
ELSEVIER Artificial Intelligence 82 (1996) 273-302

Artificial
Intelligence

On the hardness of approximate reasoning *

Dan Roth*
Aiken Computution Laboratory, Harvard University, 33 Oxford St., Cambridge, MA 02138, USA

Received April 1994; revised October 1994

Abstract

Many AI problems, when formalized, reduce to evaluating the probability that a propositional
expression is true. In this paper we show that this problem is computationally intractable even in
surprisingly restricted cases and even if we settle for an approximation to this probability.

We consider various methods used in approximate reasoning such as computing degree of belief

and Bayesian belief networks, as well as reasoning techniques such as constraint satisfaction and
knowledge compilation, that use approximation to avoid computational difficulties, and reduce
them to model-counting problems over a propositional domain.

We prove that counting satisfying assignments of propositional languages is intractable even for
Horn and monotone formulae, and even when the size of clauses and number of occurrences of the
variables are extremely limited. This should be contrasted with the case of deductive reasoning,
where Horn theories and theories with binary clauses are distinguished by the existence of linear
time satisfiability algorithms. What is even more surprising is that, as we show, even approximating
the number of satisfying assignments (i.e., “approximating” approximate reasoning), is intractable

for most of these restricted theories.
We also identify some restricted classes of propositional formulae for which efficient algorithms

for counting satisfying assignments can be given.

1. Introduction

Investigating the computational cost of tasks that are of interest to AI has been
argued [22,391 to be essential to our understanding and our ability to characterize these

* Supported by NSF grants CCR-89-02500 and CCR-92-00884 and by DARPA AFOSR-F4962-92-J-0466. A
preliminary version of this paper appeared in the Proceedings of the 13th International Joint Conference on
Artificial Intelligence (IJCAI-93), Chambery, France.

* E-mail: danr@das.harvard.edu.

0004.3702/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved
SSD10004-3702(94)00092-l

274 D. Roth/Artificial Intelligence 82 (1996) 273-302

tasks and to finding knowledge representation systems adequate for them. The problem
discussed most extensively in this context is the problem of propositional satisfiability,

the typical NF’-hard problem, which is of special concern to AI because of its direct
relationship to deductive reasoning. Many other forms of reasoning, including default

reasoning, planning and others which make direct appeal to satisfiability, have also

been shown to be NP-hard. In practice, there is a fundamental disagreement about
the implications of this. There is no debate, however, that something has to be given

up: restrict the form of the statements in the knowledge base, settle for approximate
output and so on. One consequence of the intensive research in that direction is the
identification of restricted languages for which propositional satisfiability can be solved
efficiently (e.g., Horn theories).

In this paper we consider a related problem, that of counting satisfying assignments of
propositional formulae. We argue that the role played by satisfiability problems in many

AI problems in which deduction is of special concern, is replaced by that of counting

satisfying assignments when approximate reasoning techniques are used. To support this
argument we show that various methods used in approximate reasoning, such as com-
puting degree of belief and Bayesian belief networks, are equivalent, computationally,
to solving counting problems. We also show that considering the problem of counting
solutions is a valuable approach in evaluating techniques that use approximations in an
effort to avoid computational difficulties, such as constraint satisfaction and knowledge

compilation,

We analyze the computational complexity of counting satisfying assignments of
propositional languages, and prove that this is intractable even for Horn and mono-
tone formulae, and even when the size of clauses and number of occurrences of
a variable in the formula are extremely limited. This should be contrasted with the

case of deductive reasoning, where Horn theories and theories with binary clauses are
distinguished by the existence of linear time algorithms for their satisfiability. What
is more surprising is that, as we show, even approximating the number of satisfy-
ing assignments (that is, “approximating” approximate reasoning), is intractable for

most of those restricted theories. We identify some restricted classes of propositional
formulae for which we develop efficient algorithms for counting satisfying assign-

ments.
While our positive results can sometimes be used to find tractable languages for the

approximate reasoning technique discussed, we believe that the main contribution of this
paper is the presentation of these widely applicable and surprising hardness results. This
implies that research should be directed away from investigating structural constraints

of the “world” and towards investigating distributional constraints, and suggests that we
reconsider how we model the reasoning problem. We discuss these issues further in
Section 5.

In the next section we give background material from the computational complexity of
counting problems, and in Section 3 we present our positive and negative results on exact
and approximate counting of satisfying assignments. The main results are presented in
Section 4, where we put the model-counting results in the context of various approximate
reasoning techniques, by reducing those techniques to counting problems. Proofs of the
technical results appear in the appendix.

D. Roth/Artificial Intelligence 82 (1996) 273-302 275

2. The computational complexity of counting problems

We give in this section a brief overview of the computational complexity of counting
problems and the related problems of approximate counting and random generation of
solutions. For a detailed discussion consult [10,14,37,38].

With a large number of decision problems we can naturally associate a counting
problem. For example, counting the number of satisfying assignments of a Boolean

formula, counting the number of perfect matchings in a bipartite graph and counting
the number of cycles in a graph. Clearly, the counting version is at least as hard as
the decision problem but in many cases, even when the decision problem is easy, no
computationally efficient method is known for counting the number of distinct solutions.
The class #P was introduced by Valiant [37,381 in an effort to explain these phenomena.
A counting problem belongs to #P if there is a non-deterministic algorithm such that
for any instance I of the associated decision problem, the number of “guesses” that
lead to acceptance of Z is equal to the number of distinct solutions to I, and such that
the algorithm is polynomial in the size of I. ’ As usual, the hardest problems in the
complexity class are complete in the class.

In particular, it was shown that counting the number of satisfying assignments of a

CNF formula as well as the counting versions of many other NP-complete problems
are complete for #P. More significantly, it was also shown that the counting versions of

many problems in P are also complete for the same class. Examples of the latter include
counting the number of satisfying assignments of a DNF formula, counting the number
of cycles in a graph and many other problems [29,37,38].

Problems that are #P-complete are at least as hard as NP-complete problems, but

probably much harder. Evidence to the hardness of problems in #P is supplied by a
result of [361 which implies that one call to a #P oracle suffices to solve any problem
in the polynomial hierarchy in deterministic polynomial time. This may serve also as

indication that #P is outside of the polynomial hierarchy. It is therefore natural to
consider the problem of approximate counting. The notion of approximation we use
is that of relative approximation [14,15,35]. Let M, M' be two positive numbers and
6 3 0. We say that M' approximates M within 6 when

M’/(l +6) 6 M 6 M'(1 +a).

Indeed, approximating a solution to a #P problem might be easier than finding an
exact solution. In fact, it is no harder than solving NP-hard problems [351. For example,
there exists a polynomial time randomized algorithm that approximates the number
of satisfying assignments of a DNF formula within any constant ratio [14,151. It is
possible, though, for a #P-complete problem, even if its underlying decision problem is
easy, to resist even an efficient approximate solution. An example for that was given
in [141, and in this paper we exhibit a similar phenomenon. We prove, for various
propositional languages for which solving satisfiability is easy, that it is NP-hard to
approximate the number of satisfying assignments even in a very weak sense.

’ In 1 37 1 the definition is given in terms of “counting Turing machines”.

276 D. Roth/Art$cial Inrelligence 82 (1996) 273-302

We use the notion of relative approximation to discuss probabilities as well. It is worth
noticing therefore that this notion of approximation is preserved when computing ratios

of quantities. Assume we can approximate MI and Mz to within 6. That is, we can find
M;,M;suchthatM;/(l+S)6M,6(1+S)M;andM;/(1+6)6Mp~(l+S)M;.

Then,

M, 1
< 5 6 (I+&$.

M; (1 +a)2 IV2 2

Thus, this yields a relative approximation of the ratio Ml/M2 as well (within 2S+ S2).
In particular, when computing the conditional probability P(Y = y 1 X = x), of the event
Y = y given evidence X = x, since

P(Y=yIX=x)=
P(Y=y,X=x)

P(X = x)

we conclude that:

Proposition 2.1. The complexity of computing relative approximation of the conditional

probability P(Y = y 1 X = x) is polynomially related 2 to that of computing relative

approximation of the unconditional probability P (Y = y).

We note that a related class of problems of interest to AI, that of randomly generating
solutions from a uniform distribution, was shown in [141 to be equivalent to randomized
approximate counting, for a wide class of problems. (All natural problems considered
here, e.g., finding satisfying assignments of Boolean formulae and various graph prob-
lems are in this class.) It is therefore enough, from the computational complexity point

of view, to consider the problems of exact and approximate counting, as we do here.

3. Summary of model-counting results

In this section we summarize our results on exact and approximate counting of
satisfying assignments of propositional languages. Those include hardness results for
exact and approximate counting and positive results for exact counting. Complete proofs
of the results are given in the appendix.

Let #(SAT, L) (#(SAT, L)) denote the problem of counting (approximating, respec-
tively) the number of satisfying assignments of a given formula from the propositional
language L. Given the problem #(SAT, L), a problem hierarchy is obtained whenever
we place additional restrictions or relaxations on the allowed instances. Given proposi-
tional languages 13, and L2, define Lt c L2 if every instance of Cl is also an instance
of L2. (e.g., HORN & CNF.) Clearly, if we can solve the problem #(SAT, L2) we
can solve the problem #(SAT, Cl); to prove hardness results it is therefore enough to

* By that we mean that a procedure that relatively approximates unconditional probabilities and is, say,

polynomial in 6, yields a procedure that can relatively approximate conditional probabilities, and is also

polynomial in 6 (and of course, vice versa).

D. Roth/Artificial Intelligence 82 (1996) 273-302 217

Fig. 1. Complexity of (approximately) counting satisfying assignments.

consider the most restricted languages. The same argument holds for the corresponding

approximation problem.
We use the following notations and conventions in denoting propositional languages:

if LANG is a class of Boolean formulae and k, 1 are integers, then kLANG denotes the

subclass of formulae in LANG in which a clause consists of up to k literals; Zp-LANG

denotes the class of all LANG formulae in which no variable occurs more than I times.
1 is the degree of the formulae. For example, 2MONCNF consists of monotone CNF
formulae with clauses of length 2; 3~-2HORN consists of Horn formulae with clauses

of length 2 in which no variable occurs more than 3 times.
S-AT: Any Boolean formulae.
MON: Boolean formulae in which all variables are unnegated (monotone formu-

lae).
CNF: Boolean formulae in Conjunctive Normal Form.
MONCNF: Monotone CNF.
HORN: A CNF in which clauses have up to one unnegated variable (Horn clauses).

2BPMONCNF: A 2MONCNF in which the set of variables can be divided into
two sets, and every clause contains one variable from each.

Acyclic-2MONCNF: Given a 2MONCNF theory 4, let G be an undirected graph
containing a vertex for every variable in q5 and an edge connecting two vertices if

and only if the corresponding variables appear in the same clause. 4 is Acyclic-
2MONCNF if this corresponding graph is acyclic.
Acyclic-2HORN: Given a 2HORN theory q5, let G be a directed graph containing
a vertex for every literal in q5 and an edge from every vertex corresponding to a
literal in the body of a rule (i.e., negative variable in the clause representation of
the rule) to the vertex corresponding to a literal in the head of a rule (i.e., positive
variable in the clause representation of the rule). Two special nodes T and F are

added for clauses with empty body or empty head. 4 is Acyclic-2HORN if every
connected component of this corresponding graph is a directed tree.

Fig. 1 summarizes our results; it presents a hierarchy of propositional languages
along with a classification according to the complexity of #(SAT. C) and s(SAT, L).

278 D. Roth/ArtQicial Intelligence 82 (1996) 273-302

Based on the above comment these results imply similar results on other, less restricted
languages. 3

It is noticeable that for various propositional languages having efficient algorithms for
satisfiability, and even for very restricted versions of these (e.g., 3~-2HORN), exact
counting is complete for #P In fact, for the case of Horn theories, the situation is fully

understood, and we give an efficient algorithm for the only possible case, 2,u-2HORN.
The situation for approximate counting is even more surprising: for very restricted

classes of Horn theories (e.g., 3,~~2HORN) it is NP-hard to approximate the number of

satisfying assignments even within, say, 2n”‘0 (for formulae over n variables). Similar
results hold for 2MONCNF theories, for which the bounded degree case is open. Our
positive results virtually complete the complexity picture and can be directly applied in

some of the reasoning techniques considered.

3.1. Statements of results

We now formally state the technical results outlined above. We state the results only
for some of the important languages; results for other languages can be easily deduced

by inclusion, as described above. Proofs are given in the appendix.

Theorem 3.1 (Hardness of Exact Counting). Let .Z E C be a propositionalformula on

n variables. If L is one of the following propositional languages, counting the number

of satisfying assignments of _Z is complete for #P:
(1) L = 2MONCNF [38],
(2) C = 2BPMONCNF [291,

(3) C = 2HORN,
(4) C = 3,+2HORN,
(5) C = 4,~-2MON.

Theorem 3.2 (Hardness of Approximation). Let _Z E C be a propositional formula on

n variables, and let E > 0 be any constant. If C is one of the following propositional

languages, approximating the number of satisfying assignments of 2 to within 2”‘-’ is

NP-hard:

(1) C = 2MONCNF,
(2) C = 3,+2HORN.

Theorem 3.3 (Positive results). Let X E L be a propositional formula on n variables.

If L is one of the following propositional languages, then there exists an efJicient

algorithm for counting the number of satisfying assignments of 2.

(1) C = 2,+2MONCNF,
(2) C = ~,u-~HORN,

3 Notice that we place the language 2HORN above 2MONCNF even though 2HORN does not contain

2MONCNE 2HORN contains, however, 2anti-MONCNF (where all the variables in each formula are negated

rather than unnegated) and thus, clearly, all the counting results that hold for 2MONCNF hold also for
2anti-MONCNF.

D. Roih/Artijiciul Intelligence 82 (I 996) 273-302 219

(3) L = Acyclic-2MONCNF,
(4) L = Acyclic-2HORN.

4. Reducing approximate reasoning to counting

In this section we consider various techniques for approximate reasoning and show
that in each case inference is equivalent to solving a counting problem. We start by

considering the case of computing degree of belief, the underpinning of approximate
reasoning. We then consider Bayesian belief networks, reasoning with approximate

theories and constraint satisfaction problems. Finally, we discuss some previous work
that relates approximate reasoning to counting problems, for which our results here also

apply.

4.1. Degree of belief

The inference of a degree of belief is a generalization of deductive inference which
can be used when the knowledge base is augmented by, e.g., statistical information, or

in an effort to avoid the computationally hard task of deductive inference.
Consider a knowledge base consisting of a propositional theory 2 and assume we

would like to assign a degree of belief to a particular statement LY. This situation is
natural in various AI problems such as planning, expert systems and others, where the
actions an agent takes may depend crucially on this degree of belief. In [24] it is
suggested that the kind of reasoning used in expert systems is the following: “we are
given a knowledge base of facts (possibly, with their associated probabilities) ; we want
to compute the probability of some sentence of interest. . . . According to probabilistic

logic, the probability of a sentence is the sum of the probabilities of the sets of possible

worlds in which that sentence is true . . .“.
Indeed, the general approach to computing degree of belief is that of assigning

equal degree of belief to all basic “situations” consistent with the knowledge base,
and computing the fraction of those which are consistent with the query. Much work
has been done on how to apply this principle, and how to determine what are the basic

situations [1,2,4].
We consider here the question of computing the degree of belief in a restricted

case, in which the knowledge base consists of a propositional theory and contains no

statistical information. The hardness results we get in this restricted case just highlight
the computational difficulties in the more general cases. 4 Using the above approach,
all possible models of the theory are given equal weight and we are interested in the
computational complexity of computing the degree of belief of a propositional formula,
that is, the fraction of models that are consistent with a propositional query.

a The first-order version of this problem was considered in [121 where it wm shown that almost all problems

one might want to ask are highly undecidable. In some cases, though, it was shown that the asymptotic
conditional probabilities exist, and can be computed.

280 D. Roth/Artificial Intelligence 82 (1996) 273-302

Given a propositional theory 2 on n variables, the probability that 2 is satisjed, Px,

is computed over the uniform distribution over the set (0, 1)” of all possible assignments

of 2.

Pz = Prob{Z e T} = IM(_Z)I/2”,

where M(2) denotes the set of all satisfying assignments of .Z, and IM(_Z) 1 denotes
its size, and T stands for the truth value.

Given a propositional theory Z: and a propositional statement LY, the degree of belief
in a, is the conditional probability of a with respect to 2, Palz, that is, the fraction of

satisfying assignments of 2 that satisfy LY:

Pals = Prob{a A _Y5 E T I 2 E T} =
IM(aA-91

IM(-O ’
The observation that IM (a) 1 = PalpVlr for any variable p, together with the discussion
in Section 2 (Proposition 2.1) implies:

Proposition 4.1. The complexity of computing (approximating) the degree of belief in a

propositional statement with respect to a propositional theory, is polynomially related to

the complexity of computing (approximating) the number of models of a propositional

statement.

Together with the results in Theorem 3.1 and Theorem 3.2 we have:

Theorem 4.2. The problem of computing the degree of belief in a propositional state-

ment (over n variables) with respect to a propositional theory is complete for #P. 5

For every fixed E > 0, approximating this probability within 2”‘-’ is NP-hard.

4.2. Bayesian belief networks

Bayesian belief networks provide a natural method for representing probabilistic de-
pendencies among a set of variables and are considered an efficient and expressive

language for representing knowledge in many domains [131. We consider here the class
of multiple connected belief network, i.e., networks that contain at least one pair of

nodes (variables) that have more than one undirected path connecting them. It has been

argued that the expressiveness of these networks is required for representing knowledge
in several domains, like medicine. We first present briefly a general class of belief
networks and the associated inference problem and then show how to reduce the in-
ference problem to that of counting satisfying assignments of a propositional formula.
For definitions and an elaborate discussion of Bayesian belief networks, the expres-
siveness of this representation, and the type of inference one can utilize using it, see

[261.

s Strictly speaking the problem of computing the degree of belief is not in #P, but easily seen to be equivalent

to a problem in this class. We keep the same loose interpretation in the rest of the paper.

D. Roih/Arrijicial Intelligence X2 (1996) 273-302 281

A Bayesian belief network (causal network) consists of a graphical structure aug-
mented by a set of probabilities. The graphical structure is a directed acyclic graph
(DAG) in which nodes represent random variables (domain variables) and edges repre-
sent the existence of direct causal influence between the linked variables. A conditional
probability is associated with the group of edges directed toward each node (and not
with each single edge). Prior probabilities are assigned to source nodes (i.e., any node
without any incoming edge). We represent the belief network as a triple (YE, P),

where V is the set of vertices (variables), E is the set of edges and P is the set of
probabilities. In particular, P consists of prior probability functions, P(X; = xi), for

every source node Xi and conditional probabilities functions, {P(Xi) X,~)}K~~~,~, , for
each node X; with a set px, of direct predecessors. (We use the notation P(Xi = Xi) and
P(xi) inadvertently, when it is clear that we refer to the variable Xi.) See the construc-
tion in the proof of Theorem 4.3 for an example of a belief network. In general, not

every probability distribution can be represented by a Bayesian belief network. However,
given a DAG it is easy to specify consistently the conditional probabilities. One needs

only to make sure that the conditional probabilities attached satisfy, for every node Xi,

C,, P(Xi =Xi I PX,) = 1.

For complexity analysis, we take our complexity parameter to be II, the number of

nodes in the belief network. Notice that the conditional probabilities tables associated
with the network might be exponential in n. Practitioners of Bayesian belief networks
try to avoid this case, of course. In our reduction the conditional probabilities tables will

have concise representations, polynomial in the number of nodes in the network, and in
this sense one can think of our complexity measure as if it is the total size of network,
including the conditional probabilities tables.

The general inference problem using belief network is that of calculating the poste-
rior probability P(S1 1 &), where Si (S2) is either a single instantiated variable or a
conjunction of instantiated variables. The most restricted form of probabilistic inference,

determining P (Y = T) for some propositional variable Y (with no explicit conditioning
information), was analyzed by Cooper [51 who proved that it is NP-hard. This hard-
ness result for the exact inference problem shows that one cannot expect to develop

general-purpose algorithms for probabilistic inference that have a polynomial running
time and therefore there is a need to divert attention toward trying to construct up-

proximation algorithms for probabilistic inference. Our results show that this is not the
case:

Theorem 4.3. The problem of computing the probability that a node in a Bayesian

belief network is true is complete for #P. Moreover; for every jixed F > 0, approximating

this probability within 2”‘-’ (where n is the size of the network) is NP-hard.

Proof. The proof is based on the reduction from [5]. The two major differences are
that (1) we reduce the problem of counting satisfying assignments of a propositional
formula to that of computing the probability that a node in a Bayesian belief net-
work is true, and (2) based on the results from Section 3 we can start our reduc-
tion from a restricted propositional formula, yielding a more restricted network topol-

ogy.

282 D. Roth/Artificial Intelligence 82 (1996) 273-302

Fig. 2. The belief network generated from the 2MONCNF formula 2’.

In the following we reduce the problem of counting satisfying assignments of a
2MONCNF6 formula to that of computing the probability that a node in a Bayesian
belief network is true. Since our reduction preserves the number of satisfying assignments

this reduction holds for the problem of approximating the probability as well.
Consider an instance of 2MONCNF, 2 = {cl, 13, . . . , c,,} where ci are clauses on a

set (I = {uI,u~,. . . , u,} of n Boolean variables. We construct a belief network BN =

(YE, P) containing variable Y such that

2”P(Y =T) = IM(S)I.

To construct BN = (YE, P) we show how to define the vertices V, the edges E and
the set of prior and conditional probabilities P. V is defined to be a set of n + m + 1

vertices, one for each variable Ui, one for every clause cj and one for Y. The set of
edges E consists of up to 3m edges: a variable ui is connected to all clauses cj in which
it appears (i.e., total of up to 2m edges, since _Z E 2MONCNF); Y is connected to all
clauses c.i. Fig. 2 depicts the BN generated using the above procedure for the instance

of 2MONCNF in which CJ = {ut , ~42, ug , uq}, and

z={(UI vu2),(ul vu3),(u2vu4)}.

The set of probabilities P is defined as follows: Each of the source nodes Ui, 1 6
i < ~1, is given a prior probability of l/2 to be T. For incoming edges to the node

corresponding to the clause c,i we define the conditional probability such that the node
becomes T only when it is satisfied by the assignment to the variables in the clause.
Formally, if c.i = u,it V uj2 (1 < j 6 m), define the conditional probabilities by:

P(c,,=T/u,;=o,,~;=u~)

1,
=

if the assignment uf = ~1, u,: = u:! satisfies cj,

0, otherwise.

h This is not possible in [51, since the results there hinge on the hardness of solving satisfiability, which can

be done in polynomial time for 2MONCNE

D. Roth/Artificial Intelligence 82 (1996) 273-302 283

Finally, the conditional probability for the edges coming into the node Y is defined by

P(Y=Tlc,,c:! ,..., c,,,)=
1, ifcl=T,cz=T ,..., cn,=T,

0, otherwise.

It is easy to see that the structure (K E, P) defined is indeed a Bayesian belief network.
Also, it is clear that the construction of a belief network from a given 2MONCNF
instance can be accomplished in time that is polynomial in the size of the 2MONCNF
instance. ’

We now compute the probability P(Y = T). Let u = (~1,. . . , u,) be an assignment
of the n input variables (that is, u E (0, 1)“)) and c = (cl, . . . , c,,) be an assignment
of the m clauses (that is, c E (0, 1)“‘).

By the construction above we then have that

2’1-1 2”‘-,

P(Y=T)=~~P(Y=Tlc=t)P(c=tlu=s)P(u=s). (1)
S=o t=o

Suppose _Z is satisfiable, and let SI , ~2,. . . , Sk be the satisfying assignments. Clearly, for

i= I,... , k, P(u = si) = l/2”. Also, by the definition of the conditional probability for
i= l,... ,k, we have that P(c=c(si) 1 u=si) =P(Y=T / c=c(si)) = l,andforany
other assignment, these terms are equal to 0. Thus, the internal sum in Eq. (1) is equal

to l/2” when s is a satisfying assignment of 2, and is equal to 0 otherwise. We get,

Applying now the results in Theorem 3.1 and Theorem 3.2 completes the proof. 0

We have considered the computational complexity of computing the probability of a
node in a Bayesian belief network being true. To compute a conditional probability, that
is, P (Y = y 1 X = x) , where X, Y might be sets of nodes in the network, we notice that

P(Y=y I X=x) =
P(Y = y,x = x)

P(X=x) .

It is clear that exact computation of the conditional probability is as hard as computing
the unconditional probability (taking, e.g., X to be a single source node). Based on
Proposition 2.1 this is the case also for the problem of approximating the conditional

probability, and therefore we can conclude:

Theorem 4.4. The problem of computing the conditional probability of a node given

evidence in a Bayesian belief network, is complete for #P. Moreover; for every jixed

E > 0, approximating this probability within 2”‘-‘: (where n is the size of the network)
is NP-hard.

I

be

This relies on the fact that we can define the conditional probabilities concisely. In general, every

associated with a conditional probability table that is exponential in the size of the network.

can

284 D. Roth/Artificial Intelligence 82 (1996) 273-302

Finally we note that, as in [51, this reduction can be modified to hold for restricted
network topology (limited in-degree, out-degree, etc.). Further restrictions to the topolo-
gies of the network can be utilized if we reduce problems of counting satisfying assign-

ments of syntactically restricted CNF formulae to that of computing the probability that
a node in the network is true. In light of the results in Section 3, this can yield even
stronger hardness results. Recently, Dagum and Luby [6] presented an even stronger
result, implying the hardness of computing an absolute approximation of probabilities in
Bayesian networks. The results here are different in that we show that the inference is

equivalent to counting, and combined with the results in Section 3, it implies hardness
results even for restricted network topologies.

4.3. Reasoning with approximate theories

The theory of reasoning with approximate theories was introduced by Selman and
Kautz in a series of papers [17,18,32] as a new approach to developing efficient
knowledge representation systems.

The goal is to speed up inference by replacing the original theory by two theories

that belong to a different propositional language L: and approximate the original theory.
One approximate theory implies the original theory (a lower bound) and the other one
is implied by it (an upper bound). While reasoning with the approximations instead of

the original theory does not guarantee exact reasoning, it can sometimes provide a quick

(but not necessarily complete, see below) answer to the inference problem. This can
happen when L allows for efficient deduction, e.g., if C is the class of propositional Horn

formulae. * Of course, computing the approximations is a hard computational problem,
and this is why it is suggested as an “off-line” compilation process. Some computational
aspects of computing theory approximations and reasoning with them are studied also
in [3, 11,211. In the following we concentrate on discussing Horn approximation.

For notational convenience, when no confusion can arise, we identify in this section
the propositional theory .Z with the set of its models (satisfying assignments). Observe
that the connective “implies” (b) used between Boolean functions (propositional for-

mulae) is equivalent to the connective “subset or equal” (C) used for subsets of models.

That is, Xi b & if and only if Zi C 22.
Consider a propositional theory 2.

and Horn upper bound, respectively,

&h + 2 + sub

or, equivalently, in subset notations,

Zb c -Z c Ah.

The Horn theories &,, &,h are a Horn lower bound
of 2, if and only if

2 Xlh and _&h, the greatest Horn lower bound and least Horn upper bound, respectively,
of 2, are called Horn approximations of the original theory 2.

s The implication problem for Horn theories can be solved in linear time in the combined length of the

theory and the query. This remains true for even a broader class of queries such as DNF formulae where each

disjunct contains at most one negative literal and arbitrary CNF formulae.

D. Roth/Artificial Intelligence 82 (1996) 273-302 285

In order to answer 2 k (Y, we use a Horn approximation based inference procedure in
the following way: (1) test if &,b k (Y. If the answer to (1) is “yes”, then the inference

procedure answers “yes”, 2 k (Y. Otherwise, (2) test if J$, + a. If the answer to (2)

is “no”, then the inference procedure answers “no”, 2 F cy. Otherwise, the inference
procedure returns “don’t know”.

Aside from the two computational problems related to Horn approximations, namely,
computing the approximations and the question of the size of the formula represent-

ing the approximations (see e.g., [3,17,18,21,32]) a third major question, that is
harder to analyze, is the question of evaluating the utility of reasoning with the ap-

proximate theories. Clearly, if for a given query we have either Xlub k (Y or -&lb F LY,
the answer to the question 2 b (Y is correct. The total performance of the inference
procedure is determined, though, by how many queries are answered “don’t know”,
forcing the procedure to resort to the original inference problem in order to answer the

query.
Consider a theory 2, and let &,,b be its least upper bound approximation.

Proposition 4.5. The number of queries for which the reasoning with approximate

theories returns “don’t know” is at least exponential in l&,h \ 21.

Proof. Let S = &,h \ _Z. For every subset s c S define the query LY, = 2 U s (that is,
the set of models of LY consists of the models of 2 and the models in the set s). Then,

for all s C S, &:h’lh + (Y,~ (since Zg[b k Xc), and &,b F cry. Therefore, for all the 21sl - 1

queries cy,, reasoning with approximate theories returns “don’t know”. q

In [161 it is shown that, for a family of propositional languages C which consists of

kHorn formulae (all Horn formulae with up to k literals in a clause), one can construct

examples of theories 2 for which I&b \ -Z] IS exponential in the number of variables,
where _&,h is the least upper bound of 2 in L. (Surprisingly, one can even construct

(k+ 1) Horn theories with these properties.) Using Proposition 4.5, this leads to a double
exponential number of queries for which reasoning with approximate theories returns

“don’t know”. In [211 tools are developed that allow for a construction of such examples
for every language L with respect to which we want to consider theory approximation.
We briefly describe one example, for the case of Horn approximation:

Consider the theory

X= (Xl Vxz) A (Xg Vxq) A...A (x,-1 Vx,).

It is easy to see that the number of models of 2 is 3”/2. However, the least up-
per approximation of Z with respect to Horn, &h, can be shown to contain all the
models in (0, l}“, that is, it is of size 2”. This can be argued from the fact that
the set of models of any Horn formula is closed under intersection (bitwise “and”)
(see, e.g., [9]). Therefore, the size of &b \ 2 is exponential in the number n of
variables.

This question is partially addressed in [111, where learning techniques are used to
find a locally-optimal approximation. However, in [111, as is done in general in the
theory of Horn approximations, an approximation is defined in terms of containment,

286 D. Rorh/Ar@cial Inrelligence 82 (1996) 273-302

(that is, logical strength), and there is no guarantee that this approximation is “close”
to the optimal one, nor that the optimal one approximates the original theory within

any reasonable bound, in the sense that it answers some fraction of the queries cor-
rectly.

Taking the “counting” approach, as we suggest in this paper, can shed some light
on this problem. As argued above, a more reasonable way to estimate the utility of
reasoning with approximate theories is to define it in terms of proximity in the number
of models, since this correlates positively with the number of queries answered correctly
(i.e., not answered with “don’t know”) by the approximations. The examples presented

indicate that, when no restriction are imposed on the queries, even syntactically similar
propositional languages (e.g., (k + l)Horn formulae and kHorn formulae) can be far
enough in terms of the number of models to produce unacceptable behavior.

The argument presented above, as exhibited in Proposition 4.5, shows that the heart of

the problem is the fact that the queries presented to the reasoner are unrestricted. Thus it
motivates an investigation in the direction of reasoning with restricted queries, where it
might be possible to avoid these difficulties. Indeed, in [191 an experimental analysis is
presented in which, under severe restrictions on the classes of queries allowed, reasoning
with approximate theories is shown to succeed on a large percentage of the queries. In
[21] a general analysis is developed and it is shown, in particular, that reasoning with

the least upper bound of a theory _Z with respect to L is always correct if and only if

the queries belong to the language L.

4.4. Constraint satisfaction problems

Constraint satisfaction problems (CSP) provide a convenient way of expressing

declarative knowledge, by focusing on local relationships among entities in the do-
main.

A constraint satisfaction problem [71 involves a set of n variables xl,. . . , x, having
domains DI, . . , D,, where each Di defines the set of values that variable xi may

assume. An n-ary relation on these variables is a subset of the Cartesian product

DI x 02 x . . . x D,. A constraint between variables is a subset of the Cartesian product
of their domains. The set of all n-tuples satisfying all the constraints are the solutions
to the CSP. The problem is either to find all the solutions, or one solution.

In general, constraint satisfaction problems are hard, as a generalization of satisfia-
bility of CNF formulae. A CNF formula is a constraint satisfaction problem in which
Di = (0, 1) for each i, and each clause is the relation consisting of all the tuples for
which at least one literal is 1. The set of solutions of the CSP is the set of satis-
fying assignments of the formula. In particular, if we consider a network of binary
constraints 9 over Di = (0, l}, as is usually done, the problem can be represented as a
2SAT formula.

Finding all the solutions is clearly an enumeration problem, and based on the results in
Section 3, even the associated counting problem is #P-complete for almost all nontrivial

‘) Not every n-ary relation can be represented by a network of binary constraints with n variables [23J.

cases. ‘O

D. Roth/Artificial Intelligence 82 (1996) 273-302 281

However, even finding one solution of a constraint satisfaction problem is known to be
hard in general, as discussed above, and different heuristics techniques have been used to
find approximate solutions. To discuss those under the counting point of view presented
here, we first observe that the above discussion implies that computing (approximating)
the number of solutions of a (binary) CSP problem is at least as hard as computing
(approximating) the number of solutions of a 2MONCNF formula.

Together with the results in Theorem 3.1 and Theorem 3.2 we have:

Theorem 4.6. The problem of computing the number of solutions of a (binary) CSP

problem is complete for #P. For every jixed E > 0, approximating this number within
$ is NP-hard.

Search techniques were traditionally used to solve CSPs. These techniques require, in
the worst case, exponential search time, and analyzing those techniques in order to get
some performance guarantees is usually hard.

We exemplify how the counting point of view taken here can be used to evaluate
one class of heuristics [B] and restrict its feasibility. Dechter and Pearl suggest to use

counting to guide the search according to an estimate of the confidence we have that a
specific solution can be extended further to a full solution.

More specifically, it is suggested to (1) simplify the pending subproblems (i.e., make
some simplifying assumptions about the continuing portion of the search graph), (2)
count the number of consistent solutions in each simplified subproblem, and (3) order
the candidates according to these counts and use them to decide among the pending

subproblems.
The intuition behind the heuristics is that “the number of solutions found in the

simplified version of the problem is a good estimate to the number of solutions in the
original problem and thus is indicative of the chance to retain at least one surviving

solution.”
The results we present in Section 3 therefore restrict the utility of these heuristics

in two ways: First, the simplified subproblem must be a tree, or another syntactically

constraint structure (see Theorem 3.3), in order to be able to get a count of the solutions

of the simplified version. More significantly, in case the original problem possesses a
non-trivial structure, the number of solutions of the simplified version is not indicative

at all to the number of solutions of the original problem. If it were, this could be used
to approximate the number of solutions of the original problem, which we have shown
to be hard. To summarize:

Corollary 4.7. Using counting heuristics to constraint satisfaction problem is compu-
tationally intractable.

I” We comment, though, that Valiant’s results (1381, Fact 7) imply that under simple conditions (e.g., when

finding one solution is easy and the problem satisfies a form of self-reducibility), enumerating the solutions

is polynomial in their number even when the counting problem is hard. These conditions trivially hold for
Horn formulae, and therefore for subclasses of CSP as well.

288 D. Roth/Art@cial Intelligence 82 (1996) 273-302

On the other hand, the positive results (Theorem 3.3) can be used to identify restricted
domains for which these counting techniques can be shown useful.

4.5. Related results

The most related result to the work presented here is a reduction of yet another
approximate reasoning technique to a counting problem. Orponen [25] shows, by re-
duction, that the problem of computing Dempster’s rule of combination, the main tool in
the Dempster-Shafer theory of evidence is at least as hard as the problem of computing
the number of satisfying assignments of a propositional CNF formula. l1 Those results
can be now strengthened using Theorem 3.1 and Theorem 3.2. As immediate results
we get that (1) even the approximate version of Dempster’s rule of combination is

hard to compute and (2) the hardness result for the Dempster-Shafer theory still holds
even if we severely restrict the basic probability assignments allowed as evidence in the

Dempster-Shafer theory.

5. Discussion

We have put results on the complexity of counting and approximating the number of
satisfying assignments of propositional formulae in the context of various approximate
reasoning techniques. The significance of this approach was illustrated by showing

that various, supposedly different methods in approximate reasoning are equivalent to
counting. It is worth noticing, for example, that while there is an active discussion in
the approximate reasoning community as for differences in the semantical basis of the
Dempster-Shafer theory and the Bayesian approach (see, e.g., [27,31,33]) we show
here that there is one computational problem underlying both approaches: computing
inference is equivalent to counting satisfying assignments of a theory. Moreover, we have

shown that this approach is valuable in evaluating techniques that use approximations in

an effort to avoid computational difficulties. This was exemplified by analyzing heuristics
used in constraint satisfaction problems and the utility of reasoning with approximate

theories. We believe that the approach developed here can be found useful in the analysis
of other problems of interest to AI.

Our hardness results indicate that for the problems of computing degree of belief,
probabilistic reasoning and other approximate reasoning techniques, one cannot expect
to develop general-purpose algorithms that have a polynomial running time. Moreover,
even computing approximate inference was proved to be intractable.

These results do not rule out the possibility of developing efficient algorithms that

apply in restricted cases, as our positive results suggest; identifying more positive results
and investigating how they apply to various techniques might be one direction to extend

this work. We mention in particular the problem of (approximately) counting the number
of satisfying assignments in bounded degree 2MONCNF formulae. The problem is left

” A similar result, using a different reduction, was proved independently by Provan [301. We thank Greg

Provan for bringing [25,301 to our attention.

D. Roth/Artijicial Intelligence 82 (1996) 273-302 289

open (see Fig. 1) and its solution might be used to develop efficient algorithms for
constraint satisfaction problems, for example. The positive results presented here are
important therefore not only for pointing out the tractability frontiers, but also since they
provide a collection of techniques that can be used to further enhance our understanding
of these problems and develop new results, possibly, for other problems of interest to

AI.
However, the extent to which the hardness results apply (very restricted propositional

languages, restricted topologies of Bayesian networks, etc.), imply that research should

be directed away from investigating structural constraints on the “world” and towards

investigating distributional constraints, or limiting our reasoning tasks rather than the
“world’ we reason about. The first might include constraining the distributions we can

represent in our belief networks (e.g., [28]), while the second could imply studying
restrictions on the type of queries we need to respond to. This is motivated also by
the results in Section 4.3 that suggest that a possible approach to allow for efficient
reasoning might be to constrain the queries (rather than the “world”). Indeed, partly
motivated by these results, in [211 it is shown how constraining the queries gets around
the difficulties presented in Section 4.3 and leads to correct reasoning with approximate
theories.

A possible interpretation of the surprising and widely applicable results presented here
is that we need to reconsider the way we model the reasoning problem. One way to get

around the difficulties presented here is to allow the reasoner other ways to access the
“world’, instead, or in addition to the fixed (formula-based, Bayesian network-based,
etc.) knowledge-based approach that we analyze here. Promising results in this direction
are presented in [201.

Appendix A. Proofs

In this section we formally state and prove the results outlined in Section 3. The
results are stated only for some of the important languages in Fig. 1 and results for

other languages can be easily deduced by inclusion, as described in Section 3. The

results in this section are summarized in three theorems: in Section A.2 (Theorem 3.1)
we prove results on the hardness of exact counting. In Section A.3 (Theorem 3.2) we
prove results on the hardness of approximate counting. In Section A.4 (Theorem 3.3)
we give positive results on exact counting by describing efficient algorithms for counting

satisfying assignments for formulae in those languages.

A. 1. Preliminaries

For a Boolean function f we denote by M(f) the set of satisfying assignments of
,f and by lM(f)l its size. We denote {1,2,. ..,n} = [n].

Lemma A.l. The problem of counting the number of satisfying assignments of a
2MONCNF is equivalent to the problem of counting the number of independent sets in

a graph.

290 D. Roth/Artijiciul Intelligence 82 (1996) 273-302

Proof. Given a graph G(V!E) we associate with it a monotone CNF @o on variables

{XI>..., x,,} as follows:

@o= A (xivx,j).

(w,)EE

The inverse mapping is defined in the same manner: given a formula @ E 2MONCNF

on {XI,. . . ,x,}, construct a graph GQ,(YE) on {ut , . . . , u,,} as follows:

(D;, U.j) E E iff (xi V Xi) is a clause in @.

Now, let S, = {U,j : j E Z} be an independent set in G, then the assignment defined by

0, if i E I,
Xi =

1, otherwise,

satisfies @o. The reason is that in every clause xi V Xj at least one of the variables is

assigned to 1, since otherwise, by the definition of @o, (ui, Uj) E E, but both ui and Uj

are in the independent set SI.
For the other direction, assume that x is a satisfying assignment of @, and let I =

{i E InI : xi = 0}, then S, = {vj : j E I} is an independent set in GG. The reason is
that by the definition of the graph GQ, no two vertices which share an edge are in I,
since otherwise we have a clause in Cp that x does not satisfy. q

Corollary A.2. The problem of counting the number of satisfying assignments of a

kp-2MONCNF is equivalent to the problem of counting the number of independent sets

in a graph of degree k.

Proof. The mapping defined in Lemma A.1 maps graphs of degree k to k,u formu-
lae. 0

A.2. Exact counting

Theorem 3.1 (Hardness of Exact Counting). Let IS E C be a propositionalformula on

n variables. If L is one of the following propositional languages, counting the number
of satisfying assignments of 2 is complete for #P:

(1) C = 2MONCNF,
(2) C = 2BPMONCNF,
(3) C = 2HORN,
(4) C = 3,+2HORN,

(5) ,!I = 4,u-2MON.

Proof. (1) and (2) are well known: (1) is proved in [381; (2) is from [29]. We can
get (3) from (2) by negating all the variables in one of the bipartite sets.

To prove (4)) given a formula Q, in 2HORN we rewrite it, without changing the num-
ber of solutions, as a 3~-2HORN formula. Let @ be a 2HORN formula on {XI,. . . , x,}
and assume xi appears m(i) times in @ (negated or unnegated). For every i E [nl

D. Roth/Artificial Intelligence 82 (1996) 273-302 291

introduce m(i) new variables, {x~~)}+~,~(Q and replace the jth appearance of xi in @

by .x:.~) to get 2, a p-2HORN formula. We then conjoin 2 with Ai ri, where ri is the

following ~,u-~HORN formula:

Thus, the number of satisfying assignments of the 3~-2HORN formula 2 A Ai ri is
equal to the number of satisfying assignments of the original 2HORN formula, and the
counting problems for those languages are therefore equivalent.

For (5) we use a different rewriting technique. Given a 3p-2CNF formula @ we
rewrite it, while preserving the number of satisfying assignments as X A or where 2

and r are both monotone, and _Z and ,?Z A r are both in 4,~~2MON. Since 12 A lrl =
121 - 12 A rl, the hardness of exact counting for 4~-2MON formulae results from the
hardness of counting for 3,z-2CNF formulae (cf. (4)).

In rewriting @, given a variable Xi, which appears both negated and unnegated in

@, we replace its (up to 2) unnegated occurrences by yi and its (up to 2) negated
occurrences by zi. The resulting formula is a 3,~2MONCNF formula @‘. To force that

‘di, x = zi we denote

@” = /pYi v z,), r=V(YiAZi).

i i

It is clear that

Since 2 = @ A @” is a ~/.L-~MONCNF formula and r is a 1,~~2MON formula (in a

DNF form), the result follows. 0

A.3. Approximate counting

Theorem 3.2 (Hardness of Approximation). Let 2 E C be a propositional formula on

n variables. If C is one of the following propositional languages, approximating the

number of satisfying assignments of ,I$ to within a factor of 2”‘-‘, for any jixed E, is

NP-hard.

(I) C = 2MONCNF,
(2) L = 3,u-2HORN.

Proof. To get (2) from (1) we use the rewriting technique for nonmonotone clauses
as in (4) of Theorem 3.1. (This technique leaves the number of solutions the same but
might increase the number of variables up to n ‘. This can easily be handled as we do
below.) Notice that the rewriting technique used in (5) of that theorem does not extend
for approximations.

292 D. Rorh/Artijicial Intelligence 82 (1996) 273-302

The next lemma provides the main step in the proof of (1). The proof is based on
the “blow-up” technique developed in [141. A different version of this lemma appears

also in [341.

Lemma A.3. For any E, approximating the number of independent sets of a graph on

n vertices within 2”‘-’ is NP-hard.

Proof. We use the “blow-up” technique introduced in [141, to reduce the problem
of approximating the number of independent sets in G to the k-INDEPENDENT-SET
problem [lo]. Given G(YE), where 1 VI = n, we construct a graph G’(V’, E’) such that

approximating the number independent sets in G’ to within 2”‘-‘: can be used to solve
k-INDEPENDENT-SET in G. G’ is defined as follows: each vertex u E V is blown-up

to a “cloud” c(u) of m vertices in G’. If (u, u) E E, in G’ we construct a complete

bipartite graph on c(o) Uc(u)) ; otherwise, there are no edges connecting c(u) to c(u) > .
Formally,

V’={u’:uEV; jE{l,...,m}},

l?={(u’,~~):(u,u)~E; i,jE{l,..., m}}.

Assume now that G contains an independent set I of size k. Then, I’ = {d : u E I;
j E {l,..., m}} is an independent set of size km in G’. Since all the subsets of an
independent set are also independent sets, there are are least Nd, = 2km independent
sets in G’.

On the other hand, if G contains no independent set of size k, an independent set
in G’, contains vertices from up to k - 1 “clouds”, since otherwise, the corresponding

vertices in G (the “projection” of the clouds) generate in G an independent set of size

larger than k - 1. In particular, the largest independent set in G’ is of size < (k - l>m
(there might be, however, many different independent sets of that size). Thus, there are
no more than N,,, = (k”,)2(k-1)‘1’ independent sets in G’.

Finally, let k = n/2; in this case, k-INDEPENDENT-SET is NP-hard [10, p. 1941.
Given E > 0, choose r large enough such that 1 - (r - 2) /(I + 1) < E, and let m = n’.

The “blow-up” graph G’ is of size IV’\ = nm = n’+‘. We have that,

b J 2”’ _ 2(2”-n)/4 > 2nr-’ = $“/‘r--21”r+”

2”/2 ,

Notice also that this “blow-up” procedure is polynomial in the size of the original
graph. Therefore, if we can approximate the number of independent sets in G’ within
2,v’,‘-‘: < 2,Vl,Cr--21/(r+l~

we can use this approximation to decide whether the graph G’

has more than Nin or less than Nmax independent sets. As argued above, this leads to
deciding n/2-INDEPENDENT SET. 0

D. Roth/Artificial Intelligence 82 (I 996) 273-302 293

We have proved in Lemma A.1 that counting the number of satisfying assignments of
a 2MONCNF is equivalent to the problem of counting the number of independent sets
in a graph. This, together with Lemma A.3 implies the theorem. 0

A.4. Positive results

Theorem 3.3 (Positive results). Let 2 E L: be a propositional formula on n variables.
If L is one of the following propositional languages, there exists an efficient algorithm

for counting the number of satisfying assignments of 2.

(I) L = 2,~2MONCNF,
(2) C = 2,+2CNF,

(3) C = Acyclic-2MONCNE
(4) l = Acyclic-2HORN.

Proof. We prove (1) by developing a closed form formula that is easy to evaluate for
the number of independent sets in graphs of degree 2. For the other cases we develop
efficient algorithms. (3) is the problem of counting independent sets of trees, for which

we give an efficient recursive algorithm. The algorithms for (2) and (4) are more
elaborate. In both cases we start by constructing chains of the form xi + x2 + . . . +
x,., from the original theory. We then show that the original theory can be represented as
a composition of these chains, and develop compositions rules that allow us to count the
number of satisfying assignments of the composite chains. The difference between (2)
and (4) is the type of compositions allowed. We note that (1) and (3) are subcases of

(2) and (4)) respectively, but we give for them separate proofs, since those cases are
considerably simpler.

Proof of (1). Based on Corollary A.2 it is enough to count the number of independent
sets of a degree-2 graph. In the following we consider the empty set to be an independent

set.
Let G be a connected graph of maximal degree 2 on n vertices. G can be either a

cycle, in case all its vertices are of degree 2, or an arm if exactly 2 of its vertices are
of degree 1. We have:

Lemma A.4 Let ISi denote the number of independent sets in a cycle of length n, and

IS: the number of independent sets in an arm of length n. Then,

(i) IS: = 1 + z,;$” (n-!+‘),

(ii) ISi = 1 + EjI[“’ (‘y;) + (“yiy’).

Proof. We denote by ZSz,j (respectively, lSi,j) the number of independent sets of size j
in an arm (respectively, cycle) of length n. l,Y$j(o) counts those independent sets that

contain a fixed vertex, U, in the cycle.
(i) The problem of computing ISt,j reduces to the following combinatorial problem:

find the number of selections of j integers from the set { 1,. . . , n}, such that
no two consecutive numbers are selected. To count this number, consider any

294 D. Roth/Artificiul Intelligence 82 (1996) 273-302

selection of j different numbers from among { 1, . . . , n - j + 1). The mapping
which adds 0 to the first number selected, 1 to the second, . . . , j - 1 to the jth,
is a l-l correspondence between those selections and the legal selections we

count. Thus, we get:

I$$= (n-:+1).
To get the total number we sum on j, j < [n/2], and add 1 for the empty set.

(ii) We claim that Z!& = IS:_, i + IS:_, j
an arm with end points ut , ;,.

(u). To see that, consider the cycle as
(I .e, u;, u,, are adjacent in the cycle.) The first

term corresponds to the independent sets of the cycle that do not contain, say,
u17, while the second term correspond to those that contain it. (The latter group
cannot contain ui, so we get them by shifting each set that contains ui by one
place). Also, ZS;_,,j(u) = ZSz_3,j_, as we can just add two adjacent vertices as
prefix, one that is not selected and u. We get:

Z~,,i= (“Jj) + (‘~jr ‘)’
To get the total number we sum on j, j < Ln/2j, and add 1 for the empty

set. 0

As an immediate consequence of Lemma A.4 we get:

Lemma A.5 Let G(YE) be a graph of maximal degree 2, and assume G has r con-

nected components, of sizes nl , . . . , n,, respectively. The number of independent sets in

G is

where x E {a, c} depends on whether the component is an arm or a cycle.

Proof of (2). All the clauses in a 2~-2CNF theory are of the form 11 --+ 12 where every

literal Z; might be a variable x E X, or its negation, and every variable appears no more
than twice in the given theory. (I.e., either a literal appears twice and its negation never
appears in the theory or that the literal and its negation appear once each.) Notice that
in the implication representations every clause G V 12 has two equivalent representation,
11 ----) 12 and G + K. Since it will be convenient to use the implication representation we
assume that we hold both representations and use the one that it more convenient. If a
literal I appears both as an antecedent and as a consequent in two clauses, e.g., Ii + 12
and 12 + 13 we can combine then the chain 11 + 12 -+ 13, which now contains the only

occurrence of var(l2) in the theory.
We call the theory C = 11 + 12 -+ . . . -+ 1, a simple chain. In this case, 11 is the

antecedent of C and 1, its consequent. The antecedent and the consequent are the only

D. Roth/Artijicial Intelligence 82 (1996) 273-302 295

literals of degree 1 in the theory; all other literals are of degree 2. The antecedent and
the consequent literals might have the same underlying variable, but this cannot be the

case for other literals in the chain. We say that a simple chain It + Z2 + . . . -+ 1, in
a 2~~2CNF theory is maximal if it cannot be extended, that is, the theory contains no
other clause with It as consequent and no other clause with 1, as antecedent. Notice
that two maximal simple chains Cr and C2 in a theory cannot have as consequents 1r
and r, respectively. The reason in that in this case we can “reverse” Cz and negate
all its literals, to get an equivalent chain that has It as antecedent. The new chain can

be concatenated to Cl, contradicting its maximality. A simple chain is called a cycle if
var(x,) = var(x,); in this case all variables are of degree 2.

Let Cl, C2, . . . , Ck be maximal simple chains in a 2,~-2cNF theory .X Assume Cr
and C2 both have It as antecedent. In this case we can compose the simple chains, and
say that Cl AC2 is a composite chain. Similarly, Ct and C2 can be composed if they have
a common consequent. Notice that if a literal I appears in two maximal simple chains,

it must appear in it both as an antecedent or as a consequent (being internal to both

contradicts the degree requirement while being a consequent in one and an antecedent
in the other contradicts the maximality of the chain). Thus, we can repeat this process
of composition until there are no two chains in 2, simple or composite, that share a
variable.

If two chains share both antecedents and consequents, composing them results in a
closed composite chain. Every composite chain C that is not closed has exactly two

literals of degree 1, say Z; and Z,i. We decide arbitrarily to denote li = t(C) , the tail of
C and 1.i = h(C), the head of C if i < j. The tail and head of a composite chain can

be both antecedents, both consequents or any other combination.
Given a chain Ct on variables {xt ,x2,. . . , xk} (i.e., all k variables appear in Cl),

denote by NC, the number of assignments of {xt,x~, . . ,xk} that satisfy Ct. Likewise,
for b E (0, l} denote by Nc,l,,=b, Nc,ir+ the number of assignments of {xl, x2,. . , xk}
that satisfy Ct , given that we force the head (respectively, tail) literal to 0 or 1, and by
N~,I,=,~,,,,=,,, when we force both head and tail to some value in (0, l}.

Notice that given the values NC, Ncl,=t , (Nc~,~=t) and Nclt=],h=i one can determine
all the possible values Ncl,=*, h=*. Therefore, it will be necessary to compute all these
values for a composite chain. For a closed chain, it will be enough to compute NC,

since the chain will not be composed any more.
Given a 2,u-2CNF theory, to count the number of its satisfying assignments we first

decompose it to simple chains and cycles. The number of satisfying assignments of

these simple theories is given in Lemma A.7. As argued above, if a variable x is
common to two chains it must be an antecedent in both or a consequent in both. We
derive, in Lemma A.8 and Lemma A.9 a composition rule that shows how to compute
the number of satisfying assignments of the conjunction of two theories, under the
restriction that these two theories are part of a 2~-2CNF theory. This composition rule
is applied also for conjuncting composite chains, until there are no more compositions
to be made. At this point the theory is represented as a conjunction of disjoint theories,
and we use Lemma A.6 to compute its total number of satisfying assignments. We now
describe the algorithm in some more details, and then prove some lemmas that show its
correctness.

296 D. Roth/Art@ial Intelligence 82 (1996) 273-302

A.4.1. Algorithm: Count-2p-2HORN
Let _Z = (li, V lj,) A ... A (li,,f V 1.j.) be a CNF theory in 2,~-2cNF such that

var(li,>, var(l,ik) E X,. The following procedure counts the number of satisfying as-
signments of _Z:

Construct simple chains:
Represent each clause ‘* as

Fix an order of the clauses. Start from the first clause and greedily combine li + 1.i

and I,i + lk t0 li --f lj + 1 k. (That is, for each clause, check if one of its
representations can be combined in that way, if any.) Go on until you end up with
a maximal simple chain.
Starting from the next available clause, repeat the above procedure, using only
clauses that are not already part of a previously constructed chains. Go on until no
more combination can be made. (I.e, no variable occurs both as consequent and
as an antecedent.) Make sure in this process that the constants T and F are never

internal to a chain.
For each simple chain of the form

C = lj, ---f li, --j ’ ’ ’ + 1; , r

compute, using Lemma A.7 the value of NC, Nclr=l, Nc~=I, N~I~=I,M.

Notice that in the above process no more than n combination steps are required (since
the degree of a variable in 2 is at most 2, and that the resulting chains are uniquely

defined.

Combine chains:
l Given 2, represented as a conjunction of simple chains, combine chains Ct and C2

if they have a common variable as antecedent, as consequent, or both.

l At each combination step, resulting in a composite chain C, compute, using
Lemma A.8 and Lemma A.9, the values of NC, Nclr=t, Nc~=,, N~l~=l,h=l.

l Go on until there are no chains with common variables. No more than n combi-
nations steps are required, since the degree of a variable in 2 is at most 2. The
process results in disjoint composite chains.

Compute the number of satisfying assignments:
0 Let {Ct,C2,.. . , C,} be the set of disjoint composite chains given by the previous

stage. Let NC, be the number of assignments that satisfy Ci, counted only over the

‘* Clauses of length I can also be represented in this way, e.g., x E (T + x) and R E (x -+ F). The fact

that the constants T and F might appear in the theory more than twice will not affect the correctness of the
algorithm (see remark on that later)

D. Rotlz/Artijcial Intelligence 82 (1996) 273-302 297

variables in Ci. If only Y variables from X, are used in {Cl, C2,. . . , Ck} Then,
using Lemma A.6 the number of satisfying assignments of 2 is

,M(S:), =2"-'fJNc,.

j=i

A.4.2. Correctness
It is clear that the maximal simple chains constructed by the algorithm are unique,

and so are the composite chains. It is also clear that the construction is efficient. We
just need to show how to derive the number of satisfying assignments in that process.
We show that in the next lemmas.

Lemma A.6. Let 2 = Cl A C2 A . . . A ck be a formula on X, such that for each i, Xi

appears in exactly one of the conjuncts C,i. Let Nci be the number of independent sets

of C; and Nr the number of independent sets of 2. Then,

Nz = fj NC,.
i=l

Proof. Clear from the fact that Ci are variable-disjoint. 0

The initial step in computing the number of satisfying assignments is given by the
next lemma:

Lemma A.7. Consider the simple chain

c = 1, + 12 + . . . + 1,.

(i) If all the underlying variables in C are different then Nc = r + 1, Nclt=, = 1,

Nc~=I = r, N~l~=l,h=l = 1.

(ii) If 11 = 1, then Nc = 2.

(iii) If11 =z then NC = 1.

Proof. For (i) we note that if li = 1 then lj = 1 for j > i, so we need to consider only

the first index i such that Zi = 1. There are r possibilities for that and one satisfying
assignment in which all variables are 0. The other statements follow similarly (here

11 = t(C) ; 1, = h(C) > . In (ii), either all literals are 1 or all are 0. In (iii) we must have
that: II = 12 = . . . = 1,.-l = 0. 0

The next lemma shows how to compute the number of satisfying assignments when
composing two chains.

Lemma A.8. Let Cl, C2 be two composite chains that have a exactly on variable, x,

in common. We assume, without loss of generality, that the common variable is the tail

of both Cl and C2, that the tail of the composite chain Cl A C2 is the degree-l variable
coming from Cl and the head is the degree-l coming from C2.

298

(i>

D. Roth/Artificial Intelligence 82 (1996) 273-302

(ii)

If x appears as a positive (negative, respectively) variable in both chains it must

be either an antecedent in both chains or a consequent in both. In this case,

l Nc,r\cz = Nc,lr=~Nc+~ + Nc,~r=oNc,lr=o>

l N(c,x~)J,=I = Nc,~r=~,/,=lk+~ + Nc,~,=o,~=1Nc+o>

l N(C,AC~)IM = Nc,lr=~~c,lt=~,rt=~ + Nc,~r=oNc,~t=o,~,

l N(c,ncz)~r=~,/,= I = Nc,~r=i,/~=iNczlt=l,rt=~ -I- Nc,I~=o,~=INc~I~=o,~=~.

Assume x appears as a positive variable in Cl and as a negative variable in

C2. In this case x must be an antecedent in one of the chains (say, Cl), and

consequent in the other. We have:

l kx~ = Nc,jr=~Nc+o + Nc,~r=oNcz~r=~~

l N(c,Ac:)~,=I = k~~=~,/,=~Nc+o + &+o,~Nc+l~

l N(c,AG)I/~=I = Nc,~r=oNc+l,tx=~ + Nc,~t=~Nc+o,~

l N(c,Ac~)I~=I,~=~Nc,~~=~,~=INc~IT=o,~=~ + Nc,~f=~,h=lNc*~r=l,h=l.

Proof. The proof is immediate from the notational assumption made and the observation
that all the possible satisfying assignments are counted that way, and no other satisfying

assignment is possible. q

Lemma A.9. Let Cl, C2 be two composite chains that have exactly two variables, x, y,

in common. We assume, without loss of generality, that the literals whose variable is x

are in the tail of both Cl and Cl, and those whose variable is y are in the head of both

chains. Since the result of this composition is a closed chain it is su.cient to compute

NC, AC?.
(i) rf both x and y appear as a positive (negative, respectively) variables in both

chains (i.e., each must be either an antecedent in both chains or a consequent

in both) we have:

Nc,r\cz = c NC, It=b, ,h=bzNc? I t=b, ,h=bz.

bl,bzE{O,l}

(ii) If both occurrences of x are positive and y appears once as a positive variable

and once negated we have:

km = c Nc,~t=b,,h=bz~c,~t=b,,b=~;;,

(iii) If both x and y appear as positive variable in
other then we have:

Nc,r\cz = c NC, It=bl .h=b2 Nc, It&J&.
bl,bzE{O,l}

one chain and negated in the

As an example, consider the case of composing two simple maximal chains

C]AC2=(X,iX~-‘..~-‘X,,_]~Z)A(y*-’y~~...-$yr~-]-‘Z),

where the xi’s are different from the yj’s, z is the tail variable in both chains, and X] , ~1
are the tail and the head, respectively of the composite chain. It is easy to see that

D. Roth/Arti$cial Intelligence 82 (1996) 273-302 299

NC,AC~ = rl r2 + I,

Nc,Ac~~~=I = Nc,M~I~,=I = r-2,
N CIAC~IM = Nc,Ac~~?.,=I = rl,

NC,ACW,~=I = 1.

Ifalsoxt=yt thenNclAcZ=(rt-1)(r2-1)+2.

Proof. The proof is immediate from the notational assumption made and the observation
that all the possible satisfying assignments are counted that way, and no other satisfying

assignment is possible. 0

With the observations that the computation above can be done in time polynomial

in the size of the formula, this completes the correctness proof for algorithm Count-
2p2CNF. We note that in the case of clauses that contain a constant, T or F, since
all of them appear either as tail or head of a chain the algorithm can handle multiple
occurrences of them. This in fact is true in general. The composition rule holds if we
require only that the degree of variables that appear internal to a simple chain is at most
2, while the degree of all other variables, those whose all occurrences in the theory

iseither positive or negative, is not restricted. The problem is that in this case every

composite chain can have more than two possible connection points, and the number of
N*‘s we need to keep track of, in order to implement the algorithm, grows exponentially.
Therefore, we can allow no more than a logarithmic (in n) number of variables with
unrestricted degree.

Proof of (3). By Lemma A.1, given 2 E Acyclic-2MONCNF, it is sufficient to count
the number of independent sets in the corresponding graph which is, by the definition
of an Acyclic-2MONCNF formula (Section 3), an acyclic graph. We first consider the
case of a connected acyclic graph, a tree.

Lemma A.lO. Let T be a tree on n vertices. The number of independent sets of T can

be computed in time O(n).

Proof. Let T be a tree with root r. For a vertex x E T, we denote by TX the subtree of
T with x as root. c(x) denotes the set of all vertices which are children of x in T, and

gc(x) the grandchildren of x in T. We denote by ZS, the number I3 of independent sets
of the tree rooted at X. Among these independent sets, ZSX(x) denotes the number of
those which contain the root X, and ZS,(h) denotes the number of those which do not
contain the root X.

Notice that, for all y E c(x) and any independent set I of TX, Zy = {z E Z fl T\,}

is an independent set in T,,. We use this in the next claim to represent the number
of independent sets in T, in terms of the number of independent sets of subtrees of

I3 As before, we count the empty set as one of the independent sets.

300 D. Roth/ArtiJiciul Intelligence 82 (1996) 273-302

Count-IS-Tree(T):

For all x E Rc, IS, = 2.

For all x E RI, IS, = 1 + 21c(X)l.

For i=3,4,...,r do:

For all x E IL lS, = flzEgccXj IS, + nYEccXj IS,,.

End

Fig. A. I. Counting independent sets of a tree.

Claim A.ll. For IS,, IS,(x), IS,(/z) as defined above, we have:

(i) K(b) = rI,‘Ec(x) $9

Proof. If c(x) = {YI,Y~, . . . , yk} and (1,; C &}f=, any collection of independent sets

(in the respective trees) then ut, I,; is an independent set in TX that does not contain

X. For the other direction, clearly any independent set I C TX that does not contain x
can be decomposed uniquely as above. For (ii), similarly, if I is an independent set in

TX and x E I, then clearly ‘dz E gc(x>, I, = {z E I rl T,} is an independent set in T,.

For the other direction, if gc(x) = {zi, 22,. . , zk} and {I,, G Tz,}f_, any collection of

independent sets in T,,, then clearly lJf=, I:, U { } x is an independent set in TX, since it
contains no vertex from c(x). (iii) is immediate from (i) and (ii). 17

We now present an algorithm, Count-IS-Tree, that computes the number of indepen-
dent sets of a given tree. We denote by r(x) the rank of the vertex x E T. The rank
of x is defined as follows: If x is a leaf, r(x) = 0. If x is an internal node in the tree
we define, r(x) = I + max?,Ec(X) r(y). We denote by Ri the set of all vertices x E T

such that r(x) = i, and assume w.1.o.g. that the tree T is representated as a collection of

its sets Ri. In the algorithm, we compute the number IS, of independent sets of a tree

rooted at x E Ri, given the values ZSY for all y E R,,, for j < i.
For the boundary conditions, notice that if the tree contains a single vertex x, then

IS, = 2, and if the children of the root are leaves, then IS, = 1 + 2#leaves. Thus, the
correctness of the algorithm follows from Claim A.1 1 and the discussion above, and

this completes the proof of the lemma. 0

Since an acyclic undirected graph is a union of disjoint trees, using Lemma A.6
completes the proof.

Proof of (4). As in the proof of (3) we assume that in the graph that corresponds to
the 2HORN formula .X every connected component is a tree. The counting algorithm
is very similar to the one presented for the acyclic monotone case. We prove a claim
that is analog to Claim A.1 1, and use it to count the satisfying assignments as in the
algorithm Count-IS-Tree(T) above.

D. Roth/Arri$cinl Intelligence 82 (1996) 273-302 301

Claim A.12. Let N, denote the number of assignments that satisfy the conjunction of
clauses that correspond to a tree rooted at x (with respect to these variables only).

N, (0) (respectively, N, (1)) denotes those assignments in which x is assigned 0 (re-

spectively, 1). We have that:

(i) N,(O) = fl,.EcCx) NY,

(ii) N,(l) =nJEcCx)NY(l),
(iii) N, =N,(O) +N.,(l) =n!Ec(*)N~+n!,Ec(,,N.(l).

Proof. To prove (i) we observe that since x is assigned 0, there are no restrictions on
the satisfying assignments of the tree rooted at y E c(x). Since the subtrees rooted at

different elements of c(x) are disjoint, we get the result. We get (ii) by observing that

an assignment satisfies the formula corresponding to TX, where x is assigned 1, iff all
y E c(x) are assigned 1. (iii) is immediate from (i) and (ii). cl

Noticing that if the corresponding tree is of depth 1, the number of satisfying as-
signments is 1 + 2#leaves, serves as the boundary condition for the procedure, that uses
Claim A.12 to count the number of satisfying assignments of the Acyclic-2HORN for-
mula 2. Similar to the algorithm Count-IS-Tree(T) in the proof of (3) above we get

an algorithm that computes the number of satisfying assignments efficiently. 0

Acknowledgements

I am very grateful to Les Valiant for very helpful discussions and for his comments
on an earlier draft of this paper. I would also like to thank Karen Daniels, Roni Khardon
and Salil Vadhan for their comments on an earlier draft of this paper.

References

I I I E Bacchus, Representing and Reasoning with Probabilistic Knowledge: A Logical Approach to
Probubiliries (MIT Press, Cambridge, MA, 1990).

[2 I F. Bacchus, A. Grove, J.Y. Halpern, and D. Kolle, From statistics to beliefs, in: Proceedings AAAI-92,
San Jose, CA (1992) 602-608.

I 3 1 M. Cadoli, Semantical and computational aspects of Horn approximations, in: Proceedings IJCAI-93,
Chambery, France (1993) 39-44.

I 4 I R. Carnap, Logical Foundations of Probability (University of Chicago Press, Chicago, IL, 1950)

15 I G.F. Cooper, The computational complexity of probabilistic inference using Bayesian belief networks,

Art$ Intell. 42 (1990) 393-405.

I 6 I P. Dagum and M. Luby, Approximating probabilistic inference in Bayesian belief networks is NP-hard,
Art$ Infell. 60 (1993) 141-153.

17 I R. Dechter, Constraint networks, in: G.S. Shapiro, ed., Encyclopedia of Arfijicial Intelligence (Wiley,

New York, 1992).

I 8 I R. Dechter and J. Pearl, Network-based heuristics for constraint-satisfaction problems, Arfij Intell. 34
(1988) I-38.

[9 I R. Dechter and J. Pearl, Structure identification in relational data, Artif Well. 58 (1992) 237-270.

I IO I M. Carey and D. Johnson, Computers and Intractability: A Guide to the Theory of‘ NP-C~)nll,leterzess
(Freeman, San Francisco, CA, 1979).

302

1111

I121

I13

114

115

I16

Proceedings 24th ACM Symposium of the Theory rfl Computing (1992) 294-305.
S. Holtzman, Intelligent Decision Systems (Addison-Wesley, Reading, MA, 1989).
M.R. Jerrum, L.C. Valiant and V.V. Vazimni, Random generation of combinatorial structures from a

uniform distribution, Theoret. Comput. Sci. 43 (1986) 169-188.
R. Karp and M. Luby, Monte-Carlo algorithms for enumeration and reliability problems, in: Proceedings
24th IEEE Symposium of Foundations of Computer Science (1983) 56-64.
H. Kautz, M. Keams and B. Selman, Horn approximations of empirical data, Artif: Intell. 74 (1995)
129-146.

I171

1181

I191

D. Roth/Arttficial Intelligence 82 (1996) 273-302

R. Greiner and D. Schuurmans, Learning useful Horn approximations, in: Proceedings International
Cotzference on the Principles of Knowledge Representation and Reasoning, Cambridge, MA (1992)

383-392.

A. Grove, J.Y. Halpem and D. Keller, Asymptotic conditional probabilities for first-order logic, in:

I 20

121

122
123

1241
1251
1261

I 27 I

1281

1291

1301

1311

I321

1331

1341

1351

H. Kautz and B. Selman, A general framework for knowledge compilation, in: Proceedings International
Workshop on Processing Declarative Knowledge, Kaiserslautem, Germany (1991).

H. Kautz and B. Selman, Forming concepts for fast inference, in: Proceedings AAAI-92, San Jose, CA

(1992) 786-793.

H. Kautz and B. Selman, An empirical evaluation of knowledge compilation by theory approximation,

in: Proceedings AAAI-94, Seattle, WA (1994) 155-161.

R. Khardon and D. Roth, Learning to reason, in: Proceedings AAAI-94, Seattle, WA (1994) 682-687;

also: Technical Report TR-02-94, Aiken Computation Lab., Harvard University, Cambridge, MA (1994).
R. Khardon and D. Roth, Reasoning with models, in: Proceedings of the National Conference on
Artijicial intelligence (1994) 1148- 1153. Submitted for publication. Full version: Technical Report

TR-0 l-94, Aiken Computation Lab., Harvard University (1994).
H. Levesque, Making believers out of computers, ArtijY Intell. 30 (1986) 81-108.
U. Montanari, Networks of constraint: fundamental properties and applications to picture processing, Inj1
Sci. 7 (1974) 95-132.
N.J. Nilsson, Probabilistic logic, ArnJ Intell. 28 (1986) 71-87.
P. Orponen, Dempster’s rule of combination is #P-complete, Artif Intell. 44 (1990) 245-253.
J. Pearl, Probabilistic Reasoning in intelligent Systems: Networks of Plausible Inference (Morgan

Kaufmann, San Mateo, CA, 1988).
J. Pearl, Reasoning with belief functions: an analysis of compatibility, Int. I. Approximate Reasoning 4
(1990) 343-389.
D. Poole, Average-case analysis of a search algorithm for estimating prior and posterior probabilities

in Bayesian networks with extreme probabilities, in: Proceedings IJCAI-93, Chambery, France (1993)

607-612.
J.S. Provan and M.O. Ball, The complexity of counting cuts and of computing the probability that a

graph is connected, SIAM I. Comput. 12 (4) (1983) 777-788.
M.G. Provan, A logical-based analysis of Dempster-Shafer theory, Int. I. Approximate Reasoning 4
(1990) 451-498.
M.G. Provan, The validity of Dempster-Shafer belief functions, Int. I. Approximate Reasoning 6 (1992)
389-399.
B. Selman and H. Kautz, Knowledge compilation using Horn approximations, in: Proceedings AAAI-91,
Anaheim, CA (1991) 904-909.
G. Shafer, Perspectives of the theory and practice of belief functions, ht. J. Approximate Reasoning 4
(1990) 323-362.
A. Sinclair, Randomized algorithms for counting and generating combinatorial structures, Ph.D. Thesis,

Department of Computer Science, University of Edinburgh (1988).
L. Stockmeyer, On approximation algorithms for #P, SIAM I. Comput. 14 (1985) 849-861.

1361 S. Toda, On the computational power of PP and @P, in: Proceedings 30th IEEE Symposium of
Foundations of Computer Science (1989) 514-519.

I37 J L.G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979) 189-201.
I38 I L.G. Valiant, The complexity of enumeration and reliability problems, SIAM I. Comput. 8 (1979)

410-421.
I39 I L.G. Valiant, A theory of the learnable, Commun. ACM 27 (11) (1984) 1134-I 142.

