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Nuclear magnetic resonance is viewed as an important technique for the implementation
of many quantum information algorithms and protocols. Although the most
straightforward approach is to use the two-level system composed of spin 1

2 nuclei as
qubits, quadrupolar nuclei, which possess a spin greater than 1

2 , are being used as an
alternative. In this study, we show some unique features of quadrupolar systems for
quantum information processing, with an emphasis on the ability to execute efficient
quantum state tomography (QST) using only global rotations of the spin system,
whose performance is shown in detail. By preparing suitable states and implementing
logical operations by numerically optimized pulses together with the QST method, we
follow the stepwise execution of Grover’s algorithm. We also review some work in the
literature concerning the relaxation of pseudo-pure states in spin 3

2 systems as well as
its modelling in both the Redfield and Kraus formalisms. These data are used to discuss
differences in the behaviour of the quantum correlations observed for two-qubit systems
implemented by spin 1

2 and quadrupolar spin 3
2 systems, also presented in the literature.

The possibilities and advantages of using nuclear quadrupole resonance experiments for
quantum information processing are also discussed.

Keywords: quantum information processing; quantum state tomography;
nuclear magnetic resonance; quadrupolar nuclei

1. Introduction

Among the main results of using nuclear magnetic resonance (NMR) for quantum
information processing (QIP), we find that preparation of pseudo-pure states
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(PPS), radio frequency (RF) pulse design for logic gate implementation and
reading procedures, e.g. quantum state tomography (QST), are handled very
well, due mainly to the fine control of the quantum evolution of nuclear spins.
Allied to these characteristics are the relatively long relaxation times of nuclear
magnetization, which, in the language of QIP, implies that the decoherence times
of the nuclear quantum states are lengthy enough to perform the desired unitary
evolutions. Nuclei with spin greater than 1

2 under the quadrupolar interaction
provide an alternative means of creating an N -qubit system [1–6]. The main
advantages are the use of shorter pulse sequences than those applied to the spin
systems in isotropic liquids and the representation of many qubits by only one
nuclear species. Naturally, the same high strength of the quadrupolar couplings
that enables the use of shorter pulses in quadrupolar systems gives rise to shorter
relaxation times, leading to stronger decoherence and dissipation effects. However,
this difference in the relaxation of quadrupolar and spin 1

2 systems arises from
the distinct nature of the spin–environment interaction; so these systems can be
used as models to investigate the differences in the decoherence and dissipation
of quantum systems, in which the system–environment interaction is described
by distinct quantum channels. Another characteristic of nuclear spins with strong
quadrupolar moments is the possibility of performing QIP by means of nuclear
quadrupole resonance (NQR) without using an external magnetic field. As a result
of all these possibilities, there are many studies exploring QIP concepts by NMR
in quadrupolar systems. The purpose of this study is to review some of the work
published in this area and to present new results showing the excellent control
over quadrupolar systems achieved by similar RF pulse techniques.

QST is an important tool for characterizing the various stages of a quantum
algorithm implementation. The first QST proposal for NMR was put forward by
Chuang et al. [7] and further improved by Long et al. [8]. In those works, the
authors proposed a technique for QST in heteronuclear coupled spin 1

2 systems.
In heteronuclear systems, non-selective RF pulses can act on each nucleus
separately. Such pulses generate individual spin rotations which, by means of
specific pulse combinations, make it possible to project all the components
needed to expand the system’s density matrix in the NMR measurement
operator. In the case of homonuclear spin 1

2 and quadrupolar systems, non-
selective pulses produce only global rotations of all qubits: it is not possible
to rotate one qubit state at a time. Therefore, to address the specific qubit
states of such systems, several approaches have been proposed to use selective
RF pulses to excite specific nuclear transitions [2,3,5,6,9]. However, owing to
the long duration of selective pulses, relative to the non-selective ones used in
heteronuclear systems, relaxation effects can severely restrict the use of QST
methods. This restriction turns out to be more important if the number of
spins increases or the spin quantum number is greater than 1

2 , because in these
cases, many more selective excitations are necessary to find all the elements of
the density matrix [6]. As a way to overcome these limitations, we proposed a
QST method using only short non-selective RF pulses with a coherence selection
scheme [10]. As a result, many studies involving quadrupolar nuclei could benefit
from that method, including research on quadrupolar spin decoherence and
relaxation [11–14] and quantum simulation [15]. Section 2 briefly expounds
the main concepts regarding PPS and logic gate implementation and QST in
high-field NMR of quadrupolar nuclei. To illustrate the fine control obtained,
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§2c,d presents the experimental results of the spin 3
2 quantum state rotations

associated with specific irreducible tensor operators and Grover’s quantum search
algorithm, respectively.

As mentioned earlier, another interesting way of using quadrupolar nuclei for
QIP is the NQR technique. Systems of quadrupolar nuclei in a non-vanishing
electric field gradient (EFG) have been put forward as candidates for the
implementation of QIP in NQR experiments. The pioneering proposal was put
forward by Furman et al. [16,17], who used two RF fields applied in different
directions and with different phases to remove the degeneracy of the energy levels
in pure NQR. The preparation of PPS and the implementation of simple gates
(C-NOT, AND, SWAP) were discussed, but no experimental demonstration of
this method (which seems to be hard to implement in terms of instrumentation)
has been reported so far. More recently, Possa et al. [18] described how circularly
polarized RF combined with double quantum excitation can be used to create
PPS and implement simple quantum gates in NQR. As these methods are
well established in the NQR literature [19–21], the extension of their scope to
experiments dealing with QIP sounds quite plausible. Such developments are
briefly analysed in §3.

The idea of comparing the relaxation behaviour of two-qubit systems
implemented by spin 1

2 and quadrupolar spin 3
2 nuclei is discussed in §4. To

achieve that, we first describe the relaxation of quadrupolar spin 3
2 systems in

terms of both the more NMR-friendly Redfield formalism [11,22] and quantum
channels [13], more familiar in the QIP community [23,24]. Furthermore, the
effect of the system–environment interaction on the behaviour of the classical
and quantum correlation of spin 1

2 [25] and spin 3
2 [14] NMR systems is

described, and the origin of the difference in behaviour is discussed.

2. High-field NMR of quadrupolar nuclei

(a) Preparation of initial states

The magnetic states of a nucleus with spin quantum number I in a strong
magnetic field B0ẑ correspond to the eigenvalues of the z component of the
angular momentum operator, Iz : I , I − 1, . . . , −I − 1, −I . In such a system,
the magnetic states of the nucleus, with spin I = 1

2(2
N − 1), can be associated

with the logic states of an N -qubit system. Therefore, a two-qubit system
can be implemented by a spin 3

2 nucleus, three qubits by a spin 7
2 nucleus and so

on. In practice, as for the spin 1
2 systems, the main magnetic field alone is not

sufficient for the use of spins > 1
2 as QIP systems. In order to produce the most

general states needed for QIP via NMR, it is necessary to add an interaction
whose quantum operator is not a rotation generator. The interaction that
performs that function in NMR of nuclei with I > 1

2 (referred to as quadrupolar
nuclei or quadrupolar spin) is the coupling of the nuclear electric quadrupole
moment with the EFG at the site of the nucleus, produced by neighbouring
electrical charges.

The EFG is described by a second rank tensor whose components correspond
to the second derivative of the scalar potential evaluated at the position of the
nucleus: Vab = (v2V /vavb)r=0 with a, b = x , y, z . In the principal axis system
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Figure 1. Logical labelling of the spin 3
2 energy levels without and with the quadrupolar

perturbation. The corresponding spectra are illustrated. (Online version in colour.)

(PAS), the symmetrical and traceless tensor Vab is null for a �= b. The PAS is
chosen such that |Vzz | ≥ |Vyy | ≥ |Vxx | and the following parameters are defined:
eq = Vzz and h = (Vxx − Vyy)/Vzz . It can then be shown that the quadrupolar
Hamiltonian is given by

HQ = e2qQ
4I (2I − 1)

[
3I 2

z − I (I + 1) + h

2
(I 2

+ + I 2
−)

]
. (2.1)

In cases where the interaction with the static magnetic field B0 is much stronger
than the quadrupolar interaction, only the secular part of HQ must be considered.
Moreover, when the EFG tensor shows axial symmetry (h = 0), equation (2.1) is
further simplified, and the full static Hamiltonian, including the interaction of
the main magnetic field B0, is given by

H = H0 + HQ = −h̄u0Iz + h̄
uQ

6
[3I 2

z − I (I + 1)]. (2.2)

The coupling parameters are u0 = gB0 and uQ = (3 e2qQ/4I (2I − 1))(3 cos2 q − 1),
where g is the nuclear gyromagnetic ratio and q is the angle between the z-axis
of the PAS and the main magnetic field B0. Figure 1 illustrates the energy levels
and the spectrum associated with the transitions of a spin 3

2 nucleus, representing
a system of two qubits.

In NMR, the thermal equilibrium state is found in an almost maximum
mixture state, where the corresponding density matrix req deviates little from
the normalized identity matrix. However, if it is possible to transform req into a
state of the form

r̄ = 1
2N

(1 − q)1 + q|j〉〈j|, (2.3)

then it is possible to perform any quantum computation experiment considering
the |j〉〈j| term. That is because the identity operator is invariant under unitary
operations and, consequently, can be neglected. The state created in such a way
is called a PPS and the factor q is a real number between 0 and 1 [26,27].
In equation (2.3), only the deviation matrix Dr̄ = q(|j〉〈j| − 1/2N ) is accessible in
NMR experiments, and this is the matrix usually appearing in the experimental
results, as happens in this study.
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RF pulse sequences, magnetic field gradients and time-average procedures
are the main tools in producing experimentally, by NMR, the PPS and logic
gates used in the quantum algorithms and protocols. Analytical approximating
procedures such as the average Hamiltonian theory [28] or the employment of
selective pulses in multiple quantum transitions [29,30] are normally used to
produce the effective Hamiltonians that correspond to the unitary operations
used in QIP. However, general quantum operations are not always easily obtained
by analytical procedures, and numerical strategies can be useful. One important
technique is the strongly modulating pulse (SMP) [31], which is used in many
QIP implementations, including the Grover’s algorithm implementation shown
in this study.

(b) Quantum state tomography with hard pulses

Now, a short account will be given of how the QST of quadrupolar nuclei in
NMR can be performed exclusively by global rotations of the spin system [10].
Non-selective pulses have the property of performing almost ideal rotations of
the spin system. Therefore, it is useful to expand the density operator r in a
basis formed by irreducible tensor operators [32], which exhibit special properties
under rotations:

r =
∑
l ,m

al ,mTl ,m(I ). (2.4)

The Tl ,m(I ) are the irreducible tensor operators of rank l and order m, which
depend on the spin quantum number I of the quadrupolar nucleus. In this case, to
reconstruct the r operator it suffices to determine the coefficients al ,m . When short
non-selective pulses are applied, the corresponding evolution operator corresponds
to the rotation operator R. The Tl ,m operators transform under rotation in the
same way as spherical harmonics:

R · Tl ,m · R† =
l∑

m′=−l

Dl
m′,mTl ,m′ . (2.5)

The Dl
m′,m rotation matrix elements are called the Wigner D-functions [32],

defined by 〈l ′, m′|R|l , m〉 = dl ′,lDl
m′,m , where |l , m〉 are the eigenstates of the

angular momentum operator with quantum number l and projection m. We are
interested in the NMR case where the axis of rotation is restricted to the x–y
plane. Therefore, only two angles are necessary to characterize the pulse action:
the phase angle f of the rotation axis with respect to the x-axis and the nutation
angle q that the spin states perform around the rotation axis. Under such
conditions, Wigner D-functions can be simplified to

Dl
m′,m(f, q) = ei(m−m′)(f−p/2)dl

m′,m(q). (2.6)

The dl
m′,m(q) are called the reduced Wigner D-functions [32] and they contain

only the dependence on the nutation angle. The pulse phase f appears as
an imaginary phase multiplied by the difference between the coherence order
before (m), and after (m′), the rotation. This phase dependence will be used to
select specific coherences using a temporal coherence selection scheme. The NMR
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spectral amplitudes are derived from the expression for the magnetization M in
the phasor notation:

M (t) = Tr{U (t) · r̃ · U †(t) · I+eia}, (2.7)

where r̃ = R · r · R† is the rotated density matrix, U (t) is the evolution operator
under the free Hamiltonian (2.2) (i.e. without RF perturbation), I+ = Ix + Iy is
the raising operator and a is the detection phase.

By applying equations (2.4)–(2.6) to equation (2.7), the following expression
for the nuclear magnetization is obtained:

M (t) =
∑

k

eiuk tSk , (2.8)

where
uk = Ek − Ek+1

h̄
(2.9)

and the spectral amplitudes

Sk =
∑
l ,m

a∗
l ,mei(1−m)(f−p/2)+iadl

1,m(−q)[I+]k,k+1[Tl ,1]k,k+1. (2.10)

The energies Ek are the eigenstates of the free Hamiltonian. To perform QST
on the system, it is necessary to find the unknown amplitudes al ,m from the
spectral amplitudes Sk . The index k goes from mk = −I to mk = I − 1, totalling 2I
spectral lines. The square brackets in equation (2.10) denote the matrix element
of the respective operator. Each Sk has, generally, contributions from all al ,m
coefficients, which form a set of I (2I + 3) elements. Therefore, to determine all
al ,m , it is necessary to apply additional rotations by using new RF pulses, in
which a suitable choice of the experimental parameters (a, q and f) allows the
reconstruction of the density matrix. To this end, a temporal coherence selection
scheme is applied. In such a scheme, the NMR experiment is repeated N times
with a different RF pulse phase fn and receiver phase an for each repetition. The
resulting amplitudes are averaged in the form

S̄ k = 1
N

N−1∑
n=0

Sk(fn , an). (2.11)

By choosing the phase angles and the number of averages to satisfy the
following equations:

fn = 2pn
N

+ p

2
,

an = 2pn(m′ − 1)
N

and N ≥ 2I + m′ + 1,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.12)

it can be shown [10] that equation (2.11) reduces to

S̄ k(m′) =
2I∑

l=l ′
a∗

lm′dl
1,m′(−q)[Al ]k,k+1, (2.13)
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where l ′ = max(1, m′). Now, the averaged signal S̄ k depends on only one coherence
order, m′, which is selected by the phases in equations (2.12). Equation (2.13)
corresponds to the linear system

A · x = b

[A]k,l−l ′+1 = [I+]k,k+1[Tl ,1]k,k+1, where k = 1, 2, . . . , 2I ,

[x]l−l ′+1 = a∗
lm′dl

1,m′(−q), where l = l ′, l ′ + 1, . . . , 2I

and [b]k = S̄ k(m′).

⎫⎪⎪⎬
⎪⎪⎭

(2.14)

Owing to the linear independent character of the irreducible tensors,
equation (2.14) is also linearly independent. Therefore, quadrupolar nuclei can
be completely tomographed only with global spin rotations that are performed
by short hard RF pulses.

Here, we have focused in the single quadrupolar nucleus system. However,
because the maximum nuclear spin quantum number available for NMR
experiments is limited, it is convenient that the method be extended to coupled
spin systems. Such an extension was already carried out and can be appreciated in
Teles et al. [10], where, by using the irreducible tensor product, the QST method
was applied to a fictitious homonuclear three-spin 1

2 system.

(c) Irreducible tensor rotation

As discussed in §2b, the reduced Wigner D-functions dl
1,m(−q) determine the

dependence of the density matrix coherence amplitudes on the nutation angle
q of the non-selective pulses. In order to show this experimentally, SMPs [31]
were optimized such that the density matrix was proportional to the irreducible
tensor operators Tlm . By varying the nutation angle q of the tomography pulses,
it was possible to verify the dependence of the Tlm on the respective Wigner
D-functions dl

1,m . Only the Tlm of negative order were considered, which resulted
in nine operators to be optimized, because we are dealing with a spin 3

2 nucleus.
The measured experimental fidelities are shown in table 1 and they are based
on the Hilbert–Schmidt inner product of operators [23,31]. The fidelity F refers
to the calculation with respect to the complete operator, while F ′ considers only
the non-null elements of the corresponding Tlm state. It is important to note that
as the density operator is Hermitian, the states are proportional to the sum of
the tensor operator with its adjoint: r ∝ Tlm + T †

lm = Tlm + (−1)mTl ,−m .
Equation (2.13), for the selected spectral amplitudes of order m, when

considering only one rank, l , reduces to

S̄ k(m) = a∗
lmdl

1,m(−q)[Al ]k,k+1. (2.15)

Thus, one can choose a spectral amplitude and monitor its variation as a
function of the nutation angle q. Because this dependence is given by the reduced
Wigner D-function dl

1,m , this experiment is useful to demonstrate what the less
error-dependent angles q are for the RF pulses performing the QST. Figure 2
presents the experimental data juxtaposed to the dl

1,m(−q) theoretical curves for
comparison. It is important to note that these results were obtained without any
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Figure 2. Normalized spectral amplitudes plotted against the nutation angle q for each irreducible
tensor operator of the spin 3

2 nucleus. Solid lines denote theoretical curves; circles denote
experimental data. (Online version in colour.)

Table 1. Experimental fidelities of the states corresponding to the irreducible tensor operators of
the spin 3

2 nucleus.

operator F F ′

T1,0 0.999 0.999
T2,0 0.932 0.967
T3,0 0.969 0.984
T1,−1 − T1,1 0.992 0.993
T2,−1 − T2,1 0.950 0.987
T3,1 − T3,−1 0.936 0.978
T2,2 + T2,−2 0.843 0.958
T3,2 + T3,−2 0.893 0.914
T3,3 − T3,−3 0.875 0.993

reconstruction process, as for example, by using the linear system (2.14). They
correspond directly to the amplitudes obtained from the spectra after application
of the RF pulse sequence used to generate the Tlm states and after performing the
coherence selection. In particular, the states T1,1 + T †

1,1 and T1,0 were obtained
without the use of SMPs, because the former is proportional to the Ix state, being
straightforwardly generated by a hard p/2 pulse, and the latter is proportional to
the thermal equilibrium state Iz . The plots of figure 2 show an excellent agreement
between the data and the theoretical curves, especially in the regions of maximum
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Figure 3. (a) Grover’s algorithm quantum circuit for two qubits implemented in this study.
(b) Composition of each Grover operator.

amplitudes. Significant deviation only occurs for q near p/2 in the lower right
part of the d3

1,0 curve. In this case, it was possible to observe the mixture with
other ranks. With a high F ′ fidelity of 0.984, a negligible contribution would be
expected from other ranks besides l = 3. However, fidelities of 0.166 and 0.053
were found for the experimentally tomographed state T3,0 with respect to the
theoretical states T1,0 and T2,0, respectively. Allied to that, there is the fact that
the Wigner D-function d1

1,0 is very high for angles near p/2, which accounts for a
non-negligible contribution for the nutation curve. The dashed curve in the d3

1,0
plot was constructed by taking into account these contributions, showing a good
agreement with the experimental data. As the agreement is good, especially in the
regions of maximum amplitudes, it can be inferred that there was no significant
quadrupolar evolution during the application of the hard RF tomography pulses.
This indicates that it is not necessary to employ more involved pulses, using
some kind of modulation or self-refocusing strategies, to perform QST with hard
non-selective pulses.

(d) Grover’s algorithm

With the purpose of illustrating the advantages of the QST method using
hard pulses, Grover’s algorithm [33] was experimentally implemented with five
iterations. In order to reconstruct the entire density matrix for many operator
repetitions, the reading pulses have to be short enough for spin relaxation to be
unimportant.

Grover’s algorithm allows an element from an unsorted database of size N
to be obtained in a time of order O(

√
N ). The polynomial speed-up in the

search process represents an advantage over the classical counterpart, O(N ).
The algorithm belongs to the class of probabilistic quantum algorithms and a
detailed description can be found elsewhere [9,23,33–36]. The exposition here
is restricted to the description of the two-qubit quantum circuit, which is
represented in figure 3. In figure 3a, the input state corresponds to |j〉 = |00〉.
Next, the Hadamard gate is applied to the two qubits in order to create
the superposition state |j〉 = 1

2(|00〉 + |01〉 + |10〉 + |11〉). Thereafter, Grover’s
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Figure 4. Quantum state tomography of the superposition PPS |j〉 = 1
2 (|00〉 + |01〉 + |10〉 + |11〉)

(real part only). (a) Experimental and (b) theoretical. (Online version in colour.)

Table 2. Numerical fidelities F , RF pulse duration and the number of segments of the SMPs for
each optimized Grover operator.

operator F duration (ms) segments

G00 0.988 114.50 5
G01 0.991 163.00 5
G10 0.990 141.39 5
G11 0.984 107.30 5

operator G is repeatedly applied a number of times of order O(
√

N ), until the
output state shows a high probability of being the correct answer to the problem.
In the general case, it may be necessary to use auxiliary qubits to operate on
the solution qubit database. Figure 3b shows the parts of Grover’s operator.
It is composed of the oracle operator, O, followed by a phase gate inserted
between two Hadamard (HD) gates on each qubit. The oracle function f (x) is
responsible for problem solution discrimination. It results in f (x) = 1 if x is a
solution and f (x) = 0 otherwise. It can be shown that the phase operator and the
two Hadamard gates correspond to the operator 2|j〉〈j| − 1. The functions f (x)
used by the oracle and experimentally implemented herein are given by

fy(x) =
{
0, for x �= y
1, for x = y

(2.16)

where x and y are any of the four states of the two-qubit system. Therefore, the
implemented operation is equivalent to the search process of one among the four
functions fy . The corresponding Grover operators are denoted by G00, G01, G10
and G11.

The algorithm was implemented experimentally by the optimization of many
steps into one. The superposition state |j〉 was directly created by the SMP
method [31] and its QST is shown in figure 4. The experimental fidelity obtained
was 0.878. Each Grover operation was also implemented by only one SMP. Table 2
contains the numerical properties of these operations. The experimental QST of
the G operators for five iterations is shown in figure 5, where just the results for
the operators G00 and G01 are given. It can be shown that the quantum search
algorithm finds the element in the first try for the two-qubit case. Moreover, the
algorithm presents a periodic behaviour, where the number of iterations of the G
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Figure 5. Quantum state tomography of Grover’s algorithm for operations G00 and G01 (real part
only). Iterations A to E are represented in figure 3 and table 3. The horizontal axes follow the
same convention of figure 4. (i) Experimental and (ii) theoretical. (Online version in colour.)

operator necessary for a new maximum probability is 3. This behaviour is clearly
observed in the experimental results of figure 5. The measured quantum state
fidelities for each iteration are shown in table 3. Some of the lower state fidelities
are attributed mainly to the RF pulse imperfections and the time delays intrinsic
to the hardware.
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Table 3. Experimental quantum state fidelities obtained from the quantum state tomography of
each iteration of the Grover operators.

iteration G00 G01 G10 G11

A 0.964 0.957 0.932 0.895
B 0.890 0.891 0.833 0.960
C 0.887 0.848 0.819 0.842
D 0.966 0.928 0.872 0.932
E 0.897 0.877 0.788 0.943

3. Nuclear quadrupole resonance studies

NQR is a technique closely related to NMR, in which quadrupolar nuclei are
subjected to RF fields in the presence of a non-vanishing EFG. As far as its use for
QIP is concerned, NQR shares most of the benefits of high-field NMR: reasonable
sensitivity at room temperature, ease of manipulation by using standard control
of RF pulses (duration, amplitude, phase) and, in favourable cases, relatively long
transverse relaxation times. A clear-cut advantage of NQR over high-field NMR
is that one does not need to use large magnetic fields in NQR experiments, which
reduces tremendously the cost of NQR spectrometers, relative to commercial
NMR spectrometers using superconducting magnets. On the negative side, NQR
shows the same limitations as NMR with respect to the scalability of quantum
computers and the problem of dealing with PPS in ensembles, as opposed to ‘true’
quantum computing systems that involve pure quantum states. Furthermore, the
number of substances suitable for quantum computing applications via NQR is
much more limited than in the NMR case, because NQR is observable only for
quadrupolar nuclei placed in a site with a non-vanishing EFG.

Both zero-field NQR and Zeeman-perturbed NQR experiments are widely
reported in the literature on quadrupolar nuclei, and more frequent examples
involve the nuclides 35Cl (I = 3

2) and 14N (I = 1) [37]. In zero-field or pure NQR,
the Hamiltonian given in equation (2.1), describing the interaction between a
nucleus with spin quantum number I and the EFG tensor at the site of the
nucleus, is the only static interaction acting on the nuclear spin (disregarding
other internal local fields). For an axially symmetric EFG tensor, the resulting
energy levels are given by [37]

Em = e2qQh̄
4I (2I − 1)

[m2 − I (I + 1)]. (3.1)

These levels are thus degenerate in the quantum number m, with m and
−m states having the same energy. In the frequent case of half-integer spin
quadrupolar nuclei, there are allowed transitions between the levels with
Dm = ±1. Therefore, for I = 3

2 , for example, only one line appears in the pure
NQR spectrum. When a small magnetic field is applied, the degeneracy is removed
and more lines are observed. Again for I = 3

2 , a number of lines varying from
one to four can be detected in Zeeman-perturbed NQR experiments, depending
on the orientation of the applied magnetic field with respect to the PAS of the
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|00 01 10 11

Figure 6. Simulated real parts of the density matrices corresponding to the four pseudo-pure states
of the computational basis for zero-field NQR of a system of nuclei with I = 3

2 in an axially
symmetric EFG. Adapted from Possa et al. [18], copyright © 2011, with permission from Elsevier.
(Online version in colour.)

EFG tensor (which is affected by sample orientation in experiments with single
crystals) and on the type of excitation/detection scheme used (e.g. linearly or
elliptically polarized RF pulses) [37–39].

Using circularly polarized RF pulses combined with double quantum
excitation, Possa et al. [18] demonstrated the creation of two-qubit PPS and
the implementation of the C-NOT gate in zero-field NQR of nuclei with I = 3

2
in an axially symmetric EFG, taking 35Cl nuclei in a single crystal of KClO3
as an illustrative example. The required pulse sequences were detailed, and the
results of typical experiments were simulated using a numerical procedure. Some
of these results are shown in figure 6, where the real parts of the density matrices
corresponding to the four PPS of the computational basis for a two-qubit system
are exhibited. The creation of PPS for nuclei with I = 7

2 in zero-field NQR
was also discussed and the results of basic experiments were simulated. These
results illustrate the potential of NQR as a simple and low-cost technique for
the demonstration of quantum information principles and simulations of small
quantum systems.

4. Relaxation behaviour of qubits implemented by quadrupolar spins

In the previous sections, it has been shown that three basic QIP steps—
state preparation, quantum logical operations and state tomography—can be
performed with quadrupolar nuclei. In the QIP context, systems of quadrupolar
nuclei represent the so-called logical qubits. This is so, because for nuclear spin
I = 3

2 the eigenvectors of the Zeeman plus quadrupolar terms are | 3
2〉, | 1

2〉, | − 1
2〉

and | − 3
2〉, which can be labelled as |00〉, |01〉, |10〉 and |11〉, corresponding to a

two-qubit system. In this regard, in quadrupolar systems, more than one bit of
quantum information is stored in a single entity. This contrasts with the more
usual NMR implementations using spin 1

2 systems, where each spin represents
one qubit, the so-called physical qubit. This leads to questions about to what
extent the quadrupolar spin qubits are equivalent to the spin 1

2 qubits. However,
in order to provide a more detailed comparison between the systems, we need to
consider a more general picture, in which the evolution of the quantum state and
its interaction with the thermal environment are also taken into account. Thus,
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this section is devoted to a brief review of the interaction of quadrupolar spins
with their typical thermal environment in order to highlight some unique features
of these systems in relation to spin 1

2 systems.

(a) Action of the environment on a quadrupolar spin 3
2 system

Like any quantum system, quantum states prepared with quadrupolar spins
are also prone to decoherence and damping owing to interaction with their local
environment. Internal molecular or atomic motions induce random fluctuations
in the EFG at the position of the nucleus, which produce spin relaxation [40,41].
In the QIP context, the random fluctuations can be seen as a source of noise,
which causes decoherence and energy dissipation, being mapped by proper non-
unitary operators [24]. In both descriptions, it is crucial to understand how the
environment affects the states, i.e. how the system density matrix behaves under
the action of the EFG random fluctuations.

The modelling of the motion-induced EFG fluctuations can become rather
complex because, besides the quadrupolar interaction parameters, it also depends
on structural and dynamic features of the local environment around the relaxing
spins [40,42]. In the most usual analysis, this effect is encoded in a set of reduced
spectral densities, Jn , which depend on the rates of motion, nucleus frequency and
geometry [40,42,43]. Considering the quadrupolar interaction as the only source
of spin relaxation (pure quadrupolar relaxation), Jaccard et al. [44] show that the
relaxation of a spin 3

2 system can be described by three reduced spectral densities,
J0, J1 and J2, with the explicit expressions relating the spectral densities and the
molecular parameter given in Auccaise et al. [11]. Using the spectral densities, the
relaxation of each element Drij of the traceless deviation matrix can be predicted
by using the well-known Redfield formalism [11,22], leading to

Dr01(t) = 1
2 [Dr0

01 + Dr0
23 + (Dr0

01 − Dr0
23) e−2CJ2t] e−C (J0+J1)t ,

Dr02(t) = 1
2 [Dr0

02 + Dr0
13 + (Dr0

02 − Dr0
13) e−2CJ1t] e−C (J0+J2)t ,

Dr13(t) = 1
2 [Dr0

02 + Dr0
13 − (Dr0

02 − Dr0
13) e−2CJ1t] e−C (J0+J2)t ,

Dr23(t) = 1
2 [Dr0

01 + Dr0
23 − (Dr0

01 − Dr0
23) e−2CJ2t] e−C (J0+J1)t ,

Dr03(t) = Dr0
03 e−C (J1+J2)t ,

Dr12(t) = Dr0
12 e−C (J1+J2)t ,

Dr00(t) = 3
2 − 1

4 [R1 e−2C (J1+J2)t − R2 e−2CJ2t − R3 e−2CJ1t],
Dr11(t) = 1

2 + 1
4 [R1 e−2C (J1+J2)t + R2 e−2CJ2t − R3 e−2CJ1t],

Dr22(t) = − 1
2 + 1

4 [R1 e−2C (J1+J2)t − R2 e−2CJ2t + R3 e−2CJ1t]
and Dr33(t) = − 3

2 − 1
4 [R1 e−2C (J1+J2)t + R2 e−2CJ2t + R3 e−2CJ1t],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

where Drij stands for the deviation matrix elements with the index values i, j =
0, 1, 2, 3 corresponding to the quantum number m = + 3

2 , + 1
2 , − 1

2 , − 3
2 indexing the

energy levels. The superscript 0 stands for the initial value of each deviation
matrix element and Ri (i = 1, 2, 3) are constant coefficients. The parameter
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C is proportional to the quadrupolar coupling frequency nQ = uQ/2p and can
be obtained from the NMR spectrum [11,42]. From equation (4.1), it can be
seen that the relaxation of the elements Dr00, Dr11, Dr22, Dr33 (populations) and
Dr03, Dr12 (triple quantum coherences) relates only to the spectral densities J1
and J2, whereas the remaining elements Dr01, Dr02, Dr13, Dr23 depend also on J0.

The set of equations mentioned earlier predicts the action of the environment
(modelled in the reduced spectral densities) on each element Drm,n ; so the spectral
densities can be experimentally obtained by monitoring the evolution of the
density matrix elements. This is achieved by preparing an initial state, which
is allowed to evolve under the action of the environment for a period t, and then
carrying out QST to obtain the evolved deviation matrix Dr(t). This procedure
is repeated for various values of t, which is incremented stepwise. To avoid the
oscillations imposed by the evolution under the quadrupolar interaction, the t
increments are set to multiples of 2p/uQ. The decay due to the magnetic field
inhomogeneity is eliminated by placing a p pulse in the middle of the total
evolution period, as depicted in figure 7a.

Figure 7b shows the decay of each deviation matrix element for a full
superposition PPS, |sup〉 ≡ 1

2(|00〉 + |01〉 + |10〉 + |11〉), implemented in the 23Na
nuclear spin system (I = 3

2) described in §5. The experimental data were fitted
by equation (4.1), using the procedure described in Auccaise et al. [11]. With
C = (11.7 ± 1.4) × 109 s−2, obtained from the NMR spectrum [11,42], the reduced
spectral densities were found to be J0 = (17.0 ± 3.9) × 10−9 s, J1 = (3.0 ± 0.5) ×
10−9 s, J2 = (3.4 ± 0.5) × 10−9 s.

As detailed in Souza et al. [13], the relaxation in this spin 3
2 system can

alternatively be modelled by a quantum circuit treatment. In this treatment, the
effect of the environment on the spin system is taken into account by considering
the main system S as being composed of N subsystems that interact with the
environment through quantum channels. These quantum channels are usually
classified as global channels, in which all subsystems interact with the same
environment, and local channels, in which each subsystem interacts with its
own environment [23,24]. Some examples of quantum channels are: generalized
amplitude damping (GAD), generalized phase damping (GPD), bit-flip, phase-
flip and depolarizing channels. Once the quantum channels contributing to
the system–environment interaction are defined, the density operator under
the influence of the environment (r′) is calculated from the initial density
matrix (r) as

r′ =
∑
k...m

E1
k ⊗ · · · ⊗ EN

m rE1†
k ⊗ · · · ⊗ EN †

m , (4.2)

where Ej
i are the well-known Kraus operators, defined for a given quantum

channel [23,24].
In the quadrupolar spin 3

2 system described by equation (4.1), the elements
Dr00, Dr11, Dr22, Dr33 are uncoupled and depend only on the spectral densities
J1 and J2. This feature makes it possible to describe the energy dissipation of the
system by two dissipative GAD channels acting on each qubit separately that can
be represented by the successive action of the following Kraus operators:

E0 = √
g

(
1 0
0

√
1 − p

)
, E1 = √

g

(
0

√
p

0 0

)
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Figure 7. (a) Basic pulse sequence used to probe the relaxation of the deviation matrix elements.
(b) Bar representation of the deviation matrix corresponding to the state |sup〉 (real part only).
The horizontal axes follow the same convention of figure 4. (c) Experimental data (symbols) and
curves fitted by equation (4.1) (lines) showing the relaxation of the deviation matrix elements
shown in (b). Adapted from Auccaise et al. [11], copyright 2011, with permission from Elsevier.
(Online version in colour.)

and

E2 = √
1 − g

(√
1 − p 0
0 1

)
, E3 = √

1 − g

(
0 0√
p 0

)
,

where g represents the probability of the system decaying from the excited state
|1〉 to the ground state |0〉 and p is the probability of finding the system at thermal
equilibrium in its ground state.

Phil. Trans. R. Soc. A (2012)

 on April 13, 2017http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


4786 J. Teles et al.

Another feature of equation (4.1) is that only the elements Dr01, Dr02, Dr13,
Dr23 depend on J0, showing that the Bell states are not affected by the phase
damping channel [13]. The decoherence of the other elements is dictated by a GPD
channel acting simultaneously on both qubits. The Kraus operators associated
with this GPD channel are given by

E0 = √
1 − l

⎡
⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎦ (4.3)

and

E1 = √
l

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦. (4.4)

By using both the GAD and GPD channels, a set of equations equivalent
to (4.1) but parametrized by p, g and l can be obtained, and by fitting them to
the experimental data, the Kraus operators can be found in terms of the reduced
spectral densities [13].

In summary, the representation of the quadrupolar spin 3
2 relaxation in

terms of the Kraus operators shows directly that, in this two-qubit system, the
environment acts globally; i.e. simultaneously on both qubits. This feature can
also be derived directly from equations (4.1) by calculating the magnetization
associated to each logical qubit using a partial trace operation [11].

A final remark about the relaxation properties concerns the nature of the
environment. In the treatment based on the Redfield formalism, the environment
is assumed to be classical. However, it was shown recently that the Redfield
formalism for treating the dissipative dynamics of a time-dependent quantum
system coupled to a classical environment leads to the same result as the master
equation approach with the environment treated quantum mechanically [45]. This
supports the use of the traditional Redfield approach in the treatment of NMR
systems for QIP.

(b) Quantum correlations in quadrupolar NMR systems

For many years, quantum entanglement was assumed to be an essential resource
in QIP [46–49]. Since the early days of NMR QIP, it was also clear that the
systems based on a bulk liquid-state NMR with less than 12 qubits do not
present true entanglement [50,51]. Despite that, NMR systems continued to be
used widely as test benches that demonstrated the speed-up of many quantum
operations, although the origin of the quantum correlations that produced
such a speed-up was unclear. This scenario started to change with the first
reports that the speed-up of many quantum process could be achieved without
entanglement; in other words, it could be produced by quantum correlation in
separable states [52,53]. In this regard, Ollivier & Zurek [54] proposed the so-
called quantum discord as a measure of quantum correlations of separable states.
The quantum discord represents a measurement of the gap between quantum
and classical information theory, expressed as the difference between the mutual
information and classical correlation, which can be calculated from the density
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matrix of a given quantum system [54]. Interestingly, there is no requirement
about the purity of the quantum state in the calculation of the quantum discord,
so it can be obtained even for highly mixed states.

Considering a typical two-qubit NMR density matrix, it can be shown that
both the mutual information and classical correlations can be obtained directly
from the deviation matrix Dr [14], so that it is possible to calculate the quantum
discord directly from experimentally tomographed NMR deviation matrices. By
this means, the quantum discord was experimentally measured for the first time
in NMR with the quadrupolar spin 3

2 systems described in §5, in an X -type PPS
(prepared using the SMP method) by the following deviation matrix:

Dr =
⎡
⎢⎣

a 0 0 f
0 b e 0
0 e∗ c 0
f ∗ 0 0 d

⎤
⎥⎦ (4.5)

and

Dr ≈
⎡
⎢⎣

c3 0 0 (c1 − c2)
0 −c3 (c1 + c2) 0
0 (c1 + c2)∗ −c3 0

(c1 − c2)∗ 0 0 c3

⎤
⎥⎦, (4.6)

where a = 0.4679, b = −0.5066, c = −0.5447, d = 0.4872, e = 0.7645 + i0.0398 and
f = 0.5853 − i0.009. The values of a, b, c, d, e and f were chosen to have a ≈ d ≈
−b ≈ −c = c3, (e + f )/2 ≈ c1 and (e − f )/2 ≈ −c2, so that equation (4.6) can be
approximated to the form with |c1| > |c3|, |c2|. The reason for this choice will
become clear in the following discussion. The quantum correlation (measured by
the quantum discord) for this state was found to be about (2.0 ± 0.2) in units of
e/ln(2). Note that, despite being a rather small number (e ≈ 10−5), this value is
beyond the NMR detection limit because only the deviation density matrix, from
which the quantum correlation is calculated, is detected in NMR measurements.
This demonstrates the existence of quantum correlations of separable states in the
spin 3

2 system under consideration [14].
The effect of the environment on the quantum correlations was also

experimentally monitored [14], by preparing the state (4.5) and characterizing its
evolution by following the procedure described in §4a. The mutual information,
classical and quantum correlations were then calculated for each step of the
evolution. Assuming the same initial state and the reduced spectral densities
given in §4a, the correlations were also calculated theoretically. Both experimental
and theoretical plots of the correlations against the evolution time t are shown in
figure 8a. It can be observed that all correlations decay monotonically with a rate
determined by the spectral densities (or equivalently the characteristic relaxation
times of the system).

In Auccaise et al. [25], an X -type deviation matrix, with a, b, c, d and f chosen
in order to have |c1|, |c2| > |c3|, was prepared using a two-qubit spin 1

2 system
implemented by 13C and 1H nuclei in a chloroform sample. The evolution of
the correlations was also monitored by a similar procedure [25]. The results are
reproduced in figure 8b. In this case, instead of a monotonic decay, an abrupt
change in the decay rates of the correlations was observed at a certain value
of t. This phenomenon, usually referred to as a sudden transition, was first
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Figure 8. (a) Evolution of the mutual information, quantum and classical correlations measured
for the X -type deviation matrix implemented in a quadrupolar spin 3

2 system. The initial deviation
matrix is given in equation (4.5) with the coefficients a, b, c, d and f given in the text. (b) Evolution
of the mutual information, quantum and classical correlations measured for the X -type deviation
matrix implemented in a 2-coupled spin 1

2 system. Adapted from [14,25], copyright 2011, with
permission from American Physical Society. (Online version in colour.)

theoretically predicted in Maziero et al. [55], where it was shown that, for
an X -type deviation matrix with |c1| > |c3|, |c2| or |c1|, |c2| > |c3|, the classical
correlation initially decays exponentially up to a certain time and then remains
constant, while the quantum correlation suddenly increases its decay rate at the
same instant. This was also experimentally measured in an optical setup where the
qubits were encoded in the photon polarization and the phase damping channel
was simulated in a controlled way by a birefringent medium [56]. The exact origin
of this peculiar behaviour of the correlations is beyond the scope of this study
and can be found in more detail in the earlier-mentioned references. However,
in figure 8a,b, the initial deviation matrices fulfil the conditions for a sudden
transition, but it is observed only for the 13C–1H spin 1

2 system. This results from
the intrinsic difference between these two-qubit systems in terms of interaction
with the environment. The sudden change in behaviour is expected to occur in a
two-qubit system where each qubit interacts with its own environment, with local
amplitude and phase damping channels. This condition is fulfilled for the spin 1

2
system, where the 13C and 1H nuclei are separate physical entities. In contrast,
as shown in Souza et al. [13] and discussed in §4a, in the spin 3

2 system the phase
damping channel is global and no sudden change in behaviour is expected in this
situation [14].
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In summary, quadrupolar spin systems (particularly the spin 3
2 system

treated as an example here) can be used in QIP to implement logical qubits,
being equivalent to coupled spin 1

2 systems in terms of performing quantum
operations. However, even with the same qubit encoding if the interaction of
the qubits with the environment is taken into consideration, quadrupolar nuclei
and coupled spin 1

2 nuclei may behave significantly differently because of the
distinct internal spin Hamiltonians. This distinct behaviour has been revealed
in several contexts and some of them were reviewed briefly here. This feature is
also manifested when these NMR systems are used to simulate other quantum
systems. For example, while a coupled spin 1

2 system was used to simulate the
evolution of fermionic particles in a harmonic oscillator potential [23], a spin 3

2
system was used to mimic a Bose–Einstein condensate [57].

5. Experimental

The experimental demonstrations presented earlier with the spin 3
2 system

were carried out on 23Na nuclei dissolved in a lyotropic liquid crystal prepared
with 20.9 wt% sodium dodecylsulphate (SDS) (95% pure), 3.7 wt% decanol and
75.4 wt% deuterium oxide, following the procedure described elsewhere [42].
The 23Na NMR experiments were performed at room temperature in a 9.4
T-Varian Inova spectrometer with a 7 mm solid-state NMR probe head. A small
sample volume occupying one-third of the uniform B1 field region of the RF coil
was used. The probe head was chosen for its solenoidal design, which is very
efficient in the production of strong RF fields. This feature is important for the
implementation of the hard non-selective pulses used in the tomography method
described herein. However, as a consequence of the trade-off between intensity and
homogeneity, the RF field is significantly inhomogeneous in the sample region.
For this reason, a small spherical glass bulb was used to hold the liquid crystal.
Even so, a good signal-to-noise ratio was obtained owing to the coil efficiency.
Another advantage of the spherical form of the sample holder is that B0 field
homogenization is facilitated [58]. The glass bulb was positioned inside the 7 mm
rotor in its standard magic angle orientation.

6. Conclusions

Quadrupolar nuclei in the presence of an EFG have been shown to be an
important experimental system for QIP studies by NMR and NQR in a variety
of materials. As an example, we have demonstrated its use in preparing PPS,
implementing logic gates and performing quantum algorithms. The success of
these steps can be clearly appreciated from the experimental results obtained
for the Grover algorithm implementation which, despite a not so high fidelity
obtained in some instances (F � 0.8), exhibited the fully expected periodic and
global behaviour. An important question regarding the quadrupolar nuclei, with
respect to their use as qubits, is how their dynamics differs from the single
qubit spin 1

2 systems. This is especially important when studying the relaxation
processes of the nuclear ensemble and their effects on the quantum nature of the
information contained in the system. The results on relaxation and quantum
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correlations discussed in this work showed that the nature of the system–
environment interaction, which defines specific quantum channels for relaxation,
is crucial for the observation of quantum phenomena such as the sudden transition
in the quantum correlations. All experiments shown in this work benefitted from
an extremely fast QST technique for quadrupolar nuclei that uses only short
hard RF pulses. Particularly, in the SDS liquid crystal sample, the tomography
pulses took around one-thousandth of the shortest transverse relaxation times.
Therefore, the reading stages in the pulse sequences contributed a negligible
coherence loss and dissipation of the computational quantum states.

Further possible work with the quadrupolar systems includes experimental
implementation of the NQR proposals expounded here and combined use of the
dipolar and quadrupolar interactions in solid-state NMR (because the highest
available spin gives rise to at most three qubits). One recent study that involved
quadrupolar effects in magnetic materials [59] is worth mentioning. In that study,
relatively high-resolution spectra were obtained from a powdered sample of the
intermetallic compound GdAl2 in the magnetically ordered state. The attractive
characteristic of such a system is that the main magnetic field, which characterizes
the NMR regime, is produced internally by the sample. As in the NQR case,
this is a cheaper and more compact experimental setup, because the large
superconducting magnets are avoided. However, the strong RF inhomogeneities
that are typical in these conducting materials are an important obstacle that
could be tackled by using single crystal samples, for example.
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