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Plant canopy structure can strongly affect crop functions such as yield and stress

tolerance, and canopy size is an important aspect of canopy structure. Manual

assessment of canopy size is laborious and imprecise, and cannot measure

multi-dimensional traits such as projected leaf area and canopy volume. Field-based

high throughput phenotyping systems with imaging capabilities can rapidly acquire

data about plants in field conditions, making it possible to quantify and monitor

plant canopy development. The goal of this study was to develop a 3D imaging

approach to quantitatively analyze cotton canopy development in field conditions. A

cotton field was planted with 128 plots, including four genotypes of 32 plots each.

The field was scanned by GPhenoVision (a customized field-based high throughput

phenotyping system) to acquire color and depth images with GPS information in

2016 covering two growth stages: canopy development, and flowering and boll

development. A data processing pipeline was developed, consisting of three steps:

plot point cloud reconstruction, plant canopy segmentation, and trait extraction. Plot

point clouds were reconstructed using color and depth images with GPS information.

In colorized point clouds, vegetation was segmented from the background using

an excess-green (ExG) color filter, and cotton canopies were further separated

from weeds based on height, size, and position information. Static morphological

traits were extracted on each day, including univariate traits (maximum and mean

canopy height and width, projected canopy area, and concave and convex volumes)

and a multivariate trait (cumulative height profile). Growth rates were calculated for

univariate static traits, quantifying canopy growth and development. Linear regressions

were performed between the traits and fiber yield to identify the best traits and

measurement time for yield prediction. The results showed that fiber yield was

correlated with static traits after the canopy development stage (R2 = 0.35–0.71)

and growth rates in early canopy development stages (R2 = 0.29–0.52).

Multi-dimensional traits (e.g., projected canopy area and volume) outperformed
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one-dimensional traits, and the multivariate trait (cumulative height profile) outperformed

univariate traits. The proposed approach would be useful for identification of quantitative

trait loci (QTLs) controlling canopy size in genetics/genomics studies or for fiber yield

prediction in breeding programs and production environments.

Keywords: cotton, high-throughput, phenotyping, field, RGB-D, morphological

1. INTRODUCTION

Cotton (Gossypium) is one of the most important textile fibers
in the world, accounting for about 25% of total world textile
fiber use (USDA-ERS, 2017). Thus, improvement of cotton
production is vital to fulfilling the fiber requirements of over nine
billion people by 2050 (Reynolds and Langridge, 2016). Plant
canopy structure is an important trait, affecting crop functions
such as light-energy production and utilization (Norman and
Campbell, 1989). Optimal canopy structure can improve plant
photosynthesis and thus crop yield potential (Reta-Sánchez and
Fowler, 2002; Stewart et al., 2003; Giunta et al., 2008). One
key to increasing yield is to figure out the optimal canopy
structure for maximizing plant photosynthesis (Murchie et al.,
2009; Zhu et al., 2010). Canopy size is an important aspect of
canopy structure and critical to plant photosynthesis, fruiting,
and biomass accumulation. However, assessment of canopy size
becomes a bottleneck, which limits breeding programs and
genetics studies (White et al., 2012; Cobb et al., 2013; Araus and
Cairns, 2014; Barabaschi et al., 2016), especially for large crop
populations and high-dimensional traits (e.g., canopy volume).
Accurate and high throughput techniques for quantifying canopy
size would facilitate cotton (and other) breeding programs and
genetics studies (Araus and Cairns, 2014; Pauli et al., 2016;
Reynolds and Langridge, 2016).

Canopy size is spatially and temporally variable, and
morphological traits describing canopy size can be grouped
based on different criteria (Norman and Campbell, 1989).
From the spatial perspective, component traits of canopy size
can be categorized as one-dimensional and multi-dimensional
traits. One-dimensional (1D) traits quantify canopy size in
a single dimension (e.g., canopy height and width), whereas
multi-dimensional traits quantify canopy size by considering
multiple dimensions (e.g., canopy area in two-dimensional (2D)
space and volume in three-dimensional (3D) space). From the
temporal perspective, the traits can be separated into static
and dynamic categories. Static traits are directly measured for
canopies at a certain time, whereas dynamic traits (e.g., growth
rates) are the change of static traits over time. In addition
to spatial and temporal criteria, data dimensionality is an
important consideration of morphological traits for canopy size
quantification. Based on the number of variables, morphological
traits can be classified as univariate (e.g., maximum and average
canopy height) or multivariate (e.g., cumulative height profile
describing heights at different percentiles).

Univariate traits are widely used due to their simplicity
(easy to define) and availability (most measurement instruments
provide a single reading). One-dimensional traits can be
measured manually (or automatically) using distance meters.

These 1D traits represent canopy size in only one dimension,
creating a potential bias in structure assessment and comparison
(Norman and Campbell, 1989). Leaf area as a 2D trait has been
widely used for canopy size studies, and its derivative indicator
(leaf area index, LAI) has demonstrated successes in estimating
crop photosynthetic activities, biomass, yield, and biotic/abiotic
stress tolerance (Sinclair and Horie, 1989; Kross et al., 2015;
Feng et al., 2017). Leaf area can be directly measured using
destructive methods, such as using a leaf area meter or image
scanner to obtain the area of leaf samples that have been cut
off the plant. Such destructive methods are usually arduous and
hard to apply in large-scale experiments. To address those issues,
LAI can be indirectly estimated using instruments such as the LI-
COR LAI-2200 and Decagon LP-80 (Bréda, 2003; Weiss et al.,
2004). Conventional 2D imaging methods can also be applied to
calculate projected leaf area or canopy coverage ratio, estimating
the true leaf area or LAI (Jonckheere et al., 2004; Zheng and
Moskal, 2009). Nonetheless, all aforementioned methods require
laborious data collection and do not provide 3D information, and
therefore are inadequate to rapidly and comprehensively quantify
canopy size and development.

Advanced 3D imaging approaches provide new opportunities
to accurately quantify canopy size in multiple dimensions such as
canopy height and width (1D), leaf area (2D), and volume (3D).
The approaches can be categorized into passive and active 3D
imaging (Li et al., 2014).

Passive 3D imaging methods reconstruct 3D structures of
objects by expanding conventional 2D imaging methods. Stereo
vision and the structure-from-motion (SfM) technique are two
representative passive imaging methods. Small unmanned aerial
systems (UASs) provide a means to quickly collect images
for 3D reconstruction and trait extraction (e.g., crop height)
using digital surface models and photogrammetry. However,
images collected by UASs usually have lower quality (e.g.,
image resolution and sharpness) than images from ground
systems, which could significantly affect the reconstruction
accuracy (Shi et al., 2016) or even cause failures of 3D structure
reconstruction (Jay et al., 2015). In addition, most of the
passive techniques are computationally expensive (taking several
hours for reconstruction of one plot) (Jay et al., 2015; Muller-
Linow et al., 2015; Nguyen et al., 2016; Dong et al., 2017).
Speeding up the process would require either using high-
performance computing (HPC) resources, which would impose
a considerable cost for large-scale breeding programs, or limiting
the experimental scale and therefore breeding efficiency.

Active 3D imaging methods directly acquire 3D information
by operating external light sources. Commonly used sensors
include light detection and ranging (LiDAR), triangulation
laser scanners, and time-of-flight (TOF) and structured light

Frontiers in Plant Science | www.frontiersin.org 2 January 2018 | Volume 8 | Article 2233

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Jiang et al. Canopy Characterization Using 3D Imaging

cameras. With suitable camera setup and illumination, most
active methods can accurately obtain 3D point clouds of plants
in field conditions for canopy size analysis, but the instruments
are usually expensive ($2,000–100k or more) compared with
cameras used in passivemethods (Li et al., 2014). Recent advances
in consumer-grade RGB-D cameras (e.g., Microsoft Kinect and
ASUS Xtion) provide an inexpensive solution for 3D scanning
(Nock et al., 2013; Paulus et al., 2014; Andujar et al., 2016).
In particular, the Microsoft Kinect v2 camera uses the TOF
principle with upgraded color and depth resolution, creating the
possibility for inexpensive and high-resolution 3D sensing in field
conditions. Several previous studies explored the use of Kinect
v2 camera in measuring canopy size (height and volume) in
field conditions, finding that the Kinect v2 was a promising tool
for field-based phenotyping (Andújar et al., 2016; Jiang et al.,
2016; Andujar et al., 2017). However, two aspects need to be
further improved: (1) data processing should be fully automated
to improve throughput, and (2) more spatially (single and multi-
dimensional traits) and temporally (static and dynamic traits)
morphological traits need to be measured and studied.

The overall goal of the study was to develop a 3D imaging
approach to automatically and quantitatively analyze canopy size
of cotton plants in field conditions. Specific objectives were to
(1) develop algorithms to reconstruct colorized point clouds of
individual plots using depth and color images collected by Kinect
v2 camera, (2) develop algorithms to segment canopy point
clouds from the ground and weeds, (3) extract canopy size traits
(canopy height, width, projected area, and volume) and their
dynamic changes over time, and (4) explore the potential of using
the extracted traits for fiber yield prediction.

2. MATERIALS AND METHODS

2.1. Experimental Design and Field Data
Collection
A field (33.727239 N, 83.299097 W) was planted with cotton
seed at the Iron Horse Farm of the University of Georgia
in Watkinsville, Georgia, USA on 13 June 2016. The field
contained 128 plots (16 rows with 8 plots per row) of
length 3.05 m, with 1.83 m alleys between consecutive
plots in a row, and row-spacing of 1.52 m (see Figure S1
in Supplementary Material). Three experimental genotypes
(GA2011158, GA2009037, and GA2010074) and one commercial
variety (Americot conventional) were used, each having 32 plot
replicates. A completely randomized design was used to assign
genotypes to individual plots. In each plot, 15 cotton seeds were
manually planted at a spacing of 0.15 m. The first seed was
planted 0.15 m away from the plot starting point, and hence a
total of 15 seeds occupied 2.4 m out of 3.05m in each plot. Cotton
fiber was handpicked and weighed for 96 randomly selected plots
(24 per genotype) on 4 November 2016 (which was 144 days after
planting, DAP 144).

A field-based phenotyping system, GPhenoVision, was
developed (Jiang et al., 2017) and used to scan the experimental
field during midday (around 1,200–1,330 h) on 8 days in 2016
including 28 July (DAP 45), 4 August (DAP 52), 19 August (DAP

67), 26 August (DAP 74), 9 September (DAP 88), 16 September
(DAP 95), 23 September (DAP 102), and 30 September (DAP
109). The scanning period covered two growth stages: canopy
development (DAP 45–74), and flowering and boll development
(DAP 74 to DAP 109). During the scanning period, the Kinect
v2 camera of the GPhenoVision system was consistently used
at 2.4 m above ground level (Figure 1A). The system ran in a
continuous scanning mode at a constant speed of 1 m/s, but
the operator manually controlled the data acquisition software to
start/stop saving images at the beginning/end of each row to save
storage space (Figure 1B).

2.2. Image Processing Pipeline
2.2.1. Reconstruction of Colorized Point Cloud
The entire image processing pipeline included three sections:
point cloud reconstruction, cotton canopy segmentation, and
trait extraction. The aim of the point cloud reconstruction section
was to reconstruct colorized point clouds for individual plots
using collected depth and color images with their corresponding
GPS information (Figure 2). This section contained four steps:

2.2.1.1. Step 1.1: data grouping
All acquired GPS records were firstly converted from the
geographic coordinate system to the universal transverse
mercator (UTM) coordinate system. Altitudemeasures were used
as the height of image acquisition. Collected depth and color
images were segregated into individual plots based on their GPS
coordinates, and the following processes were executed within
each plot.

2.2.1.2. Step 1.2: camera position adjustment
Each plot used both global and local coordinate systems. The
global (UTM and altitude) system indicated exact positions
of image acquisition (also image center), whereas the local
system represented image pixel coordinates in which the y-
axis was aligned with the vehicle moving (row) direction and
the x-axis was aligned with the direction that is perpendicular
to the vehicle moving (across-row) direction. Global (UTM
and altitude) coordinates were converted to local coordinates,
so image acquisition positions were aligned with image pixel
coordinates. First, global coordinates were rotated to be aligned
with y-axis in the local system using Equation (1).





pix
piy
piz



 =





cos θG−L sin θG−L 0
− sin θG−L cos θG−L 0

0 0 1











pieasting − p1easting
pi
northing

− p1
northing

pi
altitude

− p1
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(1)

where θG−L was the rotation angle (the angle between the fitting
curve and north axis) in radians, pix, p

i
y, p

i
zwere the x, y, z

coordinates of the acquisition position of the ith frame in the
local system, and pieasting , p

i
northing

, and pi
altitude

were the UTM

coordinates and altitude values, respectively, of the acquisition
position of the ith frame in the global system. p1 was the starting
(first) frame acquired in each plot.

After the coordinate system conversion, image acquisition
positions were aligned with image pixel coordinates and the
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FIGURE 1 | Field based phenotyping system used in this study: (A) Diagram of the camera and RTK-GPS configuration and (B) the front panel of data acquisition

software developed using LabVIEW.

starting point of each plot became the origin point in the local
system. Individual depth and color images were reconstructed
to colorized point clouds using functions provided by the
manufacturer’s software development kit (SDK).

2.2.1.3. Step 1.3: camera orientation adjustment
The Kinect v2 camera might be slightly tilted during data
collection due to uneven terrain, and thus it was necessary to
estimate camera orientation in each frame and to correct point
cloud offset due to camera orientation changes. As individual
frames would be eventually stitched, only a part of the frame,
the region of interest (ROI), needed to be processed. To save
processing time, camera orientation estimation and adjustment
were performed on the ROI of each point cloud. ROIs were
selected based on image acquisition positions using Equation (2).







ROILowerX ROI
Upper
X

ROILowerY ROI
Upper
Y

ROILowerZ ROI
Upper
Z
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−Wenclosure
2

Wenclosure
2

−Dist(i,i−1)
2
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2
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(2)

where ROILower· and ROI
Upper
· were the lower and upper limits

on a specific axis of an ROI in the point cloud of a single
frame, Wenclosure was the width of the enclosure (1.52 m in the
present study), Dist(i, j) was the absolute distance difference in
acquisition position between the ith and jth frames, and Hcamera

was the height of the camera above the ground level (2.4 m in the
present study).

In each selected ROI, ground surface was detected
using maximum likelihood estimation sample consensus
(MLESAC) (Torr and Zisserman, 2000), and the normal
of the detected ground surface was calculated. Angle
differences in the normal between the detected and
ideal (X-Y plane) ground surfaces were calculated, and
points in the ROI were rotated based on the angle
differences with respect to the X-Z and Y-Z planes using

Equation (3).
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where θxz and θyz were the angles between the detected and ideal
ground surfaces with respect to the X-Z and Y-Z planes, and xadj,
yadj, and zadj were the adjusted coordinates of the original points
(xo, yo, and zo) in the ROI.

If vegetation covered the entire ground surface and resulted
in a failure of ground detection, the ground normal of the ROIs
was assumed to be the same as the X-Y plane normal (EnX−Y =
[0, 0, 1]). As a consequence, there was no adjustment to account
for effects caused by camera orientation changes.

2.2.1.4. Step 1.4: stitching of selected ROIs
The final step in the reconstruction section was to stitch all of
the selected ROIs into an integrated colorized point cloud for
individual plots. Based on camera positions, the transformation
of points in ROIs to the local coordinate system would naturally
result in stitching of ROIs and produce the colorized point cloud
for a plot. The coordinate transformation was conducted using
Equation (4).





x
y
z



 =





xadj
yadj
zadj



 +





pix − p1x
piy − p1y
piz − p1z



 (4)

where x, y, and z were the coordinates of points in the final
colorized point cloud of a plot, and pix, p

i
y, and piz were the

coordinates of the acquisition position of the ith frame in the local
coordinate system.

2.2.2. Segmentation of Cotton Plant Canopies
Point clouds of cotton plots could contain irrelevant objects
such as system frames, ground surface, and weeds. Therefore,
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FIGURE 2 | Processing pipeline of reconstructing colorized point clouds for individual plots using color and depth images and GPS collected by the GPhenoVision

system.
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it was necessary to segment the cotton plant canopy from
irrelevant objects (Cotton canopy segmentation in Figure 3). The
segmentation of cotton canopies involved two steps:

2.2.2.1. Step 2.1: vegetation segmentation
Unlike point cloud data collected by conventional instruments
such as LiDAR, point cloud data in the present study
also contained color information (RGB values) for each
point. A color filter was used to segment vegetation from
background objects. According to previous studies (Hamuda
et al., 2016), excess green (ExG) index was an effective
indicator to obtain vegetation objects in an image, and
thus ExG values were calculated for each point of a plot.
A preliminary test was performed on a small subset of
the collected images, showing that a threshold of 0.15
provided adequate separation between vegetation and
background.

2.2.2.2. Step 2.2: cotton canopy segmentation
Color filtering was able to remove most irrelevant objects
but not weeds, because plants and weeds are both vegetation
and thus hard to differentiate based on color information.
In this step, point clouds were rasterized to depth images,
so pixels of cotton canopies were differentiated from those
of weeds in the depth images by using 2D computer
vision algorithms with spatial information including height
(depth), area, and position. Identified canopy pixels were
back-projected to 3D space to select points representing
cotton canopies in point clouds. Point cloud data (x, y,
and z coordinates) were rasterized to depth images using
Equation (5).

ID(i, j) = max(zk),

∀k ∈ {k|xLower + Sg × (i− 1) 6 xk 6 xLower + Sg × i}

∩ {k|yLower + Sg × (j− 1) 6 yk 6 yLower + Sg × j}

i = 1, 2, . . . , ⌈
Range(x)

Sg
⌉

j = 1, 2, . . . , ⌈
Range(y)

Sg
⌉

(5)

where ID represented a rasterized depth image, and i and j were
pixel indices in ID. xLower and yLower were the lower limits of
vegetation point clouds, and Sg was the grid size (0.05 m in
the present study). x, y, and z were coordinates of vegetation
points, and k was the index of a point in vegetation point clouds.
Range(·) was a function to calculate the maximum length along a

particular axis in vegetation point clouds, and ⌈
Range(·)

Sg
⌉ was the

total number of grid cells along a particular axis.
Most in-row weeds were short and small, and removed using

height and area information. Depth images were binarized by the
30th percentile of depth value of all pixels in order to exclude
those representing short weeds. Connected components (CCs)
were labeled in binary depth images, and small CCs representing
weeds were removed using Equation (6). Thresholds of depth and

area were empirical values based on observations of height and
area of weeds in the present study.

CCincluded
i =

{

1, Area(CCi) >= ThArea

0, otherwise
, i = 1, 2, . . . , n (6)

where CCincluded is a flag for a connected component, and “1” or
“0” indicated inclusion/exclusion of the connected component
in the binary depth image. Area(·) was a function to count the
number of pixels in a connected component, and ThArea was the
threshold (15 pixels in the present study) for including a CC.

Weeds between plots were tall and large, and removed using
position information. The CC with the largest area (pixel counts)
was selected as the main canopy in a plot, and its bounding
box was calculated. Based on their positions relative to the main
canopy, remaining CCs were classified as weed or cotton canopy
using Equation (7).

CCclass
i =

{

1, Dist(CCi,CCm) 6 WCCb
m

0, otherwise
, ∀i ∈ {i|CCincluded

i = 1}

(7)

where CCclass is the class marker for a CC with “1” for cotton
canopy and “0” for weeds. Dist was a function to calculate the
distance between the center position of the ith CC and main
canopy CC (CCm), andWCCb

m
was the width of the bounding box

for main canopy CC.
According to the rasterization process, a pixel in depth images

represented a grid cell in vegetation point clouds. Based on
Equation (5), each pixel in the identified canopy CCs was back-
projected to a grid cell, and vegetation points in that cell needed
to be included in canopy point clouds. Vegetation points were
selected using Equation (8) to form canopy point clouds that were
used for trait extraction in each plot.

PtCloudcanopy = {∀pt|pt ∈ CCi}, i = {j|CCclass
j = 1} (8)

where PtCloudcanopy represented point clouds of cotton canopy,
pt was a point in vegetation point clouds, CCi was the ith
identified canopy CC, and CCclass

j was the class marker of the jth
CC in a depth image.

2.2.3. Extraction of Morphological Traits
Morphological traits were extracted from point clouds of cotton
plant canopies (Trait extraction in Figure 3). Trait extraction
included two parts: extraction of static traits from multiple
dimensions (one- and multi-dimensional traits) and calculation
of dynamic traits (growth rates).

2.2.3.1. Step 3.1: extraction of one-dimensional traits
One-dimensional traits contained canopy height (maximum and
mean), cumulative height profile, and width (maximum and
mean) at the plot level. The maximum and mean canopy heights
were defined as the tallest and average height values of all canopy

Frontiers in Plant Science | www.frontiersin.org 6 January 2018 | Volume 8 | Article 2233

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Jiang et al. Canopy Characterization Using 3D Imaging

FIGURE 3 | Processing pipeline of segmenting cotton canopy from the reconstructed point clouds and of extracting morphological traits from the canopy point clouds.

Frontiers in Plant Science | www.frontiersin.org 7 January 2018 | Volume 8 | Article 2233

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Jiang et al. Canopy Characterization Using 3D Imaging

points. Cumulative height profile was the combination of canopy
height from the 5th percentile to 95th percentile with an interval
of 5 %. For canopy width, the point cloud of a cotton canopy
was segregated into ten segments along the row direction, and
the maximum length across the row direction was calculated in
each segment. Maximum and mean widths were the maximum
and average values of widths in the ten segments.

2.2.3.2. Step 3.2: extraction of multi-dimensional traits
Multi-dimensional traits contained projected canopy area and
canopy volume. All canopy points were projected onto the X-Y
plane, and the boundary of the projected shape was identified to
calculate the projected canopy area. Convex and concave hulls
were detected on canopy point clouds, and canopy volume was
estimated using the detected convex and concave hulls.

2.2.3.3. Step 3.3: calculation of growth rate
In addition to static traits on a specific date, growth rates
(dynamic changes) could provide information about growth
behavior for cotton plants. Growth rate was defined and
calculated between every two consecutive data collection dates
using Equation (9).

GT,P =
Tdlast − Tdfirst

dlast − dfirst
(9)

where G was the growth rate of a trait (T) during a period (P).
dfirst and dlast were the first and last days after planting in the
period (P).

2.3. Performance Evaluation
2.3.1. Accuracy of Canopy Segmentation
Cotton canopy segmentation strongly affected the accuracy of
trait extraction. In particular, weed removal would significantly
influence values of extracted morphological traits. Ground truth
segmentation results of depth images were manually generated,
and accuracy, false positive rate (FPR; weed pixels identified as
canopy), and false negative rate (FNR; canopy pixels identified
as weeds) were calculated for each plot. Based on these three
values, segmentation results were evaluated and classified into
three categories: clean canopy (accuracy > 95%), under-removal
of weed (FPR> 10%), and over-removal of canopy (FNR> 10%).
The percentages of the three categories were used as indicators to
evaluate the performance of canopy segmentation.

2.3.2. Accuracy of Sensor Measurements
It was important to evaluate the accuracy of depth measurement
because depth information was not only used for height
measurement but also calculation of x and y coordinates of
individual points, thereby affecting the overall accuracy of
obtained point clouds. As height was directly derived from
depth measurement, maximum canopy height was measured
for 32 field plots that were randomly selected on each of four
scanning dates (DAP 45, 52, 74, and 88). Therefore, a total of 128
data points were obtained for evaluating the accuracy of height
measurement.

In addition, due to difficulties in field measurement, potted
and artificial plants were used to assess accuracies of measuring
other traits. A total of 8 potted plants were used for validating
measurements of width, length, and volume, and an artificial
plant was used for projected leaf/convex area (see Figure S2).
For the potted plants, canopy width (cross-movement direction)
and length (movement direction) were measured using a ruler,
whereas volume was measured using a protocol for tree volume
estimation (Coder, 2000) (see Figure S3). Following the protocol,
a plant was virtually segregated into layers with a height
interval of 5 cm. Diameters were measured for the middle of
individual layers, from which volume could be estimated using
a cylinder model, and the plant volume was the summation of
all layer volumes. For the artificial plant, a total of 8 layouts
were configured to form different plant leaf/convex areas (see
Figure S4). In each layout, all leaves were laid on the base surface
and imaged with a size marker by a digital single-lens reflex
(DSLR) camera (A10, Fujifilm Holdings Corporation, Tokyo,
Japan) so that projected leaf/convex area could be accurately
measured using image processing. After taking color images,
leaves were vertically lifted at various heights to form a 3D
layout simulating real plants. It was noteworthy that real plants
had many more leaves than the artificial plant, resulting in a
denser canopy, and thus projected convex area would be closer
to projected canopy area in real situations. In total, 8 data points
were used for validating sensor measurements of canopy width,
length, projected area, and volume.

Simple linear regression analyses were performed between
sensor and manual measurements for all traits. Adjusted
coefficient of determination (Adjusted R2) and root mean
squared error (RMSE) were used as indicators for performance
assessment.

2.3.3. Efficiency of Image Processing
In addition to accuracy performance, the efficiency of the
proposed algorithm was tested on a workstation computer that
used an Intel i7-4770 CPU with 16 GB of RAM on aWindows 10
operating system. Processing time of point cloud reconstruction,
cotton canopy segmentation, and trait extraction was recorded
during the processing of all plot data collected on all eight data
collection dates. For point cloud reconstruction, simple linear
regression analysis was conducted between the number of frames
in each plot and the reconstruction time. For cotton canopy
segmentation and trait extraction, the percentage of processing
time for each key step was calculated.

2.4. Statistical Analyses between Fiber
Yield and Extracted Traits
Extracted traits were grouped into two categories: univariate and
multivariate traits. For univariate traits, simple linear regression
analyses were conducted between the traits and fiber yield,
whereas formultivariate traits, multiple linear regression analyses
were conducted between the traits and fiber yield. The adjusted
R2 and RMSEwere used to assess the potential of the usefulness of
extracted traits for prediction of cotton fiber yield. As regression
models established using the maximum and mean canopy height
were nested to those using cumulative height profile, F-tests were
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TABLE 1 | Performance of the segmentation of cotton canopy.

Date Clean

canopy (%)

Weed under-

removal (%)

Weed over-

removal (%)

28 July 2016 (DAP 45) 99.2 0.8 0

4 August 2016 (DAP 52) 99.2 0.8 0

19 August 2016 (DAP 67) 95.2 4.8 0

26 August 2016 (DAP 74) 97.6 1.6 0.8

9 September 2016 (DAP 88) 99.2 0.8 0

16 September 2016 (DAP 95) 100 0 0

23 September 2016 (DAP 102) 100 0 0

30 September 2016 (DAP 109) 98.4 0 1.6

All dates 98.6 1.1 0.3

conducted to rigorously test the statistical significance of model
differences. All regression and F-test analyses were performed in
R software (R Core Team, 2016).

3. RESULTS

3.1. Performance of Segmentation of
Cotton Canopy
Overall, the cotton canopy segmentation achieved an accuracy
of 98.6% on all collected data, which indicates that the
scanning system provided accurate canopy point clouds for
trait extraction throughout the growing season (Table 1). The
proposed algorithms precisely segmented cotton canopy under
various plot conditions (Figures 4A–D). In-row weeds were
usually shorter and smaller than cotton plants, so they were
mostly removed by height and area filters. In contrast, weeds
between rows were generally large and tall, but they could be
removed using position information because they were located
between plots and away from the main canopy in each plot.
Therefore, the method could provide accurate segmentation of
cotton plant canopy. However, the weed under-removal rate
increased noticeably on DAP 67 and DAP 74. This was because
no weeding activity was arranged during that period, and many
weeds grew substantially and became comparable with cotton
plants in height and size; as a consequence, cotton plants became
hard to differentiate from weeds (Figure 4E). In late growth
stages (e.g., flowering and boll development stage), cotton plant
leaves started to shrink and fall down, resulting in a reduction
of canopy size and overlap. Large canopies were segregated into
small leaf areas, especially along the outer part of canopies. These
small leaf areas were largely filtered out by the area filter, leading
to over-removal of canopy (canopy pixels identified as weeds)
(Figure 4F).

3.2. Representative Colorized Point Clouds
Representative colorized point clouds of cotton canopies were
generated and demonstrated at the plot level over the growing
season (Figure 5). Poorly germinated plots contained some
empty areas (Figure 5A), which tended to be at least partly
filled by neighboring plants after the canopy development stage
(DAP 74). In well germinated plots, seeds generally sprouted
around the same time and seedlings grew at comparable speeds,

maintaining similar canopy height along a plot. Even in cases
with some variation of germination date (thus development
speed), canopy height tended to reach a similar level in a
plot, avoiding the occurrence of extremely tall or short sections
(Figure 5B). Well germinated plots showed canopy overlap at
an earlier date (approximately DAP 52 or earlier) than poorly
germinated ones and were relatively flat (or slightly arched) along
the row direction, whereas in poorly germinated plots the canopy
close to empty areas was short. This slightly arched shape of the
canopy is due to “edge effect,” and plants can be either bigger or
smaller at the plot edge than those in the center.

3.3. Accuracy of Sensor Measurement
Sensor measurements were strongly correlated (adjusted R2

> 0.87) with manual measurements for all extracted traits
(Figure 6). In particular, height measurements were obtained
from multiple days and the RMSE was 0.04 m, suggesting a high
accuracy and repeatability of depth measurement (and therefore
point clouds) in field conditions. Consequently, point clouds
acquired by the Kinect v2 sensor could be used to accurately
measure traits such as width, length, projected leaf/convex
area. It should be noted that although correlation was strong
(adjusted R2 > 0.87) between sensor and manual measurements
for volume, the absolute values were significantly different (see
the slope in regression equations for convex and concave hull
volumes). Convex and concave hull volumes were smaller than
reference measurements. In the present study, the Kinect v2
sensor acquired point clouds from the top view, and thus only
canopy surface could be imaged, resulting in a lack of information
from two sides (especially sections under the canopy). As a
consequence, the volume of a plant (or a plot) estimated by
convex and concave hulls was a portion of the ground truth
value. Since the canopy of most cotton plants was roughly a cone,
the sensed portion could generally represent the entire plant.
This was also supported by the high correlation between sensor
and reference measurements. In addition, convex hull volume
showed better correlation with reference measurement than
concave hull volume, because both convex hull and reference
measurements included volume of empty space among branches
of a plant. Nonetheless, as both convex and concave hull
demonstrated strong correlation, they could be used as indicators
for growth pattern analyses and/or yield prediction.

3.4. Efficiency of the Proposed Approach
The proposed approach used on average 215 s for processing
a plot, including 184 s for point cloud reconstruction and
31 s for canopy segmentation and trait extraction (Figure 7).
Variations in reconstruction time primarily came from the
different number of frames acquired for a plot (Figure 7A).
Although the GPhenoVision system was set at a constant
speed, the actual system speed would vary due to different
terrain conditions (dry vs. wet) and scanning status slower at
the two ends of a row than in the middle). Consequently,
the number of frames could be different in various plots on
different dates. Generally, the reconstruction time increased
linearly with the number of frames acquired in a plot
(Figure 7B). However, for plots with equal number of frames,
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FIGURE 4 | Representative results of cotton canopy segmentation: successful segmentation under (A) poorly germinated plot with weeds, (B) well germinated plot

with weeds, (C) plot with a segregated plant, and (D) well germinated plot with connected weeds; (E) failure of weed removal; and (F) over-removal of cotton plant

canopy. In classified connected component images, blue, green, and red colors indicated main canopy, cotton canopy, and weeds, respectively. Ground truth images

were manually generated for including cotton canopy.
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FIGURE 5 | Representative point clouds of the same plot during the growing season: (A) A plot with poor germination rate (less than 50%) and (B) a plot with good

germination rate (greater than 75%). Collected data covered two growth stages: (1) canopy development from days after planting (DAP) 45 to 74 and (2) flowering and

boll development from DAP 74 to DAP 109.

variations in processing time were mainly due to different
number of points in frames. For instance, point clouds of
poorly germinated plots contained more points of ground
than those of well germinated plots, resulting in variation

in ground surface detection and thus in reconstruction
time.

For canopy segmentation and trait extraction, efficiency
variations occurred due to different numbers of points in point
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FIGURE 6 | Linear regression results between sensor and manual measurements for height, width, length, projected leaf/convex area, and volume: (A) Maximum

canopy height (N = 128) for individual plots on four dates; (B) canopy width and length (N = 8 for each) for potted plants; (C) projected leaf and convex area (N = 8

for each) for the artificial plant with different layouts; and (D) volume (N = 8) for potted plants.

cloud data (Figure 7C). The number of points in a point cloud
was determined by the canopy size, which was affected by
both germination condition and growth stage. Plant canopies
were larger in well germinated plots or plots in the canopy
development stage than those in poorly germinated plots or
plots in the flowering and boll development stage. Thus, the
number of canopy points varied from plot to plot and stage to
stage, resulting in processing time variations. Among the three
operations, canopy segmentation and trait extraction were more
time consuming than vegetation segmentation (Figure 7D).

Vegetation segmentation was based on color filtering, in which
all points were processed simultaneously. In contrast, canopy
segmentation and trait extraction processed information point
by point, thus using a significantly longer time than vegetation
segmentation.

3.5. Growth Trend of Cotton Plants
3.5.1. Static Traits
Overall, plants elongated substantially from DAP 45 to DAP 74
(canopy development stage) and expanded considerably from
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FIGURE 7 | Algorithm efficiency of point cloud stitching and trait extraction: (A) Histogram of reconstruction time for individual plots; (B) relationship between the

number of images collected in each plot and the reconstruction time of stitching; (C) histogram of the total trait extraction time for individual plots; and (D)

percentages of processing time for various steps in canopy segmentation and trait extraction.

DAP 45 to DAP 88 (canopy development stage and early
flowering stage) (Figure 8). The values of canopy morphological
traits gradually decreased during the rest of the growing season
(flowering and boll development stages). Among the genotypes,
the Americot conventional showed the shortest and smallest
canopy, compared with the other three experimental genotypes.
Genotype GA2009037 was the tallest genotype but with the least
width, indicating a tall and narrow canopy (statistical comparison
results are provided in Tables S1–S7).

Cumulative height profiles of all four genotypes showed
logarithmic growth during the canopy development stage (DAP
45 to DAP 74) and linear growth during the flowering and boll

development stage (DAP 74 to DAP 109) (Figure 9). In the
canopy development stage, plant leaves increase in transpiration
capability and maintain a solid shape to receive more sunlight
for photosynthesis. Therefore, at the canopy development stage,
upper leaves occluded lower ones, resulting in less variation
in canopy height after the 25th percentile. The large difference
between the 5th and 25th percentiles was due to un-occluded
leaves on expanded branches at lower positions along the canopy
border. When transitioning into flowering and boll development
stage, plant leaves receive fewer nutrients (due to nutrient
demands of maturing fruit) and start to shrink. Previously
occluded leaves could be captured, and thus canopy height was
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FIGURE 8 | Extracted static traits of individual plots in ENGR field during the growing season. Extracted traits covered two growth stages: (1) canopy development

from DAP 45 to DAP 74 and (2) flowering and boll development from DAP 74 to DAP 109.

represented by leaves at a wider range of positions, resulting
in an increase of height difference at various percentiles. This
information might be useful for predicting the change of growth
stages for cotton plants.

3.5.2. Dynamic Traits
The four genotypes showed different patterns of canopy
development in different growth stages (Figure 10). Generally,
growth rates of all four genotypes approached zero in P5
(DAP 74 to DAP 88, which was the first data collection
period in the flower and boll development stage) for maximum
and mean canopy height, and in P6 (DAP 88 to DAP 95,
which was the second data collection period in the flower and
boll development stage) for the other traits, because the four

genotypes were short season cottons and had similar growth stage
transitions. In addition, all genotypes stopped canopy elongation
approximately a week earlier than canopy expansion. Although
the overall growth trend was similar, there were differences
in growth behavior among the four genotypes (statistical
comparison results are provided in Tables S8–S14). The Americot
conventional was generally the slowest in developing its canopy,
whereas the three experimental genotypes grew rapidly in
different dimensions. Genotype GA2011158 showed the fastest
growth in all dimensions, resulting in large canopy height, width,
projected area, and volume. Genotype GA2009037 primarily
elongated rather than expanded, resulting in tall canopies with
the least projection coverage, whereas Genotype GA2010074
mainly expanded rather than elongated, resulting in short
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FIGURE 9 | Extracted canopy height at various percentiles during the growing season: (A–D) were for GA2011158, GA2009037, GA2010074, and commercial

variety. Extracted traits covered two growth stages: (1) canopy development from DAP 45 to DAP 74 and (2) flowering and boll development from DAP 74 to DAP 109.

canopies with large coverage and volume. Detection of such
variations might permit identifying genes controlling cotton
plant growth patterns and/or selecting genotypes suitable for
different production or harvesting strategies.

3.6. Performance of Yield Prediction
In general, static traits had some value (R2 = 0.12–0.71) for
predicting cotton fiber yield (Figure 11A). Among univariate
traits, multi-dimensional traits (e.g., projected canopy area
and volume) considerably outperformed one-dimensional traits
such as canopy height and width, presumably because multi-
dimensional traits could depict canopy size more completely.
For instance, genotypes GA2011158 and GA2009037 had similar
canopy height but different fiber yield, resulting in a low
correlation between canopy height and fiber yield. However,
the two genotypes had obvious differences in projected canopy
area and canopy volume, with improved correlation between

the morphological traits and fiber yield. This indicated the
usefulness of extracting multi-dimensional traits using advanced
3D imaging techniques. Compared with univariate traits
(the maximum and mean canopy height), multivariate traits
(cumulative height profile) showed a significant improvement
in yield prediction on most days (see detailed F-test results
in Table S15). This was because cumulative height profiles
intrinsically incorporated spatial distribution: high percentile
ranks represented height information in the middle of the
canopy, whereas low percentile ranks represented the borders.
The capability of extracting multivariate traits was an advantage
of using 3D imaging modalities. Most static traits achieved the
highest correlation with fiber yield after the canopy development
stage (DAP 67), and then the correlation decreased slightly
during the rest of the growing season. In the growing season
that was studied, the best period to use morphological traits
for yield prediction was the transition period between canopy
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FIGURE 10 | Extracted growth rates (dynamic traits) of individual plots in ENGR field during the growing season. P1 was the period from the day of planting to DAP

45, and P2–P8 were the periods between two consecutive data collection dates. Extracted traits covered two growth stages: (1) canopy development from P1 to P4

(DAP 67 to DAP 74) and (2) flowering and boll development from P4 to P8 (DAP 102 to DAP 109).

development and flowering and boll development stages. Canopy
size during the transition period reached the maximum size
and reasonably represented the potential of flower and boll
development. However, mean canopy width and projected
canopy area achieved the highest correlation at later dates (DAP
95 andDAP 102) because all genotypes kept expanding until DAP
95 and most of the expansion was due to the development of
sympodial (fruiting) branches.

Compared with static traits, dynamic traits (growth rates)
demonstrated less capability for yield prediction, but multi-
dimensional traits that could comprehensively quantify canopy

size still outperformed one-dimensional traits (Figure 11B).
This further supported the advantage of using 3D imaging
for measuring morphological traits. In contrast to static traits,
growth rates were more informative for yield prediction in
early stages (early periods in canopy development stage)
rather than late stages. This may have been because all four
genotypes were short season cotton and had similar overall
growth trends. In early stages, growth rates were positive,
reflecting canopy development, and were well correlated with
the final vegetative structure and productive capacity. However,
in late stages, growth rates were negative, reflecting leaf and
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FIGURE 11 | Coefficients of determination (R2) of linear regressions between extracted traits and cotton fiber yield: (A) Static traits and fiber yield and (B) dynamic

traits and fiber yield. Black, white, and red colors indicated statistical significance of “<0.001,” “<0.01,” and “<0.05,” respectively. Insignificant R2 values were not

shown in blocks. P1 was the period from the day of planting to DAP 45, and P2–P8 were the periods between two consecutive data collection dates. Superscripts of

R2 values for height profile denoted the F-test results between regression models: a number sign (#) indicated a significant model improvement by using height profile

rather than maximum height, and an asterisk (*) indicated a significant model improvement by using height profile rather than both maximum and mean heights (see

Table S15 for detailed F-test results). In addition, Pearson’s correlation coefficients were calculated for all univariate traits (see Figure S5).

plant senescence, and were not well correlated with fiber
yield.

4. DISCUSSION

Consumer-grade RGB-D image-based measurement of
plant canopies in field conditions could lower the cost and
increase the use of imaging techniques in phenotyping,
benefitting the plant science community. The entire system
used in the present study cost $70,500, including an RGB-D

camera ($200), high-clearance tractor platform ($60,000),
RTK-GPS ($8,000), power unit ($300), and rugged laptop
($2,000). This is still a considerable investment, but can
be reduced. The tractor platform can be replaced with a
low-cost pushcart (usually less than $2,000) if experiments
are less than a hectare (Bai et al., 2016). In addition, a
pushcart system allows for “stop-measure-go” mode, in
which image acquisition locations can be predefined and
manually controlled, and thus RTK-GPS is not required.
However, these low-cost solutions decrease the efficiency and
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throughput of data collection. The consumer-grade RGB-
D camera is an inexpensive 3D sensing solution for plant
phenotyping, but building a phenotyping system requires
comprehensive consideration of balance between research
budget, experimental scale, and data collection and processing
throughput.

The processing algorithms reported here can accurately
extract morphological traits of plant canopies at the plot
level, providing useful information for genomic studies and/or
breeding programs. However, we note two limitations of the
proposed approach. First, the Kinect v2 camera cannot be directly
used under strong illumination (e.g., during midday in the field),
so a mechanical structure is required to provide shade. Second,
the reconstruction step currently relies on functions provided by
Kinect v2 SDK, and must be performed on a computer running
on an operating system of Windows 8 (or later) with connection
to the Kinect v2 camera. This may significantly decrease the
post-processing throughput, because cloud computing services
usually run on remote Unix/Linux systems and users cannot
connect hardware components to them while processing. This
limitation could be addressed with third party libraries or user-
performed registration between depth and color images (Kim
et al., 2015). We acknowledge that the developed method was
tested in a 1-year experiment, and altered conditions may change
results. For example, predictors of yield were most effective near
the end of canopy development in this experiment—however,
dramatic differences in growing conditions (such as drought or
cold) could change that in other years. Additional experiments
might also consider different degrees of replication—here, a total
of 32 replicates per genotype were used, which is considerably
more than the number that is generally used in genetics/genomics
studies. Variability among these samples provides a basis for
estimating the minimal number of samples that might be used
to discern differences between treatments of pre-determined
magnitude, which is important in experiments involving large
numbers of genotypes such as breeding programs. Based on
theoretical calculation (Cochran and Cox, 1992), most static
traits required three replicates, whereas most dynamic traits
needed more than ten replicates (see Figure S6). This is because
the four genotypes used in this study are very similar in growth
patterns, requiring a high number of replicates to increase
the statistical power for genotype differentiation. However, the
minimal number of replicates could be reduced for growth
rates in experiments involving genotypes with distinctive growth
patterns (e.g., wild and elite cotton germplasm lines).

Two important findings were observed for the extracted
traits. Firstly, static and dynamic traits showed the highest
correlation with fiber yield in different periods; dynamic
traits were informative in early canopy development stages,
whereas most static traits were useful in the transition period
between canopy development and flower and boll development.
Canopy size (canopy height, width, projected area, and volume)
remained relatively constant near its peak for a period after
canopy development, indicating to some extent the capability
to develop flowers and bolls. However, growth rates were
negative in late stages, reflecting plant senescence as resources
were redirected to the maturing bolls. Secondly, multivariate

traits consistently showed better yield prediction than univariate
traits, presumably because the multivariate traits intrinsically
incorporated information such as the spatial variation of canopy
height. Several previous studies reported methods to find the
best percentile of canopy height to use to increase the accuracy
of yield prediction (Friedli et al., 2016; Weiss and Baret,
2017). However, according to our results, it may be more
efficient to explore the use of multivariate traits to predict
yield. It is noteworthy that environment is an important factor,
and analysis of these parameters in different growing seasons
with various environments may yield different results. These
differences may help to better explain interactions between
genotype and environment (G×E), and make breeding programs
more effective.

5. CONCLUSIONS

The 3D imaging system and data processing algorithms
described here provided an inexpensive solution to accurately
quantify cotton canopy size in field conditions. The extracted
morphological traits showed potential for yield prediction.
Multidimensional traits (e.g., projected canopy area and
volume) and multivariate traits (e.g., cumulative height profile)
were better yield predictors than traditional univariate traits,
confirming the advantage of using 3D imaging modalities.
Early canopy development stages were the best period in
which to use dynamic traits for yield prediction, whereas late
canopy development stages were the best period in which to
use static traits. Future studies will be focused on improving
the data processing throughput (via methods such as parallel
computing) and extracting newmultivariate traits for canopy size
quantification.
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