
REGULAR HONEYCOMBS IN HYPERBOLIC SPACE 

H. S. M. COXETER 

1. Introduction. Schlegel (1883, pp. 444, 454) made a study of honeycombs 
whose cells are equal regular polytopes in spaces of positive, zero, and negative 
curvature. The spherical and Euclidean honeycombs had already been described 
by Schlaf li (1855), but the only earlier mention of the hyperbolic honeycombs 
was when Stringham (1880, pp. 7, 12, and errata) discarded them as "imaginary 
figures", or, for the two-dimensional case, when Klein (1879) used them in his 
work on automorphic functions. Interest in them was revived by Sommerville 
(1923), who investigated their metrical properties. 

The honeycombs considered by the above authors have finite cells and 
finite vertex figures. It seems desirable to make a slight extension so as to allow 
infinite cells, and infinitely many cells at a vertex, because of applications to 
indefinite quadratic forms (Coxeter and Whitrow 1950, pp. 424, 428) and to the 
close packing of spheres (Fejes Tóth 1953, p. 159). However, we shall restrict 
consideration to cases where the fundamental region of the symmetry group 
has a finite content, like that of a space group in crystallography. This extension 
increases the number of three-dimensional honeycombs from four to fifteen, 
the number of four-dimensional honeycombs from five to seven, and the num
ber of five-dimensional honeycombs from zero to five. 

A further extension allows the cell or vertex figure to be a star-poly tope, 
so that the honeycomb covers the space several times. Some progress in this 
direction was made in two earlier papers: one (Coxeter 1933), not insisting on 
finite fundamental regions, was somewhat lacking in rigour; the other (Coxeter 
1946) was restricted to two dimensions. The present treatment is analogous to 
§ 14.8 of Regular Polytopes (Coxeter 1948, p. 283). We shall find that there are 
four regular star-honeycombs in hyperbolic 4-space, as well as two infinite 
families of them in the hyperbolic plane. 

2. Two-dimensional honeycombs. In the Euclidean plane, the angle of a 
regular ^>-gon, {p}, is (1 — 2\p)n. In the hyperbolic plane it is smaller, gradually 
decreasing to zero when the side increases from 0 to oo. Hence, if p and q are 
positive integers satsifying 

2.1 (p-2)(q-2)>4, 

we can adjust the size of the polygon so as to make the angle 2nlq. Then q 
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such {p}'s will fit together round a common vertex, and we can add further 
{^}'s indefinitely. In this manner we construct a two-dimensional honeycomb 
or tessellation {p, q}, which is an infinite collection of regular ^-gons, q at each 
vertex, filling the whole hyperbolic plane just once (Schlegel 1883, p. 360). We 
call {p} the face, {q} the vertex figure. The centres of the faces of {p, q} are the 
vertices of the reciprocal (or dual) tesselation {q, p}, whose edges cross those of 
{p, q}. The simplest instances, {7, 3} and {3, 7}, are shown conformally in Figs. 
1 and 2. 

As limiting cases, we admit {oo, p}, whose faces {oo} are inscribed in 
horocycles instead of finite circles, and its reciprocal {p, oo}, whose vertices 
are all at infinity (i.e., on the absolute conic). 

The lines of symmetry, in which {p, q) reflects into itself, are its edges 
(produced) and the lines of symmetry of its faces. They form a network of con
gruent triangles whose angles are n\q (at a vertex of {p, q}),7tj2 (at the mid-point 
of an edge), and Jt/p (at the centre of a face). The symmetry group is generated 
by reflections in the sides of such a characteristic triangle PQP1P2. Alternatively, 
we may begin with the triangle and derive {p, q} by Wvthoffs construction 
(Coxeter 1948, p . 87) as indicated by the symbol 

®-P 1 

This means that the vertices of {p, q} are the images of the vertex P0 (where 
the angle is njq) in the kaleidoscope formed by mirrors along the three sides of 
the triangle. (The nodes of the graph represent mirrors, those not directly 
joined being at right angles.) 

For some instances of the network of characteristic triangles, see Klein 
(1879, p. 448), Fricke (1892, p. 458), and Coxeter (1939, pp. 126, 127). 

The classical formulae for a right-angled triangle (Coxeter 1947, p. 238) 
enable us to compute the sides 

cp = P0Plt x = P0P2, y, = P.P., 
in the form 

7Z 71 71 71 71 71 
cosh cp = cos — / sin —, cosh % = cot — cot —, cosh \p — cos — / sin — 

p q p q q p 

(Sommerville 1923, p. 86; cf. Coxeter 1948, pp. 21, 64). Then we may describe 
{p, q} as a tesselation of edge 2cp, whose faces are ^-gons of circum-radius % and 
in-radius yj. 

3. Three-dimensional honeycombs. When 

0 _ 2 ) ( ? - 2 ) < 4 , 

the symbol {p, q} denotes a Platonic solid (e.g., {4, 3} is a regular hexahedron) 
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which exists not only in Euclidean space but equally well in hyperbolic space. 
When the edge increases from 0 to oo, the dihedral angle decreases from its 
Euclidean value 

( JT 71 \ 

cos — / sin — I 
q pi 

to (1 — 2\q)n. For, the solid angle at a vertex resembles a Euclidean solid angle 
in that its section by a sphere is a spherical <7~gon, whose angle must exceed 
(1 - 2lq)n. 

Thus the dihedral angle can take the value 27tjr whenever p, q,r are in
tegers, greater than 2, satisfying 

71 71 71 
3.1 sin — sin — < cos — 

p r q 

and (q — 2) (r — 2) < 4. Then r such {p, q}'s will fit together round a common 
edge, and we can add further {p, q}'s indefinitely. In this manner we construct 
a three-dimensional honeycomb {p, q, r), which is an infinite collection of 
{p, q}'s, r at each edge, filling the whole hyperbolic space just once. The arran
gement of cells round a vertex is like the arrangement of faces of the poly
hedron {q, r}, which is called the vertex figure. The centres of the cells of {p, q, r) 
are the vertices of the reciprocal honeycomb {r, q, p}, whose edges cross the 
{p}'s of {p, q, r}. 

The actual instances are 

{3, 5, 3}, {4, 3, 5}, {5, 3, 4}, {5, 3, 5}, 

in which the cells are respectively: an icosahedron of angle 2TC/3, SL hexahedron 
of angle 2n/5, and dodecahedra of angles TC/2 and 2TC/5 (Schlegel 1883, p. 444). 
The existence of the "hyperbolic dodecahedron space" (Weber and Seifert 1933, 
pp. 241—243) reveals an interesting property of the self-reciprocal honeycomb 
{5, 3, 5}: its symmetry group has a subgroup (of index 120) which is transitive 
on the vertices and has the whole cell for a fundamental region. This resembles 
the translation group of the Euclidean honeycomb of cubes, {4, 3, 4}, only now 
instead of translations we have screws. 

Returning to the general discussion, we allow the dihedral angle of the 
Platonic solid {p, q} to take its minimum value (1 — 2\q)n, so as to obtain the 
further honeycombs 

{3, 4, 4}, {3, 3, 6}, {4, 3, 6}, {5, 3, 6}, 

whose vertices are all at infinity (i.e., on the absolute quadric). We naturally 
consider also the respective reciprocals 

{4, 4, 3}, {6, 3, 3}, {6, 3, 4}, {6, 3, 5}, 
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whose cells are inscribed in horospheres instead of finite spheres (Coxeter and 
Whitrow 1950, p. 426), as well as the three self-reciprocal honeycombs 

{6, 3, 6}, {4, 4, 4}, {3, 6, 3}, 

which suffer from both peculiarities at once. 
In other words, necessary and sufficient conditions for the existence of a 

hyperbolic honeycomb {p, q, r) are 3.1 and 

3.2 (p - 2)(q - 2) ^ 4, (q - 2)(r - 2) ^ 4. 

The honeycomb can be derived by Wythoff's construction from its charac
teristic simplex, which is the quadrirectangular hyperbolic tetrahedron 

(Coxeter 1948, p. 139). The inequalities 3.2 ensure that this tetrahedron has a 
finite volume, being entirely accessible except that it may have one or two 
vertices at infinity. From relations between the edges and angles of the tetra
hedron, we find the edge-length of {p, q, r} to be 2cp while its cell {p, q} has 
circum-radius ^ and in-radius ip, where 

71 71 71 71 71 71 

cosh cp = cos — sin — / sin — , cosh ip = sin — cos — / sin — , 
P * KT P r K,Q 

7€ 71 71 71 m 71 
cosh y = cos — cos — cos — / sin — sin — , 

P I r -K« KT 

hVQ being given by 
71 71 71 

cos2 — = cos2 f- cos2 — 
K,Q P y 

(Coxeter 1948, p . 19). For the particular cases, see Table III, the first part of 
which was given earlier by Sommerville (1923, p. 96), whose e, R, r are our 
2<P> X> V-

4. Four-dimensional honeycombs. W h e n 

71 71 71 

4.1 sin — sin — > cos —, 
p r q 

the symbol {p, q, r} denotes a regular four-dimensional polytope (Coxeter 1948, 
p. 135), which has smaller angles in hyperbolic space than in Euclidean. A 
discussion analogous to that of § 3 shows that infinitely many such cells {p, q, r) 
can be fitted together, 5 round each plane face, to make a four-dimensional 
honeycomb 
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whenever both {p, q, r} and {q, r, s} are finite polytopes or Euclidean honey
combs such that 

cos2 nfq cos2 nfr 
4.2 - -j > 1 

sin2 Tijp sin2
 TCJS 

(cf. Coxeter 1948, p. 136). In this manner, the six polytopes 

{3,3,3}, {3,3,4}, {4,3,3}, {3,4,3}, {3,3,5}, (5,3,3}, 

and the cubic honeycomb {4, 3, 4}, yield the seven hyperbolic honeycombs 

{3,3,3,5}, {4,3,3,5}, {5,3,3,5}, {5,3,3,4}, {5,3,3,3}, 

{3, 4, 3, 4}, {4, 3, 4, 3}. 
Each of these can be derived from the appropriate characteristic simplex 

p q r s 

by Wythoff's construction (Coxeter 1948, p. 199). 
The edge-length 2cp, and the circum- and in-radii of a cell, % and ip, are 

given by the formulae 

( - 1 , 1 ) (0,5) ( - 1 , 4 ) (3, 5) 
seen* cp = , seen* w = , 

(1,5) W (-1,3) 

sech2x= ( -1 ,4 ) (0,5) 
(Coxeter 1948, p. 161), where the symbols (/, k) are derived by the recurrence 
formula 

(j,k-l)(j+l,k)-l . . . . . . . 

d + l, k - i) 

from any convenient sequence of numbers 

( - 1 , 1 ) , (0,2), (1,3), (2,4), (3,5) 
satisfying 

( - 1, 1)(0, 2) = sec2 4 - (0. 2)(1, 3) = s e c 2 — , 
P 1 

(1, 3) (2, 4) = sec2 — , (2, 4) (3, 5) = sec2 —. 
r s 

In any particular case, the values are most easily computed by arranging the 
(/, k)'s in a triangular table: 

( - 1 , 1 ) (0,2) (1,3) (2,4) (3,5) 
( - 1 , 2 ) (0,3) (1,4) (2,5) 

( - 1, 3) (0, 4) (1, 5) 
( - 1, 4) (0, 5) 

( - 1. 5) 
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e.g., the respective tables for {5, 3, 3, 5} and {4, 3, 4, 3} are 

2T~2 2 - 2 2 2T~2 1 2 2 1 4 

V 5 T - 3 3 3 V 5 T " 3 1 3 1 3 

2T~4 4 2 T " 4 1 1 2 

r - 6 r - 6 0 1 

- 2 I / 5 T - 6 - 1 

where T = \(\/6 + 1), so that T _ 1 = J (V^ — !)• The negative value of 
(— 1,5) provides a verification that the honeycomb is hyperbolic, and the 
zero for (— 1,4) indicates that the cell of {4, 3, 4, 3} is infinite. (For the re
sults of this computation, see Table IV.) 

5. Five-dimensional honeycombs. Similarly, the cell {p, q, r, s} and vertex 
figure {q, r, s, t} of a five-dimensional honeycomb {p, q, r, s, t} must occur 
among the finite polytopes 

{3, 3, 3, 3}, {3, 3, 3, 4}, {4, 3, 3, 3} 

or among the Euclidean honeycombs 

{3, 3, 4, 3}, {3, 4, 3, 3}, {4, 3, 3, 4} 

(Coxeter 1948, p . 136). Since 

{3, 3, 3, 3, 3}, {3, 3, 3, 3, 4}, {4, 3, 3, 3, 3} 

are finite, while {4, 3, 3, 3, 4} is Euclidean, the only hyperbolic honeycombs 
{p, q, r, s, t} are 

{3, 3, 3, 4, 3}, {4, 3, 3, 4, 3}, {3, 3, 4, 3, 3}, {3, 4, 3, 3, 4} {3, 4, 3, 3, 3} 

all of which have either infinite cells or all their vertices at infinity. 
The edge-length and radii are now given by the formulae 

( - 1 , 1 ) (0,6) ( - 1 , 5 ) (4, 6) 
sech2 cp = , secir2 w = , 

^ (1,6) ^ ( - 1 , 4 ) 

sech2
Z = ( - 1 , 5 ) (0,6), 

with (3, 5) (4, 6) =sec27t/t. The triangular tables for {3, 3, 3, 4, 3} and 
{3, 3, 4, 3, 3} are 

2 2 2 2 1 4 2 2 2 1 4 1 

3 3 3 1 3 3 3 1 3 3 

4 4 1 2 4 1 2 2 

o i l 1 1 1 

1 0 0 0 

-1 -1 
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yielding cp = % = oo, ip = log T for the former, and cp = % = ip = oo for the 
latter. (See Table V.) 

This is the end of the story, so far as honeycombs of density 1 are concerned. 
For, if n > 5, the only finite polytopes and Euclidean honeycombs that might 
serve as cells and vertex figures are 

oin = {3, 3, ., 3, 3}, ßn = {3, 3, . . ., 3, 4}, 

y» = {4, 3 3, 3}, ôn = {4, 3, . . ., 3, 4}; 

and these yield only oin+1, ßn+1,yn+1, and ôn+1. Hence (Schlegel 1883, p. 455) 
There are no regular honeycombs in hyperbolic space of six or more dimensions. 

Figure 1 

6. Two-dimensional star-honeycombs. If n/d is a fraction in its lowest 
terms, whose value is greater than 2, the symbol {n/d} denotes a regular star-
polygon whose n sides surround its centre d times: briefly, a regular n-gon of 
density d, such as the pentagram {-§}. It is natural to ask whether the symbol 
{p, q} for a hyperbolic tessellation remains valid when p or q is fractional. We 
can obviously begin to construct such a star-tessellation whenever 2.1 is satis
fied. The question is whether it will cover the plane a finite number of times, 
i.e., whether its density is finite. 
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The symmetry group of such a tessellation {p, q} is still generated by re
flections in the sides of its characteristic triangle, whose angles are njq, TZ/2, 
and Ttjp (Coxeter 1948, p. 109). If p or q is fractional, this triangle is dissected 
into smaller triangles by "virtual mirrors" (Coxeter 1948, pp. 75, 76), and the 
process of subdivision will continue until we come to a triangle all of whose 
angles are submultiples of TI (or possibly zero). There might conceivably be 

Figure 2 

several different triangles of this kind, but the smallest of them will serve as a 
fundamental region for the group. We denote this smallest triangle by (/ m n) 
to indicate that its angles are Ttjl, Tt/m, n\n. The number of repetitions of it 
that fill the characteristic triangle (2 p q) is an integer D > 1, which is equal 
to the density of the tessellation (Coxeter 1948, p. 110). 

Since each angle of (2 p q) must be a multiple of one of the angles of (Imn), 
a zero angle of the former implies a zero angle of the latter. But since the sub
division of an asymptotic triangle (2 p oo) yields at least one finite piece, this is 
impossible; both p and q must be finite. 

Since the triangle (2 p q) is filled with D triangles (Imn), of area (1 — I-1 

— m~ 
x)n, 

m~ 

we have 

4 - P'1 - T 1 = D(l - I-1 

where the numerators of the rational numbers p and q are divisors of one or 

two of the integers I, m, n. 
The numerators of p and q cannot divide two different integers among 

/, m, n, say m and n\ for then we would have 

\ — p"1 — q-1 ^ \ — m~x — n~x ^ 1 — l~x — m_1 — n~^, 
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implying D fg 1. Thus we may assume that these numerators both divide m, 
so that p = m\x and q = m/y, where x and y are positive integers. Since p and 
q are not both integers, 

x + y ^ 3. 

Moreover, Z) ^ 3, since the triangle (2 p q) obviously cannot be bisected by a 
line through one of its acute vertices. Hence 

1 x y 

2 m m +4_±_±_±) 
\ l m ni 

3 / 1 1 1 \ / 1 1 \ 
^ [-3 1 = 3 ( 1 , 

m \ l m n I \ I n 1 i.e., 

Since also 

1 1 5 

T + - - T -
I n o 

1 1 1 1 1 
— + — < —+—+ — <!, / n l m n 

the integers I and n must be 2 and 3, and 

* + y = Z) = 3. 

Thus the only possibility is the triangle (2 m m\2) dissected into three triangles 
(2 m 3). In other words, 

The only regular star-tessellations in the hyperbolic plane are 

{ m l f m 1 

— , m \ and \m, — \, 
2 J I 2 J o/ density 3, ẑ Ae/̂  w w any o^i number greater than 5. 

Such star-tessellations exist also when m = 5, but then they are not hyper
bolic but spherical. In fact, they are essentially the small stellated dodecahe
dron of Kepler and the great dodecahedron of Poinsot (Coxeter 1948, p. 95). 
But the other two Kepler-Poinsot polyhedra have no hyperbolic analogues. 

We may describe the faces of {mj2, m} as the stellated faces of {m, 3}. 
(One face of {-|, 7} is indicated by broken lines in Fig. 1.) Dually {m, m/2} 
is derived from {3, m} by regarding the same vertices and edges as forming 
w-gons (such as the heptagon of {7, -|-} which is emphasized in Fig. 2) instead of 
triangles. The density 3 can be observed in the fact that each triangle of {3, m} 
lies within three ra-gons of {m, m/2}. In ascribing the same density to (m/2, m}, 
we regard the middle part of each {m/2} as being covered twice over. The rela
tionship of (m/2, m} and {rn, m/2} is such that any face of either has the same 
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vertices as a corresponding face of the other. Both have the same vertices as 
{3, m}, and the same face-centres as {m, 3}. Thus 

%(m, m/2) = 2cp(m, m/2) = 2cp(3, m), 

in agreement with Table II . 
7. Four-dimensional star-honey combs. One might expect to find a three-

dimensional star-honeycomb {p, q, r} whose cell {p, q} or vertex figure (q, r} is 
one of the Kepler-Poinsot polyhedra 

12"' 5}, {5, g"), {gr, 3}, {3, 2"}. 

However, in every instance (Coxeter 1948, p. 264) the values of p, q, r satisfy 
4.1, not 3.1. Hence 

There are no regular star-honeycombs in hyperbolic 3-space. 
Hoping for a more positive result in four dimensions, we seek a honeycomb 

{p, q, r, s} in which both {p, q, r} and {q, r, s} occur among the sixteen regular 
polytopes (Coxeter 1948, pp. 293—294) while at least one of p, q, r. s has the 
fractional value f\ A list of the twenty-three possibilities reveals that only 
four satisfy 4.2: 

{3, 3, 5, f } , {3, 5, f, 5}, {5, f, 5, 3}, {f, 5, 3, 3} 

(Coxeter 1948, p. 264: 14.15). That these four are genuine hyperbolic honey
combs, of finite density, may be seen by verifying that the reflections in the 
bounding hyperplanes of their characteristic simplexes 

w — w 

generate discrete groups. In Table I (cf. Coxeter 1948, p. 283) these simplexes 
appear as X and Z, and we see how they are dissected, by virtual mirrors (bi
secting their dihedral angles 2TZ/5, which are indicated by the mark -§ in the 
graphical symbols), into smaller simplexes T and W, W and Y. Similarly W 
and Y, having angles 2TT/3, are further subdivided, until the process ends with 
the "quantum" T, which is thus seen to be the fundamental region for both 
these groups, as it is also for the symmetry group of the ordinary honeycombs 
{3, 3, 3, 5} and {5, 3, 3, 3}. 

The accuracy of Table I can be checked by observing that, in each graph, 
the branch with a fractional mark forms, with any third node, the symbol for a 
spherical triangle whose dissection is obvious; e.g., the dissection Y = 2V 
embodies 

(5 5 f) = (5 2 3) + (2 5 3) and (3 2 f ) = (3 f 3) + (3 2 3) 
(Coxeter 1948, p. 113). Since X = 5T and Z = 10T, the densities of the star-
honeycombs are 5 and 10. 

164 



Thus the six hyperbolic honeycombs 

{5, 3, 3, 3}, {f, 5, 3, 3}, {5, f, 5, 3}, {3, 5, f, 5}, {3, 3, 5, f } , {3, 3, 3, 5} 

all have the same symmetry group, and their densities are the binomial 
coefficients 

1, 5, 10, 10, 5, 1. 

It is interesting to compare them with the five spherical honeycombs (or 
Euclidean polytopes) 

{5, 3, 3}, {f, 5, 3}, {5, f, 5}, {3, 5, f } , {3, 3, 5}, 

whose densitities are 1, 4, 6, 4, 1, and with the four spherical tessellations (or 
Euclidean polyhedra) 

{5, 3}, {f, 5}, {5, | } , {3, 5}, 

whose densities are 1, 3, 3, 1. We can summarize these results by saying that, 
when the Schlaf li symbol for an w-dimensional honeycomb has f- in the rth place 

with 5 before and after and 3 everywhere else, the density is 
( ; ) • 

The dissection of characteristic simplexes can be translated into a direct 
derivation of the honeycombs from one another. The first stage is to derive 
{f, 5, 3, 3} from {5, 3, 3, 3} by stellating each cell {5, 3, 3} to form a {f, 5, 3} 
(Coxeter 1948, p. 264). The second stage is to replace each {|-} of {f-, 5, 3, 3} 
by the pentagon that has the same vertices, and consequently each {§, 5} 
by a {5, -§} and each {-§•, 5, 3} by a {5, -|, 5}. In this process the vertex figure gets 
stellated from {5, 3, 3} to {f, 5, 3}, and the result is {5, f, 5, 3}. The third stage 
is to replace each {5, -|} by the icosahedron that has the same edges, and con
sequently each {5, f-, 5} by a {3, 5, f } . The vertex figure {f, 5, 3} is changed into 
{5, f, 5}, and the result is {3, 5, -f, 5}. The fourth stage is to replace each 
{3, 5, -f} by the {3, 3, 5} that has the same faces, so that the vertex figure 
{5, f-, 5} is changed into {3, 5, -|} (which has the same edges), and we obtain 
{3, 3, 5, -§-}. The fifth and last stage is to replace the cell {3, 3, 5} by a cluster of 
600 regular simplexes {3, 3, 3} surrounding a common vertex, so as to obtain 
{3, 3, 3, 5}. Each simplex belongs to five of the clusters, as we would expect 
from the fact that {3, 3, 5, -§} has density 5. 

Taking the same stages in the reverse order, wTe may say that the vertices, 
edges, faces and cells of {3, 3, 3, 5} belong also to {3, 3, 5, -§}; the vertices, 
edges and faces belong also to {3, 5, f-, 5}; the vertices and edges belong also to 
{5, -f, 5, 3}; and the vertices belong also to {-§, 5, 3, 3}, which is the "stellated" 
{5, 3, 3, 3}. 
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The formulae for cp, %, ip (§4) apply to star-honeycombs without any 
alteration. We see from Table IV that, since T3 = 2T2 — 1, the value of # for 
each of them is equal to the value of 2cp for {3, 3, 3, 5}. 

Finally, since there are no regular star-poly topes in five or more dimen
sions (Coxeter 1948, p. 278) to serve as cell or vertex figure, 

There are no regular star-honeycombs in hyperbolic space of five or more 
dimensions. 

Table I. The dissection of characteristic simplexes in hyperbolic espace. 

< • = 

• a 

<L 
- • • 

é „ • 

« 

- . . ^ T 
" 5 " " 1 

5 ., . 

= ̂ 1 
• 

= 5 

• w w w 

- - ^ 

+ 

+ 

+ 

"h 5 

• • -

+ 

J 2 

- • • 

• - S - . 

è , • 
= 5 

- • • 
+ 5 

1 U = 2T 3W = T + V = 4T 5 Y = 2V = 6T 
2 V=T+U = 3T 4 X = T + W = 5T 6 Z = W + Y = lOT 
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Table II. Regular honeycombs in the hyperbolic plane 

Tessellation 

{p, q] (integers) 

( m 1 

I 2 J 
(m odd) 

f m i 
<{ m, — > 
1 2 J 

Density 

1 

3 

cosh cp 

71 71 
cos — cosec — 

P q 
ITI TI 

cos cosec — 
m m 

1 71 
— cosec — 

2 m 

cosh % 

71 71 
cot — cot 

P q 

TI 2TZ 
cot — cot — 

m m 

cosh ip 

71 71 
cosec — cos — 

P q 
1 71 

— cosec — 
2 m 

2TI 71 
cos — cosec — 

m m 

Table III. The fifteen regular honeycombs in hyperbolic 3-space 

sycomb 

5, 3} 

3, 5} 

3 ,4} 

3, 5} 

3, 6} 

3, 3} 

4, 4} 

4, 3} 

Density 

1 

1 

1 

1 

1 

cosh 2(p 

4 T 

Ì V 5 T 3 

00 

9 
8 
00 

3 
2 

cosh2 £ 

4 T 

2 T 

1 T 8 
4 T 

0 0 

0 0 

cosh2 ip 

3 2 
4 T 

2 T 

2" V 5 T 

Ì V 5 T » 

9 
8 

00 

3 
2 

00 

Honeycomb 

{3, 6, 3} 

{4, 3, 6} 

{6, 3, 4} 

{4, 4, 4} 

{5, 3, 6} 

{6, 3, 5} 

{6, 3, 6} 

Density 

1 

1 

1 

1 

1 

cosh2 (p 

0 0 

00 

3 
2 

0 0 

00 

f V5r 

0 0 

cosh2 £ 

0 0 

0 0 

oo 

0 0 

0 0 

cosh2 ip 

0 0 

3 
2 

00 

oo 

0 0 

0 0 

( ' - ^ ) 
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Table IV. The eleven regular honeycombs in hyperbolic espace 

Honeycomb 

{3, 3, 3, 5} 

{5, 3, 3, 3} 

{4, 3, 3, 5} 

{5, 3, 3, 4} 

{5, 3, 3, 5} 

Density 

1 

1 

1 

cosh cp 

T 

A / 2 T 

T 2 

cosh £ 

V ^ T 3 

T 3 

T 6 

c o s h ^ 

T 

V 2 T 

T 2 

Honeycomb 

{3, 4, 3, 4} 

{4, 3, 4, 3} 

{f, 5, 3, 3} 

{3, 3, 5, f} 

{3, 5, f, 5} 

{5, f, 5, 3} 

Density 

1 

5 

] 0 

cosh q) 

00 

V2 

V 2 T 

T 

T 

cosh^ 

00 

T 3 

T 3 

cosh 

00 

T 

V2 

T 

Table V. The five regular honeycombs in hyperbolic 5-space 

Honeycomb 

{3, 3, 3, 4, 3} 

{3, 4, 3, 3, 3} 

{3, 3, 4, 3, 3} 

{3, 4, 3, 3, 4} 

{4, 3, 3, 4, 3} 

Density 

1 

1 

1 

9 

oo 

logT 

00 

oo 

X 

00 

00 

00 

W 

logT 

00 

00 

00 
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