k, t) = RD(t)F(x). Here R(t) is the average domain size,D
is the dimension, andF(x) is a universal function depending onx = k R(t).
Numerical calculations ofR(t) andF(x) have been carried out using the LBM
(Alexander et al 1993a). It was found thatR(t) scales∼t2/3 in two dimen-
sions and∼t in three dimensions for two-component fluids. This agrees with
theoretical predictions.F(x) was found to agree well with Porod’s law for
largex, ∼xD+1, but small scales showed strong dependence of flow properties,
which was later confirmed by Wu et al (1995) using the Langevin equation.
Osborn et al (1995) studied similar scaling problems for liquid-gas two-phase
domain growth. They found thatR(t) ∼ t1/2 and∼t2/3 at high and low vis-
cosities, respectively. A similar crossover for two-component fluids fromt1/3

to t2/3 was also reported as time increased. The hydrodynamic effects on the
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spinodal decomposition for three and four components in two and three di-
mensions in critical and off-critical quenching were also studied by Chen &
Lookman (1995). Cieplak (1995) carried out a study of two-dimensional rup-
ture dynamics under initial perturbation and compared results with molecular
dynamics simulations. The coalescence process was also studied for a droplet
in a background fluid falling in a gravitational field to the bottom of a con-
tainer in which the bottom is a “bare” wall, a shallow liquid with the same
kind as the droplet, or a deeper liquid. Interesting interfacial structures were
observed.

In Figure 3 we show condensation and subsequent coalescence of liquid drops
in supersaturated vapor at two different times. The LBE model with interparticle
interaction (Shan & Chen) was used in this simulation on a 1283 lattice. The
fluid obeys the equation of state:p = 1

3ρ + 3
2G(1 − e−ρ)2. G (chosen to

be −0.55) is a parameter that gives the relative strength of the interaction.
This equation of state gives a non-monotonic isotherm with a critical point at
G = − 4

9. The initial density is constant except for a randomly distributed small
perturbation.

One feature of the free-energy approach is that one can parameterize the free
energy to simulate complicated fluid flows, including lamellar fluids. In their
study, Gonnella et al (1997) used the following Ginzburg-Landau potential
for the ψ function in Equation 43 based on the order parameter,φ: ψ =
λ
2φ2 + θ

4φ4. They included high-order gradients in theW function: W =
κ
2(∇φ)2 + ζ

2(∇2φ)2 whereθ andζ are positive. λ < 0 andk < 0 lead to
lamellar phases. The magnitude ofζ is directly connected to the elasticity of

Figure 3 Condensation and subsequent coalescence of liquid drops in supersaturated vapor. Early,
left, late,right (Shan 1997).
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Figure 4 Configuration of a lamellar fluid when a shear flow is applied. The shear velocities are
v = 0 (a), v = 0.1 (b), andv = 0.3 (c) (Gonnella et al 1997).

the fluid. In Figure 4, we present flow patterns for a lamellar fluid under a
shear induced by forcing a constant velocityv in the left and−v in the right
simulation domains, respectively. As the shear was applied, ordered lamellae
quickly formed, aligned at an angle to the direction of shear. A further increase
of the shear rate resulted in a decrease in the angle between the direction of
the lamellae and that of the shear. This pattern directly reflects the balance
between the shear force and elastic force of the lamellar fluids. It would be
of great interest to use this model for simulating bio-fluids where elasticity is
important.

Lattice Boltzmann multiphase fluid models have been extensively used to
simulate multicomponent flow through porous media in order to understand the
fundamental physics associated with enhanced oil recovery, including relative
permeabilities (Vangenabeek et al 1996). The LBM is particularly useful for
this problem because of its capability of handling complex geometrical bound-
ary conditions and varying physical parameters, including viscosities (Grunau
et al 1993) and wettabilities (Blake et al 1995). In the work by Buckles et al
(1994), Martys & Chen (1995), and Ferreol & Rothman (1995), realistic sand-
stone geometries from oil fields were used. Very complicated flow patterns
were observed. The numerical values of the relative permeability as a function
of percent saturation of wetting fluid agree qualitatively with experimental data.
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Figure 5 A sandstone sample used in the multiphase LBM simulation (top left). Other panels
display two-phase fluid flows through the sandstone at different times (Buckles et al 1994).

Gunstensen & Rothman (1993) studied the linear and nonlinear multicompo-
nent flow regimes corresponding to large and small flow rates, respectively.
They found, for the first time, that the traditional Darcy’s law must be modi-
fied in the nonlinear regime because of the capillary effect. Figure 5 shows a
typical pore geometry (top left). It is a portion of a sandstone sample obtained
from a Mobil offshore oil reservoir. Two-phase fluid flows through the sand-
stone are displayed at successive times (top right, bottom left, bottom right).
The sandstone is transparent. The dark color indicates invading water and the
grey color indicates oil. As seen in the plot, the lattice Boltzmann simulation
preserves the fundamental phenomena observed in experiments that the water
phase forms long fingers through the porous medium because of the wettability
properties of the water. The LBM is becoming an increasingly popular means
of modeling multiphase fluid flows in porous media because of its ability to
simulate the exact Navier-Stokes equation in a parallel fashion, to handle com-
plicated geometry, and to simulate surface dynamics and wettability (or contact
angles).
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LATTICE BOLTZMANN SIMULATION
OF PARTICLES IN FLUIDS

To simulate particles suspended in fluids, an approximate treatment of fluid-
particle interaction must be incorporated. Much of the pioneering work and
some interesting applications in this area were carried out by Ladd (1993,
1994a,b, 1997). Important variations and applications were mostly associated
with Behrend (1995) and Aidun & Lu (1995).

In the model of Ladd, a solid boundary was mapped onto the lattice and a set
of boundary nodes,rb, was defined in the middle of links, whose interior points
represent a particle. A no-slip boundary condition on the moving particle
requires the fluid velocity to have the same speed at the boundary nodes as
the particle velocityub which has the translational partU, and the rotational
part �b. Assuming that the center position of the particle isR, then,ub =
U + �b × (rb − R). The distribution functionfi is defined for grid points
inside and outside the particle. To account for the momentum change whenub

was not zero, Ladd proposed adding a term to the distribution function for both
sides of the boundary nodes:

f ′
i (x) = fi (x) ± B(ei · ub), (46)

whereB is a coefficient proportional to the mass density of the fluid and depends
on the detailed lattice structure; the+ sign applies to boundary nodes at which
the particle is moving toward the fluid and− for moving away from the fluid.
Equation 46 includes a mass exchange between the fluid inside and the fluid
outside the particle. Aidun & Lu (1995) modified Equation 46 by adding
an extra term that forces mass conservation for the fluid inside the particle.
The details of the boundary rule and variations were studied extensively by
Behrend (1995), who improved the efficiency of the algorithm used by Ladd
while retaining similar accuracy for translational motion, although the rotational
motion is less accurate.

The approximations used so far to simulate moving boundaries are compu-
tationally convenient and efficient. In fact, the work for simulatingN particles
in Ladd’s scheme scales linearly withN, in contrast to finite-element schemes,
which scale asN2 (Hu 1996) when the exact incompressible condition is being
enforced. The accuracy of the scheme was carefully and extensively studied for
creeping flows and flows at finite Reynolds numbers (Ladd 1994b). It compared
well with finite-difference and finite-element methods. The drag coefficient of
a circular particle in a 2-D channel with gravitational field and the settling tra-
jectory compared well with results from traditional numerical methods and the
solution of the Stokes equation (Aidun & Lu 1996).
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In the LBM, fluctuations in the distribution functions are ignored. These
fluctuations are important for the study of Brownian motion and other effects.
To include the fluctuations in the fluid necessary to drive Brownian motion,
Dufty & Ernst (1996) and Ladd (1993) added stochastic terms to the distribution
function. These distribution function fluctuations are constrained to conserve
mass and momentum, but they contribute a fluctuating part to the stress tensor
of the fluid. The variance of the stress-tensor fluctuations is related to the
effective temperature and the viscosity of the fluid via the fluctuation-dissipation
theorem. This method allows—apparently for the first time—treatment of
the Brownian short-time regime and the pre-Brownian time regime. Close
quantitative agreement is found between experiment and the fluctuating LBM
in the short-time regime (Segre et al 1995). Ladd, using up to 32,000 suspended
particles in the fluctuation LBM, showed that “there is no evidence that the long-
range hydrodynamic interactions are screened by changes in the pair correlation
function at large distances.” His results leave open the explanation of the
experimentally reported absence of the theoretically expected divergence of
velocity fluctuations (Ladd 1997).

SIMULATION OF HEAT TRANSFER
AND REACTION-DIFFUSION

The lattice Bhatnagar-Gross-Krook (LBGK) models for thermal fluids have
been developed by several groups. To include a thermal variable, such as tem-
perature, Alexander et al (1993b) used a two-dimensional 13-velocity model
on the hexagonal lattice. In this work, the internal energy per unit massE
was defined through the second-order moment of the distribution function,
ρE = ∑

σ,i fσ,i (eσ,i − u)2/2. Here the indexσ = 0, 1, and 2, indicates
velocity magnitudes. To have a consistent compressible hydrodynamic equa-
tion, the collision operator�σ,i was chosen to satisfy local energy conserva-
tion:

∑
i �σ,i e2

σ,i /2 = 0, and the third-order velocity dependent terms, such
as(eσ,i · u)3, (eσ,i · u)u2 andu3, had been included in the equilibrium distri-
bution (Equation 21). The transport coefficients, including viscosity and heat
conductivity derived from the Chapman-Enskog expansion, agreed well with
numerical simulation. A Couette flow with a temperature gradient between two
parallel planes was also simulated and the results agreed well with theoretical
predictions when the temperature difference was small. Vahala et al (1995)
examined this model by studying the effect of 2-D shear velocity turbulence on
a steep temperature gradient profile. Qian (1993) developed 3-D thermal LBM
models based on 21 and 25 velocities. Chen et al (1994) extended the above
thermal models by including more speeds based on general square lattices in
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D dimensions. They utilized the freedom in the equilibrium distribution to
eliminate nonphysical high-order effects (Qian & Orszag 1993). Because the
multispeed BGK collision operator constrained the momentum and the thermal
modes to relax at the same speed, the Prandtl number was fixed. The inclusion
of additional properties to provide variation of the Prandtl number was studied
by Chen et al (1995) and McNamara et al (1995).

Two limitations in multispeed LBM thermal models severely restrict their
application. First, because only a small set of velocities is used, the varia-
tion of temperature is small. Second, all existing LBM models suffer from
numerical instability (McNamara et al 1995), owing to the absence of an
H-theorem. It seems that the numerical instability is more severe in the thermal
LBM models than in the isothermal models. Both problems can be partially
resolved if one treats the temperature equation as an active scalar and solves
it using the relaxation method by adding an independent distribution func-
tion (Bartoloni et al 1993). On the other hand, it is difficult for the active
scalar approach to incorporate the correct and full dissipation function. Two-
dimensional Rayleigh-B´enard (RB) convection was simulated using this active
scalar scheme for studying scaling laws (Bartoloni et al 1993) and probabil-
ity density functions (Massaioli et al 1993) at high Prandtl numbers. Two-
dimensional free-convective cavity flow was also simulated (Eggels & Somers
1995), and the results compared well with benchmark data. Two-D and 3-D
Rayleigh-Bénard convections were carefully studied by Shan (1997) using a
passive scalar temperature equation and a Boussinesq approximation. This
scalar equation was derived based on the two-component model of Shan &
Chen (1993). The calculated critical Rayleigh number for the RB convection
agreed well with theoretical predictions. The Nusselt number as a function of
Rayleigh number for the 2-D simulation was in good agreement with previous
numerical simulation using other methods.

The LBM was extended by Dawson et al (1993) to describe a set of reaction-
diffusion equations advected by velocities governed by the Navier-Stokes equa-
tion. They studied hexagonal patterns and stripe patterns caused by the Turing
instability in the Selkov model. The effect of fluid flows on the chemical re-
action at solid surfaces was simulated (Chen et al 1995) to study geochemical
processes, including dissolution and precipitation on rock surfaces and chimney
structures at seafloor hydrothermal vents. A similar study on the effect of nutri-
ent diffusion and flow on coral morphology was carried out by Kaandorp et al
(1996). Alvarez-Ramirez et al (1996) used the model of Dawson et al (1993) to
study the effective diffusivity of a heterogeneous medium when the inclusion
was impermeable or permeable with a different diffusivity. They found that
the LBM simulation results compared well with Monte Carlo simulations and
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agreed well with the predictions using Maxwell’s equation. Holme & Rothman
(1992) carried out a study of viscous fingering in two-dimensional Hele-Shaw
patterns with P´eclet number= 1700. Creeping flow in a Hele-Shaw cell was
also simulated by Flekkøy et al (1996) to investigate the inertial effect at very
small Reynolds number, which is sensitive to effects of hydrodynamic irre-
versibility. Anomalous diffusion of LBM fluids in fractal media and Taylor
hydrodynamic dispersion in a two-dimensional channel were simulated by Cali
et al (1992). They found that the diffusion scaling exponents agreed well with
the exact solution for a Sierpinski gasket. The measured longitudinal diffusion
coefficient as a function of flow speed in 2-D Taylor hydrodynamic dispersion
agreed well with an asymptotic prediction. This research demonstrates that the
LBM is capable of simulating the diffusion process in irregular geometries. The
effects of turbulent mixing behind a wake on Turing patterns were studied by
Weimar & Boon (1996). They found that the mixing caused by turbulence in-
creased eddy diffusivity and destroyed the pattern formation. Qian et al (1995)
simulated front dynamics and scaling properties for the irreversible reaction:
A + B → C.

CONCLUDING REMARKS

This review is intended to be an overview of the subject of the lattice Boltzmann
method and its applications in fluid mechanics. The LBM is so diverse and
interdisciplinary that it is not possible to include all interesting topics. We refer
readers to related review articles written by Benzi et al (1992), Rothman &
Zaleski (1994), Chen et al (1995), and Qian et al (1995).

We have introduced the fundamentals of the lattice Boltzmann method, in-
cluding the lattice Boltzmann equation and its relation to the macroscopic
Navier-Stokes equation. Some LBM methods, including multiphase LBM
models and fluid-particle interaction models, have been discussed in detail.
We have demonstrated that simulation results from the lattice Boltzmann meth-
ods are in good quantitative agreement with experimental results and results
from other numerical methods.

We wish to emphasize the kinetic nature of the LBM. Because the LBM is
a mesoscopic and dynamic description of the physics of fluids, it can model
problems wherein both macroscopic hydrodynamics and microscopic statistics
are important. The LBM can be considered to be an efficient numerical method
for computational fluid dynamics. It is also a powerful tool for modeling new
physical phenomena that are not yet easily described by macroscopic equations.

From a computational point of view, the lattice Boltzmann equation is hyper-
bolic and can be solved locally, explicitly, and efficiently on parallel computers.
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Not only is the scheme computationally comparable with traditional numerical
methods, but it is also easy to program and to include new physics because of
the simplicity of the form of the LBM equations.

The lattice Boltzmann method is still undergoing development. Many mod-
els, including simulation of granular flows (Flekkøy & Herrmann 1993, Tan
et al 1995), viscoelastic flows (Aharonov & Rothman 1993), magnetohydro-
dynamics (Martinez et al 1994), and microemulsions (Boghosian et al 1996)
were recently proposed. Although innovative and promising, these existing
LBM methods, including multicomponent LBM models, require additional
benchmarking and verification. The current lattice models for multiphase and
reacting systems are most suitable for isothermal problems. The development
of a reliable LBM for thermal systems will allow the simulation of heat transfer
and surface phenomena simultaneously (Kato 1997). This would open many
new areas of application.
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