
FEMS Microbiology Ecology, 92, 2016, fiw180

doi: 10.1093/femsec/fiw180
Advance Access Publication Date: 21 August 2016
Minireview

MINIREVIEW

Soil and leaf litter metaproteomics—a brief guideline
from sampling to understanding
Katharina M. Keiblinger1,∗,‡, Stephan Fuchs2,†,‡,
Sophie Zechmeister-Boltenstern1,# and Katharina Riedel2,#

1Institute for Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences Vienna (BOKU), Peter Jordan-Strasse 82, 1190 Vienna, Austria and 2Institute of Microbiology,
University of Greifswald, Friedrich-Ludwig-Jahnstrasse 15, 17489 Greifswald, Germany
∗Corresponding author: Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Peter Jordanstrasse 82, 1190 Vienna,
Austria. Tel: +43-1-47654-91141; Fax: +43-1-47654-91130; E-mail: katharina.keiblinger@boku.ac.at
†Present address: Robert-Koch-Institute, Nosocomial Pathogens and Antibiotic Resistance, Burgstraße 37, 38855 Wernigerode, Germany.
‡These authors contributed equally to this work, co-first authors.
#Joint senior-authors.
One sentence summary: The presented review provides an overview of the problems that may arise during the various soil and litter metaproteomic
analyses steps and summarizes our current knowledge on possible solutions strategies.
Editor: Gerard Muyzer

ABSTRACT

The increasing application of soil metaproteomics is providing unprecedented, in-depth characterization of the
composition and functionality of in situ microbial communities. Despite recent advances in high-resolution mass
spectrometry, soil metaproteomics still suffers from a lack of effective and reproducible protein extraction protocols and
standardized data analyses. This review discusses the opportunities and limitations of selected techniques in soil-, and leaf
litter metaproteomics, and presents a step-by-step guideline on their application, covering sampling, sample preparation,
extraction and data evaluation strategies. In addition, we present recent applications of soil metaproteomics and discuss
how such approaches, linking phylogenetics and functionality, can help gain deeper insights into terrestrial microbial
ecology. Finally, we strongly recommend that to maximize the insights environmental metaproteomics may provide, such
methods should be employed within a holistic experimental approach considering relevant aboveground and belowground
ecosystem parameters.

Keywords: environmental proteomics; protein extraction, matrix effects; bioinformatics, functional databases;
meta-analysis

INTRODUCTION

Soil is an essential natural resource and a regulator of ecosys-
tem provision. Biogeochemical processes occurring in soil envi-
ronments such as decomposition and mineralization of organic
matter (OM) significantly affect nutrient cycling, subsequently
influencing the climate and the biosphere. Moreover, soil is an
important habitat for soil microbes and animals, and serves as

physical and cultural environment for humankind (Blum, Bus-
ing and Montanarella 2004).

Soil microbes are major drivers of biogeochemical cycles
and are a considerable pool of belowground terrestrial biomass.
Every gram of soil harbors thousands of bacterial, archaeal
and eukaryotic taxa, and this taxonomic diversity is mir-
rored by the diversity of their physiologies, life styles (i.e.
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oligotrophy-copiotrophy) and associated functional classes of
proteins (Fierer et al. 2012b). Microbial diversity is highly vari-
able in terrestrial ecosystems, depending on many factors, such
as plant cover, animal activity, soil moisture, temperature, aer-
ation, porosity, nutrient availability, pH and salinity (Kennedy
et al. 2004;Maron,Mougel and Ranjard 2011; VanHorn et al. 2014).

When comparing a broad range of soil ecosystem types Aci-
dobacteria and Verrucomicrobia turned out to be the most abun-
dant taxonomic groups followed by Actinobacteria, Bacteroidetes,
Planctomycetes and Archaea (Barberán et al. 2012). These groups
vary across different biomes e.g. Actinobacteria, Bacteroidetes and
Cyanobacteria phyla dominate in desert soils (Fierer et al. 2012),
while arctic permafrost peatland soils were dominated by Acti-
nobacteria, Verrucomicrobia and Bacteroidetes (Tveit et al. 2013).
This phylogenetic information enables the determination of
changes in ecological life styles in response to treatments, as
has been shown for N gradients (Fierer et al. 2012). From the
functional perspective, a variety of genes expressed for plant
degradation were comparable among climatic zones, including
arctic permafrost peatland soil and temperate and subtropi-
cal soils (Tveit et al. 2013), displaying similar metabolic poten-
tial. However, N-fertilization resulted in increased gene abun-
dances for DNA/RNA replication, electron transport and protein
metabolism (Fierer et al. 2012), while desert microbial commu-
nities are characterized by a high abundance of genes asso-
ciated with osmoregulation and dormancy, and genes associ-
ated with nutrient cycling and catabolism of plant-derived or-
ganic compounds are less abundant (Fierer et al. 2012). How-
ever, to which extent these genes are actually expressed and
hence become physiologically active has yet to be determined.
Notably, changes in microbial composition might be of minor
relevance for soil ecosystem functions, due to functional redun-
dancy (Souza et al. 2015). Metagenome information thus repre-
sents only the ‘functional potential’ and giving no indication of
the relative activity of the phyla present. Therefore, to assess
function and potentially link biodiversity and ecosystem func-
tioning, it is of upmost importance to not only measure gene
abundance, but also the actual expression and activity of func-
tional proteins (Prosser 2015; Delgado-Baquerizo et al. 2016).

Reflecting the value of the insights provided the number of
studies that have successfully applied metaproteomics on soil
and leaf litter environments continues to grow, including e.g.
metaproteome analysis of permafrost soil (Hultman et al. 2015),
hydrocarbon degradation in soils (Bastida et al. 2016), deforesta-
tion (Bastida et al. 2015a), soil restoration and ecosystem pro-
cesses (Bastida et al. 2015b) and a recent study that focused on
the active microbial players in short-term degradation of plant-
derived N (Starke et al. 2016). The latter is a novel protein stable
isotope probing (SIP) approach applying isotopic-N labeled plant
material in ametaproteomics experiment, to trackN fromplants
into microbes. A bacterial dominated short-term assimilation of
plant-derived N was shown, and oligotrophic and copitrophic
life styles of soil organisms in terms of temporal leaf litter N uti-
lization patterns illustrate a new cutting edge approach to de-
termine ecological attributes of soil microbes (Starke et al. 2016).

Due to its large potential for providing a link between func-
tional and phylogenetic information of soil microbial commu-
nities, as exemplified by the aforementioned studies, there has
been growing interest in the application of metaproteomics in
soil ecology to studymicrobially driven ecosystem functions (e.g.
methanogensis in permafrost soils; Hultman et al. 2015). How-
ever, soil metaproteomics still faces several challenges, includ-
ing the heterogeneity of soil matrices, high microbial diversity,
the ecosystem-specific dominance of few microbial species and

limitedmetagenomic information and data handling (Keller and
Hettich 2009; Schneider and Riedel 2010; Siggins, Gunnigle and
Abram 2012; Becher et al. 2013).

Protein extraction of soils is often difficult due to the pres-
ence of other organic compounds, such as complex carbohy-
drates, lipids and phenolic compounds (e.g. lignin), and humic
substances (HS) as well as inorganic compounds from the soil
matrix, such as silt and clayminerals. Coextraction of HS, which
are contained in litter and soil, as well as the presence of large
reactive surfaces of soil minerals (e.g. clay) not only compli-
cate protein extraction but also interfere with the separation
of peptides (Bastida et al. 2009), protein identification (Arenella
et al. 2014) and quantification (Criquet, Farnet and Ferre 2002;
Ogunseitan 2006) due to protein modifications. These limita-
tions for extraction are due to the fact that proteins can be ad-
sorbed, linked anchored or embedded on/to/in solid particles
such as clay, clay minerals, and soil OM organo-mineral com-
plexes (Nielsen, Calamai and Pietramellara 2006; Tomaszewski,
Schwarzenbach and Sander 2011), which thereby reduce extrac-
tion efficiency (Sander, Tomaszewski and Schwarzenbach 2011).

Adsorption of proteins to clays is a rapid process, which is
only partly reversible (Nielsen, Calamai and Pietramellara 2006),
and is based on the large specific surface area of clay miner-
als (Giagnoni et al. 2011). While it was shown that even whole
cells can be sorbed to mineral surfaces (i.e. clays), which de-
pend on the pH, the charge of the clay mineral and the Mg con-
centration (Jiang et al. 2007). However, the adhesion of cells to
soil particles is governed by their surface charges and global
hydrophobic and hydrophilic characteristics (Doyle 2000). HS
and proteins are bound reversibly by a cation exchange process,
which depends on the cation exchange capacity (CEC) of the
soil, the amino acid composition and the isoelectric point of the
target proteins. Moreover, protein polarity may affect sorption
in aqueous solution through hydrophobic interactions (Norde,
Tan and Koopal 2008), though hydrophobic surfaces may re-
duce proteins sorption in soils (Keiblinger et al. 2015). Reduced
protein availability through clay-enzyme complexes has been
shown for artificial soil mixtures with high CEC or clay con-
tent by lower numbers of protein spots (Giagnoni et al. 2011).
To this end, the choice of purification methods or the extrac-
tion buffer and additives to it depends not only on the soil
type but also on the goal of the investigation. Potential strate-
gies are discussed below. From an experimental point of view,
soil metaproteomics include the following steps: (i) sample han-
dling (including obtaining a representative sample, homogeniza-
tion, pooling and storage conditions, Fig. 1A), (ii) soil protein
extraction (Fig. 1B), (iii) processing of soil protein extracts (includ-
ing removal of interfering substances, pre-fractionation of pro-
teins or peptides and mass spectrometry (MS) analysis (Fig. 1C),
(iv) data analysis (including spectra handling and database as-
sembly for peptide and protein identification, Fig. 2A), (v) data
evaluation and interpretation (Fig. 2B) and finally (vi) data stor-
age and visualization. All steps are crucial for obtaining, hold-
ing and sharing high-quality soil metaproteome data, and some
of these steps have recently been reviewed in detail (Keller
and Hettich 2009; Schneider and Riedel 2010; Siggins, Gunnigle
and Abram 2012; Becher et al. 2013). Here we focus on differ-
ences in sample preparation and published protocols (Table 1)
and try to synthesize knowledge to provide a ‘step-by-step’
guideline of how to best proceed in soil and leaf litter protein
extraction (Fig. 1). In addition, the current work presents recent
advances in data analysis and data interpretation using novel
bioinformatic tools (Fig. 2). The wider objective of the present
work is to (i) highlight the need for standardized methodology,
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Figure 1. From sampling to data. Schematic representation of workflows. Researchers are confronted with various sampling methods and procedures that have to be
carefully selected and combined for (A) sample preparation, including soil sampling homogenization and storage, (B) protein isolation and (C) shotgun proteomics

(from top to down). Consecutive steps are connected by lines. Abbreviations are explained in the text.

whichwould ensure better comparability of future soil metapro-
teomic analyses, and to (ii) provide the basis for future meta-
analysis by including additional environmental parameters and
different ecosystem properties into metaproteome datasets.

CONCEPTUALIZATION OF SOIL PROTEOMICS
BY BASIC SOIL DATA

As soils of the globe are multifaceted, they are classified into
groups based on their soil morphology, behavior or genesis in
soil science. Due to their varying characteristics in multiple
scales, a case-by-case evaluation of sample handling as well as
protein extraction strategies (see also Fig. 1) are necessary for
proper metaproteomics experiments, to ensure that the mate-
rial extracted from the particular soil and/or site is represen-
tative for the entire soil community. Small differences in sam-
ple handling and preparation can introduce variability and may
thereby dramatically alter the recovered species abundance and
diversity to the measured data (Rubin et al. 2013). To minimize

artificially introduced variability, sample handling and prepara-
tion should involve as few steps as possible. In the following
paragraphs, we will guide the reader step by step from the soil
sampling to the analysis of metaproteomic data.

We believe that meta-omics studies of soil ecosystems
should also provide contextual data such as soil pH, organic car-
bon (Corg), N-content, sampling depth, soil texture and CEC (for
soils) (Table 1). As for instance these parameters might help to
evaluate the potential of extracellular enzymes and, moreover,
intracellular proteins that are released from the inner cells dur-
ing extraction attaching to HS and mineral surfaces (for more
details, see also Section ‘Sample matrix –interference of HS and
physico-chemical parameters’). In addition, information on the
study site including latitude and longitude, altitude, climate in-
cluding mean annual temperature and precipitation, nutrient
concentrations and bedrock material should be provided. Usu-
ally basic soil/environmental parameters obtained in a study
are highly dependent on the hypotheses and the experimental
design. However, for choosing an appropriate protein extraction,
protocol knowledge on the beforementioned parameters (partly
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Figure 2. From data to understanding. Schematic representation of workflows discussed in this review. Researchers can select or combine various methods for (A) data
analysis, and (B) data interpretation (from top to down). Consecutive steps are connected by lines (dashed lines represent workflows not suitable for high-throughput
analyses). Abbreviations are explained in the text.

displayed in Table 1) is needed. As with any technique, metapro-
teomics ‘per se’ is not sufficient to provide comprehensive infor-
mation on highly complex systems such soils. Hence, we need
to implement additional data i.e. chemical background, soil his-
tory, microbial biomass and enzyme activities, to provide the ba-
sis to unravel the major biotic and abiotic drivers of the active
abundant communities, not only for individual experiments but
also for future, cross-biome meta-analysis.

Sample handling—sampling, homogenization and
storage

The spatial and temporal heterogeneity of the soil matrix need
to be considered by obtaining a representative sample of the
natural situation for metaproteome analysis. So far, analysis of
replicates in soil metaproteomic studies has been hampered by
large costs and time-consuming analysis, resulting in numer-
ous studies based on only one or few replicates (Myrold, Zeglin
and Jansson 2014). As analysis costs per sample will drop, future
studies should employ well-established soil sampling strategies
and a larger number of biological and technical replicates. How-
ever, without giving any further details, such strategies might
include sampling time, sample amount, sampling device, strat-
ified sampling (horizontal and vertical distribution), composite
samples (pooling)when appropriate (Pettitt andMcBratney 1993)
and/or apply a replicated sampling design (for details, see Boed-

dinghaus et al. 2015). The individual sampling design is, however,
dependent on the ecosystem type and the research objective.
Soils are also strongly stratified horizontally with one or more
organic horizons on top of mineral horizons, depending on soil
type. These layers generally harbor the highest abundance ofmi-
crobes and are also more prone to fluctuations in temperature
andmoisture compared to subsoil. Most metaproteomic studies
thus focus on top soil horizons (0–15 cm; see Table 1).

Apart from the spatial variability, it is necessary to evalu-
ate the seasonal impact or temporal variation, as environmental
conditions such as aeration, nutrient diffusion and redox poten-
tial can vary strongly over time. While field conditions by defini-
tion include seasonal variation in a specific environment, these
fluctuations can be reduced or controlled by changing only a few
parameters in laboratory studies as has been demonstrated for
soil (Bastida et al. 2012b; Starke et al. 2016) and leaf litter decom-
position (Keiblinger et al. 2012a).

Given the spatio-temporal variability of climatic and pedo-
logic characteristics in the field scale that shape the active soil
microbial community, we highlight the importance of measur-
ing these covariables in metaproteomic studies as already men-
tioned before. Samples for soil metaproteome analysis are rou-
tinely sieved (<2 mm, see Table 1) to homogenize the sample
and minimize contamination with plant and animal protein
(Fig. 1A). High clay and/or moisture content, however, can in-
hibit effective sieving in which case removal of visible organic
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debris and sample homogenization has to be done manually.
Homogenized soil samples are often stored until further pro-
cessing. Several studies investigated the effect of storage condi-
tions (mainly freezing and drying) on microbial parameters (Lee
et al. 2007; Wallenius et al. 2010). Results suggest that responses
to storage are strongly soil dependent (Bandick and Dick 1999)
and seems to becomemore critical with increasing organic mat-
ter (OM) content (Lee et al. 2007; Wallenius et al. 2010). In previ-
ous metaproteomic, studies the chosen soil storage strategies
(Fig. 1A) are summarized in Table 1, including air-drying, freeze-
drying, freezing as well as deep freezing at –80◦C and storage
in RNA later. Unfortunately, OM content and texture of the soils
processed are not always given (Table 1) hampering systematic
investigations of storage conditions on soil metaproteomes. Pro-
cessing fresh samples whenever possible or storage at –80◦C is
recommended to minimize the activity of naturally occurring
proteases to avoid detrimental effects on protein abundance of
environmental samples. This is supported by the findings from
Hultman et al. (2015), who suggest active gene expression and
translation even in permafrost soil where proteins can be pre-
served for long periods under subzero conditions. However, a
detailed comparison of the influence of storage conditions in
terms of temperature and time on the stability and activity of
soil proteins is urgently needed.

Protein extraction: how to establish the optimal
protocol

An optimal protein extraction protocol contains at least three
important steps: (i) quantitative extraction of proteins from the
environmental matrix (including steps for cell lysis, choice of
buffer for solubilization and chemical reduction), (ii) protein pu-
rification (i.e. to remove lysed cellular debris, residual sample
matrix, interfering chemical substances) and (iii) protein con-
centration (Fig. 1B).

Although a universal extraction protocol that provides good
protein yields from wide range of soils would be desirable, this
goal might be ‘certainly impractical’ given the heterogeneity
of soil matrices (Becher et al. 2013). Therefore, several protein
extraction methods have been developed for specific research
questions (Wang et al. 2006; Benndorf et al. 2007; Chourey et al.
2010). As a first step towards standardization, some of these
have been optimized and compared regarding their efficiency by
our group (Keiblinger et al. 2012b) and others (Nicora et al. 2013;
Bastida, Hernandez and Garcia 2014).

Direct protein extraction and cell lysis
Several studies aimed at extracting the entire protein comple-
ment of an environmental sample by employing different strate-
gies such as (i) indirect extraction, where microbes become en-
riched prior to extraction (see Table 1, i.e #9, 10), (ii) separa-
tion by means of density gradient centrifugation (DGC) prior to
protein extraction (to separate microorganisms from the envi-
ronmental matrix, Table 1, i.e. #2, 7) and (iii) direct extraction
(lysis in the environmental matrix, Table 1, i.e. #1, 3, 4). The
first two options reduce or eliminate problems that derive from
interfering substances such as HS or mineral surfaces (Bastida
et al. 2009; Giagnoni et al. 2013), which can reduce extraction
efficiency (Sander, Tomaszewski and Schwarzenbach 2011) but
are confined by (i) focusing only on the cultivable fraction or (ii)
strongly biased extractions (Bastida et al. 2012).

However, direct extraction might lead to a more compre-
hensive protein recovery from bacteria, fungi, protozoa and
multicellular organisms (Wohlbrand, Trautwein and Rabus

2013). Generally, direct extraction includes a direct cellular ly-
sis step (Fig. 1B), which is obtained via (i) physical/mechanical
lysis including heat, pressure (French press, sonication or bead
milling using glass beads) (Mueller and Pan 2013), snap-freezing
and grinding in liquid nitrogen with mortar and pistil; freeze-
thaw cycles, (ii) chemical lysis (using detergents and stabilizing
agents; Mueller and Pan 2013); or (iii) enzymatic lysis that in-
volves lysozyme cleavage of gycosidic bondages. For the choice
of cell lysis method, the target proteins and soil texture should
be considered.

Physical cell rupture is usually more effective for Gram-
negative bacteria, due to their thinner peptidoglycan layer com-
pared to Gram-positive bacteria (Bakken and Frostegård 2006).
Fungal lysis in soils samples can be obtained by bead beating or
grinding in liquid N2 resulting in similar recoveries (van Elsas
et al. 2000). However, grinding is laborious; it might be also inef-
ficient for sandy soils, as it is not possible to pulverize themwith
mortar and pistil. To this end, grinding seems to be most appli-
cable for plantmaterial, leaf litter and soils with high humic and
low sand content or compost. Among physical procedures, son-
ication is a commonly used method for protein extraction from
soils, as it favors the solubilization of stabilized proteins, and
also breaks soil aggregates (Nannipieri 2006; Ogunseitan 2006).

Chemical methods use lysis buffers for cell disruption
they include either ionic detergents or non-ionic detergents.
Among ioinic detergents, anionic such as sodium dodecyl
sulfate (SDS) or cationic such as ethylenediaminetetraacetic
acid (EDTA) or zwitter ionic reagents such as CHAPS (3-((3-
cholamidopropyl) dimethylammonio)-1-propanesulfonate) are
applied to dissolve cell membranes to release proteins. On the
other hand, non-ionic detergents (i.e. Triton X-100, nonylphe-
noxypolyethoxyethanol (NP-40)) offer the advantage that pro-
teins are not denatured, by still solubilizingmembrane proteins.
Although detergents such as EDTA also inhibit polyphenol oxi-
dases and metalloproteases, by building complexes with metal
ions, β-mercaptoethanol is often added to soil protein extraction
buffers as a reducing agent, as it prevents oxidation of proteins.

Alternatively, enzymes can either be used alone or in combi-
nationwith chemicals and/or physical means to lyse cells (Gian-
freda and Rao 2014). A combination ofmildmechanicalmethods
(i.e. sonication) in detergents (i.e. SDS) with other additives, such
as enzymes and/or protease inhibitors cocktails, is a good strat-
egy for direct cell lysis in soil samples, depending on the target
cells and soil type and further downstream processing.

Sample matrix—interference of HS and physico-chemical parameters
Basic knowledge of soil and environmental characteristicsmight
aid the choice of an extraction procedure appropriate for the
research question. Thus, it will be at least possible to evalu-
ate which challenges during protein extraction can be expected
(such as high humus content or clay-rich soils with high CEC)
and to adopt existing protocols that provided promising results
on similar soils, in comparable habitats. However, these param-
eters should not be taken individually, as clay and OM are often
well related with HS because clays retard the decomposition of
OM (Nannipieri 2006).

Together with the aforementioned cell lysis, the extraction
buffer should often meet the requirements for the removal
of HS and/or to target stabilized proteins. Specifically, salt
solutions (i.e. CaCl2) of inorganic divalent cations (10–100 mM)
have been used to release naturally immobilized proteins
from HS by desorption (Criquet, Farnet and Ferre 2002) from
HS. The extraction buffer often contains polyvinylpolypyrroli-
done (PVPP) and hexadecyltrimethylammonium bromide
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(CTAB) because they form complexes with humic acids.
Stabilized enzymes are efficiently extracted with buffers at
slightly alkaline conditions (Nannipieri 2006). This illustrates
the importance of the pH of the soil and the extraction buffer,
as it governs sorption of proteins to minerals and removal of
interfering substances, and it also influences protein structure
(Bastida et al. 2009). The pH of the extraction buffer has a strong
influence on cell extraction, and considerably increases with
pH in the range from 5 to 8 (Bakken and Frostegård 2006).
Therefore, for direct extraction of soils, a pH of 7 or somewhat
higher should result in sufficient amount of cells. To achieve
alkaline conditions, a weak NaOH or buffers adjusted to 7.5–8.5
can be used. NaOH (Benndorf et al. 2007) or alkaline pyrophos-
phate (Masciandaro et al. 2008) supplemented extraction buffers
desorb proteins bound covalently to clay particles. However,
with high pH the yield of HS also increases. Alternatively, a
subsequent phenolic extraction protocol has been used (Wang
et al. 2006; Benndorf et al. 2007; Chen, Rillig and Wang 2009;
Keiblinger et al. 2012b) to separate proteins fromHS. This phenol
including extraction preferentially dissolves nucleic acids, car-
bohydrates and cell debris in the aqueous phase, while proteins
and lipids are contained in the phenolic phase. The application
to samples that contain interfering compounds resulted inmore
protein bands or spots on the gels and less proteolysis, and
also downstream processing including bioinformatic analysis
resulted better results for phenol-extracted proteins for plant
tissue (Pavoković, Križnik and Krsnik-Rasol 2012). The major
drawbacks of phenol-based extractions are the corrosivity and
toxicity of the chemical, and the time intensive extraction with
the phase separation. To ease the phase separation, the addition
of sucrose pushes the phenol phase to the top and facilitates
recovery (Faurobert, Pelpoir and Chaı̈b 2007).

The former shows already that a combination of strategies
can be useful for sufficient protein yields from soils. Similarly,
Nicora et al., (2013) suggested to combine the use of desorption
buffers and positive polar amino acids that bind to the sorption
sites of the soil prior to cell lysis. This strategy might be useful
for silty and clayey soil, soils that are characterized by a high
CEC.

Beside the choice of extraction buffer, the potential steps for
getting rid of HS are based on physico-chemical separation prin-
ciples. These strategies can be easily applied with various pro-
tein extraction buffers either before (using PVPP during grinding
in liquid nitrogen; Keiblinger et al. 2012b) and/or after cell lysis.
Proteins and HS can be fractionated by size, using gel filtration
raisins (Sepharose 4B, Sephadex or Sephacryl) or ultrafiltration
with spin filters (10 KMWCO cut off), Fig. 1B. Columns packed
with PVPP (Kabir et al. 2003; Masciandaro et al. 2008) as well as
commercial ones are used to separate HS from proteins by the
aid of different binding abilities to a polymeric matrix. The pre-
cipitation of HS by AlNH4(SO4)2 has to our knowledge not been
used for the extraction of proteins from soil so far, butmight be a
potential solution (Braid, Daniels and Kitts 2003). Electrophore-
sis separates proteins based on their molecule size and charge
density (Fig. 1C). Elimination of coextractants consequentlymay
also reduce target proteins; to this end, recoveries of extraction
should bemonitored during all extractions by adding a standard
protein spike to evaluate the extraction efficiency.

There are several factors that might affect protein yields dur-
ing extraction (i.e. cell lysis, pH and detergents of the extraction
buffer, denaturation agents and application of phenol and pre-
cipitationmethod, Table 1). Table 1 lists different extraction pro-
tocols for forest soils, agricultural soils and rhizosphere soils to-
gether with soil physicochemical parameters such as pH, CEC,

organic C, N content, soil texture, extraction strategy applied,
extracted protein concentration or number of proteins (spots)
or (if applicable) assigned proteins. Owing to the complexity of
the soil matrix, the reader would not be surprised that a uni-
fied extraction protocol for soils cannot be recommended at the
moment. Although some suggestions are given above, based on
the strong variation of conditions for sample handling and ex-
traction, and further downstream processing as well as samples
from strongly differing biomes given in Table 1, it is not even
possible for agricultural and forest soils.

Extraction of the subcellular proteomes
The entire proteome of a microorganism consists of all its ex-
tracellular, cytoplasmic andmembrane proteins. Many extracel-
lular proteins have successfully been recovered from cultures
grown on leaf litter (Schneider et al. 2010). While studies on leaf
litter (Keiblinger et al. 2012a; Schneider et al. 2012) aimed at cap-
turing the entire metaproteome, these analyses include infor-
mation on the extracellular fraction recovered by the extrac-
tion with SDS buffer (extraction conditions recently reviewed by
Becher et al. 2013). In contrast to leaf litter, the complexity of the
soilmatrix (Vos et al. 2013) complicates the targeted extraction of
extracellular proteins. Extracellular enzymes are often reached
by indirect extraction or prior washing, as soil washing releases
cells from the soil matrix. However, this step introduces another
level of uncertainty as stabilized enzymes are not reached. In
general, it should be mentioned that alkaline conditions are un-
favorable for extraction of extracellular enzymes as cell lysis can
occur, thereby including untargeted intracellular proteins. Ex-
tracellular proteins have been isolated from a greenhouse soil
and forest soils, using extraction buffers containing phosphate
(Murase et al. 2003; Masciandaro et al. 2008) at pH 6 (see also
Table 1).

In a recent study, Bastida, Hernandez and Garcia (2014) found
that Chourey’s method (2010) was better suited than Singleton’s
(2003) to recover more extracellular proteins in metaproteomics
from forest and agricultural soils.

Concentration of proteins
After extraction, it is often necessary to concentrate pro-
teins (Fig. 1B) as amplification of low-abundant proteins is
not possible (in contrast, e.g. DNA amplification via PCR).
To this end, proteins can either be concentrated by reduc-
ing the sample volume (through freeze drying, heating, ul-
trafiltration or by vacuum centrifugation; Criquet, Farnet and
Ferre 2002) by dialysis or desalting methods (Ogunseitan 2006);
however, most commonly in soil metaproteomics is precipita-
tion (Chourey et al. 2010; Keiblinger et al. 2012b) followed by
a washing step and resolubilization (Fig. 1B). While reducing
sample volume can also increase the concentration of interfer-
ence compounds (i.e. humics), precipitation includes purifica-
tion from undesirable substances. For soil protein extracts, most
often trichloroacetic acid (TCA) or methanol–ammonium ac-
etate precipitation (Table 1) is employed to concentrate proteins.
TCA precipitation is achieved by changing the pH, and reduc-
ing the solubility of proteins in solution. In contrast, methanol–
ammonium acetate precipitation in methanol combines salt-
induced precipitation and organic solvents. Although adding a
4-fold amount of methanol efficiently precipitates most pro-
teins, adding an organic base, ammonium acetate, increases
yields for acidic solutions.

While TCA is known to be an efficient precipitation agent
for soil proteins extracted with SDS buffers, it has several
disadvantages. Among them are (i) a potential loss of large
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proteins (Carpentier et al. 2005); (ii) the coprecipitation of
interfering substances such as DNA and protein-DNA aggregates
(Pavoković, Križnik and Krsnik-Rasol 2012); (iii) protein pellets
need to be washed with acetone or a base to remove the remain-
ing acid from the proteins; (iv) the risk that proteins are non-
functional afterwards, which is problematic with 2DE; (v) and
finally TCA precipitated proteins are difficult to re-solubilized,
here preferentially small proteins are redissolved (Carpentier
et al. 2005). Methanol–ammonium acetate precipitation is often
used in combination with phenol-based extraction procedures
(Carpentier et al. 2005; Benndorf et al. 2007; Pavoković, Križnik
andKrsnik-Rasol 2012), andmight bemore suitable for soilswith
large amounts of HS.

As mentioned above, rehydration of precipitated proteins is
sometimes problematic as the protein pellets do not dissolve
well. For this a variety of buffers (i.e. guanidine buffer, SDS sam-
ple buffer) can be applied; for more details, see Table 1. Rehydra-
tion buffers containing chaotropes (typically urea and thiourea)
might improve protein yields (Weiss and Görg 2008).

Prior to further processing, the evaluation of the protein
concentration is helpful. As most colorimetric assays such as
Bradford (Whiffen, Midgley and Mcgee 2007) interfere with HS,
Roberts and Jones (2008) suggested that total protein concentra-
tions should be determined by acid hydrolysis followed by amino
acid measurements. This strategy has been successfully ap-
plied recently in soil metaproteomics (Bastida, Hernandez and
Garcia 2014).

Processing of soil protein extracts—complexity
reduction and MS approaches

The complexity of environmental samples still outstrips the ca-
pabilities of state-of-the-art MS approaches. Thus, separation
of proteins/peptides is mandatory to reduce sample complexity
before MS analysis (Fig. 1C). In early (soil) metaproteomic stud-
ies, 2D gel-based protein separation methods were successfully
employed (Klaassens, de Vos and Vaughan 2007; Benndorf et al.
2007; Wilmes, Wexler and Bond 2008). However, this technology
has major drawbacks, particularly regarding the analysis of pro-
teins with extreme molecular weights, isoelectric points or hy-
drophobicity values. These restrictions were relaxed by 1D gel-
based or gel-free fractionationmethods. Gel-free approaches in-
clude different protein extraction procedures, followed by in-
solution digestion to peptides. Peptides are further separated by
reversed-phase RP-LC or a chromatographic separation in two
dimensions using strong cation exchange chromatography in
combination with RP-LC.

Proteins separated by gels can be enzymatically digested in-
gel while gel-free approaches take advantage of in-solution or on-
filter protein digestion (Fig. 1C). Identification rate of particularly
low-abundant proteins after 1D gel-based fractionation can be
improved by normalizing the size of fractions (gel pieces) to the
contained protein amount (Yin et al. 2015). Weston, Bauer and
Hummon (2013) showed that filter-based digestion resulted in
an 18% higher protein identification rate compared to in-solution
digestion,whichmight be due to an additional denaturating pro-
tein solubilization step. The advantage of a gel-based fraction-
ation is the combination of protein denaturation and separa-
tion, while it ismore time consuming than gel-free fractionation
that benefits from reduced processing time, and therefore has a
greater high-throughput potential. One of the most frequently
used strategies in such proteomic experiments is tandem MS of
peptides after enzymatic protein digestion.

FROM DATA TO UNDERSTANDING

MS analysis is followed by subsequent correlation of resulting
spectra with those of theoretic peptides from a given protein
database (protein DB or target DB) (Eng, McCormack and Yates
1994; Yates et al. 1995). Due to its high efficiency and degree of
automation, this approach evolved to the preferred strategy for
protein identification, quantification and detection of chemical
peptide modifications in large-scale soil metaproteomic studies
(Aebersold and Mann 2003). However, this approach does not al-
low direct protein identifications but is based on two matching
steps: (i) matching the experimental spectra to theoretical spec-
tra obtained from a given protein DB after in silico digestion and
(ii) inferring the original proteins based on the resulting peptide-
to-spectrum matches (PSMs). Thus, only protein sequences rep-
resented in the target DB can be identified (Fig. 2A). Alternatively,
spectral libraries can be used to correlate experimental spectra di-
rectly with identified reference spectra (Fig. 2A). These reference
spectra have to meet high-quality criteria and, thus, their gen-
eration is costly and not practicable in dimensions demanded
by metaproteomics. However, high-quality spectra can be used
as a reference even if they are identified not yet. Tools such as
ScanRanker support selection of unidentified high-quality spec-
tra by automatic routines (Ma et al. 2011) whose occurrence can
be then followed across different samples and ecosystems (Muth
et al. 2013). Promising spectra can be then submitted to de novo
sequencing (Hughes, Ma and Lajoie 2010).

Data analyses

Spectra handling and database assembly
Asmentioned before, correlating experimental spectrawith the-
oretic spectra of peptides from a given protein DB is the most
frequently used proteomics approach. Quality and performance
of spectra correlation crucially depend on the size of the search
space that is defined by both (i) the number of recorded spectra
to compare and (ii) the number of theoretic or reference spec-
tra compared to. An increased search space inevitably leads to
an increase in (i) computational costs, (ii) potential of false posi-
tives (or false negatives) and (iii) frequency of PSMs matching to
two or more proteins.

To reduce the number of spectra submitted to further anal-
yses, effective filtering and clustering algorithms can be em-
ployed (Fig. 2A) (Flikka et al. 2006; Ding, Shi and Wu 2009; Zou
et al. 2009; Lin et al. 2012). Redundant spectra can be clustered
into metaspectra to further reduce the number of spectra to cor-
relate that positively affects not only false discovery rates (FDR)
but also analysis speed (Flikka et al. 2006; Frank et al. 2008;
Saeed, Hoffert and Knepper 2014). Thus, protein DB selection
plays a pivotal role in metaproteomics (Tanca et al. 2013). A cus-
tomized protein DB is ideally assembled based on a matched
full metagenome from the same sample as analyzed by metapro-
teomics. By this, optimal identification rates can be achieved
as previously shown (Morris et al. 2010). Alternatively, the tax-
onomic sample composition revealed by 16S and/or 18S RNA
sequencing data can be used to deduce the pseudo-metagenome.
Using a six-frame translation of the metagenome sequence pro-
duces more complex protein DBs, but can be helpful to increase
the metaproteome coverage. Finally, unmatched metagenome data
can be also successfully used for protein DB assembly as pre-
viously shown (Verberkmoes et al. 2008). Here the greatest dif-
ficulty is the selection of customized subcollections from pub-
lic resources since it has to be based on assumptions on the
metaproteome composition. Thus, resulting protein DBs are
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generally large (>>106 sequences). To overcome this, an iter-
ative DB search method that uses matches from a primary
DB search to assemble a customized database of reduced size
has previously been proposed (Jagtap et al. 2013). This example
shows a reduction in DB size to <0.1% of the original size. Tanca
et al. (2013) evaluated the impact of different protein database
types, one based on matched metagenome data and another
one based on sequences of expected genes from TrEMBL. An in-
teresting yet alarming result was that an overlap of only 36%
of all identified peptides was found when using both protein
DBs.

Peptide identification
There are various algorithms available to compare experimen-
tal and theoretic peptide fragmentation spectra, the compu-
tational basics of which are comprehensibly described else-
where (Colinge and Bennett 2007). All have in common that
they produce multiple testing effects increasing the number
of wrongly accepted PSMs. The proportion of false positives
can be controlled by the FDR (Benjamini and Hochberg 1995).
Meanwhile, various methods for FDR assessment have been en-
tered in metaproteomics analyses (Nesvizhskii 2010). For in-
stance, target-decoy DBs composed of all protein sequences in
forward (target) and reverse (decoy) direction have been applied
as an easy and powerful method (Elias and Gygi 2007). However,
this strategy leads to a doubling of the target DB size that in
turn increases the search space (see above). With Percolator, a
semi-supervised machine learning algorithm trained by scram-
bled decoy peptides and best scoring target peptides is avail-
able (Kall et al. 2007; Spivak et al. 2009). Combined with accu-
rate scoring functions for PSM, the use of this approach can in-
crease the number of peptide identifications in a variety of data
sets as previously shown (Granholm et al. 2014; Howbert and
Noble 2014).

Protein identification and clustering
Inferring proteins (Fig. 2A) from the list of identified peptides
can be surprisingly difficult. Nesvizhskii and Aebersold coined
the term ‘protein inference problem’ and provided a statisti-
cal model for MS-based protein identification (Nesvizhskii et al.
2003; Nesvizhskii and Aebersold 2005). Distinct protein iden-
tifications need at least one identified peptide that uniquely
maps to the respective protein. The proportion of unique pep-
tides drops with an increasing number of closely related or-
ganisms considered by the target DB, which complicates soil
metaproteome data analyses. Meanwhile, there are several ap-
proaches to calculate probabilities of identified proteins (Higdon
and Kolker 2007; Serang and Noble 2012; Shi andWu 2012; Yang,
He and Yu 2013). However, it should be noted that protein prob-
abilities are experiment specific since they correlate with fac-
tors such as spectra number, protein DB size and protein abun-
dances (Xue et al. 2006). To ease protein inference, peptides can
be attributed exclusively to the protein with the highest proba-
bility. This strategy is followed by the Scaffold software (Searle
2010), for instance. An alternative approach is provided by Pro-
teomeDiscoverer (Thermo Scientific, Waltham, Massachusetts,
USA) assigning peptides to all possible proteins matching the
quality criteria, and a combination of DB searches and de novo
sequencing is provided to maximize metaproteome coverage.
However, at least peptidesmatching to proteinswith equal prob-
abilities cannot be uniquely attributed. Koskinen et al. (2011) in-
troduced a hierarchical protein clustering approach by means
of those shared peptide matches. Peptide-sharing proteins are
grouped together and represented by a single anchor protein.

However, at this time, this approach is beneficial rather for
single-organismproteomics thanmetaproteomics where result-
ing clusters can be taxonomically and functionally diverse.

Data interpretation

Protein quantification
The knowledge about the abundance of proteins is essential for
a systems biological perspective on microbial consortia. Various
technologies have been established to assess whole protein in-
ventories (von Bergen et al. 2013; Otto, Becher and Schmidt 2014).
However, only a few are applicable in a scale needed for environ-
mental proteomics. Using 1D gel-based or gel-free approaches,
protein amounts can be estimated based on spectral counts.
Normalized spectral abundance factors (NSAF) account for protein
length and sample-to-sample variation (Zybailov et al. 2006). An
improved approach (distributed normalized spectral abundance fac-
tors or dNSAF) considers shared peptides by distributing shared
spectral counts based on the number of unique spectral counts
(Fig. 2B) (Zhang et al. 2010; McIlwain et al. 2012). The application
of metabolic labeling in environmental proteomics is hindered
by the fact that the metabolic label has to be provided in suffi-
cient amounts.

Functional and taxonomic assessment
In contrast to metagenomics, metaproteomics provides insights
into the metabolically active species and their metabolic perfor-
mance within the analyzed microbial consortium or ecosystem.
However, the vast mass of data provided by metaproteome
analyses complicates data interpretation (Fig. 2B). For both
functional and taxonomic analyses (which should ideally
be combined), quality of protein annotation is crucial and
should be considered already during protein DB assembly.
Several online resources provide expertly curated data sets for
a high number of proteins (e.g. SWISSPROT, RefSeq) (Table 2).
However, two major problems persist—(i) limited (functional)
annotation standards and (ii) missing global (DB-independent)
sequence identifiers—which both considerably complicate
meta-physiological research. Thus, approaches to globalize
sequence identifiers (e.g. SEGUID; Babnigg and Giometti 2006)
or to classify functions (e.g. TIGR role categories; Haft et al. 2013)
are urgently needed. For metabolic pathway analyses, different
repositories provide functional categories and corresponding
profiles. With the Cluster of Orthologous Groups, a widely
distributed classification system is available for prokaryotic
(COG) and eukaryotic (KOG) proteins (Tatusov et al. 2003; Koonin
et al. 2004). However, this system has not been updated since
2003; therefore, eggNOG as actively curated derivate can be
recommended (Powell et al. 2014). With TIGRFAMs and PFAMs,
expertly curated Hidden Markov Models based on multiple
sequence alignments of proteins fulfilling the same function
are available (Haft et al. 2013; Finn et al. 2014). Combined with
TIGR roles, an excellent classification system organized in (i)
main roles (e.g. energy metabolism), (ii) subroles (e.g. glycolysis)
and (iii) functions (e.g. enolase) is provided (Fig. 3). Specific
metabolic functions might be underrepresented in general
collections. Considering data from resources specialized to
distinct protein functions can support detailed analyses on
specific activities. A prominent example for such special-
ized resources is CAZY (http://www.cazy.org/) (Cantarel et al.
2009, Lombard et al. 2014) listing more than 330 families of
carbohydrate-active enzymes that have been already success-
fully employed in several environmental studies to estimate
the amount of polymer-degrading enzymes (Aylward et al. 2012;

http://www.cazy.org/
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Table 2. Number of annotated protein sequences provided by UniProt and NCBI (as of 28 January 2015).

Protein sequences

Resource/section Archaea Bacteria Eukaryotes Viruses Totala

UniProtKBb

TrEMBL 888 257 73 062 005 12 775 469 2171 639 89 451 166
SwissProtc 19 312 331 887 179 679 16 479 547 357
NCBId

Protein 2137 968 125 291 208 26 123 069 2760 918 163 229 525
RefSeqe 1094 656 42 822 180 9709 585 213 314 53 839 396

aIncluding unclassified and other sequences.
bThe Universal Protein Resource Knowledgebase (http://www.uniprot.org).
cBiologically non-redundant, expertly curated annotation.
dThe National Center of Biotechnology Information (http://www.ncbi.nlm.nih.gov), as of 19 February 2013.
eBiologically non-redundant, annotation partially curated by experts.

Figure 3. Voronoi Treemaps. Voronoi treemaps can visualize highly complex hierarchically organized data in a space optimized manner. Here, functional classification
of TIGRFAMs (Release 15.0) is depicted based on TIGR roles main (left) and (right) subclasses.

López-Mondéjar et al. 2016). For metabolic pathway reconstruc-
tion, different repositories such as KEGG, BiGG or BioCyc are
available (Schellenberger et al. 2010; Caspi et al. 2014; Kanehisa
et al. 2014).

Based on standardized taxonomic annotation, proteins in
peptide sharing clusters can be reduced to the lowest common
anchor (LCA) (Fig. 2B). The Unipept web application provides a
robust LCA approach considering all occurrences of identified
tryptic peptides in UniprotKB. Alternatively, Pipasic estimates
the peptide level similarity between reference proteomes
allowing differentiation on strain level. The PROPHANE web
service provides a combined fully automated workflow for
both (i) functional analyses using various resources (COG/KOG,
TIGRFAMs and PFAMs) and (ii) LCA-based taxonomic assess-
ment (www.prophane.de) (Schneider et al. 2011). In addition,
MetaProteomeAnalyzer software is a tool that features four
freely available DB search algorithms (X!Tandem, OMSSA,
Crux, InsPect), and is also highly suitable for comprehen-
sive analysis and visualization of metaproteomic datasets
(https://code.google.com/archive/p/meta-proteome-analyzer/)
(Muth et al. 2015).

Data storage and visualization
For several reasons, data storage is a major issue in metapro-
teomics. The generated data take valuable space and are barely
standardized that bothmakes data handling and integration dif-
ficult (Jimenez and Vizcaino 2013). Meanwhile, several commer-
cial (Stephan et al. 2010) and open-source (Perez-Riverol et al.
2014) in-house solutions exist. However, at least after publica-
tion spectral data should be made publicly available making on-
line repositories such as PRIDE, PeptideAtlas and Tranche (for
review, see Jimenez and Vizcaino 2013). Furthermore, the enor-
mous progress of analytical tools and the tremendous increase
of available protein sequences require non-traditional data stor-
age for keeping the data in an active state. Thus, data storage
should be never the end of the analysis pipeline but much more
the beginning of a new improved analysis circle (see also Muth
et al. 2013).

The complexity of metaproteome data demands for sophis-
ticated visualization strategies. Different approaches have been
comprehensively reviewed recently (Mehlan et al. 2013). Voronoi
treemaps have proven to be an excellent tool to visualize hierar-
chical data structures in a space optimized manner (Fig. 3). Two

http://www.uniprot.org
http://www.ncbi.nlm.nih.gov
http://www.prophane.de
https://code.google.com/archive/p/meta-proteome-analyzer/
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additional dimensions (such as protein amounts or ratios) can
be projected using area and/or color encoding. Stream graphs
allow even one more dimension and are, thus, perfectly suited
for time courses. However, there are twomajor drawbacks. First,
biological data cannot be always reduced to a non-redundant
hierarchical organization. For instance, proteins can have more
than one function and, thus, have multiple places in a treemap.
Second, with increasing data complexity, the human eye is over-
taxed, particularly when viewing print media where space and
resolution is limited.

CONCLUDING REMARKS

There are several important steps thatmust be carefully planned
when employing soil metaproteome analysis. First, the sam-
pling strategy must be well considered to cover the spatial and
temporal heterogeneity of (i) the soilmatrix and (ii) themicrobial
community that varies in diversity, size, generation time, func-
tions and favored soil physical and chemical conditions. Second,
an optimal sample handling procedure has to be established and
should be discussed within the scientific community to gener-
ate comparable data for meta-metanalysis. Studies that com-
pare storage conditions for soil and leaf litter from a wide va-
riety of climates are still missing, but would be highly useful.
We have reviewed the application of different extraction proto-
cols for proteins present in soil and litter, and how soil char-
acteristics may influence the protein extraction. However, it is
important to mention that protein extraction methods need to
be further explored and improved. In particular, more empha-
sis in the identification of extracellular proteins is required, as
those are directly linked to biogeochemistry processes. So far dy-
namic succession of soil and leaf litter microbial populations,
including their community structure and respective functions,
are poorly investigated. In this regard, metaproteomics allows
the untargeted assignment of proteins involved in a broad vari-
ety of biochemical processes. We thus expect that environmen-
tal metaproteomics, so far a mainly descriptive approach, will
significantly contribute to hypothesis-driven research aiming at
a deeper understanding of the highly complex metabolic net-
work and multispecies interactions in terrestrial habitats. Sub-
sequent research aiming to develop sophisticated bioinformatic
tools constantly facilitates the application of metaproteomics
even in such complex habitats such as soil and leaf litter and
will be a central prerequisite for the hypothesis-driven evalua-
tion of metaproteome data. The power of metaproteomics can
even be further enhanced, when combined or complemented
with other ‘omics’ technologies, i.e. metagenomics and meta-
transcriptomics and also classical soil analytics such as micro-
bial biomass, potential enzyme activities and physico-chemical
indicators. Given the environmental challenges facing society
today, the need for in-depth understanding of soil functioning
is critical. This review therefore concludes that the continued
and increased application of soil metaproteomes within holis-
tic ecosystem experimental frameworks constitutes a research
priority.
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