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Most forecasts predict an annual airline traffic growth
rate between 4.5 and 5% in the foreseeable future.
To sustain that growth, the environmental impact
of aircraft cannot be ignored. Future aircraft must
have much better fuel economy, dramatically less
greenhouse gas emissions and noise, in addition to
better performance. Many technical breakthroughs
must take place to achieve the aggressive
environmental goals set up by governments in North
America and Europe. One of these breakthroughs
will be physics-based, highly accurate and efficient
computational fluid dynamics and aeroacoustics tools
capable of predicting complex flows over the entire
flight envelope and through an aircraft engine, and
computing aircraft noise. Some of these flows are
dominated by unsteady vortices of disparate scales,
often highly turbulent, and they call for higher-order
methods. As these tools will be integral components
of a multi-disciplinary optimization environment,
they must be efficient to impact design. Ultimately,
the accuracy, efficiency, robustness, scalability and
geometric flexibility will determine which methods
will be adopted in the design process. This article
explores these aspects and identifies pacing items.

1. Introduction
According to Boeing (http://www.boeing.com/boeing/
commercial/cmo/) and Airbus (http://www.airbus.
com/company/market/forecast/) forecasts, worldwide
airline traffic in terms of revenue passenger kilometres is
expected to grow 4.7–5% per year in the next 20 years,
essentially doubling every 15 years. This rate of growth
is much larger than the world gross domestic product
growth rate over the same period, forecasted to be
around 3.2%. Accommodating such growth will require
many new aircraft and more flights, plus new runways,
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airports and traffic control systems. If the commercial aviation industry remains at the present
technology level, the likely consequences are a significant escalation in harmful greenhouse gas
(GHG) emissions, unprecedented traffic jams in the sky, non-stop noise near airports and more
citizens unhappy about the effects on their health and their quality of life. The consequence of
burning fossil fuels is well established in their long-term impact on climate and global warming
due to GHG emissions, primary being CO2 and NOx. Two recent studies in both the USA and the
UK appear to directly link aircraft noise with cardiovascular and other diseases [1,2].

The importance of reducing the environmental impact of aviation has been fully realized
by many governments and private industry; and many researchers have started efforts to
address the environmental concerns [3–5]. Words such as green or sustainable are coined to
describe future aircraft or aviation with reduced environmental impact. In 2010, the US National
Science and Technology Council released the National Aeronautics Research and Development
Plan (http://www.whitehouse.gov/sites/default/files/microsites/ostp/aero-rdplan-2010.pdf),
which sets the following goals for aircraft in 10 years:

— increase lift/drag ratio by 25%;
— reduce fuel burn by 70% compared with Boeing 737/CFM56;
— reduce noise by 62 dB cumulative below current FAA standard for large subsonic jet

aircraft; and
— reduce NOx emissions by 80% below current international standard.

Many breakthroughs must take place in the coming decades to satisfy the ever more
stringent environmental regulations. One of the breakthroughs will be physics-based highly
accurate/efficient and robust aircraft and engine design tools, and noise prediction tools. The
most critical among them are computational fluid dynamics (CFD) tools capable of handling the
entire flight envelope from take-off to landing, and predicting the highly unsteady and turbulent
flow inside an engine. At present, most CFD design tools are based on the second-order finite
volume method on hybrid unstructured meshes capable of handling complex geometries [6].
The governing equations are the Reynolds-averaged Navier–Stokes equations using a turbulence
model such as the Spalart–Allmaras model [7] or detached eddy simulation [8] to handle
turbulent flows at high Reynolds numbers. These tools have proved to be very useful in predicting
flow at the cruise condition and were used heavily in the design of the latest Boeing and Airbus
commercial aircraft. However, they have generally failed to predict highly separated flow for
high-lift configurations during take-off and landing, because a statistically steady mean flow may
not exist at such flow regimes. In addition, the highly separated turbulent flow is dominated
by unsteady vortices of disparate scales, whose accurate resolution calls for high-order CFD
methods, at least third-order accurate [9]. Shown in figure 1 is the vorticity distribution computed
with a second-order and a fourth-order discontinuous Galerkin (DG) type scheme for an
isentropic vortex propagating through the domain eight times. The second-order simulation was
performed on a fine mesh, while the fourth-order scheme was conducted on a coarse mesh so that
both have the same number of degrees of freedom (ndf) and roughly the same computational cost.
Note that the fourth-order scheme preserves the vortex strength much more accurately than the
second-order scheme.

Another major design parameter is aircraft noise, which is composed of three major sources:
airframe noise, engine noise and landing gear noise (which is singled out because it is the
dominant noise during take-off and landing). It is mostly produced by unsteady, turbulent flow
through the engine and around major airframe components. The direct computation of aircraft
noise is extremely challenging, as the noise (or pressure fluctuation) is governed by the same
equations governing the flow, the Navier–Stokes equations. However, the pressure fluctuations
are normally orders of magnitude smaller than the mean flow quantities. To overcome the
difficulty, various acoustic analogies [10,11] are used in which the noise computation is
decoupled from the flow simulation. From the unsteady aerodynamic flow, acoustic sources are
identified, and then propagated to the far field by solving a simpler set of governing equations
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Figure 1. Vorticity distribution for a convective isentropic vortex computed with second- and fourth-order schemes with the
same ndf . The vortex travels eight times across the computational domain. (a) Second-order scheme on a fine mesh and
(b) fourth-order scheme on a coarse mesh.

such as the Euler equations or a linear wave equation. This approach has achieved remarkable
success in many applications. Refer to the review article [12] in this Theme Issue for details. The
fidelity of the approach hinges upon the following questions:

(1) How accurate is the near-field flow simulation?
(2) Can the noise problem be partitioned into a source and propagation problem?
(3) How accurate can the noise sources be propagated to the far field?

It has been shown in many computational aeroacoustics (CAA) studies that high-order methods
with very low dissipation and dispersion errors are critical in noise propagation problems. In
addition, many prior noise simulations demonstrated that an accurate near-field computation
is often the determining factor of how reliable the noise prediction is. In order to accurately
compute noise for the entire flight envelope, accurate near-field aerodynamic simulations call for
high-order methods.

2. Review of high-order methods
High-order methods have received considerable attention from the CFD community in the past
two decades owing to their potential of delivering higher accuracy with lower cost than low-
order methods. Before proceeding any further, let us first clarify what we mean by ‘high order’.
A numerical method is said to be kth-order accurate (or of order k) if the solution error e is
proportional to the mesh size h to the power k, i.e. e ∝ hk. In the aerospace community, high-order
means third- or higher-order accuracy.

Many types of high-order methods have been developed to deal with a diverse range of
problems. Interested readers can refer to several review articles on high-order methods [13–15]. At
the extremes of the accuracy spectrum, one finds the spectral method [16] as the most accurate,
and first-order methods (the Godunov method [17], for example) as the least accurate. Many
high-order methods have been used successfully in CAA and CFD applications. An incomplete
list includes the compact methods [18,19], essentially non-oscillatory (ENO)/weighted ENO
methods [20–22], dispersion-relation-preserving (DRP) [23] and upwind DRP methods [24],
weighted compact nonlinear schemes [25], spectral element [26], SUPG (streamline upwind
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Figure 2. (a) A possible non-compact third-order reconstruction stencil for element i. (b) A compact stencil with multiple d.f.
in element i. (Online version in colour.)

Petrov–Galerkin) [27,28], staggered grid multi-domain [29], high-order k-exact finite volume [30,
31], residual distribution [32], DG [33–36], spectral volume/difference [37–39], PnPm [40] and
correction procedure via reconstruction (CPR) [41–43].

Which high-order methods will be embraced by future design tools? Distinguishing features
may include geometric flexibility, accuracy/efficiency, robustness and scalability. Note that we
put accuracy/efficiency as a single criterion to emphasize that they must be considered together.
When we determine which method is the most accurate, we need to look at the solution error
produced with roughly the same amount of central processing unit (CPU) time. In order to limit
the scope of this paper, we will focus on discontinuous high-order methods capable of handling
unstructured meshes.

The ancestor of discontinuous methods was the Godunov finite volume method, in which the
numerical solution is discontinuous across element interfaces. In order to ensure conservation,
a unique flux must be used at an interface. This flux was computed analytically in the
original Godunov method by solving a Riemann problem, but was later replaced with various
approximate Riemann solvers [44,45] to reduce the computational cost. The Godunov method
is compact in that the scheme residual of an element depends on itself and its immediate
neighbours. Compact methods incur minimum amount of data communication on modern
parallel computers including CPU and graphics processing unit (GPU) clusters. On a GPU card
with thousands of compute cores, it was demonstrated that minimizing communication was
paramount in achieving the best performance [46].

Unfortunately, the Godunov method is not accurate at all, being only first-order. The only
way to rescue it was to extend it to higher-order accuracy. The most obvious idea was borrowed
from a finite-difference method by using neighbouring elements to build a higher-order solution
polynomial, as shown in figure 2a, resulting in higher-order methods such as the MUSCL [47] and
ENO/WENO methods [20]. Later this idea was successfully extended to unstructured meshes
and often called k-exact finite volume method [30]. The biggest drawback of these methods is that
they are not compact. For example, the scheme stencil for a second-order finite volume method
includes neighbours’ neighbours. The other idea to extend the Godunov method to higher order
was borrowed from a finite-element method by defining multiple degrees of freedom (d.f.) on an
element, as shown in figure 2b. The reconstructed solution polynomial uses only local data from
the element itself. The scheme stencil includes itself and only its immediate neighbours. This was
exactly how the DG method [35,36] was conceived.

3. Recent progress in compact discontinuous methods
To present the basic idea, we consider the following one-dimensional conservation law

∂Q
∂t

+ ∂F(Q)
∂x

= 0, (3.1)

where Q is the state variable and F is the flux. The computational domain [a, b] is discretized into
N elements, with the ith element defined by Vi ≡ [xi−1/2, xi+1/2]. Each element can be transformed
into the standard element [−1, 1] using a linear transformation if necessary. A degree p polynomial

basis is denoted by {φj(x)}p+1
j=1 .
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(a) Discontinuous Galerkin method
The approximate numerical solution is piecewise continuous with discontinuities at element
interfaces. On element Vi, the solution is approximated with a polynomial of degree p, i.e.

Qi(x, t) =
p+1∑
j=1

ui,j(t)φj(x), x ∈ Vi, (3.2)

where ui,j is the expansion coefficient. Let W be a smooth weighting function. Substituting (3.2)
into a weighted residual form of (3.1) on Vi, we obtain

∫
Vi

[
∂Qi

∂t
+ ∂F(Qi)

∂x

]
W dx = ∂

∂t

∫
Vi

WQi dV + [WF(Qi)]i+1/2 − [WF(Qi)]i−1/2 −
∫

Vi

dW
dx

F(Qi) dx

= 0. (3.3)

In order to achieve conservation, the flux across an element interface must be unique. Therefore,
the flux in (3.3) is replaced with a unique Riemann flux

F(Qi)|i+1/2 ≈ F̃i+1/2 ≡ F̃(Q−
i+1/2, Q+

i+1/2), (3.4)

where Q−
i+1/2 is the solution on the left side of interface i + 1/2, and Q+

i+1/2 is the solution on the
right side of the interface. Equation (3.3) then becomes

∂

∂t

∫
Vi

WQi dV + Wi+1/2F̃i+1/2 − Wi−1/2F̃i−1/2 −
∫

Vi

dW
dx

F(Qi) dx = 0. (3.5)

Let W be each of the basis functions {φj(x)}p+1
j=1 . We then obtain just enough equations to update the

d.f. As the flux is usually a nonlinear function of the state variable, a Gauss quadrature formula
is used to compute the volume integral. Finally denoting Qh the global d.f., the equations can be
cast in the following form:

dQh

dt
= −M−1Rh(Qh), (3.6)

where M is the global mass matrix, and Rh(Qh) the global residual.

(b) Related formulations
The Runge–Kutta DG method was first published in the late 1980s [36]. During the 1990s, the
CFD community started to pay attention to the idea. However, the k-exact finite volume (FV)
method received much more research effort, as unstructured grid methods became the state of
the art. Since the 1990s, many researchers have tried to improve the DG method in whatever
way possible. For example, a quadrature-free DG approach was developed in [48], and nodal DG
(NDG) method developed in [49]. The present author developed an FV version of the DG method
and called it the spectral volume (SV) method [15]. The SV method, however, ran into stability
and efficiency issues in three dimensions. The search for a more efficient finite-difference-like DG
method led Liu et al. [37] to develop the so-called spectral difference method. In one dimension,
the method is equivalent to the staggered grid multi-domain method [29]. Here is the basic idea.

Given a degree p solution polynomial Qi(x, t) on element Vi, construct a flux polynomial F̂i(x)
that is one degree higher at p + 1. Then the solution is updated using an FD-like formula, i.e.

∂Qi(x, t)
∂t

+ ∂F̂i(x)
∂x

= 0. (3.7)

Two sets of grid points, i.e. the solution points and flux points, are defined in each element. The
flux points must always include the two endpoints so that a unique flux can be imposed at the
cell interface to achieve conservation. Let the position vector of the jth solution point at cell i
be denoted by xi,j, and the kth flux point at cell i be denoted by xi,k. Denote Qi,j the solution
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at xi,j. Given the solutions at the solution points, an element-wise degree p polynomial can be
constructed using a Lagrange-type polynomial basis, i.e.

Qi(x) =
p+1∑
j=1

Li,j(x)Qi,j, (3.8)

where Li,j(x) is the cardinal basis function. Next, compute the flux values at the flux points. For
the interior flux points, the value is computed based on the state variable at the flux point, i.e.
F̂i,k = F(Qi(xi,k)). At the two endpoints, Riemann fluxes are again used. Then the degree p + 1 flux
polynomial is built from the flux values at the flux points

F̂i(x) =
p+2∑
k=1

Li,k(x)F̂i,k. (3.9)

The SD method ran into stability issues on a triangular mesh [39]. Later, the introduction of a new
basis function for the flux appears to have fixed the problem [50].

The search for an FD-like formulation continued and led to the development of the flux
reconstruction or CPR method [41]. The difference between the SD and CPR methods lies in how
the flux polynomial is constructed. In CPR, the flux polynomial is written as

F̂i(x) = F̄i(x) + σi(x), (3.10)

where F̄i(x) is a degree p internal flux polynomial approximating F(Qi(x)) in some sense, and σi(x)
is the correction flux polynomial of degree p + 1. One way to compute F̄i(x) is

F̄i(x) =
p+1∑
j=1

Li,j(x)F(Qi,j). (3.11)

At both endpoints of element i, the flux polynomial should take the values of the Riemann flux, i.e.

F̃i−1/2 = F̄i(xi−1/2) + σi(xi−1/2)

and F̃i+1/2 = F̄i(xi+1/2) + σi(xi+1/2).

⎫⎬
⎭ (3.12)

The correction flux polynomial is then further expressed in the following form to satisfy the two
boundary conditions:

σi(x) = [F̃i−1/2 − F̄i(xi−1/2)]gL(x) + [F̃i+1/2 − F̄i(xi+1/2)]gR(x), (3.13)

where both gL(x) and gR(x) are degree p + 1 polynomials called correction functions, which satisfy

gL(xi−1/2) = 1, gL(xi+1/2) = 0

and gR(xi−1/2) = 0, gR(xi+1/2) = 1.

}
(3.14)

Equation (3.7) then becomes

∂Qi(x, t)
∂t

+ ∂F̄i(x)
∂x

+ [F̃i−1/2 − F̄i(xi−1/2)]g′
L(x) + [F̃i+1/2 − F̄i(xi+1/2)]g′

R(x) = 0. (3.15)

Many correction functions were presented in [41], corresponding to different numerical schemes,
including the DG and SD/SV, and other new methods were discovered for the first time. Note
that equation (3.15) can be written as

∂Qi(x, t)
∂t

+ ∂F̄i(x)
∂x

+ δi(x) = 0, (3.16)

where δi(x) = [F̃i−1/2 − F̄i(xi−1/2)]g′
L(x) + [F̃i+1/2 − F̄i(xi+1/2)]g′

R(x) is the correction polynomial of
degree p. Since the pioneering work by Huynh [41], the CPR formulation in the form of (3.16) was
first extended to triangular and mixed elements [43,51,52]. Energy stability was proved in [53],
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Figure 3. (a) L2 error of density versus work units for the vortex propagation problem using fifth-order spatial operators
(p= 4). (b) Computational cost per d.f. versus polynomial order. (Online version in colour.)
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and other members of the family were discovered in [54,55]. See [42] for a comprehensive review
of recent developments.

The relative performance of quadrature-based DG (QDG), NDG, SD and CPR formulations
were compared in [56] by solving a vortex propagation problem governed by the Euler equations
on a quadrilateral mesh. Figure 3a shows the density error versus work unit, which is a scaled
CPU time used in the International Workshop on High-Order CFD Methods [9]. In this idealized
comparison, CPR appears to perform the best. Figure 3b displays the cost per d.f. for these
schemes at different orders of accuracy. It is interesting to note that the cost per d.f. decreases for
the CPR scheme with increasing p. This is due to the fact that these schemes are one-dimensional
in each coordinate direction on a quadrilateral element.

In figure 4, the performance of the second-order finite volume method (p = 1) in the TAU code
was compared with CPR schemes of various orders with a benchmark problem of flow over a
bump in a channel, also from the International Workshop on High-Order CFD Methods. The
entropy error was plotted against the work units. Note that all high-order CPR schemes (p> 1)
outperformed the second-order FV scheme for this problem.
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4. Towards a high-order CFD design tool
After decades of research and development mostly in academia and government laboratories,
adaptive high-order methods started to attract more attention from industry in the past
decade. In the USA, Boeing engineers studied both the SUPG and DG methods [28] for
aerodynamic problems. It was concluded that, though these methods demonstrated a lot of
potential, much remains to be done for the high-order methods to be used routinely in a
design tool. In Europe, the Adaptive Higher-Order Variational Methods for Aerodynamic
Applications in Industry (ADIGMA) project [57] supported a consortium consisting of 22
organizations, which included the main European aircraft manufacturers, the major European
research establishments and several universities, all with well proved expertise in CFD. The
goal of ADIGMA was the development and utilization of innovative adaptive higher-order
methods for the compressible flow equations enabling reliable, mesh-independent numerical
solutions for large-scale aerodynamic applications in the aircraft industry. ADIGMA’s follow-on
project Industrialisation of High-Order Methods (IDIHOM) focused on industry problems. In
addition, two international workshops on high-order CFD methods were held in 2012 and 2013,
respectively. One of the objectives is to provide an open and impartial forum for evaluating the
status of high-order methods in solving a wide range of flow problems. Some of the findings are
documented in a review paper [9]. In the following subsections, we describe recent progress in
several major pacing items, which will determine how soon these methods will be implemented
into design tools.

(a) High-order mesh generation
Many production simulations with a second-order method require tens or hundreds of millions
of cells to produce results of engineering accuracy [6,58]. Some mistakenly believe that high-
order simulations would need meshes of similar size. Because high-order methods took much
more CPU time than low-order methods on the same mesh, high-order methods were dismissed
as prohibitively expensive. In reality, high-order methods can achieve similar accuracy on a
much coarser mesh than low-order methods. Therefore, meshes with only tens or hundreds of
thousands of elements may be adequate for a high-order simulation. For such a coarse mesh, it is
critical to represent curved boundaries with high-order polynomials [33] to achieve high overall
accuracy in the simulation.

High-order mesh generation poses two new challenges. First, it is more difficult to generate
coarse meshes for a complex geometry, as automated mesh generation algorithms can break
down when generating surface meshes at regions with high curvature. Second, generating highly
clustered viscous meshes near a curved wall is daunting, as interior mesh lines can cross the
curved boundary, or intersect each other, as shown in figure 5a. Curved interior elements are
necessary to remove the crossing, as shown in figure 5b for quadratic triangular elements.

Several approaches have been used to overcome some of the difficulties. Many groups
generated fine multi-block structured meshes first. Then these fine meshes are merged once
or twice to produce high-order quadratic (degree 2) or quartic (degree 4) quadrilateral and
hexahedral meshes. An example of merging four quadrilateral elements into one quadratic
element is displayed in figure 6. Although this approach enabled high-order simulations to be
carried out, it is time consuming to generate structured meshes for complex geometries and is
not, therefore, a long-term solution. Another approach is to generate a linear mesh as coarse as
possible using commercial mesh generators. Then the elements with a curved wall boundary
are made high order by generating curved edges and surfaces, as shown in figure 5a. Finally,
the interior elements are also curved based on solid mechanics [59] to avoid grid lines crossing
into each other, thus guaranteeing the positivity of the Jacobian of the geometric transformation.
In case the geometry is not available, a surface reconstruction technique is used to rebuild a
high-order surface [38,60] before the surface and volume meshes are curved.
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projected to curved
boundary

(b)(a)

Figure 5. (a) Illustration of an interior edge crossing with a curved boundary. (b) With curved interior edges, mesh crossing is
avoided. (Online version in colour.)

Figure 6. The merging of four linear quadrilateral elements into a single quadratic quadrilateral element. (Online version
in colour.)

Ultimately, aircraft manufacturers as large as Boeing or Airbus may not be able to develop and
maintain its own high-order mesh generator. Commercial high-order mesh generators need to be
developed for these high-order methods to be used routinely in design.

In order to facilitate communications between a high-order mesh generator and a high-
order flow solver, it is necessary to define a standard format to store a high-order hybrid
mesh containing the usual types of elements, including triangular, quadrilateral, tetrahedral,
hexahedral, pyramidal and prismatic elements. A couple of years ago, a public domain mesh
generator named Gmsh [61] was the only one capable of supporting high-order elements, and
Gmsh format was therefore selected by the First International Workshop on High-Order CFD
Methods. Recently the widely used CFD standard called CGNS [62] was successfully extended
to handle cubic elements, and a new proposal supporting quartic elements was approved. The
existence of such a mesh standard for high-order elements is very critical, as there are so many
more variations in high-order elements than linear elements.

(b) Shock capturing
Shock waves have to be dealt with in the design of future high-speed transonic and supersonic
aircraft. Shock-capturing low-order finite volume methods have demonstrated their capability in
aircraft design. For adaptive high-order methods, there are two main approaches: limiter [34,63,
64] and artificial viscosity [65,66]. There are pros and cons to each approach, and neither is fully
satisfactory. The ultimate shock-capturing approach should satisfy all the following requirements:

— accuracy preserving away from the discontinuity;
— free of user adjustable parameters;
— capable of converging to machine zero for steady problems; and
— positivity preserving for pressure and density [67].

Although currently no approach satisfies all the requirements, there has been sufficient progress
in both approaches to allow high-quality steady and unsteady simulations with shock waves to
be performed. It appears that the limiter approach can be made essentially parameter free, and
accuracy preserving, but is often difficult to achieve iterative convergence for steady problems,
whereas the artificial viscosity approach is convergent, but not parameter free. Generally
speaking, limiter is preferred for unsteady problems, and artificial viscosity is more popular for
steady problems. For example, a positivity and accuracy preserving compact WENO limiter was
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Figure 7. Double Mach reflection problem with 960 × 240 cells. Twenty-nine equally spaced density contours from 1.3 to 23.
(Adapted from Du et al. [67].)

developed and applied successfully to various unsteady problems with strong shock waves in a
very robust manner [67], including the double Mach reflection problem shown in figure 7. Several
artificial viscosity-based approaches were successfully employed to compute steady inviscid,
viscous and turbulent flows with shock waves [68,69].

Shock-capturing methods degrade to first-order accuracy locally near a discontinuity because
the error in the location of the shock is proportional to the mesh size. Methods that offer natural
subcell resolution can make the error smaller, but cannot change the order. This argument
suggests h-refinement near shock waves, coupled with a piecewise constant reconstruction, which
is the robust, first-order Godunov method. How a locally first-order scheme affects the solution
elsewhere is not clear, especially for unsteady flow problems. If the mesh near a shock wave is
sufficiently fine such that the magnitude of the first-order error is comparable to the high-order
error elsewhere with a coarser mesh, the first-order method will clearly not affect the overall
accuracy of the simulation. In any case, hp-adaptations for problems with shock waves appear to
offer the best promise in accuracy and robustness.

(c) Efficient time integration algorithms
When the DG method was first developed, the Runge–Kutta algorithm was used for time
integration [35]. For unsteady flow problems on a relatively uniform mesh, it was quite adequate.
For high-Reynolds-number turbulent flow problems, the resolution of the viscous boundary
layer demands an anisotropic mesh near solid walls with aspect ratio as large as 10 000. These
anisotropic elements impose an extremely severe time-step limit for any explicit schemes and
make them ineffective. Therefore, implicit time marching schemes are essential for such problems.
For RANS turbulent flow simulations, the highly nonlinear nature of turbulence models
introduces extra stiffness into the already very stiff high-order operators, making convergence
to the steady state very difficult and time consuming.

There has been significant progress in the development of time integrators for high-order
spatial operators in the past decades, e.g. the LU-SGS algorithm [70,71], hp-multigrid solvers
[72–76], Krylov subspace methods such as GMRES with various preconditioners [77,78] and
mixed explicit/implicit approaches [79]. The most used turbulent flow solvers appear to employ
a GMRES algorithm with either an ILU, hp-multigrid or a line preconditioner [75]. Techniques to
improve the robustness of turbulent flow computations such as line search were demonstrated
in [80]. With this progress, it is now possible to obtain three-dimensional steady RANS turbulent
flow solutions with little user interference.

Shown in figure 8 is such a turbulent flow computation at a transonic speed over a delta wing
with artificial viscosity for shock capturing and the k–ω turbulence model [69]. Key flow features
such as the shock wave and vortices were resolved well with a fourth-order DG method.
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Figure8. The cp-distribution and slices of theλ2-criterion of a fourth-order DG solution on a four times residual-based adapted
meshwith 201 259 curved elements for a transonic turbulent flow atMach number of 0.8, a Reynolds number of 2 × 106 and an
angle of attack of 20.5◦. A k–ω turbulence model was used in the simulation. (Adapted from Hartmann [69].) (Online version
in colour.)

For RANS simulations, high-order methods are still not robust and efficient enough to be
used as a design tool. The stiffness can still drive simulations divergent, or stall convergence
to a steady state. In addition, the memory requirement grows with the order to the power of 6
in three dimensions. This is because ndf is proportional to p3, and then the matrix size is of the
order of n2

df. Memory may become a bottleneck for very high-order space discretizations, i.e. p> 3.
Fortunately, for most real-world problems, it appears p = 2 and 3 offer the most benefit as shown
in figure 4. Research is very much needed to improve the robustness and the rate of convergence
and reduce the memory requirement of implicit solvers. Finally, the scalability and performance
of these implicit approaches on massively parallel computers is another topic of considerable
interest.

(d) Error estimate and hp-adaptations
Mesh adaptation (or h-adaptation) has been demonstrated in academia and government research
laboratories for low-order methods as a very effective way to reduce simulation cost and improve
solution accuracy, especially for unstructured grid-based tools. Its use in commercial CFD tools
has not been as widespread as expected probably because of the difficulty in coupling geometric
modelling, mesh generation, error estimate, mesh adaptation and flow simulation. Once this
software engineering problem is solved, the CFD market will embrace a robust h-adaptation tool
with open arms.

With the development of high-order methods, the order of accuracy is not fixed to first
or second order any more. A typical high-order solver can easily incorporate first- to fourth-
or even sixth-order schemes in the same simulation. In theory, one would use a first-order
scheme near a shock on a fine mesh, and a fourth-order scheme in a smooth flow region on
a coarse mesh. Order adaptation (or p-adaptation) adds another dimension into the simulation
process. Performing hp-adaptation will enable potentially much higher pay-off than having
h- or p-adaptation alone. The decision on where to perform h- or p-adaptation is not an easy
one. In many cases, it is difficult to distinguish a smooth feature from a discontinuity on a mesh
with finite resolution. Fortunately, if one does h-adaptation instead of p-adaptation with a smooth
feature, no serious harm is done to the simulation.

There has been great progress in the past decades on error estimates and hp-adaptations, and
interested readers can refer to a recent review [81] for more details. Here, we highlight the success
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and potential demonstrated by the goal-oriented adjoint-based error estimate and adaptation
[82–86]. Let Qh denote the numerical solution, and Jh(Qh) the scalar engineering output of interest
(such as the lift or drag coefficient). The output adjoint ψh has the same dimension as Qh and
is the sensitivity to an infinitesimal residual perturbation, which can be computed based on the
discrete adjoint equation (

∂Rh

∂Qh

)T
ψh +

(
∂Jh

∂Qh

)T
= 0. (4.1)

The adjoint has become a very powerful tool in error estimation and adaptations. Its application
to high-order methods appears to speed up CFD simulations significantly, sometimes by orders
of magnitude.

Next, we present a sample application of adjoint-based h-adaptation [87] for turbulent flow
over a flat plate at M = 0.2 and ReL = 10 × 106, a benchmark case from the Turbulence Modelling
Resource website. The drag on the flat plate was used as the goal. The DG computations
were performed with MIT’s ProjectX (PX) code. Computational results from well-known NASA
second-order finite volume codes, CFL3D (structured grid-based) and FUN3D (unstructured
grid-based), are included for comparison. In addition, non-adaptive DG simulations are also
included. Figure 9 shows CD versus h = √

(1/ndf). We can observe the following from figure 9:

— Even on the structured meshes provides on the website, the DG discretization gives less
error for the same ndf than the second-order finite volume results.

— The adaptive results are significantly superior to the structured mesh results, and
in particular the structured mesh finite volume results. Starting at around 5000 d.f.
(corresponding to about h ∼ 0.014), the adaptive results are more accurate than any of
the structured mesh results even those of the highest d.f. finite volume cases (with about
160 000 d.f.).

After that, we show another example demonstrating the adjoint-based approach for an unsteady
moving boundary problem: two aerofoils pitching and plunging in series at low Reynolds
number [83]. The simulation started at t = 0 and concluded at t = 7.5. The output of interest is
the lift on the second aerofoil integrated from time t = 7.25 to t = 7.5. The spatial meshes from
the final output-based p-adaptation are shown in figure 10. Note that the near-aerofoil and vortex
shedding regions are targeted for adaptation, as well as the group of large elements surrounding
the mesh motion regions. Comparing with uniform p results, the p-adaptation was able to reduce
the number of d.f. by several orders of magnitude.

It is expected that the relative savings in three dimensions with hp-adaptations will be greater
than in two dimensions. Impressive results have already appeared in the literature, e.g. in [88].
However, the challenges of coupling error estimates, hp-adaptation, mesh generation, geometry
and flow solver will be greater too. In addition, the robustness of three-dimensional high-order
viscous mesh generation for complex geometries may be the main bottleneck. All these challenges
remain topics of considerable research.

5. Conclusion
We first review the design criteria for future aircraft. In addition to performance and affordability,
environmental impact will become increasingly important. Based on forecasted future growth in
aviation, reducing fuel burn, GHG emission and noise become imperative. The US government
has established aggressive goals in aircraft performance, fuel burn, GHG emission and noise,
which is an important first step. Realizing these goals hinges on new ideas in aircraft and engine
technology, and technical breakthroughs in the coming decades. One enabling breakthrough will
be high-fidelity simulation tools for aircraft aerodynamics, engine and noise computation.

We believe new generations of design tools for aircraft and engines will be based on adaptive
high-order methods capable of handling complex configurations. Preliminary two- and three-
dimensional computations documented in the first two International Workshops on High-Order
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Figure 9. Comparison of performance between finite volume and DG methods for turbulent flow over a flat plate, atM= 0.2
andReL = 5 × 106 (L= 1). CFL3DandFUN3Dare second-order finite volume codes,while PX is aDG code. SA turbulencemodel.
(Courtesy of C. Wagner and D. Darmofal, who generated the figure using the approach described in [87].)
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Figure 10. (a–c) Two-aerofoil case: output-adapted meshes at various stages of the motion. Blue is p= 0, and red is p= 5.
(Adapted from Kast & Fidkowski [83].)
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CFD Methods demonstrated the potential of these methods for orders of magnitude improvement
in accuracy/efficiency over existing lower-order methods. After a decade of very intensive
research in the USA, Europe and other parts of the world, we are inching closer to a new
generation of CFD design tools based on these high-order methods. In order of importance,
I believe progress in the following areas will make that vision a reality:

— Commercial quality high-order mesh generation tools. Right now, each research group has its
own tool to produce high-order meshes. This is adequate for research purposes, but not
efficient for production simulations. Robust high-order mesh generators are needed to
push these high-order methods into the design process.

— Robust error estimates and hp-adaptations. An automated hp-adaptation tool can reduce
simulation cost by orders of magnitude. Research in this area may produce the greatest
long-term pay-off.

— Highly scalable, efficient, robust and low-memory implicit solvers. Massively parallel
computers including GPUs will be used in future design computations. The scalability
of implicit time integration algorithms including preconditioners will be critical.

— Parameter free, accuracy preserving and convergent shock capturing. Future transonic and
supersonic aircraft, and high-performance engines, demand robust shock capturing.

Funding statement. The author’s research on high-order methods was/has been funded by AFOSR, NASA, DOE,
US Navy, NSF, DARPA, as well as Michigan State University, Iowa State University and the University
of Kansas.
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