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We propose a video denoising method based on a spatiotemporal Kalman-bilateral mixture model to reduce the noise in video
sequences that are captured with low light. To take full advantage of the strong spatiotemporal correlations of neighboring frames,
motion estimation is first performed on video frames consisting of previously denoised frames and the current noisy frame by using
block-matchingmethod.Then, current noisy frame is processed in temporal domain and spatial domain by using Kalman filter and
bilateral filter, respectively. Finally, by weighting the denoised frames from Kalman filtering and bilateral filtering, we can obtain a
satisfactory result. Experimental results show that the performance of our proposed method is competitive when compared with
state-of-the-art video denoising algorithms based on both peak signal-to-noise-ratio and structural similarity evaluations.

1. Introduction

Recently, as the rapid development of digital imaging tech-
nology, digital imaging devices have been widely applied in
many fields, including computational photography, security
monitoring, robot navigation, and military reconnaissance.
However, video signals are often contaminated by all kinds
of noise during acquisition and transmission, such as optical
noise, component noise, sensor noise, and circuit noise.
The noise in video signals not only damages the original
information and results in unpleasant visual effect, but also
affects the effectiveness of further coding or processing such
as feature extraction, object detection, motion tracking, and
pattern recognition. So, noise reduction in contaminated
video sequences should be implemented.

Many video denoising methods have been proposed in
the past decade,most of which perform in the spatial domain,
temporal domain, or their combination [1–6]. Methods in
spatial domain often produce limited results because they
do not take advantage of spatiotemporal correlations of
neighboring frames. Methods in temporal domain consider
the correlations of neighboring frames, but they are only
appropriate for still video. Additionally, the results have
artifacts or smear phenomenon when objects motion exist.
By combining the spatial domain with temporal domain,

impressive results can be produced. However, these methods
generally require a huge amount of computation. With the
emergence of new multiresolution tools, such as the wavelet
transform [7, 8], video denoising methods performing in
transform domain were proposed continually [9–12]. Now,
the transform domain techniques in general, especially the
wavelet-based video denoising methods, have been shown to
outperform these spatiotemporal video denoising methods.
Moreover, methods that combine spatiotemporal domain
and transform domain were also proposed [13–16], which
could produce perfect denoising effect. Similarly, this kind of
methods also require huge amount of computation.

However, although video denoising technology has made
great progress, most of these methods are unable to obtain
ideal effect for large noisy video sequences in low light,
which is urgently needed in many fields, especially in the
securitymonitoring field. In this field, themonitoring devices
are fixed in some places in general, so the captured video
sequences have fixed background. In practical applications,
it often requires to see the characteristic both of still and
moving objects in the video sequences clearly. This require-
ment can be met easily in the day time. However, in the
night time, because of the low light condition, captured video
sequences are contaminated by noise badly. To some extent,
existing video denoising methods can reduce the noise of
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contaminated video sequences, but this is far from enough
to meet the requirement.

In this paper, a novel video denoising method based on a
spatiotemporal Kalman-bilateral mixture model is proposed.
Firstly, we performan appropriate average filtering on current
noisy frame to reduce the influence of noise, which we
call prefiltering. This step is useless to the final denoising
result, but preparative to the motion estimation. Then, take
advantage of the strong spatiotemporal correlations of neigh-
boring frames, block-matching based motion estimation is
performed by comparing current pre-filtered frame with
previously denoised frames. Based on motion estimation
results, current noisy frame is processed in the temporal
domain by using Kalman filter [17] on the one hand. It is
noteworthy that different blocks of the noisy frame have
different filtering strength according to their block-matching
results. In the Kalman filtering, motion blocks have quite
weak filtering strength to keep their motion characteristic,
while still blocks have strong filtering strength to reduce
the noise. On the other hand, current noisy frame is also
processed in the spatial domain by using bilateral filter
[18], which aims at reducing the noise globally. Finally, by
weighting the two denoised frames from Kalman filtering
and bilateral filtering, we can obtain a satisfactory result,
in which the still region is largely from Kalman filtered
result and the motion region is almost from bilateral filtered
result. Experimental results show that the performance of our
proposed method is effective over current competing video
denoising methods.

The remainder of the paper is organized as follows.
Section 2 reviews related work. Section 3 describes our
proposed spatiotemporal Kalman-bilateral mixture model.
Section 4 provides quantitative quality evaluations of the
denoising results. In Section 5, experiments are implemented
and the experimental results are shown. Finally, Section 6
concludes this article.

2. Related Work

Buades et al. [2] firstly proposed the Non Local Means
(NLM) method. This method replaced a noisy pixel by
the weighted average of pixels with related surrounding
neighborhoods, and finally could produce quite satisfactory
denoising results. However, high computational complexity
makes this method impractical. Later, Karnati et al. [3]
improved the NLM algorithm. They replaced the window
similarity by amodifiedmultiresolution based approach with
much fewer comparisons rather than all pixels comparisons.
In their method, mean values of the variable sized windows
were computed efficiently using summed image (SI) concept,
which requires only 3 additions. Finally, the computational
speed was increased by 80 times. Based on the NLM algo-
rithm, many methods were proposed for video denoising [4–
6, 13]. Mahmoudi and Sapiro [4] introduced filters that elim-
inated unrelated neighborhoods from the weighted average
to accelerate the original NLM algorithm and applied it for

video denoising. Yin et al. [5] proposed a novel scheme by
using the mean absolute difference (MAD) of the current
pixel block and the candidate blocks both in spatial and
temporal domain as a preselecting criterion. Rather than one
single pixel, this scheme reconstructed a block with different
number of pixels according to the statistic property of the
current pixel block, which dramatically lowered the computa-
tional burden and kept good denoising performance. Dabov
et al. [13] proposed an effective video denoisingmethod based
on highly sparse signal representation in local 3D trans-
form domain. They developed a two-step video denoising
algorithm where the predictive search block-matching was
combined with collaborative hard-thresholding in the first
step and with collaborative wiener filtering in the second
step. Finally, state-of-the-art denoising results were achieved.
Moreover, Guo et al. [19] proposed a recursive temporal
denoising filter namedmultihypothesis motion compensated
filter (MHMCF). This filter fully exploited temporal correla-
tion and utilized a number of reference frames to estimate
the current pixel. As a purely temporal filter, it well preserved
spatial details and achieved satisfactory visual quality.

In addition, there are still many video denoising methods
performing in transform domain [9–12, 14–16]. Zlokolica
et al. [9] introduced a new wavelet based motion reliability
measures and performed motion estimation and adaptive
recursive temporal filtering in a closed loop, followed by an
intra-frame spatially adaptive filter. Mahbubur Rahman et al.
[10] proposed a joint probability density function to model
the video wavelet coefficients of any two neighboring frames
and then applied this statistical model for denoising. Jovanov
et al. [11] reused motion estimation resources from the video
coding module for video denoising. They proposed a novel
motion field filtering step and a novel recursive temporal filter
with appropriately defined reliability of the estimated motion
field. Luisier et al. [12] proposed an efficient orthonormal
wavelet-domain video denoising algorithm. This method
took full advantage of the strong spatiotemporal correlations
of neighboring frames and could outperform most state-of-
the-art wavelet-based techniques. Yu et al. [14] integrated
both the spatial filtering and recursive temporal filtering
into the 3-D wavelet domain and effectively exploited both
the spatial and temporal redundancies. Varghese and Wang
[15] applied motion estimation to enhance the correlations
between temporal neighboring wavelet coefficients and pro-
posed a spatiotemporal Gaussian scale mixture model for
natural video signals. Maggioni et al. [16] separately exploited
the temporal and nonlocal correlation of the video and
constructed 3-D spatiotemporal volumes by tracking blocks
along trajectories defined by the motion vectors. In addition,
other video denoising methods, such as the method by
using low-rank matrix completion [20], were also proposed
recently and achieved good results.

However, most existing video denoising methods cannot
achieve satisfactory results when the video sequences are
contaminated badly in low light. In this paper, we propose a
spatiotemporal Kalman-bilateral mixture model, which can
reduce the noise in large noisy video sequences that are
captured with low light.
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Figure 1: Diagram of proposed ST-KBMvideo denoising algorithm.

3. Proposed Spatiotemporal Kalman-Bilateral
Mixture Model

Figure 1 illustrates the diagram of our proposed spatiotempo-
ral Kalman-bilateral mixture (ST-KBM) model. The denois-
ing of current noisy frame involves not only the frame itself,
but also a series of past denoised frames. Firstly, prefiltering
is performed on current noisy frame. The purpose of this
operation is to reduce the influence of noise as possible
and prepare for next motion estimation. Motion estimation
is performed between the current noisy frame and past
denoised frames, and the estimation results are used to guide
the Kalman filtering on current noisy frame. In addition,
bilateral filtering is also performed on current noisy frame.
So, after above processing, there are two denoised frames,
one comes from Kalman filtering and another comes from
bilateral filtering. Finally, by weighting the two denoised
frames, we can obtain a satisfactory result.

3.1. Motion Estimation. Motion estimation itself is a complex
problem. Generally, motion estimation is performed directly.
When the video has relatively little noise, estimation results
will be accurate. However, as the increase of noise, the
precision of motion estimation becomes quite low. With
the influence of large noise, precision motion estimation is
becoming difficult. So, we perform average filtering on the
current noisy frame to restrain the influence of noise as pos-
sible before motion estimation, which is called prefiltering.
After the prefiltering step, the large noise is restrained by a
huge margin while the motion in the video remains well.
In this case, although the frame has become quite fuzzy,
motion estimation is not affected. Note that the prefiltering

procedure is only implemented for motion estimation, rather
than contributing for the image-signal denoising.

Then, take advantage of the strong correlations between
adjacent frames,motion estimation based on block-matching
is performed by comparing current pre-filtered frame with
past denoised frames. Block-matching (BM) [21] is a partic-
ular matching approach that has been extensively used for
motion estimation in video compression. Here, we use it to
calculate whether motion exists in the block.

An illustrative example of block-matching is given in
Figure 2. Firstly, divide current pre-filtered frame and past
denoised frames into a number of blocks which have fixed
size𝑁×𝑁.Then, we compare the block in current prefiltering
frame with blocks that have the same position in past
denoised frames, respectively, and use ℓ

2-distance as the
measure whether motion exists in the block, which is called
motion measure. The block distance can be calculated as

𝑑 (𝐵
𝑚

current , 𝐵
𝑚

past,𝑖) =


V (𝐵𝑚current) − V (𝐵𝑚past,𝑖)



2

2

𝑁2
,

(1)

where ‖ ⋅ ‖
2
denotes the ℓ2-norm, V(𝐵𝑚current) and V(𝐵

𝑚

past,𝑖) are
the intensity gray level vectors of the 𝑚th block in current
prefiltering frame and that in the 𝑖th past denoised frame,
respectively. After calculating the block distances between
current prefiltering frame and each past denoised frame,
respectively, finalmotionmeasure of the𝑚th block in current
prefiltering frame can be gain by averaging them as follows:

𝑑
𝑚
=

∑
𝑛

𝑖=1
𝑑 (𝐵
𝑚

current , 𝐵
𝑚

past,𝑖)

𝑛
. (2)

The averaged block distance measure the extent that
motion exists in the block of current prefiltering frame. The
larger the value is, the greater the likelihood is. Therefore, by
calculating all of the block distances in current prefiltering
frame, we can get global motion estimation.

3.2. Motion Estimation Based Kalman Filtering in Temporal
Domain. The discrete Kalman filter [17] is a set of mathe-
matical equations that provides an efficient computational
solution of the least squares method. It can estimate the
state of a dynamic system from a series of incomplete noisy
measurements by using a form of feedback control. This
procedure consists of two consecutive stages: prediction
and updating. The prediction stage projects forward the
current state and error covariance estimates to obtain a priori
estimate for the next time step in time. The updating stage
incorporates a new measurement into the priori estimate to
obtain an improved posteriori estimate.

The prediction equations can be presented as follows:

𝑥
−

𝑘
= 𝐴
𝑘
⋅ 𝑥
+

𝑘−1
+ 𝐵
𝑘
⋅ 𝑢
𝑘
,

𝑝
−

𝑘
= 𝐴
𝑘
⋅ 𝑝
+

𝑘−1
𝐴
𝑇

𝑘
+ 𝑄
𝑘
.

(3)

In the above equations, the superscripts “−” and “+” in
the equations denote “before” and “after” each measurement,
respectively. 𝑥+

𝑘−1
and 𝑝

+

𝑘−1
represent the estimated state
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Figure 2: Block-matching for motion estimation by comparing current prefiltered frame with past denoised frames.

matrix and state covariance matrix of last state, respectively.
𝑥
−

𝑘
and 𝑝−

𝑘
represent the priori estimates of state matrix and

state covariance matrix for current state. 𝐴
𝑘
represents the

state transition matrix which determines the relationship
between the present state and the previous one. Matrix 𝐵

𝑘

relates the control input 𝑢
𝑘
to current state. 𝑄

𝑘−1
represents

the covariance matrix of process noise.
In our case, we try to estimate current video frame based

on the last one. So, the state matrix in above equations is
just the video frame matrix. In the video sequences, there is
not any control input, which means 𝑢

𝑘
= 0. For the priori

estimates for current state, we assume it is the same as last
state. So, we can obtain following equations:

𝑥
−

𝑘
= 𝑥
+

𝑘−1
,

𝑝
−

𝑘
= 𝑝
+

𝑘−1
+ 𝑄
𝑘
.

(4)

Theprocess noise in the video sequences is just resulted by
themotion. So, for any pixel (𝑥, 𝑦) in the𝑚th block of current
noisy frame, we define

𝑄
𝑘−1

(𝑥, 𝑦) = 𝑑
𝑚
, (5)

which keeps the covariance of motion region larger than that
of still region.

The updating equations can be presented as follows:
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(6)

The first task during the updating stage is to compute the
Kalman gain, Kg

𝑘
, which is known as the blending factor

to minimize the posteriori error covariance. In the above
equations, 𝑥−

𝑘
and 𝑝

−

𝑘
are the priori estimates calculated

in prediction stage. Matrix 𝐻
𝑘
describes the relationship

between the measurement vector, 𝑧
𝑘
, and the posteriori state

vector, 𝑥+
𝑘
. 𝑅
𝑘
is the covariance matrix of measurement noise.

𝑝
+

𝑘
is the posteriori estimates of state covariance matrix for

current state.

In our case, 𝑧
𝑘
and 𝑥

+

𝑘
represent current noisy and

denoised frames, respectively. 𝐻
𝑘
is the unit matrix. The

measurement noise just represents the noise in the video
sequences. So, we can obtain the following equations:
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(7)

After Kalman filtering, we can obtain a denoised frame,
in which the still region is denoised quite well. However, the
moving region still has much noise because Kalman filter
retains the information of this region intact.Therefore, for the
motion region, we use the bilateral filter to reduce its noise as
possible.

3.3. Bilateral Filtering in Spatial Domain. The bilateral filter
was introduced by Tomasi and Manduchi [18] as a nonitera-
tive means of smoothing images while retaining edge detail.
It involves a weighted convolution in which the weight for
each pixel depends not only on its distance from the center
pixel, but also its relative intensity. So, for any pixel (𝑥, 𝑦) in
the frame, its filtered intensity value𝑉(𝑥, 𝑦) can be calculated
as follows:

𝑉 (𝑥, 𝑦) =

∑
(𝑖,𝑗)∈𝑆

𝑥,𝑦

𝑤 (𝑖, 𝑗) ⋅ 𝑉 (𝑖, 𝑗)

∑
(𝑖,𝑗)∈𝑆

𝑥,𝑦

𝑤 (𝑖, 𝑗)
. (8)

In above equation, 𝑆
𝑥,𝑦

represents the neighbourhood
centered in the pixel. 𝑉(𝑖, 𝑗) represents the intensity value
of pixel (𝑖, 𝑗) in the neighborhood. The weighting coefficient
𝑤(𝑖, 𝑗) consists of two parts, as shown in follows:

𝑤 (𝑖, 𝑗) = 𝑤
𝑠
(𝑖, 𝑗) ⋅ 𝑤

𝑟
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2
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2

𝑠

𝑤
𝑟
(𝑖, 𝑗) = 𝑒

−[𝑉(𝑖,𝑗)−𝑉(𝑥,𝑦)]
2

/2𝜎
2

𝑟 ,

(9)

𝑤
𝑠
(𝑖, 𝑗) is the weighting coefficient depended on the distance

difference from the center pixel, while𝑤
𝑟
(𝑖, 𝑗) is theweighting
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Figure 3: The weight calculated based on motion estimation value.

coefficient depended on the intensity different from the
center pixel. 𝜎

𝑠
and 𝜎

𝑟
are the variation coefficient of the

two weighting coefficient, which control their degree of
attenuation.

Only reducing the noise in themoving region of denoised
frame from Kalman filtering is complicated. So, we apply the
bilateral filter on whole current noisy frame. In this case,
both the still region and moving region are denoised. Then,
by weighting the two denoised frames from Kalman filtering
and bilateral filtering, an integrated denoised frame can be
obtained, in which the still region is from Kalman filtering
and the moving region is from bilateral filtering.

3.4. Weighted Average. After Kalman filtering and bilateral
filtering, we have two denoised frames. One is from Kalman
filtering, in which the still regions are well denoised but
the motion regions remain the noisy information intactly.
Another is from bilateral filtering, in which the motion
regions are denoised to some extent. So, we integrate the two
denoised frames by weighting them based onmotion estima-
tion results.Theweight is based onGaussian distribution, and
for any pixel (𝑖, 𝑗) in the 𝑚th block, its weight value, 𝑤

𝑐
(𝑖, 𝑗),

can be calculated as follows:

𝑤
𝑐
(𝑖, 𝑗) = 𝑒

−𝑑
2

𝑚
/𝜎
2

𝑐 . (10)

Based on the above equation, the motion and still regions
can be further distinguished effectively. As shown in Figure 3,
the larger the value of motion estimation is, the smaller the
weight is. 𝜎

𝑐
is used to control the degree of attenuation.

Then, the weighted denoised frame can be calculated as
follows

𝑋
𝑐
= 𝑊
𝑐
⋅ 𝑋kalman + [𝐼 −𝑊𝑐] ⋅ 𝑋bilateral . (11)

Motion
region

Motion
region

Motion
region

Denoised frame
from Kalman filtering

Denoised frame
from bilateral filtering

Weighted denoised frame

Figure 4: Weight the two denoised frames based on motion
estimation.

Here,𝑊
𝑐
represents the weight matrix calculated by (10).

𝑋kalman and𝑋bilateral represents the denoised frame matrices
by Kalman filtering and bilateral filtering, respectively. 𝑋

𝑐

is just the desired weighted frame matrix. After weighted
average, both the motion region and still region of the
weighted frame have been denoised, as shown in Figure 4.

4. Validation Criteria

For providing quantitative quality evaluations of the denois-
ing results, two objective criteria, namely the PSNR and the
SSIM [22–24], are employed. PSNR is defined as

PSNR = 10 ⋅ log
10
(

𝐿
2

MSE
) , (12)

where 𝐿 is the dynamic range of the image (for 8 bits/pixel
images, 𝐿 = 255) andMSE is themean squared error between
the original and distorted images. SSIM is first calculated
within local windows using

SSIM (𝑥, 𝑦) =

(2𝜇
𝑥
𝜇
𝑦
+ 𝐶
1
) (2𝜎
𝑥𝑦
+ 𝐶
2
)

(𝜇2
𝑥
+ 𝜇2
𝑦
+ 𝐶
1
) (𝜎2
𝑥
+ 𝜎2
𝑦
+ 𝐶
2
)

, (13)

where 𝑥 and 𝑦 are the image patches extracted from the local
window from the original and noisy images, respectively. 𝜇

𝑥
,

𝜎
2

𝑥
, and 𝜎

𝑥𝑦
are the mean, variance, and cross-correlation

computed within the local window, respectively. The overall
SSIM score of a video frame is computed as the average local
SSIM scores. PSNR is themostly widely used quality measure
in the literature, but has been criticized for not correlating
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Figure 5: Comparison of PSNR and SSIM evolution for four video sequences corrupted with noise standard deviation 𝜎 = 100 and three
denoising algorithms. (a1)-(a2) PSNR and SSIM of denoised Salesman sequence. (b1)-(b2) PSNR and SSIM of denoised Hall sequence.
(c1)-(c2) PSNR and SSIM of denoised Akiyo sequence. (d1)-(d2) PSNR and SSIM of denoised Silent sequence.
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Figure 6: Denoising results of frame 105 in Salesman sequence corrupted with noise standard deviation 𝜎 = 100. (a1)–(a5) Image frames
in the original, noisy, ST-GSM [15], VBM3D [13], and ST-KBM denoised sequences. (b2)–(b5) Corresponding SSIM quality maps (brighter
indicates larger SSIM value).
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(a) (b) (c) (d)

Figure 7: Denoising results of a natural noisy video sequence in low light. (a)–(d) Image frames in the noisy, ST-GSM [15], VBM3D [13], and
ST-KBM denoised sequences.

Table 1: PSNR and SSIM comparisons of video denoising algorithms for 4 video sequences at 5 noise levels.

Video sequence
noise std (𝜎)

Salesman Hall
10 15 20 50 100 10 15 20 50 100

PSNR results (dB)
ST-GSM [15] 37.93 35.56 33.89 26.43 20.72 38.28 35.99 34.12 27.16 19.99
VBM3D [13] 39.11 36.65 34.72 27.93 22.18 39.96 37.93 36.31 28.14 21.97
ST-KBM 35.48 33.81 33.52 29.64 22.73 35.73 33.21 32.84 28.44 23.42

SSIM results
ST-GSM [15] 0.970 0.950 0.928 0.699 0.452 0.975 0.965 0.955 0.882 0.620
VBM3D [13] 0.976 0.958 0.932 0.742 0.489 0.980 0.973 0.966 0.887 0.601
ST-KBM 0.954 0.942 0.934 0.864 0.734 0.978 0.970 0.967 0.929 0.830
Video Sequence
Noise std (𝜎)

Akiyo Silent
10 15 20 50 100 10 15 20 50 100

PSNR results (dB)
ST-GSM [15] 40.67 38.34 36.53 28.44 21.89 37.41 35.17 33.61 27.63 21.87
VBM3D [13] 42.00 39.72 37.85 30.69 23.36 38.67 36.34 34.59 28.38 23.08
ST-KBM 35.09 34.66 34.06 30.17 23.67 34.26 32.78 32.29 27.98 23.10

SSIM results
ST-GSM [15] 0.980 0.969 0.958 0.852 0.673 0.963 0.943 0.922 0.787 0.561
VBM3D [13] 0.984 0.976 0.964 0.871 0.614 0.970 0.951 0.928 0.773 0.535
ST-KBM 0.962 0.954 0.943 0.894 0.795 0.937 0.922 0.907 0.823 0.692

well with human visual perception [25]. SSIM is believed to
be a better indicator of perceived image quality [25]. It also
supplies a quality map that indicates the variations of images
quality over space. The final PSNR and SSIM results for a
denoised video sequence are computed as the frame average
of the full sequence.

5. Experiments and Results

In order to evaluate the performance of our proposed ST-
KBM algorithm, we compare it with some state-of-the-
art video denoising algorithms, such as ST-GSM [15] and
VBM3D [13]. The original codes of these two algorithms can
be downloaded online [26, 27].

In the experiments, four video sequences are selected
from the publicly available video sequences [28], which have
fixed background. The noisy video sequences are simulated

by adding independent white Gaussian noises of given
variance 𝜎2 on each frame. Table 1 shows the PSNR and SSIM
results of proposed ST-KBM, ST-GSM, and VBM3D for the
four video sequences at five noise levels. When the noise level
is relatively low, the proposed ST-KBM algorithm works well
but still has a gap with ST-GSM and VBM3D. However, when
the noise level is high, it performs better than ST-GSM and
VBM3D for most of the test sequences. In particular, the
SSIM of ST-KBM is much better than other two algorithms.

In Figure 5, we show the PSNR and SSIM from frame
200 to 300 of the test video sequences corrupted by noise
with 𝜎 = 100. With the comparison to PSNR, our proposed
ST-KBM algorithm performs slightly better than ST-GSM
and VBM3D. However, for SSIM, it outperforms ST-GSM
and VBM3D obviously, which means that the denoised
video sequences by using ST-KBM algorithm have better
visual quality. Figure 6 demonstrates the visual effects of the
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three video denoising algorithms. In particular, we show the
frame 105 extracted from the Salesman sequence, together
with a noisy version of the same frame, and the denoised
frames obtained by the three video denoising algorithms.
It can be seen that our proposed ST-KBM algorithm is
obviously effective at suppressing background noise while
maintaining the structural information of the scene. This is
further verified by examining the SSIM quality maps of the
corresponding frames. The results show that our proposed
ST-KBM algorithm is perfectly effective to the large noisy
video sequences and can achieve state-of-the-art denoising
performance.

Moreover, to further demonstrate the practicability of
proposed ST-KBM algorithm, we implement practical exper-
iments, as shown in Figure 7. The natural noisy video
sequence is captured in very low light, and the real infor-
mation is damaged badly. It is worth mentioning that the
noise in the sequence is mixed, including white Gaussian
noise, Possion noise, and other kinds of noise, which means
noise reduction is more difficult. Obviously, objects in ST-
KBM denoised sequence, such as the resolution charts and
color charts, have clearer shape than those in ST-GSM and
VBM3D denoised sequences.The denoising results show that
our proposed ST-KBM algorithm is also quite effective for
the mixed noise and can produce better visual effect than ST-
GSM and VBM3D.

6. Conclution

In this paper, we have presented a ST-KBM model for
large noisy video signals that have fixed background, and
applied it to the restoration both of simulated noisy video
sequences by additive white Gaussian noise and natural noisy
video sequence in low light. Thanks to the operation of
prefiltering, themotion estimation by comparing current pre-
filtered frame with previously denoised frames is performed
effectively. Then, Kalman filter and bilateral filter are applied
for current noisy frame, respectively. Finally, by weighting the
denoised frames fromKalman filtering and bilateral filtering,
a satisfactory result is obtained. The experimental compar-
isonswith state-of-the-art algorithms show that our proposed
ST-KBM is competitive for large noisy video sequences that
have a fixed background in terms of both subjective and
objective evaluations.
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