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Abstract

Inferring gene regulatory networks from expression profiles is a chal-
lenging problem that has been tackled using many different approaches.
When posed as an optimization problem, the typical goal is to minimize
the value of an error measure, such as the relative squared error, between
the real profiles and those generated with a model whose parameters are
to be optimized. In this paper, we use recurrent neural networks to model
regulatory interactions and study systematically the “fitness landscape”
that results from measuring the relative squared error. Although the re-
sults of the study indicate that the generated landscapes have a positive
fitness-distance correlation, the error values span several orders of mag-
nitude over very short distance variations. This suggests that the fitness
landscape has extremely deep valleys, which can make general-purpose
state-of-the-art continuous optimization algorithms exhibit a very poor
performance. Further results obtained from an analysis based on pertur-
bations of the optimal network topology support approaches in which the
spaces of network topologies and of network parameters are decoupled.

1 Introduction

In the cells of living organisms, genes are transcribed into mRNA (messenger
RNA) molecules which, in turn, are translated into proteins [8]. Some proteins,
called transcription factors, can increase (activate) or decrease (inhibit) the
transcription rates of genes; other proteins can control the translation of mRNA
into new proteins. The process whereby genes control, indirectly via the proteins
they encode, the expression (i.e., the mRNA transcription rate) of other genes,
is known as genetic regulation [§. Knowing the regulatory relations among
genes is important for understanding fundamental processes that occur within
living cells.
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DNA microarray technology [I9] has enabled researchers to monitor the ex-
pression of the whole genome under various genetic, chemical and environmental
perturbations. The output data from DNA microarray experiments, in the form
of gene expression time series, can be used to infer a geme regulatory network
(GRN). A GRN is a graph in which the nodes, representing genes or proteins,
are connected by an edge if a regulatory relation exists between them. Different
approaches have been adopted in the literature to model and infer GRNs from
DNA microarray experiments [3, 9, 26]. A very common approach for inferring
a GRN is to cast the problem as one of optimizing the free variables of a model
that is capable of generating time expression profiles. In this case, the goal of the
optimization process is to minimize a cost function quantifying the differences
between the real temporal profiles and the profiles generated with the current
estimation of the model’s parameters. Unfortunately, the problem of inferring
GRNs from gene expression profiles using optimization techniques has proved
to be difficult even when dealing with very small networks (5-10 genes) [24].

In this paper, we address the issue of the difficulty of inferring GRNs by per-
forming an analysis based on the notion of fitness-distance correlation (FDC) [,
10]. To model regulatory interactions we decided to use recurrent neural net-
works (RNNs) [15], which model the set of genes as a system of nonlinear differ-
ential equations, and we adopted the relative squared error (RSE) as a measure
of the lack of accuracy of time profiles generated by an inferred network with
respect to those of a target GRN. As a first contribution, we present an analysis
of the error surface generated by the combination RNN-RSE (Section El). The
main result of this analysis is that the RNN-RSE error surface has a strong
positive fitness-distance correlation; however, the data also shows the existence
of many local optima of extreme depth, which seems to be the main cause for
the poor performance shown by optimization algorithms on this problem. A
second contribution is the quantification of the effect that a priori information
on the target’s GRN structure has on the fitness landscape (Section El). The
final contribution is the analysis of the behavior of a state-of-the-art continuous
optimization algorithm (NEWUOA [22] with multiple restarts) on the problem
with and without a priori network structure information (Section EE2). The re-
sults obtained from this analysis constitute strong evidence in favor of inference
approaches in which the spaces of network topologies and of network parameters
are decoupled.

2 Modeling Gene Regulatory Networks

Many mathematical models exist in the literature to describe gene regulatory in-
teractions: Relevance Networks [I7], Boolean Networks [16], Dynamic Bayesian
Networks [6] and systems of additive or differential equations, being them lin-
ear [I], ordinary nonlinear [0, [[3, 23, 25, 28, 27] (including recurrent neural
networks) or S-systems [21], [[4], 24].

Systems of equations are commonly used as a modeling tool by the meta-
heuristics community, because the problem of fitting the model to data can be
mapped easily to an optimization problem. In that case, the model’s parameters
form the search space and the fitness function is usually a variant of the error
between the real temporal profile and the on estimated from the fitted model.

Linear and additive models lack the capability to capture real regulatory
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relations, which in general are highly nonlinear and differential; S-systems, on
the contrary, are suited to accurately describe the behavior of small sets of
genes, but are impractical on large scale scenarios, because of the high number
of free parameters (2n(n + 1) for a network of n genes).

Considering the limitations of the methods mentioned above, we use recur-
rent neural networks (RNNs) [I5], which model the set of genes with a system
of nonlinear differential equations of the form

dz; _ i
at _ e
L+ exp Zj:l...n wijr; +b

where n is the number of genes in the system, z; is the rate of expression of
gene i, w;; represents the relative effect of gene j on gene i (1 <4,j <n), bisa
bias coefficient, k; is the maximal rate of expression and ko is the degradation
rate. For our analysis, we set for simplicity b = 0, k&; = 1 and k; = 1. The
search space for an optimization algorithm, then, is formed by the matrix W of
coefficients w;;.

An identical model is suggested in [25] for the analysis of microarray data
from an experiment on Saccharomyces Cerevisiae cell cycle, and is adopted
in [28] and [27] for a reverse engineering algorithm based on particle swarm
optimization [I2]. In the latter two cases, however, derivatives are approximated
with finite differences and estimated from temporal data: such an approach
amplifies the effects of noise and requires a large amount of data points. Thus, we
decided to maintain derivatives and to generate temporal profiles with numerical
integration of the whole system. For this purpose, we chose a Runge-Kutta-
Fehlberg method with adaptive step size control [3].

3 Experimental Dataset

Experimental data are generated with the simulator recently introduced in [4].
In this simulator, the regulatory network’s topology is generated according to
the current knowledge of biological network organization, including scale-free
distribution of the connectivity and a clustering coefficient independent of the
number of nodes in the network. The resulting networks are very sparse, that
is, the number of edges at most doubles the number of nodes, therefore the
majority of elements in the connectivity matrix are equal to zero. Nonzero
elements of the matrices generated by the simulator (w;; terms in Equation [I)
are then set uniformly at random in the range [—10, 10].

To generate simulated gene expression time series, the expression of each
gene is initialized uniformly at random and the system is let free to evolve to a
steady state. Gene profiles are then sampled with logarithmic time spacing, so
that the majority of samples are taken right after the initialization. This prac-
tice is common in real microarray experiments, because meaningful information
usually concentrates right after the external stimulation of a dynamical system.

The analyses reported in this paper are carried over on gene networks of size
10, in line with experimental results from the state-of-art |24 27, [25].
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4 Analysis

To investigate the structure of the fitness landscape of our optimization prob-
lem, we performed a fitness-distance correlation analysis [I1] [[0)]. We randomly
sampled interesting areas of the search space and studied, for sampled solutions,
the distribution of fitness values versus distance from the optimal solution. In
our case, a fitness value is considered to be better if the solution associated with
it has a lower value of the objective function.

For the fitness function, we used the relative squared error (RSE) between
real and estimated temporal profiles, which is defined as

1 O [#4(t) — @)

RSE = Z O (2)
t=1 =1

where n is the number of genes, T is the number of time samples, z;(t) is the

real value for gene ¢ at time ¢ and 2;(t) is the estimated value for the same

sample.

Preliminary analyses with mean squared error, another measure widely used
as fitness function, showed the same behavior for the two types of errors, thus
we concentrated the study only on RSE. As distance measure between candidate
solutions and the optimal solution, we used the Euclidean distance.

Fitness-distance correlation analysis is a standard tool for search space anal-
ysis that is used in many research efforts on evolutionary algorithms and has
lead to a number of interesting insights, as an example see [I8].

4.1 Fitness Distance Correlation Analysis

Three type of analysis have been performed. In the first, we introduce pertur-
bations that affect any of the n? matrix elements, that is, zero and nonzero
elements. In the second, only nonzero elements are affected. Finally, in the
third, we perturbe the structure of the network, changing the pattern of nonzero
elements.

4.1.1 Step 1

As a first step of our analysis, we explored relations between fitness and distance
among a set of random perturbations of the optimal solution: each element of the
optimal matrix was perturbed with the addition of a log-uniformly distributed
random variable (i.e. a random variable uniformly distributed in logarithmic
scale) in the interval [107%,107Y], where a was tuned to account for different
problem sizes. Results for 10000 iterations of the perturbation procedure on
two networks of 10 genes are shown in Figure [l

As it can be seen from the figure, there is a strong correlation between Eu-
clidean distance and RSE, because samples distribute along a band with positive
slope, but the band is rather wide (approximately 10 orders of magnitude of RSE
for Figure and 6 orders for Figure , thus leading to an average corre-
lation coefficient of 0.471: this suggests the presence of extremely deep valleys
in the fitness landscape, which can be an obstacle for a general purpose contin-
uous optimization algorithm. We formulate the hypothesis that the difficulty
in solving the particular problem instance is closely related to the width of the
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Network size: 10, network id:1 Network size: 10, network id:3

10
Euclidean distance Euclidean distance

(a) Example of widely distributed samples (b) Example of more narrowly distributed
(network 1) samples (network 3)

Figure 1: RSE vs Euclidean distance of 10000 log-uniform perturbations of the
elements of the optimal system matrix, for two networks of 10 genes.

band in the fitness-distance plot. The perturbation procedure was repeated for
20 different problem instances of 10 genes. For the majority of them (17 over
20) the band in the RSE ws distance plot exhibits a width close to the one of
network 3 (Figure , and for the remaining instances the width is larger,
close to the one of network 1 (Figure . Therefore, we decided to use net-
work 1 and 3 throughout the paper as two representative examples of problem
instances, to validate empirically our hypothesis.

4.1.2 Step 2

As a second step, we decided to investigate the relation between the features
of the search space and the structure of the networks (i.e. the pattern of zero
and nonzero elements in the weight matrix): gene networks are largely sparse,
thus the number of parameters to be fine tuned by an optimization procedure is
small with respect to the number of variables in the search space. We wanted to
understand how much the search space is affected by information on the network
structure.

To this end, we perturbed only nonzero elements of the optimal solution for
each problem instance, fixing to zero the other elements. As before, pertur-
bations were obtained with the addition of a log-uniformly distributed random
variable. RSE vs Euclidean distance of 10000 perturbations for network 1 and
3 are shown in Figure

Even though the average correlation coefficient is 0.424, thus slightly lower
than the one form the previous step, fitness-distance plots tend to be more
structured: as it is clear from the figure, most of the samples lie on straight
lines parallel to the bands of the previous experiment, and the vertical span of
the lines reflects the width of the bands. Further experiments (data not shown)
showed that each line corresponds to a single nonzero element of the weight ma-
trix. This suggests that some variables may be optimized independently. Such
an hypothesis was not necessarily evident from the mathematical description of
the system and should be explored in future work.
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Network size: 10, network id:1 Network size: 10, network id:3

10"
Euclidean distance Euclidean distance

(a) (b)

Figure 2: RSE ws Euclidean distance of 10000 log-uniform perturbations of
nonzero elements of the optimal system matrix, for two networks of 10 genes.
Plots are cut to keep the same scale adopted in the other figures; the diagonal
lines spread with the same behavior down to 107!° for Euclidean distance and
10~3% for RSE.

4.1.3 Step 3

We then decided to further explore the shape of the fitness landscape in regions
close in structure to the global optimum; for this purpose, we exploited the con-
cept of Hamming distance between two connectivity matrices, i.e. the number
of bits that differ between the two matrices, and we randomly sampled Boolean
matrices at Hamming distance 1, 2, 5 and 10 from the global optimum.

We then kept original values for elements that are nonzero in both matrices,
the original one and the sampled one, and set new values for the other nonzero
elements, drawing them uniformly at random from the interval [—10,10]. 10000
samples for each value of Hamming distance are shown in FigureB where lighter
gray corresponds to higher Hamming distance, for networks 1 and 3.

From the figure, it is evident that at higher Hamming distances there is no
particular correlation between fitness and distance, but when the Hamming dis-
tance decreases the fitness vs distance plot becomes more and more organized,
approaching the global shape of the bars from Figure [l Indeed, average cor-
relation coefficients are 0.219, 0.196, 0.185 and 0.177 for networks at Hamming
distance 1, 2, 5 and 10, respectively. At Hamming distance 1, samples tend to
appear as curved lines and the structure of the plots become closer to the one
from Figure

This latter analysis outlines that portions of the search space which corre-
spond to networks structurally close to the optimum (i.e., at a low Hamming
distance) present more organization in the fitness landscape, and can thus be a
local basin of attraction for an algorithm which searches in the discrete space
of network structures. To test the quality of a particular network structure, a
second algorithm can be alternated to the first, to optimize continuous nonzero
values of the network; for the second algorithm, the probability of finding the
optimal solution should increase as the network structure become closer to the
optimal structure.
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Network size: 10, network id:1 Network size: 10, network id:3
0 *« HD=1 ' 0 * HD=1 " '
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) 107
Euclidean distance Euclidean distance
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Figure 3: RSE vs Euclidean distance of 10000 log-uniform perturbations of the
optimal system matrix at Hamming distance 1, 2, 5, 10, for two networks of 10
genes.

4.2 Algorithm Behavior

The analysis presented above gives an overall picture of the fitness-distance
relationship in the search space. In addition, it is of interest to study the
behavior of a specific algorithm in the search space. The question we want
to address is whether an algorithm is capable of inferring the structure of the
target network using only the information provided by the RSE measure. If
that is not the case, a second experiment consists in measuring the performance
of the algorithm when the optimal network topology is known a priori. For
our experiments, we use NEWUOA [22], which is a software for unconstrained
continuous optimization in many dimensions that does not need information
about the derivatives of the objective function f : R™ — R it is applied to. At
each iteration, NEWUOA creates a quadratic model that interpolates k values
of the objective function which is used in a trust-region procedure [2] to update
the variables. The main advantage of NEWUOA is that it can be used to solve
large scale optimization problems thanks to the reduced number of interpolation
points it needs to build the quadratic model (usually & = 2m + 1, where m is
the number of variables to optimize, is recommended). NEWUOA is considered
to be a state-of-the-art continuous optimization technique [20]. By definition,
trust-region methods search locally, which means that they may converge to
some local optimum in the case the objective function is multimodal. For this
reason, we used NEWUOA with multiple restarts, so as to explore different
regions of the search space in order to reduce the chances of converging to low-
quality local optima. In our setting, NEWUOA is restarted from a new initial
solution after it has reached a maximum number of function evaluations, or
when the final radius of the trust region reaches a certain threshold. In Table[I]
we show the parameters used in our experiments. These parameters were chosen
after an initial non-exhaustive experimentation phase.

The results obtained from running NEWUOA with multiple restarts without
any a prior: information about the correct topology of the target GRN are shown
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Table 1: Parameters used with NEWUOA with multiple restarts

Parameter

Value

Initial trust region radius
Final trust region radius

Number of
points

interpolation

Maximum number of function

0.2
1x 10710

k =2m+1, where m is the num-
ber of variables to optimize

2 x 10*

evaluations per NEWUOA
run

Maximum total number of 2 x 10°, with  structure
function evaluations information
1 x 10%  without structure
information

Number of independent runs 100

in Figure@l Each shade of gray represents a run of the algorithm. Although the
algorithm is capable of making progress in terms of the value of the objective
function (it descends from a value in the order of 10° to a value in the order of
1079), it does not make any progress towards the actual target GRN. This can
be seen by the (almost) vertical lines that appear on the upper right corner of
the plots in Figure Bl

In Figure B, we show the results obtained after running NEWUOA with
multiple restarts when the correct topology of the target GRN was used by the
algorithm, which is equivalent to reducing the size of the search space so that
only nonzero entries are optimized. As before, each shade of gray represents a
run of the algorithm. In this case, the behavior of the algorithm depends on
the target network. With network 1, the algorithm moves towards the optimal
solution while improving the value of the RSE in both cases over several orders
of magnitude. However, in the vast majority of cases, the algorithm cannot
find solutions that are closer than a distance of 100 to the optimal solution. In
contrast, with network 3, the algorithm is capable to find the optimal solution
in each run.

The results presented above, together with those of the analysis based on
structure perturbations, constitute strong evidence in favor of optimization al-
gorithms that explicitly intertwine a network structure search phase with a
network’s parameters search phase. A reduction in the distance from the opti-
mal network topology allows a continuous optimization algorithm to make more
progress toward the truly optimal solution. Although we tested our hypotheses
using only one specific algorithm, we do not expect our observations to change
substantially if another algorithm is used. This is because, as evidenced in Fig-
ure Bl even with a perfect information about the correct topology of the target
GRN, the error surface generated by the RSE measure is still hard to search as
it is multimodal in nature.
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Network size: 10, network id:1 Network size: 10, network id:3
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(a) NEWUOA with multiple restarts on net- (b) NEWUOA with multiple restarts on net-
work 1 work 3

Figure 4: The progress of NEWUOA with multiple restarts on two 10-gene-
network inference problems. Each shade of gray represents a run of the algo-
rithm. The plots shown correspond to the case in which no a priori information
about the correct topology of the target GRN is provided to the algorithm.

Network size: 10, network id:1 Network size: 10, network id:3

10° 107 5
Euclidean distance

Euclidean distance

(a) NEWUOA with multiple restarts on net- (b) NEWUOA with multiple restarts on net-

work 1 work 3
Figure 5: The progress of NEWUOA with multiple restarts on two 10-gene-
network inference problems. Each shade of gray represents a run of the algo-

rithm. The plots shown correspond to the case in which the correct topology of
the target GRN is provided to the algorithm.
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5 Conclusions and related works

In this work, we presented a study of the fitness landscape for the problem of
gene regulatory networks inference, when recurrent neural networks are adopted
as a model for gene regulation and relative squared error is chosen as a fitness
function. As far as we know, this is the first study on fitness-distance correlation
analysis for the problem of gene regulatory networks inference.

The study consists in a fitness-distance correlation analysis of different ran-
dom samplings around the problem’s optimal solution, which is in the form of
a weight matrix W. The optimal matrix was first perturbed globally, then only
on its nonzero elements and at fixed Hamming distance. Results show that the
error surface has a strong positive fitness-distance correlation, but they also re-
veal the presence of extremely deep valleys in the fitness landscape, which are
responsible for the poor performance of optimization algorithms not designed
explicitly for this problem.

The network structure perturbation analysis highlights that: (i) RSE alone
is not sufficient to guide a search algorithm towards regions of the search space
close to the global optimum, (ii) even if information about the optimal network
structure is provided to the algorithm, convergence to the global optimum is
not guaranteed because the fitness landscape presents many deep local optima,
and (iii) the closer a network structure is to the one of the optimal solution, the
higher the chances are that an algorithm converges to the optimum. This last
fact seems to be due to the higher level of organization in the fitness landscape
in the proximity of the optimal structure.

Because of these observations, we conclude that a two-phase algorithm,
which alternates between a search step in the discrete space of network struc-
tures and a search step in the continuous space of nonzero system parameters,
has the potential of reaching high-quality solutions. Research in this direction
has already been done, for example in [27, 23| [[3], but no analysis of the under-
lying fitness landscape had been performed before.
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