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A p-group P is called resistant if, for any finite group G having P as a Sylow
p-subgroup, the normalizer N;(P) controls p-fusion in G. The aim of this paper
is to prove that any generalized extraspecial p-group P is resistant, excepting the
case when P = E x A, where A is elementary abelian and E is dihedral of order
8 (when p = 2) or extraspecial of order p* and exponent p (when p is odd). This
generalizes a result of Green and Minh. 0 2002 Elsevier Science (USA)

1. INTRODUCTION

Let G be a finite group and let H be a subgroup of G. Two elements
of H are said to be fused in G if they are conjugate in G but not in H.
We are interested in p-groups P such that, for any finite group G having
P as a Sylow p-subgroup, the p-fusion is controlled only by the normalizer
Ng(P) of P (that is, any two elements of P which are fused in G are
fused in N (P)). This is equivalent to the requirement that any such group
G does not contain essential p-subgroups (Definition 2.2). Following the
terminology suggested by Jesper Grodal, we will call such a group resistant.

In fact, by a theorem of Mislin [Mi], the notion of resistant group is
equivalent to what Martino and Priddy [MP] call Swan group. We recall
that P is a Swan group if, for any G as before, the mod-p cohomology ring
H*(G) is isomorphic to the mod-p cohomology ring H*(Ng(P)).

! This work is part of a doctoral thesis in preparation at the University of Lausanne, under
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In a recent paper [GM], Green and Minh proved that almost all extraspe-
cial p-groups are Swan groups. In our paper, we find the same result for
generalized extraspecial p-groups (Definition 3.1) and give a proof avoiding
cohomological methods.

2. ESSENTIAL GROUPS

Let 7,(G) be the Frobenius category of a finite group G. We recall
that the objects in this category are the nontrivial p-subgroups of G and
the morphisms are the group homomorphisms given by the conjugation by
elements of G. For a subgroup H of G, we denote by 7,(G)-y the full
subcategory of 7,(G) containing the nontrivial p-subgroups of H.

A natural question is: What is the minimal information needed to com-
pletely characterize these morphisms? For a Sylow p-subgroup P of G,
Alperin showed in [Al] that these morphisms are locally controlled, i.e., by
normalizers Ng;(Q) for Q a subgroup of P. Nine years later, Puig [Pul]
refined this and required Q to be an essential p-subgroup of G. In what
follows, we will give the definition and some basic properties of essential
p-subgroups of G.

DEFINITION 2.1.  We say that Q is p-centric if Q is a Sylow p-subgroup
of QCs;(Q) or, equivalently, Z(Q) is a Sylow p-subgroup of C;(Q).

In the literature [Th, p. 324], a p-centric subgroup is also called p-self-
centralizing. Note that if Q is p-centric, then Cp(Q) = Z(Q) for any Sylow
p-subgroup P of G containing Q.

Consider now the Quillen complex &,(H) of a finite group H whose
vertices are the objects in F,(H) and whose simplices are given by chains
of groups ordered by inclusion.

DEFINITION 2.2. We say that Q is an essential subgroup of G if the
Quillen complex ¥,(Ng(Q)/Q) is disconnected and C;(Q) does not act
transitively on the connected components.

One can find in [Th, Theorem 48.8] that

PrOPOSITION 2.3.  Q is an essential p-subgroup of G if and only if Q is
p-centric and ¥,(Ng(Q)/QCs(Q)) is disconnected.

The proof has been done in a more general case. In the terminology and
notation of [Th, Theorem 48.8], it suffices to replace local pointed groups by
p-subgroups, N_o by #,(Ng(Q))-o, and @G by G. In most of the proofs
of this paper, we will use this proposition as an alternative definition of
essential subgroups. For g € G, we denote by 80 the conjugate by g of Q.
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DEeFINITION 2.4. We say that a subgroup H of a group G controls
p-fusion in G if (|G : H|, p) =1 and for any g € G and any Q, such that
Q and ¢Q are contained in H, there exists # € H and ¢ € C;(Q) such that
g = hc, or, equivalently, if the inclusion H < G induces an equivalence of
categories 7,(H) ~ 7 ,(G).

The notions of control of fusion and essential p-subgroups are strongly
linked. The next proposition shows one of the aspects of this link.

ProprosITION 2.5 [Pul, Ch. IV, Prop. 2]. The normalizer N;(P) controls
p-fusion in G if and only if there are no essential p-subgroups in G.

The proof is based on the variant of Alperin’s theorem using essential
p-subgroups (see, for instance, [Th, Theorem 48.3]) and on the fact that
the essential p-subgroups are preserved by any equivalence of categories.

3. GENERALIZED EXTRASPECIAL GROUPS

From now on, C, will denote the cyclic group of order n.

DEFINITION 3.1. A p-group P is called generalized extraspecial if its
Frattini subgroup, ®(P), has order p, ®(P) = [P,P] ~ C,, and Z(P) >
®(P). If, moreover, Z(P) = ®(P), P is called extraspecial.

p’

LEMMA 3.2. Let P be a generalized extraspecial p-group. Then either Z(P)
is isomorphic to ®(P) x A and P is isomorphic to E x A, or Z(P) is iso-
morphic to C» x A and E is isomorphic to (E x C,2) x A, where E is an
extraspecial p-group, A is an elementary abelian group, and * means central
product.

Proof. As ®(P) is a cyclic subgroup of order p, the center Z(P) does
not admit more than one factor isomorphic to €, in its decomposition in
cyclic subgroups, and if this factor exists, it contains ®(P). Let 4 be an
elementary abelian subgroup of Z(P) such that Z(P) >~ ®(P) x A, when
there is no C factor in Z(P), and Z(P) =~ C,» x A, otherwise. We have,
in both cases, [P, P]N A =1 and [P, A] = 1, so A is a direct factor of P. It
is then straightforward that the complement of A in P is isomorphic either
to E or to E* C)p.

Recall that for |P| = p?, we have that P is isomorphic either to (C, x
C,)x C, (in this case we say that P is of order p? and exponent p) or to
C,2x C,, for p 0odd, and either to the dihedral group Dy or the quaternion
group Oy, for p =2.

Let B: P/Z(P) x P/Z(P) — ®(P) defined by B(x¥,y) = [x,y]. It is a
bilinear nondegenerate symplectic form on U := P/Z(P) viewed as a vector
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space over F,. We recall that an isotropic vector subspace of U with respect
to B is a subspace on which B is identically zero. A maximal isotropic
subspace of U has dimension equal to half of the dimension of U.

LeMMA 3.3. Let Q be a p-centric subgroup of P. Then Q contains Z(P)
and Q/Z(P) contains a maximal isotropic subspace of P/ Z(P).

Proof. A p-centric subgroup of P clearly contains the center Z := Z(P)
of P. Suppose that V' := Q/Z(P), considered as vector space, does not
contain a maximal isotropic subspace of U := P/Z(P) with respect to B.
This means that there exists u € U\V with B(u, x) =0, Vx € V. By taking
a representative e of u in P, we have e € P\Q and e commutes with all the
elements of Q. So e € Cp(Q)\Z(Q), which is a contradiction to the fact
that Q is p-centric.

4. RESISTANT GROUPS

DEFINITION 4.1. A p-group P is called resistant if, for any finite group
G such that P is a Sylow p-subgroup of G, the normalizer N;(P) controls
p-fusion in G.

Here is now the main result of this paper.

THEOREM 4.2. Let P be a generalized extraspecial p-group. Then P is resis-
tant excepting the case when P = E x A, where A is elementary abelian and
E is dihedral of order 8 (when p = 2) or extraspecial of order p* and exponent
p (when p is odd).

COROLLARY 4.3. If P satisfies the conditions of the theorem, then P is a
Swan group.

Proof of Theorem 4.2.  'We will prove that the only cases where G con-
tains essential p-subgroups are the exceptions of our theorem. Let Q be
a proper p-centric subgroup of P. This forces Q to contain Z(P) and
hence also ® := ®(P). Denote by R the subgroup of N := (Ng(Q) N
Ng(P))/C;(Q) acting trivially on @ and Q/P. We have that R centralizes
the quotients of the central series 1 <® < Q, so it is a normal p-subgroup
[Gor, Theorem 5.3.2] of N. Now R contains P/Z(Q) as P acts trivially on
® and Q/®. As P is a Sylow p-subgroup of G, this forces R = P/Z(Q), and
thus R is the unique Sylow p-subgroup of N, and thus S,(N) is connected.

Assume that Q is essential. Then S§,(Ng(Q)/QCs(Q)) is disconnected
and therefore Ng(Q) # Ng(Q) N Ng(P). As the ®(Q) is characteristic in O
and is contained in ®, we have that ®(Q) is a proper subgroup of ®, hence
trivial; this gives that Q is elementary abelian. Take x € Ng(Q)\Ng(P).
Now R = P/Q is not contained in (Ng(Q) N Ng(*®))/C;(Q); otherwise
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N/C;(Q) and (Ng(Q) N Ng(*®))/C;(Q) would have the same Sylow
p-subgroup R, implying that P/Q = *(P/Q) and thus that x normalizes P.
It follows that & = *®, which is in contradiction with the choice of x. As
*® is a subgroup of P of order p, the vector subspace *®/(Z(P) N*P)
of P/Z(P) admits an orthogonal complement with respect to 8 which is
either all P/Z(P) or a hyperplane. This gives that |P : Cp(*®)| =1 or p.
If O is a proper subgroup of Cp(*®), then Cp(*®) is non-abelian, and
therefore & = ®(Cp(*P)). Moreover, fl(CP(x(I))/Q) C (Cny0)(®)/0)
so, by Sylow’s theorem, there exists ¢ € (CNG(Q)(CID)/ Q) such that
“(Cp(*®)/Q) C (Cp(P)/Q). This implies that < 'd = &, which is
equivalent to ® = *®, and we obtain once again a contradiction. Hence
Q = Cp(*P) and |P : Q| = p. We also have that Q/Z(P) is a maximal
isotropic subspace of P/Z(P); it follows that |P : Z(P)| = p?. Moreover,
Cp(*®) is a proper subgroup of P, so *® is not contained in Z(P), imply-
ing that Z(P) # *Z(P). By the same type of arguments, taking x ! instead
of x, we can also prove that ® is not contained in * Z(P).

Finally, take 4 := Z(P)N*Z(P). As |Q : Z(P)| = |Q : *Z(P)| = p
and Z(P) # *Z(P), we obtain that |Z(P) : A] = p, so Q/A is isomor-
phic to C, x C,. Moreover, 4 does not contain ® so, by Lemma 3.2,
Z(P)~® x A and P >~ E x A, where E is an extraspecial group of order
p>. First, as Q/A is isomorphic to C » x Cp,, E cannot be isomorphic to
the quaternion group. Second, we will prove that the case where E is iso-
morphic to €, x C, also yields to a contradiction. The result is due to
Glauberman [MP], but the proof we give, which is more elegant, is due to
Jacques Thévenaz.

Let K := (P/Q, *(P/Q)), which is isomorphic to a subgroup of Aut(Q/A)
viewed as a subgroup of GL(2,F,). As P/Q # *(P/Q), they generate all
SL(2,F,), so SL(2, F,) is a subgroup of K containing P/Q. Now P/Q is a
Sylow p-subgroup of K and we will prove that the exact sequence 1 — Q/ A —
E — P/Q — 1canbeextendedtoanexactsequencel - Q/4A - L - K —
L and hence to an exact sequence 1 — Q/A4 — L' — SL(2,F,) — 1. Tohave
this, it suffices to verify [Br, pp. 84-85] that the class #(E) determined by E in
H?*(P/Q, Q/A)is K-stable; that is, for any k € K, we have

P/Q k(P/Q) .
resP/ka(P/Q)h(E) =168, k(p0) conj, (h(E)). (*)

Here res is the restriction in cohomology and conj, is the morphism
induced by the conjugation by k in cohomology. If P/Q # %(P/Q), then
P/QN*(P/Q) =1 and the relation () is trivially satisfied. Suppose
that P/Q = K(P/Q). Take k to be a representative of k in N;(Q) that
normalizes P. We have that k induces the conjugation by k on Q and

P/Q. So the conjugation by k induces conj, on H*(P/Q, Q/A). Thus
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h(E) = conj,(h(E)) and () is again satisfied. Now, for £ >~ C,: xC),
h(E) is not trivial.

The contradiction comes from the fact that H>(SL(2, F,),0/4) =0,
so the cohomology class h(E) induced by E in H>(P/Q, Q/A) would be
trivial. Indeed let U := {(; )} be a Sylow p-subgroup of SL(2, F,). Write
§ :=SL(2,F,) and N(U) := NSL(z,F,,)(U) The restriction to U in coho-
mology induces a monomorphism res;;: H>(S, Q) — H*(U, Q)¥Y), where
H?*(U, Q)N are the fixed points under the natural action of N(U). Now

= {(u) is a cyclic group, so [Be, p. 60] its cohomology is

H*(U,Q) = QU/KPZ_O1 ui>v

By a simple computation, we obtain QU = (z), where z is a generator of
®(P) and {(Zf:ol u')vjv e O} =0, so H*(U, Q) = (z). As z is not fixed by
N(U), we have H*(U, Q)N(Y) = 0, and therefore H*(S, Q) = 0.

veQ}.

We prove now that the remaining case, P = E x A with E either dihe-
dral of order 8 (when p = 2) or extraspecial of order p* and exponent p
(when p is odd), is indeed an exception to Theorem 4.2. Let us start with
a property of resistant groups:

PROPOSITION 4.4. Let P be a p-group and let B be a finite abelian p-group.
If P is not resistant, then the direct product P x B is not resistant.

Proof. Let G be a finite group with P as Sylow p-subgroup and let Q
be an essential p-subgroup of G embedded in P. Such a G exists because
we suppose that P is not resistant. In this case, P :=Px B is a Sylow
p-subgroup of G = = G x B. As Q is p-centric in P, so is Q =Q0xB
1nP Moreover, G(Q)/QCG(Q) Ng(Q)/QCs(Q). This means that, as

Fp(Ng(Q)/QC;(Q)) is disconnected, so is (NG(Q)/QCG(Q)) Then O
is an essential p-subgroup of G. This proves that P is not resistant.

PROPOSITION 4.5. Let P = E x A, where A is elementary abelian and E
is dihedral of order 8 (when p = 2) or of order p* and exponent p (when p
is odd). Then P is not resistant.

Proof.  We can realize E as a Sylow p-subgroup of GL(3, F,). One can
verify that

1 0 =« 1 % =%
0= 0 1 = and O, = 010
0 0 1 0 01

are essential subgroups of G. So E is not resistant. As P is isomorphic to
E x A, where A is elementary abelian, by Proposition 4.4, P is not resistant.



126 RADU STANCU

In a very recent paper [Pu2], Puig introduced the notion of “full Frobe-
nius system,” which is a category over a finite p-group P whose objects are
the subgroups of P and whose morphisms are a set of injective morphisms
between the subgroups of P containing the conjugation by the elements of
P. The morphisms satisfy some natural axioms which are inspired by the
local properties of P when P is a Sylow p-subgroup of a finite group or a
defect group of a block in a group algebra. Puig defined in this context the
concept of “essential group” and proved that, on a full Frobenius system,
the analog of Alperin’s Fusion Theorem holds. Full Frobenius systems are
the generalization of the Frobenius category of a group, and of the Brauer
and Puig categories of a block.

The theorem in this paper remains true and all the arguments were cho-
sen to remain valid in a full Frobenius system over P. This permits us to
generalize the results to Brauer pairs and pointed groups.
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