

Almost All Generalized Extraspecial p-Groups Are Resistant

Radu Stancu¹

Section de Mathématiques, Université de Genève, CP 240, CH-1211, Genève 24, Switzerland E-mail: Radu.Stancu@math.unige.ch

Communicated by Michel Broué

Received February 7, 2001

A p-group P is called resistant if, for any finite group G having P as a Sylow p-subgroup, the normalizer $N_G(P)$ controls p-fusion in G. The aim of this paper is to prove that any generalized extraspecial p-group P is resistant, excepting the case when $P = E \times A$, where A is elementary abelian and E is dihedral of order 8 (when p = 2) or extraspecial of order p^3 and exponent p (when p is odd). This generalizes a result of Green and Minh. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Let G be a finite group and let H be a subgroup of G. Two elements of H are said to be *fused* in G if they are conjugate in G but not in H. We are interested in p-groups P such that, for any finite group G having P as a Sylow p-subgroup, the p-fusion is controlled only by the normalizer $N_G(P)$ of P (that is, any two elements of P which are fused in G are fused in $N_G(P)$). This is equivalent to the requirement that any such group G does not contain essential p-subgroups (Definition 2.2). Following the terminology suggested by Jesper Grodal, we will call such a group resistant.

In fact, by a theorem of Mislin [Mi], the notion of resistant group is equivalent to what Martino and Priddy [MP] call Swan group. We recall that P is a Swan group if, for any G as before, the mod-p cohomology ring $H^*(G)$ is isomorphic to the mod-p cohomology ring $H^*(N_G(P))$.

¹ This work is part of a doctoral thesis in preparation at the University of Lausanne, under the supervision of Prof. Jacques Thévenaz.

In a recent paper [GM], Green and Minh proved that almost all extraspecial *p*-groups are Swan groups. In our paper, we find the same result for *generalized extraspecial p*-groups (Definition 3.1) and give a proof avoiding cohomological methods.

2. ESSENTIAL GROUPS

Let $\mathscr{F}_p(G)$ be the Frobenius category of a finite group G. We recall that the objects in this category are the nontrivial p-subgroups of G and the morphisms are the group homomorphisms given by the conjugation by elements of G. For a subgroup H of G, we denote by $\mathscr{F}_p(G)_{\leq H}$ the full subcategory of $\mathscr{F}_p(G)$ containing the nontrivial p-subgroups of H.

A natural question is: What is the minimal information needed to completely characterize these morphisms? For a Sylow p-subgroup P of G, Alperin showed in [Al] that these morphisms are locally controlled, i.e., by normalizers $N_G(Q)$ for Q a subgroup of P. Nine years later, Puig [Pu1] refined this and required Q to be an *essential* p-subgroup of G. In what follows, we will give the definition and some basic properties of essential p-subgroups of G.

DEFINITION 2.1. We say that Q is p-centric if Q is a Sylow p-subgroup of $QC_G(Q)$ or, equivalently, Z(Q) is a Sylow p-subgroup of $C_G(Q)$.

In the literature [Th, p. 324], a *p*-centric subgroup is also called *p*-self-centralizing. Note that if Q is *p*-centric, then $C_P(Q) = Z(Q)$ for any Sylow *p*-subgroup P of G containing Q.

Consider now the Quillen complex $\mathcal{F}_p(H)$ of a finite group H whose vertices are the objects in $\mathcal{F}_p(H)$ and whose simplices are given by chains of groups ordered by inclusion.

DEFINITION 2.2. We say that Q is an **essential** subgroup of G if the Quillen complex $\mathcal{S}_p(N_G(Q)/Q)$ is disconnected and $C_G(Q)$ does not act transitively on the connected components.

One can find in [Th, Theorem 48.8] that

PROPOSITION 2.3. Q is an essential p-subgroup of G if and only if Q is p-centric and $\mathcal{G}_p(N_G(Q)/QC_G(Q))$ is disconnected.

The proof has been done in a more general case. In the terminology and notation of [Th, Theorem 48.8], it suffices to replace *local pointed groups* by p-subgroups, $\mathcal{N}_{>Q}$ by $\mathcal{G}_p(N_G(Q))_{>Q}$, and $\mathscr{C}G$ by G. In most of the proofs of this paper, we will use this proposition as an alternative definition of essential subgroups. For $g \in G$, we denote by gQ the conjugate by g of Q.

DEFINITION 2.4. We say that a subgroup H of a group G controls p-fusion in G if (|G:H|, p) = 1 and for any $g \in G$ and any Q, such that Q and gQ are contained in H, there exists $h \in H$ and $c \in C_G(Q)$ such that g = hc, or, equivalently, if the inclusion $H \hookrightarrow G$ induces an equivalence of categories $\mathcal{F}_p(H) \simeq \mathcal{F}_p(G)$.

The notions of control of fusion and essential *p*-subgroups are strongly linked. The next proposition shows one of the aspects of this link.

PROPOSITION 2.5 [Pu1, Ch. IV, Prop. 2]. The normalizer $N_G(P)$ controls p-fusion in G if and only if there are no essential p-subgroups in G.

The proof is based on the variant of Alperin's theorem using essential *p*-subgroups (see, for instance, [Th, Theorem 48.3]) and on the fact that the essential *p*-subgroups are preserved by any equivalence of categories.

3. GENERALIZED EXTRASPECIAL GROUPS

From now on, C_n will denote the cyclic group of order n.

DEFINITION 3.1. A *p*-group *P* is called **generalized extraspecial** if its Frattini subgroup, $\Phi(P)$, has order p, $\Phi(P) = [P, P] \simeq C_p$, and $Z(P) \geq \Phi(P)$. If, moreover, $Z(P) = \Phi(P)$, P is called **extraspecial**.

LEMMA 3.2. Let P be a generalized extraspecial p-group. Then either Z(P) is isomorphic to $\Phi(P) \times A$ and P is isomorphic to $E \times A$, or Z(P) is isomorphic to $C_{p^2} \times A$ and E is isomorphic to $(E * C_{p^2}) \times A$, where E is an extraspecial p-group, A is an elementary abelian group, and * means central product.

Proof. As $\Phi(P)$ is a cyclic subgroup of order p, the center Z(P) does not admit more than one factor isomorphic to C_{p^2} in its decomposition in cyclic subgroups, and if this factor exists, it contains $\Phi(P)$. Let A be an elementary abelian subgroup of Z(P) such that $Z(P) \simeq \Phi(P) \times A$, when there is no C_{p^2} factor in Z(P), and $Z(P) \simeq C_{p^2} \times A$, otherwise. We have, in both cases, $[P,P] \cap A = 1$ and [P,A] = 1, so A is a direct factor of P. It is then straightforward that the complement of A in P is isomorphic either to E or to $E * C_{p^2}$.

Recall that for $|P|=p^3$, we have that P is isomorphic either to $(C_p \times C_p) \rtimes C_p$ (in this case we say that P is of order p^3 and exponent p) or to $C_{p^2} \rtimes C_p$, for p odd, and either to the dihedral group D_8 or the quaternion group Q_8 , for p=2.

Let β : $P/Z(P) \times P/Z(P) \to \Phi(P)$ defined by $\beta(\bar{x}, \bar{y}) = [x, y]$. It is a bilinear nondegenerate symplectic form on U := P/Z(P) viewed as a vector

space over \mathbf{F}_p . We recall that an isotropic vector subspace of U with respect to β is a subspace on which β is identically zero. A maximal isotropic subspace of U has dimension equal to half of the dimension of U.

LEMMA 3.3. Let Q be a p-centric subgroup of P. Then Q contains Z(P) and Q/Z(P) contains a maximal isotropic subspace of P/Z(P).

Proof. A *p*-centric subgroup of *P* clearly contains the center Z := Z(P) of *P*. Suppose that V := Q/Z(P), considered as vector space, does not contain a maximal isotropic subspace of U := P/Z(P) with respect to β . This means that there exists $u \in U \setminus V$ with $\beta(u, x) = 0$, $\forall x \in V$. By taking a representative *e* of *u* in *P*, we have $e \in P \setminus Q$ and *e* commutes with all the elements of *Q*. So $e \in C_P(Q) \setminus Z(Q)$, which is a contradiction to the fact that *Q* is *p*-centric.

4. RESISTANT GROUPS

DEFINITION 4.1. A *p*-group P is called **resistant** if, for any finite group G such that P is a Sylow p-subgroup of G, the normalizer $N_G(P)$ controls p-fusion in G.

Here is now the main result of this paper.

THEOREM 4.2. Let P be a generalized extraspecial p-group. Then P is resistant excepting the case when $P = E \times A$, where A is elementary abelian and E is dihedral of order 8 (when p = 2) or extraspecial of order p^3 and exponent p (when p is odd).

COROLLARY 4.3. If P satisfies the conditions of the theorem, then P is a Swan group.

Proof of Theorem 4.2. We will prove that the only cases where G contains essential p-subgroups are the exceptions of our theorem. Let Q be a proper p-centric subgroup of P. This forces Q to contain Z(P) and hence also $\Phi := \Phi(P)$. Denote by R the subgroup of $N := (N_G(Q) \cap N_G(\Phi))/C_G(Q)$ acting trivially on Φ and Q/Φ . We have that R centralizes the quotients of the central series $1 \triangleleft \Phi \triangleleft Q$, so it is a normal p-subgroup [Gor, Theorem 5.3.2] of N. Now R contains P/Z(Q) as P acts trivially on Φ and Q/Φ . As P is a Sylow p-subgroup of G, this forces R = P/Z(Q), and thus G is the unique Sylow G-subgroup of G, and thus G is connected.

thus R is the unique Sylow p-subgroup of N, and thus $S_p(N)$ is connected. Assume that Q is essential. Then $S_p(N_G(Q)/QC_G(Q))$ is disconnected and therefore $N_G(Q) \neq N_G(Q) \cap N_G(\Phi)$. As the $\Phi(Q)$ is characteristic in Q and is contained in Φ , we have that $\Phi(Q)$ is a proper subgroup of Φ , hence trivial; this gives that Q is elementary abelian. Take $x \in N_G(Q) \setminus N_G(\Phi)$. Now R = P/Q is not contained in $(N_G(Q) \cap N_G(^x\Phi))/C_G(Q)$; otherwise

 $N/C_G(Q)$ and $(N_G(Q)\cap N_G({}^x\Phi))/C_G(Q)$ would have the same Sylow p-subgroup R, implying that $P/Q={}^x(P/Q)$ and thus that x normalizes P. It follows that $\Phi={}^x\Phi$, which is in contradiction with the choice of x. As ${}^x\Phi$ is a subgroup of P of order p, the vector subspace ${}^x\Phi/(Z(P)\cap {}^x\Phi)$ of P/Z(P) admits an orthogonal complement with respect to β which is either all P/Z(P) or a hyperplane. This gives that $|P:C_P({}^x\Phi)|=1$ or p. If Q is a proper subgroup of $C_P({}^x\Phi)$, then $C_P({}^x\Phi)$ is non-abelian, and therefore $\Phi=\Phi(C_P({}^x\Phi))$. Moreover, ${}^{x^{-1}}(C_P({}^x\Phi)/Q)\subset (C_{N_G(Q)}(\Phi)/Q)$ so, by Sylow's theorem, there exists $c\in (C_{N_G(Q)}(\Phi)/Q)$ such that ${}^{cx^{-1}}(C_P({}^x\Phi)/Q)\subset (C_P(\Phi)/Q)$. This implies that ${}^{cx^{-1}}\Phi=\Phi$, which is equivalent to $\Phi={}^x\Phi$, and we obtain once again a contradiction. Hence $Q=C_P({}^x\Phi)$ and |P:Q|=p. We also have that Q/Z(P) is a maximal isotropic subspace of P/Z(P); it follows that $|P:Z(P)|=p^2$. Moreover, $C_P({}^x\Phi)$ is a proper subgroup of P, so ${}^x\Phi$ is not contained in Z(P), implying that $Z(P)\neq {}^xZ(P)$. By the same type of arguments, taking x^{-1} instead of x, we can also prove that Φ is not contained in ${}^xZ(P)$.

Finally, take $A := Z(P) \cap {}^xZ(P)$. As $|Q:Z(P)| = |Q:{}^xZ(P)| = p$ and $Z(P) \neq {}^xZ(P)$, we obtain that |Z(P):A| = p, so Q/A is isomorphic to $C_p \times C_p$. Moreover, A does not contain Φ so, by Lemma 3.2, $Z(P) \simeq \Phi \times A$ and $P \simeq E \times A$, where E is an extraspecial group of order p^3 . First, as Q/A is isomorphic to $C_p \times C_p$, E cannot be isomorphic to the quaternion group. Second, we will prove that the case where E is isomorphic to $C_{p^2} \times C_p$ also yields to a contradiction. The result is due to Glauberman [MP], but the proof we give, which is more elegant, is due to Jacques Thévenaz.

Let $K := \langle P/Q, {}^x(P/Q) \rangle$, which is isomorphic to a subgroup of $\operatorname{Aut}(Q/A)$ viewed as a subgroup of $\operatorname{GL}(2, \mathbf{F}_p)$. As $P/Q \neq {}^x(P/Q)$, they generate all $\operatorname{SL}(2, \mathbf{F}_p)$, so $\operatorname{SL}(2, \mathbf{F}_p)$ is a subgroup of K containing P/Q. Now P/Q is a Sylow p-subgroup of K and we will prove that the exact sequence $1 \to Q/A \to E \to P/Q \to 1$ can be extended to an exact sequence $1 \to Q/A \to L \to K \to 1$ and hence to an exact sequence $1 \to Q/A \to L' \to \operatorname{SL}(2, \mathbf{F}_p) \to 1$. To have this, it suffices to verify [Br, pp. 84–85] that the class h(E) determined by E in $H^2(P/Q, Q/A)$ is K-stable; that is, for any $k \in K$, we have

$$\operatorname{res}_{P/Q \cap {}^{k}(P/Q)}^{P/Q} h(E) = \operatorname{res}_{P/Q \cap {}^{k}(P/Q)}^{{}^{k}(P/Q)} \operatorname{conj}_{k}(h(E)). \tag{*}$$

Here res is the restriction in cohomology and conj_k is the morphism induced by the conjugation by k in cohomology. If $P/Q \neq {}^k(P/Q)$, then $P/Q \cap {}^k(P/Q) = 1$ and the relation (*) is trivially satisfied. Suppose that $P/Q = {}^k(P/Q)$. Take \tilde{k} to be a representative of k in $N_G(Q)$ that normalizes P. We have that \tilde{k} induces the conjugation by k on Q and P/Q. So the conjugation by \tilde{k} induces conj_k on $H^2(P/Q, Q/A)$. Thus

 $h(E)=\operatorname{conj}_k(h(E))$ and (*) is again satisfied. Now, for $E \simeq C_{p^2} \rtimes C_p$, h(E) is not trivial.

The contradiction comes from the fact that $H^2(\operatorname{SL}(2, \mathbf{F}_p), Q/A) = 0$, so the cohomology class h(E) induced by E in $H^2(P/Q, Q/A)$ would be trivial. Indeed let $U := \left\{ \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \right\}$ be a Sylow p-subgroup of $\operatorname{SL}(2, \mathbf{F}_p)$. Write $S := \operatorname{SL}(2, \mathbf{F}_p)$ and $N(U) := N_{\operatorname{SL}(2, \mathbf{F}_p)}(U)$. The restriction to U in cohomology induces a monomorphism $\operatorname{res}_U^S : H^2(S, Q) \to H^2(U, Q)^{N(U)}$, where $H^2(U, Q)^{N(U)}$ are the fixed points under the natural action of N(U). Now $U = \langle u \rangle$ is a cyclic group, so [Be, p. 60] its cohomology is

$$H^{2}(U,Q) = Q^{U} / \left\{ \left(\sum_{i=0}^{p-1} u^{i} \right) v \middle| v \in Q \right\}.$$

By a simple computation, we obtain $Q^U = \langle z \rangle$, where z is a generator of $\Phi(P)$ and $\{(\sum_{i=0}^{p-1} u^i)v|v\in Q\} = 0$, so $H^2(U,Q) = \langle z \rangle$. As z is not fixed by N(U), we have $H^2(U,Q)^{N(U)} = 0$, and therefore $H^2(S,Q) = 0$.

We prove now that the remaining case, $P = E \times A$ with E either dihedral of order 8 (when p = 2) or extraspecial of order p^3 and exponent p (when p is odd), is indeed an exception to Theorem 4.2. Let us start with a property of resistant groups:

PROPOSITION 4.4. Let P be a p-group and let B be a finite abelian p-group. If P is not resistant, then the direct product $P \times B$ is not resistant.

Proof. Let G be a finite group with P as Sylow p-subgroup and let Q be an essential p-subgroup of G embedded in P. Such a G exists because we suppose that P is not resistant. In this case, $\widetilde{P}:=P\times B$ is a Sylow p-subgroup of $\widetilde{G}:=G\times B$. As Q is p-centric in P, so is $\widetilde{Q}:=Q\times B$ in \widetilde{P} . Moreover, $N_{\widetilde{G}}(\widetilde{Q})/\widetilde{Q}C_{\widetilde{G}}(\widetilde{Q})\simeq N_{G}(Q)/QC_{G}(Q)$. This means that, as $\mathscr{S}_{p}(N_{G}(Q)/QC_{G}(Q))$ is disconnected, so is $\mathscr{S}_{p}(N_{\widetilde{G}}(\widetilde{Q})/\widetilde{Q}C_{\widetilde{G}}(\widetilde{Q}))$. Then \widetilde{Q} is an essential p-subgroup of \widetilde{G} . This proves that \widetilde{P} is not resistant.

PROPOSITION 4.5. Let $P = E \times A$, where A is elementary abelian and E is dihedral of order 8 (when p = 2) or of order p^3 and exponent p (when p is odd). Then P is not resistant.

Proof. We can realize E as a Sylow p-subgroup of $GL(3, \mathbb{F}_p)$. One can verify that

$$Q_1 = \left\{ \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\} \quad \text{and} \quad Q_2 = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

are essential subgroups of G. So E is not resistant. As P is isomorphic to $E \times A$, where A is elementary abelian, by Proposition 4.4, P is not resistant.

In a very recent paper [Pu2], Puig introduced the notion of "full Frobenius system," which is a category over a finite p-group P whose objects are the subgroups of P and whose morphisms are a set of injective morphisms between the subgroups of P containing the conjugation by the elements of P. The morphisms satisfy some natural axioms which are inspired by the local properties of P when P is a Sylow p-subgroup of a finite group or a defect group of a block in a group algebra. Puig defined in this context the concept of "essential group" and proved that, on a full Frobenius system, the analog of Alperin's Fusion Theorem holds. Full Frobenius systems are the generalization of the Frobenius category of a group, and of the Brauer and Puig categories of a block.

The theorem in this paper remains true and all the arguments were chosen to remain valid in a full Frobenius system over P. This permits us to generalize the results to Brauer pairs and pointed groups.

ACKNOWLEDGMENTS

I thank Rhada Kesser and Markus Linckelmann for their precious suggestions. I am indebted to Prof. Lluis Puig for suggesting the fact that we can extend the main theorem to full Frobenius systems. I am also indebted to the referee for the simplifications in the proof of the main theorem. I am deeply grateful to Prof. Jacques Thevenaz for his mathematical and moral support throughout this work.

REFERENCES

- [Al] J. Alperin, Sylow intersections and fusion, J. Algebra 6 (1967), 222–241.
- [Be] D. J. Benson, "Representations and Cohomology I," Cambridge Studies in Advanced Math. Vol. 30, Cambridge Univ. Press, 1991.
- [Br] K. Brown, "Cohomology of Groups," Springer-Verlag, Berlin, 1982.
- [Gol] D. M. Goldschmidt, A conjugation family for finite groups, J. Algebra 16 (1970), 138–142.
- [Gor] D. Gorenstein, "Finite Groups," Harper Series in Modern Maths., pp. 138–142, 1968.
- [GM] D. J. Green and P. A. Minh, Almost all extraspecial p-groups are Swan groups, Bull. Austral. Math. Soc. 62 (2000), 149–154.
- [MP] J. Martino and S. Priddy, On the cohomology and homotopy of Swan groups. *Math. Z.* 225 (1997), 277–288.
- [Mi] G. Mislin, On group homomorphism inducing mod-p cohomology isomorphism, Coment. Math. Helv. 65 (1990), 454–461.
- [Pu1] L. Puig, Structure locale dans les groupes finis, Bull. Soc. Math. France, Mémoire no. 47, 1976.
- [Pu2] L. Puig, Full Frobenius systems and their localizing categories, preprint.
- [Th] J. Thévenaz, "G-Algebras and Modular Representation Theory," Oxford Science Publications, New York, 1995.