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Abstract 

Many AI problems, when formalized, reduce to evaluating the probability that a propositional 
expression is true. In this paper we show that this problem is computationally intractable even in 
surprisingly restricted cases and even if we settle for an approximation to this probability. 

We consider various methods used in approximate reasoning such as computing degree of belief 

and Bayesian belief networks, as well as reasoning techniques such as constraint satisfaction and 
knowledge compilation, that use approximation to avoid computational difficulties, and reduce 
them to model-counting problems over a propositional domain. 

We prove that counting satisfying assignments of propositional languages is intractable even for 
Horn and monotone formulae, and even when the size of clauses and number of occurrences of the 
variables are extremely limited. This should be contrasted with the case of deductive reasoning, 
where Horn theories and theories with binary clauses are distinguished by the existence of linear 
time satisfiability algorithms. What is even more surprising is that, as we show, even approximating 
the number of satisfying assignments (i.e., “approximating” approximate reasoning), is intractable 

for most of these restricted theories. 
We also identify some restricted classes of propositional formulae for which efficient algorithms 

for counting satisfying assignments can be given. 

1. Introduction 

Investigating the computational cost of tasks that are of interest to AI has been 
argued [ 22,391 to be essential to our understanding and our ability to characterize these 
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tasks and to finding knowledge representation systems adequate for them. The problem 
discussed most extensively in this context is the problem of propositional satisfiability, 

the typical NF’-hard problem, which is of special concern to AI because of its direct 
relationship to deductive reasoning. Many other forms of reasoning, including default 

reasoning, planning and others which make direct appeal to satisfiability, have also 

been shown to be NP-hard. In practice, there is a fundamental disagreement about 
the implications of this. There is no debate, however, that something has to be given 

up: restrict the form of the statements in the knowledge base, settle for approximate 
output and so on. One consequence of the intensive research in that direction is the 
identification of restricted languages for which propositional satisfiability can be solved 
efficiently (e.g., Horn theories). 

In this paper we consider a related problem, that of counting satisfying assignments of 
propositional formulae. We argue that the role played by satisfiability problems in many 

AI problems in which deduction is of special concern, is replaced by that of counting 

satisfying assignments when approximate reasoning techniques are used. To support this 
argument we show that various methods used in approximate reasoning, such as com- 
puting degree of belief and Bayesian belief networks, are equivalent, computationally, 
to solving counting problems. We also show that considering the problem of counting 
solutions is a valuable approach in evaluating techniques that use approximations in an 
effort to avoid computational difficulties, such as constraint satisfaction and knowledge 

compilation, 

We analyze the computational complexity of counting satisfying assignments of 
propositional languages, and prove that this is intractable even for Horn and mono- 
tone formulae, and even when the size of clauses and number of occurrences of 
a variable in the formula are extremely limited. This should be contrasted with the 

case of deductive reasoning, where Horn theories and theories with binary clauses are 
distinguished by the existence of linear time algorithms for their satisfiability. What 
is more surprising is that, as we show, even approximating the number of satisfy- 
ing assignments (that is, “approximating” approximate reasoning), is intractable for 

most of those restricted theories. We identify some restricted classes of propositional 
formulae for which we develop efficient algorithms for counting satisfying assign- 

ments. 
While our positive results can sometimes be used to find tractable languages for the 

approximate reasoning technique discussed, we believe that the main contribution of this 
paper is the presentation of these widely applicable and surprising hardness results. This 
implies that research should be directed away from investigating structural constraints 

of the “world” and towards investigating distributional constraints, and suggests that we 
reconsider how we model the reasoning problem. We discuss these issues further in 
Section 5. 

In the next section we give background material from the computational complexity of 
counting problems, and in Section 3 we present our positive and negative results on exact 
and approximate counting of satisfying assignments. The main results are presented in 
Section 4, where we put the model-counting results in the context of various approximate 
reasoning techniques, by reducing those techniques to counting problems. Proofs of the 
technical results appear in the appendix. 
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2. The computational complexity of counting problems 

We give in this section a brief overview of the computational complexity of counting 
problems and the related problems of approximate counting and random generation of 
solutions. For a detailed discussion consult [ 10,14,37,38]. 

With a large number of decision problems we can naturally associate a counting 
problem. For example, counting the number of satisfying assignments of a Boolean 

formula, counting the number of perfect matchings in a bipartite graph and counting 
the number of cycles in a graph. Clearly, the counting version is at least as hard as 
the decision problem but in many cases, even when the decision problem is easy, no 
computationally efficient method is known for counting the number of distinct solutions. 
The class #P was introduced by Valiant [ 37,381 in an effort to explain these phenomena. 
A counting problem belongs to #P if there is a non-deterministic algorithm such that 
for any instance I of the associated decision problem, the number of “guesses” that 
lead to acceptance of Z is equal to the number of distinct solutions to I, and such that 
the algorithm is polynomial in the size of I. ’ As usual, the hardest problems in the 
complexity class are complete in the class. 

In particular, it was shown that counting the number of satisfying assignments of a 

CNF formula as well as the counting versions of many other NP-complete problems 
are complete for #P. More significantly, it was also shown that the counting versions of 

many problems in P are also complete for the same class. Examples of the latter include 
counting the number of satisfying assignments of a DNF formula, counting the number 
of cycles in a graph and many other problems [ 29,37,38]. 

Problems that are #P-complete are at least as hard as NP-complete problems, but 

probably much harder. Evidence to the hardness of problems in #P is supplied by a 
result of [ 361 which implies that one call to a #P oracle suffices to solve any problem 
in the polynomial hierarchy in deterministic polynomial time. This may serve also as 

indication that #P is outside of the polynomial hierarchy. It is therefore natural to 
consider the problem of approximate counting. The notion of approximation we use 
is that of relative approximation [ 14,15,35]. Let M, M' be two positive numbers and 
6 3 0. We say that M' approximates M within 6 when 

M’/(l +6) 6 M 6 M'(1 +a). 

Indeed, approximating a solution to a #P problem might be easier than finding an 
exact solution. In fact, it is no harder than solving NP-hard problems [ 351. For example, 
there exists a polynomial time randomized algorithm that approximates the number 
of satisfying assignments of a DNF formula within any constant ratio [ 14,151. It is 
possible, though, for a #P-complete problem, even if its underlying decision problem is 
easy, to resist even an efficient approximate solution. An example for that was given 
in [ 141, and in this paper we exhibit a similar phenomenon. We prove, for various 
propositional languages for which solving satisfiability is easy, that it is NP-hard to 
approximate the number of satisfying assignments even in a very weak sense. 

’ In 1 37 1 the definition is given in terms of “counting Turing machines”. 
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We use the notion of relative approximation to discuss probabilities as well. It is worth 
noticing therefore that this notion of approximation is preserved when computing ratios 

of quantities. Assume we can approximate MI and Mz to within 6. That is, we can find 
M;,M;suchthatM;/(l+S)6M,6(1+S)M;andM;/(1+6)6Mp~(l+S)M;. 

Then, 

M, 1 
< 5 6 (I+&$. 

M; (1 +a)2 IV2 2 

Thus, this yields a relative approximation of the ratio Ml/M2 as well (within 2S+ S2). 
In particular, when computing the conditional probability P( Y = y 1 X = x), of the event 
Y = y given evidence X = x, since 

P(Y=yIX=x)= 
P(Y=y,X=x) 

P(X = x) 

we conclude that: 

Proposition 2.1. The complexity of computing relative approximation of the conditional 

probability P( Y = y 1 X = x) is polynomially related 2 to that of computing relative 

approximation of the unconditional probability P ( Y = y ). 

We note that a related class of problems of interest to AI, that of randomly generating 
solutions from a uniform distribution, was shown in [ 141 to be equivalent to randomized 
approximate counting, for a wide class of problems. (All natural problems considered 
here, e.g., finding satisfying assignments of Boolean formulae and various graph prob- 
lems are in this class.) It is therefore enough, from the computational complexity point 

of view, to consider the problems of exact and approximate counting, as we do here. 

3. Summary of model-counting results 

In this section we summarize our results on exact and approximate counting of 
satisfying assignments of propositional languages. Those include hardness results for 
exact and approximate counting and positive results for exact counting. Complete proofs 
of the results are given in the appendix. 

Let #(SAT, L) (#(SAT, L) ) denote the problem of counting (approximating, respec- 
tively) the number of satisfying assignments of a given formula from the propositional 
language L. Given the problem #(SAT, L), a problem hierarchy is obtained whenever 
we place additional restrictions or relaxations on the allowed instances. Given proposi- 
tional languages 13, and L2, define Lt c L2 if every instance of Cl is also an instance 
of L2. (e.g., HORN & CNF.) Clearly, if we can solve the problem #(SAT, L2) we 
can solve the problem #(SAT, Cl); to prove hardness results it is therefore enough to 

* By that we mean that a procedure that relatively approximates unconditional probabilities and is, say, 

polynomial in 6, yields a procedure that can relatively approximate conditional probabilities, and is also 

polynomial in 6 (and of course, vice versa). 
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Fig. 1. Complexity of (approximately) counting satisfying assignments. 

consider the most restricted languages. The same argument holds for the corresponding 

approximation problem. 
We use the following notations and conventions in denoting propositional languages: 

if LANG is a class of Boolean formulae and k, 1 are integers, then kLANG denotes the 

subclass of formulae in LANG in which a clause consists of up to k literals; Zp-LANG 

denotes the class of all LANG formulae in which no variable occurs more than I times. 
1 is the degree of the formulae. For example, 2MONCNF consists of monotone CNF 
formulae with clauses of length 2; 3~-2HORN consists of Horn formulae with clauses 

of length 2 in which no variable occurs more than 3 times. 
S-AT: Any Boolean formulae. 
MON: Boolean formulae in which all variables are unnegated (monotone formu- 

lae). 
CNF: Boolean formulae in Conjunctive Normal Form. 
MONCNF: Monotone CNF. 
HORN: A CNF in which clauses have up to one unnegated variable (Horn clauses). 

2BPMONCNF: A 2MONCNF in which the set of variables can be divided into 
two sets, and every clause contains one variable from each. 

Acyclic-2MONCNF: Given a 2MONCNF theory 4, let G be an undirected graph 
containing a vertex for every variable in q5 and an edge connecting two vertices if 

and only if the corresponding variables appear in the same clause. 4 is Acyclic- 
2MONCNF if this corresponding graph is acyclic. 
Acyclic-2HORN: Given a 2HORN theory q5, let G be a directed graph containing 
a vertex for every literal in q5 and an edge from every vertex corresponding to a 
literal in the body of a rule (i.e., negative variable in the clause representation of 
the rule) to the vertex corresponding to a literal in the head of a rule (i.e., positive 
variable in the clause representation of the rule). Two special nodes T and F are 

added for clauses with empty body or empty head. 4 is Acyclic-2HORN if every 
connected component of this corresponding graph is a directed tree. 

Fig. 1 summarizes our results; it presents a hierarchy of propositional languages 
along with a classification according to the complexity of #(SAT. C) and s( SAT, L). 
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Based on the above comment these results imply similar results on other, less restricted 
languages. 3 

It is noticeable that for various propositional languages having efficient algorithms for 
satisfiability, and even for very restricted versions of these (e.g., 3~-2HORN), exact 
counting is complete for #P In fact, for the case of Horn theories, the situation is fully 

understood, and we give an efficient algorithm for the only possible case, 2,u-2HORN. 
The situation for approximate counting is even more surprising: for very restricted 

classes of Horn theories (e.g., 3,~~2HORN) it is NP-hard to approximate the number of 

satisfying assignments even within, say, 2n”‘0 (for formulae over n variables). Similar 
results hold for 2MONCNF theories, for which the bounded degree case is open. Our 
positive results virtually complete the complexity picture and can be directly applied in 

some of the reasoning techniques considered. 

3.1. Statements of results 

We now formally state the technical results outlined above. We state the results only 
for some of the important languages; results for other languages can be easily deduced 

by inclusion, as described above. Proofs are given in the appendix. 

Theorem 3.1 (Hardness of Exact Counting). Let .Z E C be a propositionalformula on 

n variables. If L is one of the following propositional languages, counting the number 

of satisfying assignments of _Z is complete for #P: 
(1) L = 2MONCNF [38], 
(2) C = 2BPMONCNF [ 291, 

(3) C = 2HORN, 
(4) C = 3,+2HORN, 
(5) C = 4,~-2MON. 

Theorem 3.2 (Hardness of Approximation). Let _Z E C be a propositional formula on 

n variables, and let E > 0 be any constant. If C is one of the following propositional 

languages, approximating the number of satisfying assignments of 2 to within 2”‘-’ is 

NP-hard: 

( 1) C = 2MONCNF, 
(2) C = 3,+2HORN. 

Theorem 3.3 (Positive results). Let X E L be a propositional formula on n variables. 

If L is one of the following propositional languages, then there exists an efJicient 

algorithm for counting the number of satisfying assignments of 2. 

( 1) C = 2,+2MONCNF, 
(2) C = ~,u-~HORN, 

3 Notice that we place the language 2HORN above 2MONCNF even though 2HORN does not contain 

2MONCNE 2HORN contains, however, 2anti-MONCNF (where all the variables in each formula are negated 

rather than unnegated) and thus, clearly, all the counting results that hold for 2MONCNF hold also for 
2anti-MONCNF. 
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(3) L = Acyclic-2MONCNF, 
(4) L = Acyclic-2HORN. 

4. Reducing approximate reasoning to counting 

In this section we consider various techniques for approximate reasoning and show 
that in each case inference is equivalent to solving a counting problem. We start by 

considering the case of computing degree of belief, the underpinning of approximate 
reasoning. We then consider Bayesian belief networks, reasoning with approximate 

theories and constraint satisfaction problems. Finally, we discuss some previous work 
that relates approximate reasoning to counting problems, for which our results here also 

apply. 

4.1. Degree of belief 

The inference of a degree of belief is a generalization of deductive inference which 
can be used when the knowledge base is augmented by, e.g., statistical information, or 

in an effort to avoid the computationally hard task of deductive inference. 
Consider a knowledge base consisting of a propositional theory 2 and assume we 

would like to assign a degree of belief to a particular statement LY. This situation is 
natural in various AI problems such as planning, expert systems and others, where the 
actions an agent takes may depend crucially on this degree of belief. In [24] it is 
suggested that the kind of reasoning used in expert systems is the following: “we are 
given a knowledge base of facts (possibly, with their associated probabilities) ; we want 
to compute the probability of some sentence of interest. . . . According to probabilistic 

logic, the probability of a sentence is the sum of the probabilities of the sets of possible 

worlds in which that sentence is true . . .“. 
Indeed, the general approach to computing degree of belief is that of assigning 

equal degree of belief to all basic “situations” consistent with the knowledge base, 
and computing the fraction of those which are consistent with the query. Much work 
has been done on how to apply this principle, and how to determine what are the basic 

situations [ 1,2,4]. 
We consider here the question of computing the degree of belief in a restricted 

case, in which the knowledge base consists of a propositional theory and contains no 

statistical information. The hardness results we get in this restricted case just highlight 
the computational difficulties in the more general cases. 4 Using the above approach, 
all possible models of the theory are given equal weight and we are interested in the 
computational complexity of computing the degree of belief of a propositional formula, 
that is, the fraction of models that are consistent with a propositional query. 

a The first-order version of this problem was considered in [ 121 where it wm shown that almost all problems 

one might want to ask are highly undecidable. In some cases, though, it was shown that the asymptotic 
conditional probabilities exist, and can be computed. 
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Given a propositional theory 2 on n variables, the probability that 2 is satisjed, Px, 

is computed over the uniform distribution over the set (0, 1)” of all possible assignments 

of 2. 

Pz = Prob{Z e T} = IM(_Z)I/2”, 

where M( 2) denotes the set of all satisfying assignments of .Z, and IM( _Z) 1 denotes 
its size, and T stands for the truth value. 

Given a propositional theory Z: and a propositional statement LY, the degree of belief 
in a, is the conditional probability of a with respect to 2, Palz, that is, the fraction of 

satisfying assignments of 2 that satisfy LY: 

Pals = Prob{a A _Y5 E T I 2 E T} = 
IM(aA-91 

IM(-O ’ 
The observation that IM (a) 1 = PalpVlr for any variable p, together with the discussion 
in Section 2 (Proposition 2.1) implies: 

Proposition 4.1. The complexity of computing (approximating) the degree of belief in a 

propositional statement with respect to a propositional theory, is polynomially related to 

the complexity of computing (approximating) the number of models of a propositional 

statement. 

Together with the results in Theorem 3.1 and Theorem 3.2 we have: 

Theorem 4.2. The problem of computing the degree of belief in a propositional state- 

ment (over n variables) with respect to a propositional theory is complete for #P. 5 

For every fixed E > 0, approximating this probability within 2”‘-’ is NP-hard. 

4.2. Bayesian belief networks 

Bayesian belief networks provide a natural method for representing probabilistic de- 
pendencies among a set of variables and are considered an efficient and expressive 

language for representing knowledge in many domains [ 131. We consider here the class 
of multiple connected belief network, i.e., networks that contain at least one pair of 

nodes (variables) that have more than one undirected path connecting them. It has been 

argued that the expressiveness of these networks is required for representing knowledge 
in several domains, like medicine. We first present briefly a general class of belief 
networks and the associated inference problem and then show how to reduce the in- 
ference problem to that of counting satisfying assignments of a propositional formula. 
For definitions and an elaborate discussion of Bayesian belief networks, the expres- 
siveness of this representation, and the type of inference one can utilize using it, see 

[261. 

s Strictly speaking the problem of computing the degree of belief is not in #P, but easily seen to be equivalent 

to a problem in this class. We keep the same loose interpretation in the rest of the paper. 
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A Bayesian belief network (causal network) consists of a graphical structure aug- 
mented by a set of probabilities. The graphical structure is a directed acyclic graph 
(DAG) in which nodes represent random variables (domain variables) and edges repre- 
sent the existence of direct causal influence between the linked variables. A conditional 
probability is associated with the group of edges directed toward each node (and not 
with each single edge). Prior probabilities are assigned to source nodes (i.e., any node 
without any incoming edge). We represent the belief network as a triple (YE, P), 

where V is the set of vertices (variables), E is the set of edges and P is the set of 
probabilities. In particular, P consists of prior probability functions, P(X; = xi), for 

every source node Xi and conditional probabilities functions, {P( Xi ) X,~)}K~~~,~, , for 
each node X; with a set px, of direct predecessors. (We use the notation P( Xi = Xi) and 
P( xi) inadvertently, when it is clear that we refer to the variable Xi.) See the construc- 
tion in the proof of Theorem 4.3 for an example of a belief network. In general, not 

every probability distribution can be represented by a Bayesian belief network. However, 
given a DAG it is easy to specify consistently the conditional probabilities. One needs 

only to make sure that the conditional probabilities attached satisfy, for every node Xi, 

C,, P(Xi =Xi I PX,) = 1. 

For complexity analysis, we take our complexity parameter to be II, the number of 

nodes in the belief network. Notice that the conditional probabilities tables associated 
with the network might be exponential in n. Practitioners of Bayesian belief networks 
try to avoid this case, of course. In our reduction the conditional probabilities tables will 

have concise representations, polynomial in the number of nodes in the network, and in 
this sense one can think of our complexity measure as if it is the total size of network, 
including the conditional probabilities tables. 

The general inference problem using belief network is that of calculating the poste- 
rior probability P( S1 1 &), where Si (S2) is either a single instantiated variable or a 
conjunction of instantiated variables. The most restricted form of probabilistic inference, 

determining P (Y = T) for some propositional variable Y (with no explicit conditioning 
information), was analyzed by Cooper [ 51 who proved that it is NP-hard. This hard- 
ness result for the exact inference problem shows that one cannot expect to develop 

general-purpose algorithms for probabilistic inference that have a polynomial running 
time and therefore there is a need to divert attention toward trying to construct up- 

proximation algorithms for probabilistic inference. Our results show that this is not the 
case: 

Theorem 4.3. The problem of computing the probability that a node in a Bayesian 

belief network is true is complete for #P. Moreover; for every jixed F > 0, approximating 

this probability within 2”‘-’ (where n is the size of the network) is NP-hard. 

Proof. The proof is based on the reduction from [5]. The two major differences are 
that ( 1) we reduce the problem of counting satisfying assignments of a propositional 
formula to that of computing the probability that a node in a Bayesian belief net- 
work is true, and (2) based on the results from Section 3 we can start our reduc- 
tion from a restricted propositional formula, yielding a more restricted network topol- 

ogy. 
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Fig. 2. The belief network generated from the 2MONCNF formula 2’. 

In the following we reduce the problem of counting satisfying assignments of a 
2MONCNF6 formula to that of computing the probability that a node in a Bayesian 
belief network is true. Since our reduction preserves the number of satisfying assignments 

this reduction holds for the problem of approximating the probability as well. 
Consider an instance of 2MONCNF, 2 = {cl, 13, . . . , c,,} where ci are clauses on a 

set (I = {uI,u~,. . . , u,} of n Boolean variables. We construct a belief network BN = 

(YE, P) containing variable Y such that 

2”P(Y =T) = IM(S)I. 

To construct BN = (YE, P) we show how to define the vertices V, the edges E and 
the set of prior and conditional probabilities P. V is defined to be a set of n + m + 1 

vertices, one for each variable Ui, one for every clause cj and one for Y. The set of 
edges E consists of up to 3m edges: a variable ui is connected to all clauses cj in which 
it appears (i.e., total of up to 2m edges, since _Z E 2MONCNF); Y is connected to all 
clauses c.i. Fig. 2 depicts the BN generated using the above procedure for the instance 

of 2MONCNF in which CJ = {ut , ~42, ug , uq}, and 

z={(UI vu2),(ul vu3),(u2vu4)}. 

The set of probabilities P is defined as follows: Each of the source nodes Ui, 1 6 
i < ~1, is given a prior probability of l/2 to be T. For incoming edges to the node 

corresponding to the clause c,i we define the conditional probability such that the node 
becomes T only when it is satisfied by the assignment to the variables in the clause. 
Formally, if c.i = u,it V uj2 (1 < j 6 m), define the conditional probabilities by: 

P(c,,=T/u,;=o,,~;=u~) 

1, 
= 

if the assignment uf = ~1, u,: = u:! satisfies cj, 

0, otherwise. 

h This is not possible in [ 51, since the results there hinge on the hardness of solving satisfiability, which can 

be done in polynomial time for 2MONCNE 
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Finally, the conditional probability for the edges coming into the node Y is defined by 

P(Y=Tlc,,c:! ,..., c,,,)= 
1, ifcl=T,cz=T ,..., cn,=T, 

0, otherwise. 

It is easy to see that the structure (K E, P) defined is indeed a Bayesian belief network. 
Also, it is clear that the construction of a belief network from a given 2MONCNF 
instance can be accomplished in time that is polynomial in the size of the 2MONCNF 
instance. ’ 

We now compute the probability P( Y = T). Let u = (~1,. . . , u,) be an assignment 
of the n input variables (that is, u E (0, 1)“)) and c = (cl, . . . , c,,) be an assignment 
of the m clauses (that is, c E (0, 1)“‘). 

By the construction above we then have that 

2’1-1 2”‘-, 

P(Y=T)=~~P(Y=Tlc=t)P(c=tlu=s)P(u=s). (1) 
S=o t=o 

Suppose _Z is satisfiable, and let SI , ~2,. . . , Sk be the satisfying assignments. Clearly, for 

i= I,... , k, P( u = si) = l/2”. Also, by the definition of the conditional probability for 
i= l,... ,k, we have that P(c=c(si) 1 u=si) =P(Y=T / c=c(si)) = l,andforany 
other assignment, these terms are equal to 0. Thus, the internal sum in Eq. (1) is equal 

to l/2” when s is a satisfying assignment of 2, and is equal to 0 otherwise. We get, 

Applying now the results in Theorem 3.1 and Theorem 3.2 completes the proof. 0 

We have considered the computational complexity of computing the probability of a 
node in a Bayesian belief network being true. To compute a conditional probability, that 
is, P ( Y = y 1 X = x) , where X, Y might be sets of nodes in the network, we notice that 

P(Y=y I X=x) = 
P(Y = y,x = x) 

P(X=x) . 

It is clear that exact computation of the conditional probability is as hard as computing 
the unconditional probability (taking, e.g., X to be a single source node). Based on 
Proposition 2.1 this is the case also for the problem of approximating the conditional 

probability, and therefore we can conclude: 

Theorem 4.4. The problem of computing the conditional probability of a node given 

evidence in a Bayesian belief network, is complete for #P. Moreover; for every jixed 

E > 0, approximating this probability within 2”‘-‘: (where n is the size of the network) 
is NP-hard. 

I 

be 

This relies on the fact that we can define the conditional probabilities concisely. In general, every 

associated with a conditional probability table that is exponential in the size of the network. 

can 
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Finally we note that, as in [ 51, this reduction can be modified to hold for restricted 
network topology (limited in-degree, out-degree, etc.). Further restrictions to the topolo- 
gies of the network can be utilized if we reduce problems of counting satisfying assign- 

ments of syntactically restricted CNF formulae to that of computing the probability that 
a node in the network is true. In light of the results in Section 3, this can yield even 
stronger hardness results. Recently, Dagum and Luby [6] presented an even stronger 
result, implying the hardness of computing an absolute approximation of probabilities in 
Bayesian networks. The results here are different in that we show that the inference is 

equivalent to counting, and combined with the results in Section 3, it implies hardness 
results even for restricted network topologies. 

4.3. Reasoning with approximate theories 

The theory of reasoning with approximate theories was introduced by Selman and 
Kautz in a series of papers [ 17,18,32] as a new approach to developing efficient 
knowledge representation systems. 

The goal is to speed up inference by replacing the original theory by two theories 

that belong to a different propositional language L: and approximate the original theory. 
One approximate theory implies the original theory (a lower bound) and the other one 
is implied by it (an upper bound). While reasoning with the approximations instead of 

the original theory does not guarantee exact reasoning, it can sometimes provide a quick 

(but not necessarily complete, see below) answer to the inference problem. This can 
happen when L allows for efficient deduction, e.g., if C is the class of propositional Horn 

formulae. * Of course, computing the approximations is a hard computational problem, 
and this is why it is suggested as an “off-line” compilation process. Some computational 
aspects of computing theory approximations and reasoning with them are studied also 
in [ 3, 11,211. In the following we concentrate on discussing Horn approximation. 

For notational convenience, when no confusion can arise, we identify in this section 
the propositional theory .Z with the set of its models (satisfying assignments). Observe 
that the connective “implies” (b) used between Boolean functions (propositional for- 

mulae) is equivalent to the connective “subset or equal” (C) used for subsets of models. 

That is, Xi b & if and only if Zi C 22. 
Consider a propositional theory 2. 

and Horn upper bound, respectively, 

&h + 2 + sub 

or, equivalently, in subset notations, 

Zb c -Z c Ah. 

The Horn theories &,, &,h are a Horn lower bound 
of 2, if and only if 

2 Xlh and _&h, the greatest Horn lower bound and least Horn upper bound, respectively, 
of 2, are called Horn approximations of the original theory 2. 

s The implication problem for Horn theories can be solved in linear time in the combined length of the 

theory and the query. This remains true for even a broader class of queries such as DNF formulae where each 

disjunct contains at most one negative literal and arbitrary CNF formulae. 
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In order to answer 2 k (Y, we use a Horn approximation based inference procedure in 
the following way: ( 1) test if &,b k (Y. If the answer to (1) is “yes”, then the inference 

procedure answers “yes”, 2 k (Y. Otherwise, (2) test if J$, + a. If the answer to (2) 

is “no”, then the inference procedure answers “no”, 2 F cy. Otherwise, the inference 
procedure returns “don’t know”. 

Aside from the two computational problems related to Horn approximations, namely, 
computing the approximations and the question of the size of the formula represent- 

ing the approximations (see e.g., [3,17,18,21,32] ) a third major question, that is 
harder to analyze, is the question of evaluating the utility of reasoning with the ap- 

proximate theories. Clearly, if for a given query we have either Xlub k (Y or -&lb F LY, 
the answer to the question 2 b (Y is correct. The total performance of the inference 
procedure is determined, though, by how many queries are answered “don’t know”, 
forcing the procedure to resort to the original inference problem in order to answer the 

query. 
Consider a theory 2, and let &,,b be its least upper bound approximation. 

Proposition 4.5. The number of queries for which the reasoning with approximate 

theories returns “don’t know” is at least exponential in l&,h \ 21. 

Proof. Let S = &,h \ _Z. For every subset s c S define the query LY, = 2 U s (that is, 
the set of models of LY consists of the models of 2 and the models in the set s). Then, 

for all s C S, &:h’lh + (Y,~ (since Zg[b k Xc), and &,b F cry. Therefore, for all the 21sl - 1 

queries cy,, reasoning with approximate theories returns “don’t know”. q 

In [ 161 it is shown that, for a family of propositional languages C which consists of 

kHorn formulae (all Horn formulae with up to k literals in a clause), one can construct 

examples of theories 2 for which I&b \ -Z] IS exponential in the number of variables, 
where _&,h is the least upper bound of 2 in L. (Surprisingly, one can even construct 

( k+ 1) Horn theories with these properties.) Using Proposition 4.5, this leads to a double 
exponential number of queries for which reasoning with approximate theories returns 

“don’t know”. In [ 211 tools are developed that allow for a construction of such examples 
for every language L with respect to which we want to consider theory approximation. 
We briefly describe one example, for the case of Horn approximation: 

Consider the theory 

X= (Xl Vxz) A (Xg Vxq) A...A (x,-1 Vx,). 

It is easy to see that the number of models of 2 is 3”/2. However, the least up- 
per approximation of Z with respect to Horn, &h, can be shown to contain all the 
models in (0, l}“, that is, it is of size 2”. This can be argued from the fact that 
the set of models of any Horn formula is closed under intersection (bitwise “and”) 
(see, e.g., [9] ). Therefore, the size of &b \ 2 is exponential in the number n of 
variables. 

This question is partially addressed in [ 111, where learning techniques are used to 
find a locally-optimal approximation. However, in [ 111, as is done in general in the 
theory of Horn approximations, an approximation is defined in terms of containment, 
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(that is, logical strength), and there is no guarantee that this approximation is “close” 
to the optimal one, nor that the optimal one approximates the original theory within 

any reasonable bound, in the sense that it answers some fraction of the queries cor- 
rectly. 

Taking the “counting” approach, as we suggest in this paper, can shed some light 
on this problem. As argued above, a more reasonable way to estimate the utility of 
reasoning with approximate theories is to define it in terms of proximity in the number 
of models, since this correlates positively with the number of queries answered correctly 
(i.e., not answered with “don’t know”) by the approximations. The examples presented 

indicate that, when no restriction are imposed on the queries, even syntactically similar 
propositional languages (e.g., (k + l)Horn formulae and kHorn formulae) can be far 
enough in terms of the number of models to produce unacceptable behavior. 

The argument presented above, as exhibited in Proposition 4.5, shows that the heart of 

the problem is the fact that the queries presented to the reasoner are unrestricted. Thus it 
motivates an investigation in the direction of reasoning with restricted queries, where it 
might be possible to avoid these difficulties. Indeed, in [ 191 an experimental analysis is 
presented in which, under severe restrictions on the classes of queries allowed, reasoning 
with approximate theories is shown to succeed on a large percentage of the queries. In 
[21] a general analysis is developed and it is shown, in particular, that reasoning with 

the least upper bound of a theory _Z with respect to L is always correct if and only if 

the queries belong to the language L. 

4.4. Constraint satisfaction problems 

Constraint satisfaction problems (CSP) provide a convenient way of expressing 

declarative knowledge, by focusing on local relationships among entities in the do- 
main. 

A constraint satisfaction problem [ 71 involves a set of n variables xl,. . . , x, having 
domains DI, . . , D,, where each Di defines the set of values that variable xi may 

assume. An n-ary relation on these variables is a subset of the Cartesian product 

DI x 02 x . . . x D,. A constraint between variables is a subset of the Cartesian product 
of their domains. The set of all n-tuples satisfying all the constraints are the solutions 
to the CSP. The problem is either to find all the solutions, or one solution. 

In general, constraint satisfaction problems are hard, as a generalization of satisfia- 
bility of CNF formulae. A CNF formula is a constraint satisfaction problem in which 
Di = (0, 1) for each i, and each clause is the relation consisting of all the tuples for 
which at least one literal is 1. The set of solutions of the CSP is the set of satis- 
fying assignments of the formula. In particular, if we consider a network of binary 
constraints 9 over Di = (0, l}, as is usually done, the problem can be represented as a 
2SAT formula. 

Finding all the solutions is clearly an enumeration problem, and based on the results in 
Section 3, even the associated counting problem is #P-complete for almost all nontrivial 

‘) Not every n-ary relation can be represented by a network of binary constraints with n variables [23J. 
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However, even finding one solution of a constraint satisfaction problem is known to be 
hard in general, as discussed above, and different heuristics techniques have been used to 
find approximate solutions. To discuss those under the counting point of view presented 
here, we first observe that the above discussion implies that computing (approximating) 
the number of solutions of a (binary) CSP problem is at least as hard as computing 
(approximating) the number of solutions of a 2MONCNF formula. 

Together with the results in Theorem 3.1 and Theorem 3.2 we have: 

Theorem 4.6. The problem of computing the number of solutions of a (binary) CSP 

problem is complete for #P. For every jixed E > 0, approximating this number within 
$ is NP-hard. 

Search techniques were traditionally used to solve CSPs. These techniques require, in 
the worst case, exponential search time, and analyzing those techniques in order to get 
some performance guarantees is usually hard. 

We exemplify how the counting point of view taken here can be used to evaluate 
one class of heuristics [B] and restrict its feasibility. Dechter and Pearl suggest to use 

counting to guide the search according to an estimate of the confidence we have that a 
specific solution can be extended further to a full solution. 

More specifically, it is suggested to ( 1) simplify the pending subproblems (i.e., make 
some simplifying assumptions about the continuing portion of the search graph), (2) 
count the number of consistent solutions in each simplified subproblem, and (3) order 
the candidates according to these counts and use them to decide among the pending 

subproblems. 
The intuition behind the heuristics is that “the number of solutions found in the 

simplified version of the problem is a good estimate to the number of solutions in the 
original problem and thus is indicative of the chance to retain at least one surviving 

solution.” 
The results we present in Section 3 therefore restrict the utility of these heuristics 

in two ways: First, the simplified subproblem must be a tree, or another syntactically 

constraint structure (see Theorem 3.3), in order to be able to get a count of the solutions 

of the simplified version. More significantly, in case the original problem possesses a 
non-trivial structure, the number of solutions of the simplified version is not indicative 

at all to the number of solutions of the original problem. If it were, this could be used 
to approximate the number of solutions of the original problem, which we have shown 
to be hard. To summarize: 

Corollary 4.7. Using counting heuristics to constraint satisfaction problem is compu- 
tationally intractable. 

I” We comment, though, that Valiant’s results (1381, Fact 7) imply that under simple conditions (e.g., when 

finding one solution is easy and the problem satisfies a form of self-reducibility), enumerating the solutions 

is polynomial in their number even when the counting problem is hard. These conditions trivially hold for 
Horn formulae, and therefore for subclasses of CSP as well. 
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On the other hand, the positive results (Theorem 3.3) can be used to identify restricted 
domains for which these counting techniques can be shown useful. 

4.5. Related results 

The most related result to the work presented here is a reduction of yet another 
approximate reasoning technique to a counting problem. Orponen [25] shows, by re- 
duction, that the problem of computing Dempster’s rule of combination, the main tool in 
the Dempster-Shafer theory of evidence is at least as hard as the problem of computing 
the number of satisfying assignments of a propositional CNF formula. l1 Those results 
can be now strengthened using Theorem 3.1 and Theorem 3.2. As immediate results 
we get that ( 1) even the approximate version of Dempster’s rule of combination is 

hard to compute and (2) the hardness result for the Dempster-Shafer theory still holds 
even if we severely restrict the basic probability assignments allowed as evidence in the 

Dempster-Shafer theory. 

5. Discussion 

We have put results on the complexity of counting and approximating the number of 
satisfying assignments of propositional formulae in the context of various approximate 
reasoning techniques. The significance of this approach was illustrated by showing 

that various, supposedly different methods in approximate reasoning are equivalent to 
counting. It is worth noticing, for example, that while there is an active discussion in 
the approximate reasoning community as for differences in the semantical basis of the 
Dempster-Shafer theory and the Bayesian approach (see, e.g., [27,31,33] ) we show 
here that there is one computational problem underlying both approaches: computing 
inference is equivalent to counting satisfying assignments of a theory. Moreover, we have 

shown that this approach is valuable in evaluating techniques that use approximations in 

an effort to avoid computational difficulties. This was exemplified by analyzing heuristics 
used in constraint satisfaction problems and the utility of reasoning with approximate 

theories. We believe that the approach developed here can be found useful in the analysis 
of other problems of interest to AI. 

Our hardness results indicate that for the problems of computing degree of belief, 
probabilistic reasoning and other approximate reasoning techniques, one cannot expect 
to develop general-purpose algorithms that have a polynomial running time. Moreover, 
even computing approximate inference was proved to be intractable. 

These results do not rule out the possibility of developing efficient algorithms that 

apply in restricted cases, as our positive results suggest; identifying more positive results 
and investigating how they apply to various techniques might be one direction to extend 

this work. We mention in particular the problem of (approximately) counting the number 
of satisfying assignments in bounded degree 2MONCNF formulae. The problem is left 

” A similar result, using a different reduction, was proved independently by Provan [ 301. We thank Greg 

Provan for bringing [ 25,301 to our attention. 
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open (see Fig. 1) and its solution might be used to develop efficient algorithms for 
constraint satisfaction problems, for example. The positive results presented here are 
important therefore not only for pointing out the tractability frontiers, but also since they 
provide a collection of techniques that can be used to further enhance our understanding 
of these problems and develop new results, possibly, for other problems of interest to 

AI. 
However, the extent to which the hardness results apply (very restricted propositional 

languages, restricted topologies of Bayesian networks, etc.), imply that research should 

be directed away from investigating structural constraints on the “world” and towards 

investigating distributional constraints, or limiting our reasoning tasks rather than the 
“world’ we reason about. The first might include constraining the distributions we can 

represent in our belief networks (e.g., [ 28]), while the second could imply studying 
restrictions on the type of queries we need to respond to. This is motivated also by 
the results in Section 4.3 that suggest that a possible approach to allow for efficient 
reasoning might be to constrain the queries (rather than the “world”). Indeed, partly 
motivated by these results, in [ 211 it is shown how constraining the queries gets around 
the difficulties presented in Section 4.3 and leads to correct reasoning with approximate 
theories. 

A possible interpretation of the surprising and widely applicable results presented here 
is that we need to reconsider the way we model the reasoning problem. One way to get 

around the difficulties presented here is to allow the reasoner other ways to access the 
“world’, instead, or in addition to the fixed (formula-based, Bayesian network-based, 
etc.) knowledge-based approach that we analyze here. Promising results in this direction 
are presented in [ 201. 

Appendix A. Proofs 

In this section we formally state and prove the results outlined in Section 3. The 
results are stated only for some of the important languages in Fig. 1 and results for 

other languages can be easily deduced by inclusion, as described in Section 3. The 

results in this section are summarized in three theorems: in Section A.2 (Theorem 3.1) 
we prove results on the hardness of exact counting. In Section A.3 (Theorem 3.2) we 
prove results on the hardness of approximate counting. In Section A.4 (Theorem 3.3) 
we give positive results on exact counting by describing efficient algorithms for counting 

satisfying assignments for formulae in those languages. 

A. 1. Preliminaries 

For a Boolean function f we denote by M(f) the set of satisfying assignments of 
,f and by lM(f)l its size. We denote {1,2,. ..,n} = [n]. 

Lemma A.l. The problem of counting the number of satisfying assignments of a 
2MONCNF is equivalent to the problem of counting the number of independent sets in 

a graph. 
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Proof. Given a graph G( V!E) we associate with it a monotone CNF @o on variables 

{XI>..., x,,} as follows: 

@o= A (xivx,j). 

(w,)EE 

The inverse mapping is defined in the same manner: given a formula @ E 2MONCNF 

on {XI,. . . ,x,}, construct a graph GQ,( YE) on {ut , . . . , u,,} as follows: 

(D;, U.j) E E iff (xi V Xi) is a clause in @. 

Now, let S, = {U,j : j E Z} be an independent set in G, then the assignment defined by 

0, if i E I, 
Xi = 

1, otherwise, 

satisfies @o. The reason is that in every clause xi V Xj at least one of the variables is 

assigned to 1, since otherwise, by the definition of @o, (ui, Uj) E E, but both ui and Uj 

are in the independent set SI. 
For the other direction, assume that x is a satisfying assignment of @, and let I = 

{i E InI : xi = 0}, then S, = {vj : j E I} is an independent set in GG. The reason is 
that by the definition of the graph GQ, no two vertices which share an edge are in I, 
since otherwise we have a clause in Cp that x does not satisfy. q 

Corollary A.2. The problem of counting the number of satisfying assignments of a 

kp-2MONCNF is equivalent to the problem of counting the number of independent sets 

in a graph of degree k. 

Proof. The mapping defined in Lemma A.1 maps graphs of degree k to k,u formu- 
lae. 0 

A.2. Exact counting 

Theorem 3.1 (Hardness of Exact Counting). Let IS E C be a propositionalformula on 

n variables. If L is one of the following propositional languages, counting the number 
of satisfying assignments of 2 is complete for #P: 

( 1) C = 2MONCNF, 
(2) C = 2BPMONCNF, 
(3) C = 2HORN, 
(4) C = 3,+2HORN, 

(5) ,!I = 4,u-2MON. 

Proof. ( 1) and (2) are well known: ( 1) is proved in [ 381; (2) is from [29]. We can 
get (3) from (2) by negating all the variables in one of the bipartite sets. 

To prove (4)) given a formula Q, in 2HORN we rewrite it, without changing the num- 
ber of solutions, as a 3~-2HORN formula. Let @ be a 2HORN formula on {XI,. . . , x,} 
and assume xi appears m(i) times in @ (negated or unnegated). For every i E [nl 
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introduce m(i) new variables, {x~~)}+~,~(Q and replace the jth appearance of xi in @ 

by .x:.~) to get 2, a p-2HORN formula. We then conjoin 2 with Ai ri, where ri is the 

following ~,u-~HORN formula: 

Thus, the number of satisfying assignments of the 3~-2HORN formula 2 A Ai ri is 
equal to the number of satisfying assignments of the original 2HORN formula, and the 
counting problems for those languages are therefore equivalent. 

For (5) we use a different rewriting technique. Given a 3p-2CNF formula @ we 
rewrite it, while preserving the number of satisfying assignments as X A or where 2 

and r are both monotone, and _Z and ,?Z A r are both in 4,~~2MON. Since 12 A lrl = 
121 - 12 A rl, the hardness of exact counting for 4~-2MON formulae results from the 
hardness of counting for 3,z-2CNF formulae (cf. (4) ). 

In rewriting @, given a variable Xi, which appears both negated and unnegated in 

@, we replace its (up to 2) unnegated occurrences by yi and its (up to 2) negated 
occurrences by zi. The resulting formula is a 3,~2MONCNF formula @‘. To force that 

‘di, x = zi we denote 

@” = /pYi v z,), r=V(YiAZi). 

i i 

It is clear that 

Since 2 = @ A @” is a ~/.L-~MONCNF formula and r is a 1,~~2MON formula (in a 

DNF form), the result follows. 0 

A.3. Approximate counting 

Theorem 3.2 (Hardness of Approximation). Let 2 E C be a propositional formula on 

n variables. If C is one of the following propositional languages, approximating the 

number of satisfying assignments of ,I$ to within a factor of 2”‘-‘, for any jixed E, is 

NP-hard. 

( I ) C = 2MONCNF, 
(2) L = 3,u-2HORN. 

Proof. To get (2) from ( 1) we use the rewriting technique for nonmonotone clauses 
as in (4) of Theorem 3.1. (This technique leaves the number of solutions the same but 
might increase the number of variables up to n ‘. This can easily be handled as we do 
below.) Notice that the rewriting technique used in (5) of that theorem does not extend 
for approximations. 



292 D. Rorh/Artijicial Intelligence 82 (1996) 273-302 

The next lemma provides the main step in the proof of (1). The proof is based on 
the “blow-up” technique developed in [ 141. A different version of this lemma appears 

also in [ 341. 

Lemma A.3. For any E, approximating the number of independent sets of a graph on 

n vertices within 2”‘-’ is NP-hard. 

Proof. We use the “blow-up” technique introduced in [ 141, to reduce the problem 
of approximating the number of independent sets in G to the k-INDEPENDENT-SET 
problem [ lo]. Given G( YE), where 1 VI = n, we construct a graph G’( V’, E’) such that 

approximating the number independent sets in G’ to within 2”‘-‘: can be used to solve 
k-INDEPENDENT-SET in G. G’ is defined as follows: each vertex u E V is blown-up 

to a “cloud” c(u) of m vertices in G’. If (u, u) E E, in G’ we construct a complete 

bipartite graph on c(o) Uc( u) ) ; otherwise, there are no edges connecting c(u) to c(u) > . 
Formally, 

V’={u’:uEV; jE{l,...,m}}, 

l?={(u’,~~):(u,u)~E; i,jE{l,..., m}}. 

Assume now that G contains an independent set I of size k. Then, I’ = {d : u E I; 
j E {l,..., m}} is an independent set of size km in G’. Since all the subsets of an 
independent set are also independent sets, there are are least Nd, = 2km independent 
sets in G’. 

On the other hand, if G contains no independent set of size k, an independent set 
in G’, contains vertices from up to k - 1 “clouds”, since otherwise, the corresponding 

vertices in G (the “projection” of the clouds) generate in G an independent set of size 

larger than k - 1. In particular, the largest independent set in G’ is of size < (k - l>m 
(there might be, however, many different independent sets of that size). Thus, there are 
no more than N,,, = (k”,)2(k-1)‘1’ independent sets in G’. 

Finally, let k = n/2; in this case, k-INDEPENDENT-SET is NP-hard [ 10, p. 1941. 
Given E > 0, choose r large enough such that 1 - (r - 2) /(I + 1) < E, and let m = n’. 

The “blow-up” graph G’ is of size IV’\ = nm = n’+‘. We have that, 

b J 2”’ _ 2(2”-n)/4 > 2nr-’ = $“/‘r--21”r+” 

2”/2 , 

Notice also that this “blow-up” procedure is polynomial in the size of the original 
graph. Therefore, if we can approximate the number of independent sets in G’ within 
2,v’,‘-‘: < 2,Vl,Cr--21/(r+l~ 

we can use this approximation to decide whether the graph G’ 

has more than Nin or less than Nmax independent sets. As argued above, this leads to 
deciding n/2-INDEPENDENT SET. 0 
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We have proved in Lemma A.1 that counting the number of satisfying assignments of 
a 2MONCNF is equivalent to the problem of counting the number of independent sets 
in a graph. This, together with Lemma A.3 implies the theorem. 0 

A.4. Positive results 

Theorem 3.3 (Positive results). Let 2 E L: be a propositional formula on n variables. 
If L is one of the following propositional languages, there exists an efficient algorithm 

for counting the number of satisfying assignments of 2. 

( I ) L = 2,~2MONCNF, 
(2) C = 2,+2CNF, 

(3) C = Acyclic-2MONCNE 
(4) l = Acyclic-2HORN. 

Proof. We prove ( 1) by developing a closed form formula that is easy to evaluate for 
the number of independent sets in graphs of degree 2. For the other cases we develop 
efficient algorithms. (3) is the problem of counting independent sets of trees, for which 

we give an efficient recursive algorithm. The algorithms for (2) and (4) are more 
elaborate. In both cases we start by constructing chains of the form xi + x2 + . . . + 
x,., from the original theory. We then show that the original theory can be represented as 
a composition of these chains, and develop compositions rules that allow us to count the 
number of satisfying assignments of the composite chains. The difference between (2) 
and (4) is the type of compositions allowed. We note that (1) and (3) are subcases of 

(2) and (4)) respectively, but we give for them separate proofs, since those cases are 
considerably simpler. 

Proof of (1). Based on Corollary A.2 it is enough to count the number of independent 
sets of a degree-2 graph. In the following we consider the empty set to be an independent 

set. 
Let G be a connected graph of maximal degree 2 on n vertices. G can be either a 

cycle, in case all its vertices are of degree 2, or an arm if exactly 2 of its vertices are 
of degree 1. We have: 

Lemma A.4 Let ISi denote the number of independent sets in a cycle of length n, and 

IS: the number of independent sets in an arm of length n. Then, 

(i) IS: = 1 + z,;$” (n-!+‘), 

(ii) ISi = 1 + EjI[“’ (‘y;) + (“yiy’). 

Proof. We denote by ZSz,j (respectively, lSi,j) the number of independent sets of size j 
in an arm (respectively, cycle) of length n. l,Y$j(o) counts those independent sets that 

contain a fixed vertex, U, in the cycle. 
(i) The problem of computing ISt,j reduces to the following combinatorial problem: 

find the number of selections of j integers from the set { 1,. . . , n}, such that 
no two consecutive numbers are selected. To count this number, consider any 
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selection of j different numbers from among { 1, . . . , n - j + 1). The mapping 
which adds 0 to the first number selected, 1 to the second, . . . , j - 1 to the jth, 
is a l-l correspondence between those selections and the legal selections we 

count. Thus, we get: 

I$$= (n-:+1). 
To get the total number we sum on j, j < [n/2], and add 1 for the empty set. 

(ii) We claim that Z!& = IS:_, i + IS:_, j 
an arm with end points ut , ;,. 

(u). To see that, consider the cycle as 
(I .e, u;, u,, are adjacent in the cycle.) The first 

term corresponds to the independent sets of the cycle that do not contain, say, 
u17, while the second term correspond to those that contain it. (The latter group 
cannot contain ui, so we get them by shifting each set that contains ui by one 
place). Also, ZS;_,,j( u) = ZSz_3,j_, as we can just add two adjacent vertices as 
prefix, one that is not selected and u. We get: 

Z~,,i= (“Jj) + (‘~jr ‘)’ 
To get the total number we sum on j, j < Ln/2j, and add 1 for the empty 

set. 0 

As an immediate consequence of Lemma A.4 we get: 

Lemma A.5 Let G( YE) be a graph of maximal degree 2, and assume G has r con- 

nected components, of sizes nl , . . . , n,, respectively. The number of independent sets in 

G is 

where x E {a, c} depends on whether the component is an arm or a cycle. 

Proof of (2). All the clauses in a 2~-2CNF theory are of the form 11 --+ 12 where every 

literal Z; might be a variable x E X, or its negation, and every variable appears no more 
than twice in the given theory. (I.e., either a literal appears twice and its negation never 
appears in the theory or that the literal and its negation appear once each.) Notice that 
in the implication representations every clause G V 12 has two equivalent representation, 
11 ----) 12 and G + K. Since it will be convenient to use the implication representation we 
assume that we hold both representations and use the one that it more convenient. If a 
literal I appears both as an antecedent and as a consequent in two clauses, e.g., Ii + 12 
and 12 + 13 we can combine then the chain 11 + 12 -+ 13, which now contains the only 

occurrence of var(l2) in the theory. 
We call the theory C = 11 + 12 -+ . . . -+ 1, a simple chain. In this case, 11 is the 

antecedent of C and 1, its consequent. The antecedent and the consequent are the only 
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literals of degree 1 in the theory; all other literals are of degree 2. The antecedent and 
the consequent literals might have the same underlying variable, but this cannot be the 

case for other literals in the chain. We say that a simple chain It + Z2 + . . . -+ 1, in 
a 2~~2CNF theory is maximal if it cannot be extended, that is, the theory contains no 
other clause with It as consequent and no other clause with 1, as antecedent. Notice 
that two maximal simple chains Cr and C2 in a theory cannot have as consequents 1r 
and r, respectively. The reason in that in this case we can “reverse” Cz and negate 
all its literals, to get an equivalent chain that has It as antecedent. The new chain can 

be concatenated to Cl, contradicting its maximality. A simple chain is called a cycle if 
var(x, ) = var(x,); in this case all variables are of degree 2. 

Let Cl, C2, . . . , Ck be maximal simple chains in a 2,~-2cNF theory .X Assume Cr 
and C2 both have It as antecedent. In this case we can compose the simple chains, and 
say that Cl AC2 is a composite chain. Similarly, Ct and C2 can be composed if they have 
a common consequent. Notice that if a literal I appears in two maximal simple chains, 

it must appear in it both as an antecedent or as a consequent (being internal to both 

contradicts the degree requirement while being a consequent in one and an antecedent 
in the other contradicts the maximality of the chain). Thus, we can repeat this process 
of composition until there are no two chains in 2, simple or composite, that share a 
variable. 

If two chains share both antecedents and consequents, composing them results in a 
closed composite chain. Every composite chain C that is not closed has exactly two 

literals of degree 1, say Z; and Z,i. We decide arbitrarily to denote li = t(C) , the tail of 
C and 1.i = h(C), the head of C if i < j. The tail and head of a composite chain can 

be both antecedents, both consequents or any other combination. 
Given a chain Ct on variables {xt ,x2,. . . , xk} (i.e., all k variables appear in Cl), 

denote by NC, the number of assignments of {xt,x~, . . ,xk} that satisfy Ct. Likewise, 
for b E (0, l} denote by Nc,l,,=b, Nc,ir+ the number of assignments of {xl, x2,. . , xk} 
that satisfy Ct , given that we force the head (respectively, tail) literal to 0 or 1, and by 
N~,I,=,~,,,,=,,, when we force both head and tail to some value in (0, l}. 

Notice that given the values NC, Ncl,=t , (Nc~,~=t ) and Nclt=],h=i one can determine 
all the possible values Ncl,=*, h=*. Therefore, it will be necessary to compute all these 
values for a composite chain. For a closed chain, it will be enough to compute NC, 

since the chain will not be composed any more. 
Given a 2,u-2CNF theory, to count the number of its satisfying assignments we first 

decompose it to simple chains and cycles. The number of satisfying assignments of 

these simple theories is given in Lemma A.7. As argued above, if a variable x is 
common to two chains it must be an antecedent in both or a consequent in both. We 
derive, in Lemma A.8 and Lemma A.9 a composition rule that shows how to compute 
the number of satisfying assignments of the conjunction of two theories, under the 
restriction that these two theories are part of a 2~-2CNF theory. This composition rule 
is applied also for conjuncting composite chains, until there are no more compositions 
to be made. At this point the theory is represented as a conjunction of disjoint theories, 
and we use Lemma A.6 to compute its total number of satisfying assignments. We now 
describe the algorithm in some more details, and then prove some lemmas that show its 
correctness. 
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A.4.1. Algorithm: Count-2p-2HORN 
Let _Z = (li, V lj,) A ... A ( li,,f V 1.j.) be a CNF theory in 2,~-2cNF such that 

var(li,>, var(l,ik) E X,. The following procedure counts the number of satisfying as- 
signments of _Z: 

Construct simple chains: 
Represent each clause ‘* as 

Fix an order of the clauses. Start from the first clause and greedily combine li + 1.i 

and I,i + lk t0 li --f lj + 1 k. (That is, for each clause, check if one of its 
representations can be combined in that way, if any.) Go on until you end up with 
a maximal simple chain. 
Starting from the next available clause, repeat the above procedure, using only 
clauses that are not already part of a previously constructed chains. Go on until no 
more combination can be made. (I.e, no variable occurs both as consequent and 
as an antecedent.) Make sure in this process that the constants T and F are never 

internal to a chain. 
For each simple chain of the form 

C = lj, ---f li, --j ’ ’ ’ + 1; , r 

compute, using Lemma A.7 the value of NC, Nclr=l, Nc~=I, N~I~=I,M. 

Notice that in the above process no more than n combination steps are required (since 
the degree of a variable in 2 is at most 2, and that the resulting chains are uniquely 

defined. 

Combine chains: 
l Given 2, represented as a conjunction of simple chains, combine chains Ct and C2 

if they have a common variable as antecedent, as consequent, or both. 

l At each combination step, resulting in a composite chain C, compute, using 
Lemma A.8 and Lemma A.9, the values of NC, Nclr=t, Nc~=,, N~l~=l,h=l. 

l Go on until there are no chains with common variables. No more than n combi- 
nations steps are required, since the degree of a variable in 2 is at most 2. The 
process results in disjoint composite chains. 

Compute the number of satisfying assignments: 
0 Let {Ct,C2,.. . , C,} be the set of disjoint composite chains given by the previous 

stage. Let NC, be the number of assignments that satisfy Ci, counted only over the 

‘* Clauses of length I can also be represented in this way, e.g., x E (T + x) and R E (x -+ F). The fact 

that the constants T and F might appear in the theory more than twice will not affect the correctness of the 
algorithm (see remark on that later) 
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variables in Ci. If only Y variables from X, are used in {Cl, C2,. . . , Ck} Then, 
using Lemma A.6 the number of satisfying assignments of 2 is 

,M(S:), =2"-'fJNc,. 

j=i 

A.4.2. Correctness 
It is clear that the maximal simple chains constructed by the algorithm are unique, 

and so are the composite chains. It is also clear that the construction is efficient. We 
just need to show how to derive the number of satisfying assignments in that process. 
We show that in the next lemmas. 

Lemma A.6. Let 2 = Cl A C2 A . . . A ck be a formula on X, such that for each i, Xi 

appears in exactly one of the conjuncts C,i. Let Nci be the number of independent sets 

of C; and Nr the number of independent sets of 2. Then, 

Nz = fj NC,. 
i=l 

Proof. Clear from the fact that Ci are variable-disjoint. 0 

The initial step in computing the number of satisfying assignments is given by the 
next lemma: 

Lemma A.7. Consider the simple chain 

c = 1, + 12 + . . . + 1,. 

(i) If all the underlying variables in C are different then Nc = r + 1, Nclt=, = 1, 

Nc~=I = r, N~l~=l,h=l = 1. 

(ii) If 11 = 1, then Nc = 2. 

(iii) If11 =z then NC = 1. 

Proof. For (i) we note that if li = 1 then lj = 1 for j > i, so we need to consider only 

the first index i such that Zi = 1. There are r possibilities for that and one satisfying 
assignment in which all variables are 0. The other statements follow similarly (here 

11 = t(C) ; 1, = h(C) > . In (ii), either all literals are 1 or all are 0. In (iii) we must have 
that: II = 12 = . . . = 1,.-l = 0. 0 

The next lemma shows how to compute the number of satisfying assignments when 
composing two chains. 

Lemma A.8. Let Cl, C2 be two composite chains that have a exactly on variable, x, 

in common. We assume, without loss of generality, that the common variable is the tail 

of both Cl and C2, that the tail of the composite chain Cl A C2 is the degree-l variable 
coming from Cl and the head is the degree-l coming from C2. 
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(ii) 

If x appears as a positive (negative, respectively) variable in both chains it must 

be either an antecedent in both chains or a consequent in both. In this case, 

l Nc,r\cz = Nc,lr=~Nc+~ + Nc,~r=oNc,lr=o> 

l N(c,x~)J,=I = Nc,~r=~,/,=lk+~ + Nc,~,=o,~=1Nc+o> 

l N(C,AC~)IM = Nc,lr=~~c,lt=~,rt=~ + Nc,~r=oNc,~t=o,~, 

l N(c,ncz)~r=~,/,= I = Nc,~r=i,/~=iNczlt=l,rt=~ -I- Nc,I~=o,~=INc~I~=o,~=~. 

Assume x appears as a positive variable in Cl and as a negative variable in 

C2. In this case x must be an antecedent in one of the chains (say, Cl ), and 

consequent in the other. We have: 

l kx~ = Nc,jr=~Nc+o + Nc,~r=oNcz~r=~~ 

l N(c,Ac:)~,=I = k~~=~,/,=~Nc+o + &+o,~Nc+l~ 

l N(c,AG)I/~=I = Nc,~r=oNc+l,tx=~ + Nc,~t=~Nc+o,~ 

l N(c,Ac~)I~=I,~=~Nc,~~=~,~=INc~IT=o,~=~ + Nc,~f=~,h=lNc*~r=l,h=l. 

Proof. The proof is immediate from the notational assumption made and the observation 
that all the possible satisfying assignments are counted that way, and no other satisfying 

assignment is possible. q 

Lemma A.9. Let Cl, C2 be two composite chains that have exactly two variables, x, y, 

in common. We assume, without loss of generality, that the literals whose variable is x 

are in the tail of both Cl and Cl, and those whose variable is y are in the head of both 

chains. Since the result of this composition is a closed chain it is su.cient to compute 

NC, AC?. 
(i) rf both x and y appear as a positive (negative, respectively) variables in both 

chains (i.e., each must be either an antecedent in both chains or a consequent 

in both) we have: 

Nc,r\cz = c NC, It=b, ,h=bzNc? I t=b, ,h=bz. 

bl,bzE{O,l} 

(ii) If both occurrences of x are positive and y appears once as a positive variable 

and once negated we have: 

km = c Nc,~t=b,,h=bz~c,~t=b,,b=~;;, 

(iii) If both x and y appear as positive variable in 
other then we have: 

Nc,r\cz = c NC, It=bl .h=b2 Nc, It&J&. 
bl,bzE{O,l} 

one chain and negated in the 

As an example, consider the case of composing two simple maximal chains 

C]AC2=(X,iX~-‘..~-‘X,,_]~Z)A(y*-’y~~...-$yr~-]-‘Z), 

where the xi’s are different from the yj’s, z is the tail variable in both chains, and X] , ~1 
are the tail and the head, respectively of the composite chain. It is easy to see that 



D. Roth/Arti$cial Intelligence 82 (1996) 273-302 299 

NC,AC~ = rl r2 + I, 

Nc,Ac~~~=I = Nc,M~I~,=I = r-2, 
N CIAC~IM = Nc,Ac~~?.,=I = rl, 

NC,ACW,~=I = 1. 

Ifalsoxt=yt thenNclAcZ=(rt-1)(r2-1)+2. 

Proof. The proof is immediate from the notational assumption made and the observation 
that all the possible satisfying assignments are counted that way, and no other satisfying 

assignment is possible. 0 

With the observations that the computation above can be done in time polynomial 

in the size of the formula, this completes the correctness proof for algorithm Count- 
2p2CNF. We note that in the case of clauses that contain a constant, T or F, since 
all of them appear either as tail or head of a chain the algorithm can handle multiple 
occurrences of them. This in fact is true in general. The composition rule holds if we 
require only that the degree of variables that appear internal to a simple chain is at most 
2, while the degree of all other variables, those whose all occurrences in the theory 

iseither positive or negative, is not restricted. The problem is that in this case every 

composite chain can have more than two possible connection points, and the number of 
N*‘s we need to keep track of, in order to implement the algorithm, grows exponentially. 
Therefore, we can allow no more than a logarithmic (in n) number of variables with 
unrestricted degree. 

Proof of (3). By Lemma A.1, given 2 E Acyclic-2MONCNF, it is sufficient to count 
the number of independent sets in the corresponding graph which is, by the definition 
of an Acyclic-2MONCNF formula (Section 3), an acyclic graph. We first consider the 
case of a connected acyclic graph, a tree. 

Lemma A.lO. Let T be a tree on n vertices. The number of independent sets of T can 

be computed in time O(n). 

Proof. Let T be a tree with root r. For a vertex x E T, we denote by TX the subtree of 
T with x as root. c(x) denotes the set of all vertices which are children of x in T, and 

gc(x) the grandchildren of x in T. We denote by ZS, the number I3 of independent sets 
of the tree rooted at X. Among these independent sets, ZSX(x) denotes the number of 
those which contain the root X, and ZS,( h) denotes the number of those which do not 
contain the root X. 

Notice that, for all y E c(x) and any independent set I of TX, Zy = {z E Z fl T\,} 

is an independent set in T,,. We use this in the next claim to represent the number 
of independent sets in T, in terms of the number of independent sets of subtrees of 

I3 As before, we count the empty set as one of the independent sets. 
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Count-IS-Tree(T): 

For all x E Rc, IS, = 2. 

For all x E RI, IS, = 1 + 21c(X)l. 

For i=3,4,...,r do: 

For all x E IL lS, = flzEgccXj IS, + nYEccXj IS,,. 

End 

Fig. A. I. Counting independent sets of a tree. 

Claim A.ll. For IS,, IS,( x), IS,( /z) as defined above, we have: 

(i) K(b) = rI,‘Ec(x) $9 

Proof. If c(x) = {YI,Y~, . . . , yk} and (1,; C &}f=, any collection of independent sets 

(in the respective trees) then ut, I,; is an independent set in TX that does not contain 

X. For the other direction, clearly any independent set I C TX that does not contain x 
can be decomposed uniquely as above. For (ii), similarly, if I is an independent set in 

TX and x E I, then clearly ‘dz E gc(x>, I, = {z E I rl T,} is an independent set in T,. 

For the other direction, if gc(x) = {zi, 22,. . , zk} and {I,, G Tz,}f_, any collection of 

independent sets in T,,, then clearly lJf=, I:, U { } x is an independent set in TX, since it 
contains no vertex from c(x). (iii) is immediate from (i) and (ii). 17 

We now present an algorithm, Count-IS-Tree, that computes the number of indepen- 
dent sets of a given tree. We denote by r(x) the rank of the vertex x E T. The rank 
of x is defined as follows: If x is a leaf, r(x) = 0. If x is an internal node in the tree 
we define, r(x) = I + max?,Ec(X) r(y). We denote by Ri the set of all vertices x E T 

such that r(x) = i, and assume w.1.o.g. that the tree T is representated as a collection of 

its sets Ri. In the algorithm, we compute the number IS, of independent sets of a tree 

rooted at x E Ri, given the values ZSY for all y E R,,, for j < i. 
For the boundary conditions, notice that if the tree contains a single vertex x, then 

IS, = 2, and if the children of the root are leaves, then IS, = 1 + 2#leaves. Thus, the 
correctness of the algorithm follows from Claim A.1 1 and the discussion above, and 

this completes the proof of the lemma. 0 

Since an acyclic undirected graph is a union of disjoint trees, using Lemma A.6 
completes the proof. 

Proof of (4). As in the proof of (3) we assume that in the graph that corresponds to 
the 2HORN formula .X every connected component is a tree. The counting algorithm 
is very similar to the one presented for the acyclic monotone case. We prove a claim 
that is analog to Claim A.1 1, and use it to count the satisfying assignments as in the 
algorithm Count-IS-Tree(T) above. 
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Claim A.12. Let N, denote the number of assignments that satisfy the conjunction of 
clauses that correspond to a tree rooted at x (with respect to these variables only). 

N, (0) (respectively, N, ( 1) ) denotes those assignments in which x is assigned 0 (re- 

spectively, 1). We have that: 

(i) N,(O) = fl,.EcCx) NY, 

(ii) N,(l) =nJEcCx)NY(l), 
(iii) N, =N,(O) +N.,(l) =n!Ec(*)N~+n!,Ec(,,N.(l). 

Proof. To prove (i) we observe that since x is assigned 0, there are no restrictions on 
the satisfying assignments of the tree rooted at y E c(x). Since the subtrees rooted at 

different elements of c(x) are disjoint, we get the result. We get (ii) by observing that 

an assignment satisfies the formula corresponding to TX, where x is assigned 1, iff all 
y E c(x) are assigned 1. (iii) is immediate from (i) and (ii). cl 

Noticing that if the corresponding tree is of depth 1, the number of satisfying as- 
signments is 1 + 2#leaves, serves as the boundary condition for the procedure, that uses 
Claim A.12 to count the number of satisfying assignments of the Acyclic-2HORN for- 
mula 2. Similar to the algorithm Count-IS-Tree(T) in the proof of (3) above we get 

an algorithm that computes the number of satisfying assignments efficiently. 0 
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