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Abstract

A set S of vertices in a graph G is a total dominating set, denoted by TDS, of G if every vertex of G is adjacent to some vertex in
S (other than itself). The minimum cardinality of a TDS of G is the total domination number of G, denoted by y(G). If G does not
contain K 3 as an induced subgraph, then G is said to be claw-free. It is shown in [D. Archdeacon, J. Ellis-Monaghan, D. Fischer,
D. Froncek, P.C.B. Lam, S. Seager, B. Wei, R. Yuster, Some remarks on domination, J. Graph Theory 46 (2004) 207-210.] that if G
is a graph of order n with minimum degree at least three, then y;(G) <n/2. Two infinite families of connected cubic graphs with total
domination number one-half their orders are constructed in [O. Favaron, M.A. Henning, C.M. Mynhardt, J. Puech, Total domination
in graphs with minimum degree three, J. Graph Theory 34(1) (2000) 9-19.] which shows that this bound of /2 is sharp. However,
every graph in these two families, except for K4 and a cubic graph of order eight, contains a claw. It is therefore a natural question
to ask whether this upper bound of n/2 can be improved if we restrict G to be a connected cubic claw-free graph of order at least
10. In this paper, we answer this question in the affirmative. We prove that if G is a connected claw-free cubic graph of order n > 10,
then y(G) <5n/11.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Total domination in graphs was introduced by Cockayne et al. [4] and is now well studied in graph theory (see,
for example, 3,7,11]). The literature on this subject has been surveyed and detailed in the two books by Haynes et al.
[9.10].

Let G = (V, E) be a graph with vertex set V and edge set E. A total dominating set, denoted by TDS, of G with no
isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S (other than itself). Every
graph without isolated vertices has a TDS, since S = V is such a set. The fotal domination number of G, denoted by
7:(G), is the minimum cardinality of a TDS. We call a TDS of G of cardinality y,(G) a y,(G)-set.
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For notation and graph theory terminology we in general follow [9]. Specifically, let G=(V, E) be a graph with vertex
set V of order n and edge set E, and let v be a vertex in V. The open neighborhood of vis N(v) ={u € V |uv € E}
and the closed neighborhood of v is N[v] = {v} U N(v). For a set S € V, the subgraph induced by S is denoted by
G[S]. A vertex w € V\S is an external private neighbor of v (with respect to S) if N(w) N S = {v}; and the external
private neighbor set of v with respect to S, denoted epn(v, §), is the set of all external private neighbors of v. For
subsets S, T C V, S totally dominates T if T C N(S). A cycle on n vertices is denoted by C,, and a path on n vertices
by P,. The minimum degree (resp., maximum degree) among the vertices of G is denoted by 5(G) (resp., 4(G)).

We say that a graph is F-free if it does not contain F as an induced subgraph. In particular, if F = K 3, then we say
that the graph is claw-free. An excellent survey of claw-free graphs has been written by Flandrin et al. [8].

2. Known results on total domination

The following result establishes a property of minimum TDSs in graphs.

Theorem 1 (Henning [11]). If G is a connected graph of order n >3, and G2K,,, then G has a y,(G)-set S in which
every vertex v has one of the following two properties:

Py 2 lepn(v, $)[=1;
P> 1 vis adjacent to a vertex of degree one in G[S] that has property Pj.

The decision problem to determine the total domination number of a graph is known to be NP-complete. Hence, it
is of interest to determine upper bounds on the total domination number of a graph. Cockayne et al. [4] obtained the
following upper bound on the total domination number of a connected graph in terms of the order of the graph.

Theorem 2 (Cockayne et al. [4]). If G is a connected graph of order n >3, then y,(G) <2n/3.

Brigham et al. [3] characterized the connected graphs of order at least three with total domination number exactly
two-thirds their order. If we restrict G to be a connected claw-free graph, then the upper bound of Theorem 2 cannot
be improved since the graph G obtained from a complete graph H by attaching a path of length 2 to each vertex of H
so that the resulting paths are vertex disjoint (the graph G is called the 2-corona of H) is a connected claw-free graph
with total domination number two-thirds its order.

If we restrict the minimum degree to be at least two, then the upper bound in Theorem 2 can be improved.

Theorem 3 (Henning [11]). If G is a connected graph of order n with 6(G)>2 and G ¢ {C3, Cs, C¢, C10}, then
2(G)<4n/1.

It is shown in [6] that the upper bound of Theorem 3 can be improved if we restrict G to be a claw-free graph.

Theorem 4 (Favaron and Henning [6]). If G is a connected claw-free graph of order n with 5(G) =2, then y,(G) <
(n 4 2)/2 with equality if and only if G is a cycle of length congruent to 2 modulo 4.

It was shown in [7] that if G is a connected graph of order n with 6(G) >3, then 7,(G)<7n/13 and conjectured
that this upper bound could be improved to n/2. Archdeacon et al. [1] recently found an elegant one page proof of this
conjecture.

Theorem 5 (Archdeacon et al. [1]). If G is a graph of order n with (G) =3, then 7, (G)<n/2.

The generalized Petersen graph of order 16 shown in Fig. 1 achieves equality in Theorem 5.

Two infinite families % and 2 of connected cubic graphs (described below) with total domination number one-
half their orders are constructed in [7] which shows that the bound of Theorem 5 is sharp. For k£ >2 consider two
copies of the path P,; with respective vertex sequences aj, by, az, by, ..., ax, by and cy,dy, c2,da, .. ., ¢k, di. For
eachi € {1, 2, ..., k},join g; to d; and b; to c;. To complete the construction of graphs in & (', respectively), join a;
to c1 and by to di (aj to by and ¢ to dy). Two graphs G and H in the families % and 5 are illustrated in Fig. 2.
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Fig. 1. A generalized Petersen graph of order 16.
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Fig. 2. Cubic graphs G € 4 and H € J of order n with y(G) =n/2.
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Fig. 3. A claw-free cubic graph G with y(G1) =n/2.

The connected graphs with minimum degree at least three that achieve equality in the bound of Theorem 5 are
characterized in [12].

Theorem 6 (Henning andYeo [12]). If G is a connected graph with minimum degree at least three and total domination
number one-half its order, then G € G U A or G is the generalized Petersen graph of order 16 shown in Fig. 1.

Every graph in the two families ¢ and J#, except for K4 and the cubic graph G shown in Fig. 3, contains a claw,
as does the generalized Petersen graph shown above. Hence, as a consequence of Theorem 6, the connected claw-free

cubic graphs achieving equality in Theorem 5 contain at most eight vertices. (This result is also established in [5].)

Theorem 7 (Favaron and Henning [5], Henning and Yeo [12]). If G is a connected claw-free cubic graph of order n,
then y(G) <n/2 with equality if and only if G = K4 or G = G| where G is the graph shown in Fig. 3.

It is therefore a natural question to ask whether the upper bound of Theorem 5 can be improved if we restrict G to
be a connected claw-free cubic graph of order at least 10. In this paper, we show that under these conditions the upper
bound on the total domination number of G in Theorem 5 decreases from one-half its order to five-elevenths its order.
3. Main result

We shall prove:

Theorem 8. If G is a connected claw-free cubic graph of order n > 6, then either G = G| where G is the graph shown
in Fig. 3 or y(G)<5n/11.
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As an immediate consequence of Theorem 8, we have the following result.
Corollary 9. If G is a connected claw-free cubic graph of order n > 10, then y,(G) <5n/11.
4. Cost function

Before presenting a proof of Theorem 8 we introduce the concept of a cost function of a TDS in a claw-free graph.
Let S be a TDS of a claw-free graph G = (V, E). Let I (S) denote the number of isolated vertices in G[V'\ S]. Let P»(S)
and P4(S) denote the number of components in G[S] isomorphic to a path P> and P4, respectively. Let P(S) denote
the number of external private neighbors of vertices of S. Let 7'(S) denote the number of triangles in G[V\ S].

We define a bad vertex of V\S as a vertex of V\§ that is adjacent to exactly one vertex in a P,-component of G[S]
and exactly one vertex (necessarily, an end-vertex since G is claw-free) in a P3-component of G[S]. We observe that if
0(G) =3, then by the claw-freeness of G a bad vertex of V\S is not an isolated vertex of G[V'\S]. We let B(S) denote
the number of bad vertices in V\S.

We define the cost function of S, denoted by c(S), in the graph G by

c(S) =TI(S) +4Ps(S)+2B(S) —2P>(S) —2P(S) —2T(S).

Intuitively, an isolated vertex in G[V'\S] costs us $7, a P4-component in G[S] costs us $4 and a bad vertex of V\S
costs us $2. On the other hand, for each P,-component in G[S] or external private neighbor of a vertex of S or triangle
in G[V\S] we receive a $2 rebate.

5. Proof of Theorem 8
Let G = (V, E) be a connected claw-free cubic graph of order n > 6. Among all y,(G)-sets, let S be chosen so that:

(1) Every vertex in S has property P; or P, given in Theorem 1.
(2) Subject to (1), the number of K3’s in G[S] is minimized.
(3) Subject to (2), the cost function ¢(S) is minimized.

The existence of the set S is guaranteed by Theorem 1. Throughout our proof, whenever we give a diagram of a subgraph
of G we indicate vertices of S by darkened vertices and vertices of V\ S by circled vertices.

We proceed further with series of lemmas. The proofs of these lemmas follow from the way in which the set S is
chosen. Since these proofs are technical in nature, we present them in later subsections. We begin with the following
lemma, a proof of which is presented in Section 5.1.

Lemma 10. Every component of G[S] is a path P>, P3 or Py.

To simplify the notation in what follows, we shall use the following notation. Let # € V and let G, be a subgraph
of G containing u. We define S, = S N V(G,). A proof of the following lemma is presented in Section 5.2.

Lemma 11. Ifu is an isolated vertex of GIV\S], then either G = G| or we can uniquely associate with u the connected

subgraph G, of G shown in Fig. 4(a) or (b) where the vertices in V(G,) are not adjacent in G to any vertex of S\ S,
and where in Fig. 4(b) either G, or G, + ab is an induced subgraph of G.

4

Fig. 4. The two subgraphs uniquely associated with an isolated vertex u of G[V\S]. (a) G, and (b) G.
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G

Fig. 5. The subgraph uniquely associated with a P4-component in G[S>].

:u v w : :U (% w

Fig. 6. The two subgraphs uniquely associated with a P3-component in G[S,]. (a) G’ and (b) G’.

Let V1 = UV(G,) where the union is taken over all isolated vertices u in G[V\S] and where G, is the subgraph
of G defined in the statement of Lemma 11. Let |V{| = n;. Let S = S N Vj and let $ = S\S;. Then, N[S;] = V.
Notice that the set S, defined in Lemma 11 is a TDS of G, of cardinality four-ninths the order of G,. Thus we have
the following immediate consequence of Lemma 11.

Lemma 12. |S1| =4n1/9, and the vertices in N[S1] are not adjacent in G to any vertex of S\N[S1].

If S, =0, then S =S| and n =ny, and so y(G) <4n/9 < 5n/11. Hence, we may assume Sy # ¢, for otherwise the
desired result follows. Since Ng(v) NS C S for every vertex v € Vi, every edge joining a vertex in N[S;] with a
vertex in N[S>] belongs to G[V\S]. Hence, letting Vo = N[S2], V can be written as disjoint union of V| and V». In
particular, if both S7 and S are nonempty, then V| and V> is a partition of V. Let |V,| = n», and son =nj + n».

Since V] contains all the isolated vertices of G[V'\S], every vertex of V\S not in V; (and therefore not dominated
by S1) is adjacent to at most two vertices of Sz and at least one vertex of V\S. A proof of the following lemma is
presented in Section 5.3.

Lemma 13. If S’ C S induces a Py-component in G[S], then we can uniquely associate with S’ the subgraph G’ of
G shown in Fig. 5 where the vertices in V(G') are not adjacent in G to any vertex of S\S'.

By Lemma 13, if P4 is a component in G[S;], then there are five vertices of V'\ S that are dominated by at least one
of the four vertices of this P4 but by no other vertex of S.
A proof of the following lemma is presented in Section 5.4.

Lemma 14. Ifu, v, wisa P3-component in G[S>], then we can uniquely associate with this P3-component the subgraph
G’ of G shown in either Fig. 6(a) or (b) where the (circled) vertices in V(G') are not adjacent in G to any vertex of
S\V(G").

We say that two components of G[S] are at distance k apart if the length of a shortest path in G joining a vertex from
one component to a vertex of the other has length k. In particular, two components of G[S] are at distance two apart if
there exists a vertex of V'\ S that is adjacent with a vertex from each component. By Lemma 14, if Pz is a component
in G[$>], then either (i) there are four vertices of V\ S that are dominated by at least one of the three vertices of this
P3 but by no other vertex of S, or (ii) there is a (unique) P>-component at distance two from this P3-component and
there are six vertices of V'\ S that are dominated by at least one of the five vertices from these two components but by
no other vertex of S.

Let S* be the set of all vertices of Sy that belong to a P,-component of G[S;] that is at distance at least three from
every Pz-component of G[S>]. If §* # @, then G[S*] is the disjoint union of copies of P,. A proof of the following
lemma is presented in Section 5.5.

Lemma 15. |S*|<4|N[S*]|/9 and the vertices in N[S*] are not adjacent in G to any vertex of S\N[S*].



3496 O. Favaron, M.A. Henning/ Discrete Mathematics 308 (2008) 3491—3507

Fig. 7. A subgraph of G.

The following result is an immediate consequence of Lemmas 13—15.
Lemma 16. |S>|<5n,/11, and the vertices in N[S>2] are not adjacent in G to any vertex of S\N[S2].

By Lemmas 12 and 16, y,(G) = [S1]| 4+ |S2|<4n1/9 + 5n2/11 = 5n/11. This completes the proof of the theorem.
5.1. Proof of Lemma 10

To prove Lemma 10, we first prove two claims.
Claim 1. Ifu € S belongs to a K3 in G[S], then N[u] C S.

Proof. Let X = {s, ¢, u} be a subset of S such that G[X] = K3. Suppose that N[u] ¢ S. Since both neighbors of
u in X have degree at least two in G[S], the vertex u has property P; by condition (1). Let epn(u, S) = {u’}. Let
N@w') = {u, v, w}. Since epn(u, ) = {u'}, {t/, v, w} N S =@. Since G is claw-free, G[{u', v, w}] = K3.

Claim 1.1. The vertex v does not belong to a K4 — e.

Proof. Suppose that v belongs to a K4 — e. Let x be the common neighbor of v and w, different from u’, and let y be
the remaining neighbor of x. To totally dominate v and w, {x, y} C S.

Suppose y € X,say y =t.If N[s] C S, then (S\{u, ¢t}) U {v} is a TDS of G of cardinality less than y,(G), which is
impossible. Hence, N (s) NS = {¢, u}. Since § satisfies condition (1), |epn(s, S)| = 1. But then (S\{x, }) U {&/, v} is
a TDS of G that satisfies condition (1) but induces fewer K3’s than does G[S], contradicting our choice of S. Hence,
yeX.

If y is adjacent to a vertex of X, then, since G is claw-free, N(y) = {s, ¢, x}. Thus, G is the graph G| shown in
Fig. 3, a contradiction since then y,(G) =4 but |S| =5. Hence, N(y) N X =#. Let N(y) = {a, b}. Since G is claw-free,
Gl{a, b, y}] = K3.If {a, b} C S, then (S\{u, y}) U {v} is a TDS of G, a contradiction. Hence, |{a, b} N S| < 1.

Suppose a € S. Then, b ¢ S. If a has degree two in G[S], then (S\{u, y}) U {v} is a TDS of G, a contradiction.
Hence, a has degree one in G[S]. Since S satisfies condition (1), [epn(a, S)| = 1. But then (S\{«}) U {v} is a TDS
of G that satisfies condition (1) but induces fewer K3’s than does G[S], contradicting our choice of S. Hence, a ¢ S.
Similarly, b ¢ S. Hence, G[{x, y}] is a component in G[S].

Ifepn(y, S) =0, then (S\{u, y}) U{w}is a TDS of G, which is impossible. Hence, [epn(y, S)| > 1. We may assume
b € epn(y, S). Thus the graph shown in Fig. 7 is a subgraph of G. But then (S\{u}) U {v} is a TDS of G that satisfies
condition (1) but induces fewer K3’s than does G[S], contradicting our choice of S. [

Let v/ and w’ be the neighbors of v and w, respectively, not in the triangle G[{u’, v, w}]. By Claim 1.1, v' # w'.
Then, {v/, w'} C S to dominate v and w.

Claim 1.2. {v/, w'} N {s, 1} = &.

Proof. If {v', w'} ={s, 1}, say if v/ =5 and w’ = ¢, then G = K» x K3 and n = 6, a contradiction since then y,(G) =2
but |S| = 3. Suppose [{v/, w'} N {s, t}| = 1. We may assume w’ = t. If N[s] C S, then (§\{u, t}) U {v} is a TDS of
G, a contradiction. Hence, N(s) N S = {r, u}. Since S satisfies condition (1), |epn(s, §)| = 1. Let N(v) = {a, b, v}.
Then, G[{a, b, v'}] = K3. To totally dominate v’, we may assume a € S. If a has degree two or three in G[S], then
(8\{u, v'}) U {w} is a TDS of G, a contradiction. Hence, a has degree one in G[S], and so G[{a, v'}] is a component
of G[S]. If epn(a, S) = @, then (S\{a, t}) U {v} is a TDS of G, a contradiction. Hence, |epn(a, S)| = 1. But then
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Fig. 8. A subgraph of G where epn(a, ) = {a’} and epn(c, S) = {c'}.

(S\{u}) U {w} is a TDS of G that satisfies condition (1) but induces fewer K3’s than does G[S], contradicting our
choice of §. [

If v'w’ € E(G), then since G is claw-free, v’ and w’ have a common neighbor. But then (S\{u, w’}) U {v} is a TDS
of G, a contradiction. Hence, v'w’ ¢ E(G). Let N(v') = {a, b, v} and let N(w’) = {c, d, w}. Since G is claw-free,
G[{a,b,v'}] = K3 and G[{c,d, w'}] = K3. If {a, b} = {s, t}, then (S\{u, v'}) U {w} is a TDS of G, a contradiction.
Hence, {a, b} N X = (. Similarly, {c,d} N X = 0.

In order to dominate v’, we may assume that a € S. If @ has degree two or three in G[S], then (S\{u, v'}) U {w} is
a TDS of G, a contradiction. Hence, a has degree one in G[S], thus implying {a, b} # {c, d}, and so G[{a, v'}] is a
component of G[S]. If epn(a, S) =0, then (S\{a, u}) U {v}is a TDS of G, a contradiction. Hence, |epn(a, S)| =1 and
so a is a vertex of degree one in G[S] that has property Pj. Similarly, to dominate w’ we may assume that c is a vertex
of degree one in G[S] that has property Pj. Thus the graph shown in Fig. 8 is a subgraph of G. But then (S\{u}) U {v}
is a TDS of G that satisfies condition (1) but induces fewer K3’s than does G[S], contradicting our choice of S. [J

Claim 2. The maximum degree in G[S] is at most two.

Proof. Suppose that N[u] C S for some vertex u € S. Then epn(u, S) =%, and so, by condition (1), u has property P»
and therefore has a neighbor v of degree one in G[S] that has property P;. Let N (u) ={s, ¢, v}. Then, G[{s, , u}] = K3.
Let X ={s, ¢, u}. Let s” and ¢’ be the neighbors of s and ¢, respectively, notin X. By Claim 1, s’ € Sand¢' € S. Since §
satisfies condition (1), s” # ¢ and s’, ¢’ are vertices of degree one in G[S] that have property P;. Let N (v) = {u, w, x}.
Since G is claw-free, G[{v, w, x}] = K3. Since |epn(v, S)| > 1, we may assume that w € epn(v, S). If x ¢ epn(v, S),
then (S\{u, v}) U {x} is a TDS, a contradiction. Hence, epn(v, S) = {w, x}.

Suppose that w belongs to a K4 — e. Let y be the common neighbor of w and x different from v, and let z be the
remaining neighbor of y. Since epn(v, S) = {w, x}, y ¢ S, and so z € S. Since G is claw-free, z ¢ {s’, t'}. Let ' be a
neighbor of z in S. If 7 has degree two or three in G[S], then (S\{u, v, z}) U{y, w}is a TDS in G. If 7’ has degree one
in G[S] and epn(z’, ) =, then (S\{u, v, z’}) U{y, w}is a TDS in G. If 7’ has degree one in G[S] and epn(z’, §) # ¥,
then (S\{u, v}) U {y, w} is a TDS in G that satisfies condition (1) but induces fewer K3’s than does G[S]. All these
cases lead to a contradiction. Hence, w does not belong to a K4 — e. Let w’ = N (w)\{v, x} and let x’ = N (x)\{v, w}.
Then, x’ # w'. Since epn(v, S) = {w, x}, {w’, x'} NS = 0.

Claim 2.1. w'x’ ¢ E(G).

Proof. Suppose w'x’ € E(G). Let ¢ be the common neighbor of w’ and x’, and let d be the remaining neighbor of c.
Since G is claw-free, G[N[d]\{c}] = K3. In order to totally dominate w’ and x’, {c, d} C S. If d has degree two or
three in G[S], then (S\{u, v, ¢}) U {w, w’} is a TDS of G, a contradiction. Hence, d has degree one in G[S], and so
G[{c, d}]is a component of G[S]. If epn(d, S) =, then (S\{d, u, v}) U{w, w’} is a TDS of G, a contradiction. Hence,
lepn(d, S)|>1, and so d is a vertex of degree one in G[S] that has property P;. Thus the graph shown in Fig. 9 is a
subgraph of G. But then (S\{u, v}) U {w, w’} is a TDS of G that satisfies condition (1) but induces fewer K3’s than
does G[S], contradicting our choice of §. [

Let N(w') = {e, f, w} and let N(x’) = {g, h, x}. Since G is claw-free, G[{e, f, w'}] = K3 and G[{g, h, x'}] = K3.
By condition (1), {e, f} # {g, h} and thus {e, f}N{g, h} =@. In order to dominate w’, we may assume thate € S. Let
¢’ be a neighbor of e in G[S] different from f if such a neighbor exists (possibly, e =s’ and ¢’ = s, but ¢’ is necessarily
different from s”). If ¢’ has degree two or three in G[S], in particular if e = s/, then (S\{e, u, v}) U {w, w'} is a TDS of
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w w s s

Fig. 10. A subgraph of G.

G, a contradiction. Hence, ¢’ has degree one in G[S]. If epn(e’, S) = @, then (S\{¢’, u, v}) U {w, w'} isaTDS of G, a
contradiction. Hence, |epn(e’, S)| > 1, and so ¢’ is a vertex of degree one in G[S] that has property P;.

If £ ¢S, then (S\{u, v}) U{w, w'} is a TDS of G that satisfies condition (1) but induces fewer K3’s than does G[S],
contradicting our choice of S. Hence f € S. Similarly, {g, h} € S.

Repeating the argument with the vertex u replaced by s or ¢ shows that the graph shown in Fig. 10 is a subgraph
of G. But then with the vertices s*, r* and u* as indicated in Fig. 10, (S\{u, s, t}) U {u*, s*, r*} is a TDS of G that
satisfies condition (1) but induces fewer K3’s than does G[S], contradicting our choice of S. [

We can now return to the proof of Lemma 10. As an immediate consequence of Claims 1 and 2, every component
of G[S] is an induced path or cycle different from K3. Suppose that G[S] contains a path Ps on five vertices or a cycle
C, with p >4. Let v denote the central vertex of the Ps or any vertex of C,,, and let vy and v, be the neighbors of v in
S. Let v’ (v}, v}, respectively) be the neighbor of v (v, v2) in V\S. Since G is claw-free, v', v}, v} are not S-external
private neighbors of v, v, v2, and so v does not have property P; nor P». This contradicts the fact that the set S satisfies
condition (1). Hence each component of G[S] is a path of length at most 3.

5.2. Proof of Lemma 11

Since u is an isolated vertex in G[V\S], N(u) C S. Let N(u) = {v, w, x} where vw € E(G). To prove Lemma 11,
we first prove six claims.

Claim 3.1. The vertex u does not belong to a K4 — e, except if G = G1.

Proof. Suppose that u belongs to a K4 — e. Then, u is a vertex of degree three in this K4 — e since S satisfies condition
(1). We may assume that wx € E(G). Let v’ and x’ be the neighbors of v and x, respectively, not in this K4 — e. Since
G is claw-free, v/ # x'. Since S satisfies condition (1), w must have property P>, and so we may assume that v has
property Py, i.e., epn(v, S) = {v'}. Moreover, if x’ ¢ S then epn(x, §) = {x}.

Claim 3.1.1. v'x’ ¢ E(G).

Proof. Suppose v'x’ € E(G). Let y be the common neighbor of v” and x” and let z denote the remaining neighbor of
y.Let N(z) ={a, b, y}. Then, G[{a, b, z}] = K3. Since epn(v, S) = {v'}, {x’, y} N S =@, and so x has property P; and
epn(x, S) = {x'}. In order to totally dominate y, we may assume that {a, z} C S. If a has degree two or three in G[S],
then (S\{x, z}) U{v'} is a TDS of G, a contradiction. Hence, a has degree one in G[S], and so G[{a, z}] is a component
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Fig. 12. A subgraph of G where epn(f, S) = {f’} and epn(h, §) = {h'}.

of G[S]. If epn(a, S) =0, then (S\{a, v, x}) U{u, y} is a TDS of G, a contradiction. Hence, |epn(a, S)| =1, and so a
is a vertex of degree one in G[S] that has property P;. Thus the graph shown in Fig. 11 is a subgraph of G. But then
S’ = (S\{x}) U {v'} is a TDS of G that satisfies conditions (1) and (2) but with c(S") < c¢(S), contradicting our choice
of §. U

Let N(v') = {a, b, v}. Since epn(v, S) = {v'}, {a, b} N S = 0.
Claim 3.1.2. Ifa belongstoa K4 — e, then G = G.

Proof. Suppose a belongs to a K4 — e. Let f be the second common neighbor of a and b. Let g be the remaining
neighbor of f. Then, {f, g} C S. Note that f # x and g # x’. Suppose f # x’. We then consider the component € of
G[S] containing { f, g}. [f ¥ isa P4 or a P, such thatepn(g, §) =0, then (S\{g, v}) U{a}is aTDS of G, a contradiction.
If % is a P53 or a P, such that |epn(g, )| >1, then S’ = (S\{v}) U {a} is a TDS of G that satisfies conditions (1) and
(2) but with c(8") < ¢(S) (irrespective of whether or not x” € S), contradicting our choice of S. Hence, f = x’, and so
g=x.Thus, G=G;. O

Let ¢ and d be the neighbors of a and b, respectively, not in the triangle G[{a, b, v'}]. Since v'x’ ¢ E(G) by Claim
3.1.1, x" ¢ {a, b} and thus x ¢ {c, d}. Since G is claw-free, x’ ¢ {c, d}. To dominate a and b, {c,d} C S.If cd € E(G),
then ¢ and d have a common neighbor and (S\{d, v}) U {a} is a TDS of G, a contradiction. Hence, cd ¢ E(G).
Let N(c) = {a, f, g} and let N(d) = {b, h, i}. Note that {f, g} # {h,i} by symmetry with Claim 3.1.1, and thus
{f,g} N{h,i} = 0. To totally dominate ¢ and d, we may assume {f, h} C S. Hence since G[S] is K3-free, g¢ S
and i ¢ S. If f has degree two in G[S], then (S\{c, v}) U {b} is a TDS of G, a contradiction. Hence, G[{c, f}] is a
component if G[S]. If epn(f, S) =@, then (S\{f, v}) U {a} is a TDS of G, a contradiction. Hence, |epn(f, S)| =1 and
f is a vertex of degree one in G[S] that has property P;. Similarly, |epn(k, S)| = 1 and & is a vertex of degree one in
G[S] that has property P;. Thus the graph shown in Fig. 12 is a subgraph of G. But then S’ = (S\{v}) U {a} is a TDS
of G that satisfies conditions (1) and (2) but with ¢(S’) < ¢(S) (irrespective of whether or not x’ € ), contradicting
our choice of S. This completes the proof of Claim 3.1. [

By Claim 3.1, we may assume that G[{v, w, x}] = K, U K.
Claim 3.2. The vertex u does not belong to a 4-cycle.
Proof. Suppose that # belongs to a 4-cycle u, x, y, w, u. Let z be the common neighbor of x and y. Since S satisfies

condition (1), y¢ S and so z € S. Let N(v) = {u, w, v’} and let N(z) = {x, y, z}. Since S satisfies condition (1),
each of v and z has property Pj, and so epn(v, S) = {v'} and epn(z, S) = {z’}. Thus the graph shown in Fig. 13 is a
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Fig. 14. A subgraph of G where epn(b, S) = {b'}.

Fig. 15. The subgraph G.

subgraph of G. But then § = (S\{w}) U {u} is a TDS of G that satisfies conditions (1) and (2) but with c(S§") < c(S),
contradicting our choice of S. [

Let N(x) ={u, y, z}. Since G is claw-free, G[{x, y, z}] = K3. To dominate x, we may assume y € S. Since G[S] is
K3-free, z ¢ S. Since S satisfies condition (1), |epn(y, S)|=1. Letepn(y, ) = {y'} and let N (z) = {x, y, z’} (possibly,
y' =7/). By Claim 3.2, 7’ ¢ {v, w}.

Claim 3.3. N(z) NS = {x, y}.

Proof. Suppose z’ € S. Then, z/ # y' and y'z’ ¢ E(G). Let N(z') = {g, f. z}. Then, G[{g, f, z'}] = K3. To totally
dominate z’, we may assume g € S. Since G[S] is K3-free, f ¢ S. Since epn(z’, §) = ¥, g is a vertex of degree one
in G[S] that has property P;. But then S’ = (S\{x}) U {z} is a TDS of G that satisfies conditions (1) and (2) but with
c(8") < ¢(S), contradicting our choice of S. Hence, z' ¢ S (possibly, y' =z'). O

Let N(v) = {u, w, v’} and let N (w) = {u, v, w’}. Since § satisfies condition (1), v" # w’'.
Claim 3.4. Ifv'w’ € E(G), then the desired result follows.

Proof. Let a be the common neighbor of v" and w’, and let @’ be the remaining neighbor of a. By Lemma 10 and since
S satisfies condition (1), we may assume that epn(v, S) = {v’}. Thus, {a, w'} N S =@, and so epn(w, S) = {w'}. To
dominate a, a’ € S. Hence, a # 7. Suppose a # y'.Let N(a') ={a, b, c}. Since G is claw-free, G[{d’, b, ¢}]= K3. To
totally dominate a’, we may assume b € S and so ¢ ¢ S. If b has degree two in G[S], then (S\{a’, w}) U {v'} is a TDS
of G, a contradiction. Hence, b has degree one in G[S], and so G[{a’, b}] is a component of G[S]. If epn(b, S) = @,
then (S\{b, v, w}) U{a, u} is a TDS, a contradiction. Hence, |epn(b, §)| =1, and so b is a vertex of degree one in G[S]
that has property Pj.The graph shown in Fig. 14 is therefore a subgraph of G. But then S’ = (S\{w}) U {v'} is a TDS
that satisfies conditions (1) and (2), but with ¢(S") < ¢(S), contradicting our choice of S. Hence, a =y’ and @’ = y.

Let V, = {u, v, v, w,w’, x,y,y,z} and let G, = G[V,] (see Fig. 15). Further, let S, = {v, w, x, y}. Then S, is a
TDS of G, of cardinality four-ninths the order of G,,. Sincein G, N(¢) NS C S, for every vertex t € V(Gy,) (including
the vertex z by Claim 3.3), we uniquely associate u with the connected subgraph G, as desired. [
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Fig. 16. The subgraph G, where zy’ may or may not be an edge.
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Fig. 17. A subgraph of G.

By Claim 3.4, we may assume that v'w’ ¢ E(G), for otherwise the desired result follows. Let N(v') = {a, b, v} and
let N(w') = {c, d, w}. Since G is claw-free, G[{a, b, v'}] = K3 and G[{c, d, w'}] = K3.

Claim 3.5. If G[{v, w}] is a component in G[S], then the desired result follows.

Proof. Since S satisfies condition (1), at least one of v or w has property P;. We may assume epn(v, S) = {v'}. Then
{a,b} NS =@ and {a, b} # {c, d} for otherwise a and b are not dominated. Suppose w does not have property P;.
Then, w’ is also dominated by a vertex of S\{w}. We may assume ¢ € S. Then, irrespective of whether or not d € S,
S’ = (S\{w}) U {u} is a TDS that satisfies conditions (1) and (2), but with c(S") < c¢(S), contradicting our choice of S.
Hence, epn(w, S) = {w'}. Thus, {a, b, c,d} N S = 0.

Let V, = {u,v, v, w,w’, x, y,y, z} and let G, = G[V,] (see Fig. 16). Further, let S, = {v, w, x, y}. Then S, is a
TDS of G, of cardinality four-ninths the order of G,,. Since N(t) NS C S, for every vertex t € V(G,) (including the
vertex z by Claim 3.3), we uniquely associate u with the subgraph G, as desired. [

By Claim 3.5, we may assume that the component of G[S] containing v and w is either P; or Ps. The next result
shows that in fact this component must be a Py.

Claim 3.6. The vertices v and w are internal vertices of a Py in G[S].

Proof. Suppose that v has degree one in G[S]. Then, by assumption, w has degree two in G[S], and so w’ € S. Since
S satisfies condition (1), epn(v, §) = {v'} and so {a, b} N S = ). We consider two possibilities.

Case 1: w’ has degree one in G[S]. Since § satisfies condition (1), w’ has property P; and so |epn(w’, S)| > 1. If
{a, b} = {c, d}, then the graph shown in Fig. 17 is a subgraph of G. But then (S\{v}) U {a} is a TDS of G that satisfies
conditions (1) and (2) but with ¢(S”) < ¢(S), contradicting our choice of S. Hence, {a, b} N {c, d} = .

Suppose that a and b have a common neighbor /. Let i be the remaining neighbor of 4 and let N (i) ={#h, j, k}. Then,
G[{i, j, k}] = K3. To totally dominate a and b, {h, i} C S. Since at least one of ¢ and d belongs to the set epn(w’, S),
{c,d}N{j, k} =0. Suppose {j, k}NS=@. Ifepn(i, S) =0, then (S\{i, v}) U{a} is a TDS of G, a contradiction. Hence,
lepn(i, S)| >1 and i is a vertex of degree one in G[S] that has property P;. But then S’ = (S\{v}) U {a} is a TDS of G
that satisfies conditions (1) and (2) but with ¢(S8”) < ¢(S), contradicting our choice of S. Hence, since G[S]is K3-free,
[{j, k} N S| = 1. We may assume that j € S and k ¢ S. If j has degree two in G[S], then (S\{i, v}) U {a} is a TDS of
G, a contradiction. Hence, j is a vertex of degree one in G[S]. Since S satisfies condition (1), j has property P; and
so |epn(j, S)| = 1. The graph shown in Fig. 18 is therefore a subgraph of G. But then S’ = (§\{v}) U {a} is a TDS of
G that satisfies conditions (1) and (2) but with ¢(S’) < ¢(S), contradicting our choice of S. Hence, a and b have no
common neighbor.

Let a’ and b’ be the neighbors of a and b, respectively, not in the triangle G[{a, b, v'}]. In order to dominate a and
b,a’ € Sand b’ € S, respectively. If a’b’ € E(G), then a’ and b’ have a common neighbor, and epn(¢’, §) = {a} and
epn(d’, §) = {b}. The graph shown in Fig. 19 is therefore a subgraph of G. But then §’ = (S\{?’, v}) U {a} is a TDS of
G, a contradiction. Hence, a’b’ ¢ E(G).
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Fig. 20. A subgraph of G where epn(f, S) = {f’} and epn(h, S) = {h'}.

Let N(a@')={a, f, g} andlet N(b') ={b, h,i}. Then, G[{d’, f, g}]= K3 and G[{b, h, i}] = K3. To totally dominate
a’ (resp., b'), we may assume that f € S (resp., h € S). Since G[S]is K3-free, g ¢ Sandi ¢ S. If {f, g} = {h, i}, then
g would be an isolated vertex in G[V\ S] contained in a K4 — e, contradicting Claim 3.1. Hence, { f, g} N {h,i} =0. If
f has degree two in G[S], then (S\{a’, v}) U {b} is a TDS of G, a contradiction. Hence, f is a vertex of degree one in
G[S]. Ifepn(f, S) =@, then (S\{f, v}) U{a}is a TDS of G, a contradiction. Hence, |epn(f, S)| =1 and f is a vertex
of degree one in G[S] that has property Pj. Similarly, |epn(k, S)| = 1 and £ is a vertex of degree one in G[S] that has
property P;. The graph shown in Fig. 20 is therefore a subgraph of G. But then S’ = (S\{v}) U {a} is a TDS of G that
satisfies conditions (1) and (2) but with ¢(S") < ¢(S), contradicting our choice of S. Hence Case 1 cannot occur.

Case 2: w' has degree two in G[S]. Since G[S] is K3-free, we may assume that ¢ € S and d ¢ S. Since S satisfies
condition (1), ¢ has property P; and so |epn(c, S)| = 1. Since {a, b} N S =@, {a, b} N {c, d} = @ and therefore the
triangles G[{a, b, v'}] and G[{c, d, w'}] are disjoint. Proceeding now exactly as in Case 1 (except that the first situation,
{a, b} = {c, d}, cannot occur), we can contradict our choice of S. This completes the proof of Claim 3.6. [

We now return to our proof of Lemma 11. By Claim 3.6, we have {v', w’} C S. Thus, G[{v, v, w, w'}] = P4
is a component of G[S]. Since S satisfies condition (1), |epn(v’, S)|>1 and |epn(w’, §)| > 1. We may assume b €
epn(v’, S). If a ¢ epn(v’, S), then a is dominated by two vertices of S. But then (S\{v, v'}) U {a} is a TDS of G, a
contradiction. Hence, epn(v’, S) = {a, b}. Similarly, epn(w’, S) = {c, d}.

Suppose a and b have a common neighbor f. Let g be the remaining neighbor of f and let N(g) = {f, h, i}. Since
a € epn(v’, S), f ¢ S. To totally dominate f, we may assume that {g, 7} C S, and so i ¢ S. If & has degree two in
G[S], then (S\{g, v}) U{a} is a TDS of G, a contradiction. Hence, & is a vertex of degree one in G[S]. If epn(h, S) =0,
then (S\{h, v'}) U{f}is a TDS of G, a contradiction. Hence, |epn(h, )| = 1 and h is a vertex of degree one in G[S]
that has property P;. The graph shown in Fig. 21 is therefore a subgraph of G. But then S’ = (S\{v, v'}) U {a, f}isa
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Fig. 23. A subgraph of G.

TDS of G that satisfies conditions (1) and (2) but with ¢(S") < ¢(S), contradicting our choice of S. Hence, a and b do
not have a common neighbor. Similarly, ¢ and d do not have a common neighbor.

Let a’ and b’ be the neighbors of a and b, respectively, that do not belong to the triangle G[{a, b, v'}]. Further, let ¢’
and d’ be the neighbors of ¢ and d, respectively, that do not belong to the triangle G[{c, d, w’}]. Since epn(v’, §)={a, b}
and epn(w’, §) ={c,d},{a’,b',c',d'} NS =0.

Suppose thata’d’ € E(G). Let f be the common neighbor of @’ and 4’, and let g be the remaining neighbor of f. Let
N(g) = {f, h,i}. To totally dominate a’ and ', { f, g} C S. If g has degree two in G[S], then (S\{f, v, v'}) U {a, a’}
is a TDS of G, a contradiction. Hence, h ¢ S and i ¢ S. If epn(g, S) = @, then (S\{g, v, v'}) U {a, da’} isa TDS of G,
a contradiction. Hence, |epn(g, S)| > 1 and g is a vertex of degree one in G[S] that has property P;. The graph shown
in Fig. 22 is therefore a subgraph of G. But then S’ = (S\{v, v'}) U {a, a’} is a TDS of G that satisfies conditions (1)
and (2) but with ¢(S") < ¢(S), contradicting our choice of S. Hence, a’b’ ¢ E(G). Similarly, ¢’d’ ¢ E(G).

Suppose that a’c’ € E(G). Let f be the common neighbor of a’ and ¢’, and let g be the remaining neighbor of f.
Then, {f, g} C S and epn(f, S) = {d’, ¢’}. Since |epn(y, S)| =1, f # y (and clearly, f # x). The graph shown in
Fig. 23 is therefore a subgraph of G. If g has degree two in G[S], then (S\{ f, v, w})U{a, c}isaTDS of G, a contradiction.
Hence g has degree one in G[S]. If epn(g, S) =@, then (S\{g, v, v'}) U {a, a’} is a TDS of G, a contradiction. Hence,
lepn(g, S)|>1 and g is a vertex of degree one in G[S] that has property Pj. But then S’ = (S\{v, v'}) U {a,a'} is a
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Fig. 24. A subgraph of G where h has degree one in G[S] and i’ € epn(#, S).

TDS of G that satisfies conditions (1) and (2) but with c(S§") < ¢(S§), contradicting our choice of S. Hence, a’c’ ¢ E(G).
Similarly, there is no edge joining a vertex in {a’, b’} and a vertex in {¢’, d'}.

Let N(a') ={a, f, g}. Then G[{d/, f, g}] = K3.If a’ belongs to a common K4 — e with &', ¢’ or d’, then {f, g} C S
and (S\{f, v, v'})U{a, a’}isa TDS of G, a contradiction. Hence no K4 — e in G contains a’ and a vertex in {&’, ¢/, d'}.
Similarly, no K4 — e in G contains two vertices from {a’, b’, ¢/, d'}. To dominate a’, we may assume that f € S. Let
h be the neighbor of f not in the triangle G[{d’, f, g}]. Let N(¢") ={c, i, j}. Then G[{c, i, j}] = K3. To dominate ¢/,
we may assume that i € S. Let k be the neighbor of i not in the triangle G[{c’, i, j}].

Suppose g ¢ S. Then, & € S to totally dominate f. If 4 has degree two in G[S], then (S\{f, v,v'}) U{a,a'}isa
TDS of G, a contradiction. Hence, G[{ f, h}] is a component in G[S]. If epn(h, S) =@, then (S\{h, v, v'}) U {a, a’} is
a TDS of G, a contradiction. Hence, |epn(h, S)| > 1. Therefore, / is a vertex of degree one in G[S] that has property
Py. Similarly, if j ¢ S, then k is a vertex of degree one in G[S] that has property Pj. But then S = (S\{v, w}) U {a, c}
is a TDS of G that satisfies conditions (1) and (2) but with c(S”) < c¢(S), contradicting our choice of S. Hence, j € S.
Thus the graph shown in Fig. 24 is a subgraph of G. But once again S’ = (S\{v, w}) U{a, ¢} is a TDS of G that satisfies
conditions (1) and (2) but with ¢(S8”) < c¢(S), contradicting our choice of S. Hence, g € S.

We have shown that N (a’)\{a} C S. Similarly, N(&")\{b} C S, N(¢)\{c} C S and N(d")\{d} C S. But once again
S = (S\{v, w}) U {a, c} is a TDS of G that satisfies conditions (1) and (2) but with ¢(S") < ¢(S), contradicting our
choice of S. This completes the proof of Lemma 11.

5.3. Proof of Lemma 13
Letu, v, w, x be a P4 in G[S>]. To prove Lemma 13, we first prove the following claim.
Claim 4. v and w have a common neighbor.

Proof. Suppose that v and w do not have a common neighbor. Let y and z be the neighbors of v and w, respectively,
in V\S. Then, y # z. Since G is claw-free and since every vertex of V (G7)\S> is adjacent to at most two vertices of
S2, N(y) NS = {u, v} and the neighbor y’ of y is not in S (y’ is possibly equal to z). Similarly, N(z) N S = {w, x}.
Let u’ and x’ be the neighbors of u and x in V\S different from y and z, respectively. Since S satisfies condition (1),
epn(u, S) = {u'} and epn(x, S) = {x'}.

Suppose u'x" € E(G). Let a be the common neighbor of u’ and x’, and let b be the remaining neighbor of a.
Let N(b) = {a, c, d}. Then, G[{b, ¢, d}] = K3. Since epn(u, S) = {u'}, a ¢ S, and so b € S to dominate a. But then
(8\{u, x}) U {a} is a TDS of G, a contradiction. Hence, u'x’ ¢ E(G).

Let N(w')={a,b,u}and N(x")={c,d, x}. Then, G[{a, b, u'}] = K3 and G[{c, d, x'}] = K3. Since epn(u, S) = {u’}
and epn(x, S) = {x'}, {a, b} N S =@ and {c, d} N S = @. Hence, {a, b} N {c,d} = 0.

Suppose a and b have a common neighbor f, different from u’. Let g be the remaining neighbor of f. To totally
dominate @ and b, { f, g} C S.If g has degree two in G[S], then (S\{ f, v}) U{u'} isa TDS of G, a contradiction. Hence,
g has degree one in G[S]. If epn(g, S) =0, then (S\{u, g}) U{a}isaTDS of G, a contradiction. Hence, |epn(g, S)| > 1,
and so g is a vertex of degree one in G[S] that has property P;. But then §’ = (S\{v}) U {u'} is a TDS of G that satisfies
conditions (1) and (2) but with ¢(S”") < ¢(S), contradicting our choice of S. Hence, a and b do not have a common
neighbor. Similarly, ¢ and d do not have a common neighbor.
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Fig. 26. A P4-component in G[S] where epn(u, S) = {b, ¢} and epn(x, S) = {d, f}.

Let a’ and b’ be the neighbors of a and b, respectively, that do not belong to the triangle G[{a, b, u'}]. Further, let ¢’
and d’ be the neighbors of ¢ and d, respectively, that do not belong to the triangle G[{c, d, x'}]. Since G is claw-free,
{a’, b’} N {c,d'} = @. To dominate {a, b, c,d}, {a’,b',c’,d'} C S.If a’b’ € E(G), then a’ and b’ have a common
neighbor and (S\{#’, u}) U {a} is a TDS of G, a contradiction. Hence, a’b’ ¢ E(G).

Let N(a')={a, f, g} andlet N(b') ={b, h, i}. Then, G[{d’, f, g}]1= K3 and G[{b, h, i}] = K3. To totally dominate
a’ and b’, we may assume that f € S and & € S, respectively. Thus, since G[S] is K3-free, g¢ S and i ¢ S. If
{f, g} ={h, i}, then g would be an isolated vertex in G[V'\S] contained in a K4 — e, contradicting Claim 3.1. Hence,
{f, gt N{h, i} =@.If f has degree two in G[S], then (S\{a’, v}) U {u’} is a TDS of G, a contradiction. Hence, f has
degree one in G[S]. If epn( f, S) =0, then (S\{ f, u}) U{a} is a TDS of G, a contradiction. Hence, [epn(f, S)| =1, and
so f is a vertex of degree one in G[S] that has property P;. Similarly, |epn(h, S)| = 1 and # is a vertex of degree one
in G[S] that has property P;. Hence the graph shown in Fig. 25 is a subgraph of G. But then S’ = (S\{v}) U {1/} is a
TDS of G that satisfies conditions (1) and (2) but with ¢(S§") < ¢(S§), contradicting our choice of §. [

We now return to the proof of Lemma 13. By Claim 4, v and w have a common neighbor, a say. We show now that
each of ¥ and x has two external private neighbors. Let N (u) = {b, ¢, v} and let N (x) = {d, f, w}. Since S satisfies
condition (1), [epn(u, S)| > 1 and |epn(x, S)| > 1. We may assume b € epn(u, S). If ¢ ¢ epn(u, S), then ¢ is dominated
by two vertices of S. But then (S\{u, v}) U {c} is a TDS of G, a contradiction. Hence, epn(u, S) = {b, c}. Similarly,
epn(x, S) ={d, f}. Thus the graph shown in Fig. 26 is a subgraph of G and the third neighbor a’ of a is in V\ S by the
definition of S,. This completes the proof of Lemma 13.

5.4. Proof of Lemma 14

Let u, v, w be a P3-component in G[S;], and let S’ = {u, v, w}. Since G is claw-free, we may assume that v and w
have a common neighbor, say a. Since S satisfies condition (1), |epn(x)| > 1 and |epn(w)| = 1. Let epn(w, S) = {b}.
Let N(u) = {c, d, v}. Then, G[{c, d, u}] = K3. We may assume that ¢ € epn(u, S). If d € epn(u, S), then the graph
G’ shown in Fig. 6(a) is a subgraph of G with V(G’) = N[S’] and where the vertices in V (G’)\ S’ are not adjacent in
G to any vertex of S\S'.

Suppose then that d ¢ epn(u, S). Then, d is dominated by a vertex of S\{u}, say x. Let y be a vertex of S adjacent to
x. Since G is claw-free, x and y have a common neighbor, say f. Further, since G[S] is K3-free, f € V\S, and so x
has no external private neighbor. Thus, x must have property P,. Consequently, |epn(y, S)| = 1. Let epn(y, S) = {g}.
Hence the graph G’ shown in Fig. 27 is a subgraph of G where the vertices in V (G’) are not adjacent in G to any vertex
of §\V(G’). This completes the proof of Lemma 14.
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Fig. 27. A subgraph of G where epn(u, S) = {c}, epn(w, S) = {b} and epn(y, S) = {g}.

Fig. 28. Claw-free cubic graphs with total domination numbers four-ninths their orders.

5.5. Proof of Lemma 15

Let | S*| = 2k. Let T be the set of all vertices of V\S that are dominated by $* and let |T| =¢. Let n* = |S*| + |T|.
Let [S*, T'] denote the set of all edges with one end in S* and the other in 7. Since each vertex of S* is adjacent to
exactly two vertices of 7', |[S*, T']| = 2|S*| = 4k. On the other hand, let ¢ denote the number of vertices in 7 that are
dominated by a unique vertex of S*. Since S satisfies condition (1), at least one vertex in every Po-component of G[S*]
has property P;. Hence at least k vertices in $* have an external private neighbor, and so £ > k. Thus, since every vertex
of T is adjacent to at most two vertices of S by the definition of S», |[S*, T]|=£+42(t — €) =2(n* —2k) — £ <2n™* — 5Sk.
Consequently, k <2n*/9, and so |S*| <4n*/9, as desired.

6. Conclusion

We remark that our proof of Theorem 8 shows that if G has no subgraph G’ shown in Fig. 6(b) where the vertices in
V(G’) are not adjacent in G to any vertex of S\ V (G’), then y,(G) <4n /9. We believe that the bound of five-elevenths
the order is not sharp, and we close with the following conjecture.

Conjecture 1. Every connected claw-free cubic graph of order at least 10 has total domination number at most four-
ninths its order.

If Conjecture 1 is true, then the bound is tight as may be seen by considering the connected claw-free cubic graphs
F and H shown in Fig. 28 with total domination number four-ninths their orders.

Final remark (concerning paired domination): In a previous paper [5] we proved that if a connected claw-free cubic
graph of order n > 6 does not contain K4 — e nor C4 as an induced subgraph, then its paired domination number satisfies
7pr(G) <3n/8 and the unique extremal graph has 48 vertices. The proof used the property established by Hobbs and
Schmeichel that the matching number v(H) of a cubic graph H of order N is at least 7N /16. This property was recently
improved (see [2]) for N > 16 to v(H) > (4N — 1)/9. Using this new result, our bound on Ypr(G) in connected cubic
(K13, K4 — 3, C4)-free graphs improves for n >48 to (10n 4 6) /27 with infinitely many extremal graphs.
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