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Abstract

A set S of vertices in a graph G is a total dominating set, denoted by TDS, of G if every vertex of G is adjacent to some vertex in
S (other than itself). The minimum cardinality of a TDS of G is the total domination number of G, denoted by �t(G). If G does not
contain K1,3 as an induced subgraph, then G is said to be claw-free. It is shown in [D. Archdeacon, J. Ellis-Monaghan, D. Fischer,
D. Froncek, P.C.B. Lam, S. Seager, B. Wei, R. Yuster, Some remarks on domination, J. Graph Theory 46 (2004) 207–210.] that if G

is a graph of order n with minimum degree at least three, then �t(G)�n/2. Two infinite families of connected cubic graphs with total
domination number one-half their orders are constructed in [O. Favaron, M.A. Henning, C.M. Mynhardt, J. Puech, Total domination
in graphs with minimum degree three, J. Graph Theory 34(1) (2000) 9–19.] which shows that this bound of n/2 is sharp. However,
every graph in these two families, except for K4 and a cubic graph of order eight, contains a claw. It is therefore a natural question
to ask whether this upper bound of n/2 can be improved if we restrict G to be a connected cubic claw-free graph of order at least
10. In this paper, we answer this question in the affirmative. We prove that if G is a connected claw-free cubic graph of order n�10,
then �t(G)�5n/11.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Total domination in graphs was introduced by Cockayne et al. [4] and is now well studied in graph theory (see,
for example, 3,7,11]). The literature on this subject has been surveyed and detailed in the two books by Haynes et al.
[9,10].

Let G = (V , E) be a graph with vertex set V and edge set E. A total dominating set, denoted by TDS, of G with no
isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S (other than itself). Every
graph without isolated vertices has a TDS, since S = V is such a set. The total domination number of G, denoted by
�t(G), is the minimum cardinality of a TDS. We call a TDS of G of cardinality �t(G) a �t(G)-set.

� Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.
1 This paper was started while the author was visiting the Laboratoire de Recherche en Informatique (LRI) at the Université de Paris-Sud in July

2002.
E-mail addresses: Odile.Favaron@lri.fr (O. Favaron), henning@ukzn.ac.za (M.A. Henning).

0012-365X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2007.07.007

http://www.elsevier.com/locate/disc
mailto:Odile.Favaron@lri.fr
mailto:henning@ukzn.ac.za


3492 O. Favaron, M.A. Henning / Discrete Mathematics 308 (2008) 3491–3507

For notation and graph theory terminology we in general follow [9]. Specifically, let G=(V , E) be a graph with vertex
set V of order n and edge set E, and let v be a vertex in V . The open neighborhood of v is N(v) = {u ∈ V |uv ∈ E}
and the closed neighborhood of v is N [v] = {v} ∪ N(v). For a set S ⊆ V , the subgraph induced by S is denoted by
G[S]. A vertex w ∈ V \S is an external private neighbor of v (with respect to S) if N(w) ∩ S = {v}; and the external
private neighbor set of v with respect to S, denoted epn(v, S), is the set of all external private neighbors of v. For
subsets S, T ⊆ V , S totally dominates T if T ⊆ N(S). A cycle on n vertices is denoted by Cn and a path on n vertices
by Pn. The minimum degree (resp., maximum degree) among the vertices of G is denoted by �(G) (resp., �(G)).

We say that a graph is F -free if it does not contain F as an induced subgraph. In particular, if F = K1,3, then we say
that the graph is claw-free. An excellent survey of claw-free graphs has been written by Flandrin et al. [8].

2. Known results on total domination

The following result establishes a property of minimum TDSs in graphs.

Theorem 1 (Henning [11]). If G is a connected graph of order n�3, and G�Kn, then G has a �t(G)-set S in which
every vertex v has one of the following two properties:

P1 : |epn(v, S)|�1;
P2 : v is adjacent to a vertex of degree one in G[S] that has property P1.

The decision problem to determine the total domination number of a graph is known to be NP-complete. Hence, it
is of interest to determine upper bounds on the total domination number of a graph. Cockayne et al. [4] obtained the
following upper bound on the total domination number of a connected graph in terms of the order of the graph.

Theorem 2 (Cockayne et al. [4]). If G is a connected graph of order n�3, then �t(G)�2n/3.

Brigham et al. [3] characterized the connected graphs of order at least three with total domination number exactly
two-thirds their order. If we restrict G to be a connected claw-free graph, then the upper bound of Theorem 2 cannot
be improved since the graph G obtained from a complete graph H by attaching a path of length 2 to each vertex of H

so that the resulting paths are vertex disjoint (the graph G is called the 2-corona of H ) is a connected claw-free graph
with total domination number two-thirds its order.

If we restrict the minimum degree to be at least two, then the upper bound in Theorem 2 can be improved.

Theorem 3 (Henning [11]). If G is a connected graph of order n with �(G)�2 and G /∈ {C3, C5, C6, C10}, then
�t(G)�4n/7.

It is shown in [6] that the upper bound of Theorem 3 can be improved if we restrict G to be a claw-free graph.

Theorem 4 (Favaron and Henning [6]). If G is a connected claw-free graph of order n with �(G)�2, then �t(G)�
(n + 2)/2 with equality if and only if G is a cycle of length congruent to 2 modulo 4.

It was shown in [7] that if G is a connected graph of order n with �(G)�3, then �t(G)�7n/13 and conjectured
that this upper bound could be improved to n/2. Archdeacon et al. [1] recently found an elegant one page proof of this
conjecture.

Theorem 5 (Archdeacon et al. [1]). If G is a graph of order n with �(G)�3, then �t(G)�n/2.

The generalized Petersen graph of order 16 shown in Fig. 1 achieves equality in Theorem 5.
Two infinite families G and H of connected cubic graphs (described below) with total domination number one-

half their orders are constructed in [7] which shows that the bound of Theorem 5 is sharp. For k�2 consider two
copies of the path P2k with respective vertex sequences a1, b1, a2, b2, . . . , ak, bk and c1, d1, c2, d2, . . . , ck, dk . For
each i ∈ {1, 2, . . . , k}, join ai to di and bi to ci . To complete the construction of graphs in G (H, respectively), join a1
to c1 and bk to dk (a1 to bk and c1 to dk). Two graphs G and H in the families G and H are illustrated in Fig. 2.
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Fig. 1. A generalized Petersen graph of order 16.

Fig. 2. Cubic graphs G ∈ G and H ∈ H of order n with �t(G) = n/2.

Fig. 3. A claw-free cubic graph G1 with �t(G1) = n/2.

The connected graphs with minimum degree at least three that achieve equality in the bound of Theorem 5 are
characterized in [12].

Theorem 6 (Henning andYeo [12]). If G is a connected graph with minimum degree at least three and total domination
number one-half its order, then G ∈ G ∪ H or G is the generalized Petersen graph of order 16 shown in Fig. 1.

Every graph in the two families G and H, except for K4 and the cubic graph G1 shown in Fig. 3, contains a claw,
as does the generalized Petersen graph shown above. Hence, as a consequence of Theorem 6, the connected claw-free
cubic graphs achieving equality in Theorem 5 contain at most eight vertices. (This result is also established in [5].)

Theorem 7 (Favaron and Henning [5], Henning and Yeo [12]). If G is a connected claw-free cubic graph of order n,
then �t(G)�n/2 with equality if and only if G = K4 or G = G1 where G1 is the graph shown in Fig. 3.

It is therefore a natural question to ask whether the upper bound of Theorem 5 can be improved if we restrict G to
be a connected claw-free cubic graph of order at least 10. In this paper, we show that under these conditions the upper
bound on the total domination number of G in Theorem 5 decreases from one-half its order to five-elevenths its order.

3. Main result

We shall prove:

Theorem 8. If G is a connected claw-free cubic graph of order n�6, then either G=G1 where G1 is the graph shown
in Fig. 3 or �t(G)�5n/11.
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As an immediate consequence of Theorem 8, we have the following result.

Corollary 9. If G is a connected claw-free cubic graph of order n�10, then �t(G)�5n/11.

4. Cost function

Before presenting a proof of Theorem 8 we introduce the concept of a cost function of a TDS in a claw-free graph.
Let S be a TDS of a claw-free graph G= (V , E). Let I (S) denote the number of isolated vertices in G[V \S]. Let P2(S)

and P4(S) denote the number of components in G[S] isomorphic to a path P2 and P4, respectively. Let P(S) denote
the number of external private neighbors of vertices of S. Let T (S) denote the number of triangles in G[V \S].

We define a bad vertex of V \S as a vertex of V \S that is adjacent to exactly one vertex in a P2-component of G[S]
and exactly one vertex (necessarily, an end-vertex since G is claw-free) in a P3-component of G[S]. We observe that if
�(G)�3, then by the claw-freeness of G a bad vertex of V \S is not an isolated vertex of G[V \S]. We let B(S) denote
the number of bad vertices in V \S.

We define the cost function of S, denoted by c(S), in the graph G by

c(S) = 7I (S) + 4P4(S) + 2B(S) − 2P2(S) − 2P(S) − 2T (S).

Intuitively, an isolated vertex in G[V \S] costs us $7, a P4-component in G[S] costs us $4 and a bad vertex of V \S
costs us $2. On the other hand, for each P2-component in G[S] or external private neighbor of a vertex of S or triangle
in G[V \S] we receive a $2 rebate.

5. Proof of Theorem 8

Let G = (V , E) be a connected claw-free cubic graph of order n�6. Among all �t(G)-sets, let S be chosen so that:

(1) Every vertex in S has property P1 or P2 given in Theorem 1.
(2) Subject to (1), the number of K3’s in G[S] is minimized.
(3) Subject to (2), the cost function c(S) is minimized.

The existence of the set S is guaranteed by Theorem 1. Throughout our proof, whenever we give a diagram of a subgraph
of G we indicate vertices of S by darkened vertices and vertices of V \S by circled vertices.

We proceed further with series of lemmas. The proofs of these lemmas follow from the way in which the set S is
chosen. Since these proofs are technical in nature, we present them in later subsections. We begin with the following
lemma, a proof of which is presented in Section 5.1.

Lemma 10. Every component of G[S] is a path P2, P3 or P4.

To simplify the notation in what follows, we shall use the following notation. Let u ∈ V and let Gu be a subgraph
of G containing u. We define Su = S ∩ V (Gu). A proof of the following lemma is presented in Section 5.2.

Lemma 11. If u is an isolated vertex of G[V \S], then either G=G1 or we can uniquely associate with u the connected
subgraph Gu of G shown in Fig. 4(a) or (b) where the vertices in V (Gu) are not adjacent in G to any vertex of S\Su

and where in Fig. 4(b) either Gu or Gu + ab is an induced subgraph of G.

Fig. 4. The two subgraphs uniquely associated with an isolated vertex u of G[V \S]. (a) Gu and (b) Gu.
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Fig. 5. The subgraph uniquely associated with a P4-component in G[S2].

Fig. 6. The two subgraphs uniquely associated with a P3-component in G[S2]. (a) G′ and (b) G′.

Let V1 = ∪V (Gu) where the union is taken over all isolated vertices u in G[V \S] and where Gu is the subgraph
of G defined in the statement of Lemma 11. Let |V1| = n1. Let S1 = S ∩ V1 and let S2 = S\S1. Then, N [S1] = V1.
Notice that the set Su defined in Lemma 11 is a TDS of Gu of cardinality four-ninths the order of Gu. Thus we have
the following immediate consequence of Lemma 11.

Lemma 12. |S1| = 4n1/9, and the vertices in N [S1] are not adjacent in G to any vertex of S\N [S1].

If S2 = ∅, then S = S1 and n = n1, and so �t(G)�4n/9 < 5n/11. Hence, we may assume S2 �= ∅, for otherwise the
desired result follows. Since NG(v) ∩ S ⊂ S1 for every vertex v ∈ V1, every edge joining a vertex in N [S1] with a
vertex in N [S2] belongs to G[V \S]. Hence, letting V2 = N [S2], V can be written as disjoint union of V1 and V2. In
particular, if both S1 and S2 are nonempty, then V1 and V2 is a partition of V . Let |V2| = n2, and so n = n1 + n2.

Since V1 contains all the isolated vertices of G[V \S], every vertex of V \S not in V1 (and therefore not dominated
by S1) is adjacent to at most two vertices of S2 and at least one vertex of V \S. A proof of the following lemma is
presented in Section 5.3.

Lemma 13. If S′ ⊆ S2 induces a P4-component in G[S], then we can uniquely associate with S′ the subgraph G′ of
G shown in Fig. 5 where the vertices in V (G′) are not adjacent in G to any vertex of S\S′.

By Lemma 13, if P4 is a component in G[S2], then there are five vertices of V \S that are dominated by at least one
of the four vertices of this P4 but by no other vertex of S.

A proof of the following lemma is presented in Section 5.4.

Lemma 14. If u, v, w is a P3-component in G[S2], then we can uniquely associate with this P3-component the subgraph
G′ of G shown in either Fig. 6(a) or (b) where the (circled) vertices in V (G′) are not adjacent in G to any vertex of
S\V (G′).

We say that two components of G[S] are at distance k apart if the length of a shortest path in G joining a vertex from
one component to a vertex of the other has length k. In particular, two components of G[S] are at distance two apart if
there exists a vertex of V \S that is adjacent with a vertex from each component. By Lemma 14, if P3 is a component
in G[S2], then either (i) there are four vertices of V \S that are dominated by at least one of the three vertices of this
P3 but by no other vertex of S, or (ii) there is a (unique) P2-component at distance two from this P3-component and
there are six vertices of V \S that are dominated by at least one of the five vertices from these two components but by
no other vertex of S.

Let S∗ be the set of all vertices of S2 that belong to a P2-component of G[S2] that is at distance at least three from
every P3-component of G[S2]. If S∗ �= ∅, then G[S∗] is the disjoint union of copies of P2. A proof of the following
lemma is presented in Section 5.5.

Lemma 15. |S∗|�4|N [S∗]|/9 and the vertices in N [S∗] are not adjacent in G to any vertex of S\N [S∗].
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Fig. 7. A subgraph of G.

The following result is an immediate consequence of Lemmas 13–15.

Lemma 16. |S2|�5n2/11, and the vertices in N [S2] are not adjacent in G to any vertex of S\N [S2].

By Lemmas 12 and 16, �t(G) = |S1| + |S2|�4n1/9 + 5n2/11 = 5n/11. This completes the proof of the theorem.

5.1. Proof of Lemma 10

To prove Lemma 10, we first prove two claims.

Claim 1. If u ∈ S belongs to a K3 in G[S], then N [u] ⊂ S.

Proof. Let X = {s, t, u} be a subset of S such that G[X] = K3. Suppose that N [u] /⊂ S. Since both neighbors of
u in X have degree at least two in G[S], the vertex u has property P1 by condition (1). Let epn(u, S) = {u′}. Let
N(u′) = {u, v, w}. Since epn(u, S) = {u′}, {u′, v, w} ∩ S = ∅. Since G is claw-free, G[{u′, v, w}] = K3.

Claim 1.1. The vertex v does not belong to a K4 − e.

Proof. Suppose that v belongs to a K4 − e. Let x be the common neighbor of v and w, different from u′, and let y be
the remaining neighbor of x. To totally dominate v and w, {x, y} ⊂ S.

Suppose y ∈ X, say y = t . If N [s] ⊂ S, then (S\{u, t}) ∪ {v} is a TDS of G of cardinality less than �t(G), which is
impossible. Hence, N(s) ∩ S = {t, u}. Since S satisfies condition (1), |epn(s, S)| = 1. But then (S\{x, t}) ∪ {u′, v} is
a TDS of G that satisfies condition (1) but induces fewer K3’s than does G[S], contradicting our choice of S. Hence,
y /∈ X.

If y is adjacent to a vertex of X, then, since G is claw-free, N(y) = {s, t, x}. Thus, G is the graph G1 shown in
Fig. 3, a contradiction since then �t(G)= 4 but |S|= 5. Hence, N(y)∩X =∅. Let N(y)={a, b}. Since G is claw-free,
G[{a, b, y}] = K3. If {a, b} ⊂ S, then (S\{u, y}) ∪ {v} is a TDS of G, a contradiction. Hence, |{a, b} ∩ S|�1.

Suppose a ∈ S. Then, b /∈ S. If a has degree two in G[S], then (S\{u, y}) ∪ {v} is a TDS of G, a contradiction.
Hence, a has degree one in G[S]. Since S satisfies condition (1), |epn(a, S)| = 1. But then (S\{u}) ∪ {v} is a TDS
of G that satisfies condition (1) but induces fewer K3’s than does G[S], contradicting our choice of S. Hence, a /∈ S.
Similarly, b /∈ S. Hence, G[{x, y}] is a component in G[S].

If epn(y, S)=∅, then (S\{u, y})∪ {w} is a TDS of G, which is impossible. Hence, |epn(y, S)|�1. We may assume
b ∈ epn(y, S). Thus the graph shown in Fig. 7 is a subgraph of G. But then (S\{u}) ∪ {v} is a TDS of G that satisfies
condition (1) but induces fewer K3’s than does G[S], contradicting our choice of S. �

Let v′ and w′ be the neighbors of v and w, respectively, not in the triangle G[{u′, v, w}]. By Claim 1.1, v′ �= w′.
Then, {v′, w′} ⊂ S to dominate v and w.

Claim 1.2. {v′, w′} ∩ {s, t} = ∅.

Proof. If {v′, w′} = {s, t}, say if v′ = s and w′ = t , then G = K2 × K3 and n = 6, a contradiction since then �t(G) = 2
but |S| = 3. Suppose |{v′, w′} ∩ {s, t}| = 1. We may assume w′ = t . If N [s] ⊂ S, then (S\{u, t}) ∪ {v} is a TDS of
G, a contradiction. Hence, N(s) ∩ S = {t, u}. Since S satisfies condition (1), |epn(s, S)| = 1. Let N(v′) = {a, b, v}.
Then, G[{a, b, v′}] = K3. To totally dominate v′, we may assume a ∈ S. If a has degree two or three in G[S], then
(S\{u, v′}) ∪ {w} is a TDS of G, a contradiction. Hence, a has degree one in G[S], and so G[{a, v′}] is a component
of G[S]. If epn(a, S) = ∅, then (S\{a, t}) ∪ {v} is a TDS of G, a contradiction. Hence, |epn(a, S)| = 1. But then
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Fig. 8. A subgraph of G where epn(a, S) = {a′} and epn(c, S) = {c′}.

(S\{u}) ∪ {w} is a TDS of G that satisfies condition (1) but induces fewer K3’s than does G[S], contradicting our
choice of S. �

If v′w′ ∈ E(G), then since G is claw-free, v′ and w′ have a common neighbor. But then (S\{u, w′}) ∪ {v} is a TDS
of G, a contradiction. Hence, v′w′ /∈ E(G). Let N(v′) = {a, b, v} and let N(w′) = {c, d, w}. Since G is claw-free,
G[{a, b, v′}] = K3 and G[{c, d, w′}] = K3. If {a, b} = {s, t}, then (S\{u, v′}) ∪ {w} is a TDS of G, a contradiction.
Hence, {a, b} ∩ X = ∅. Similarly, {c, d} ∩ X = ∅.

In order to dominate v′, we may assume that a ∈ S. If a has degree two or three in G[S], then (S\{u, v′}) ∪ {w} is
a TDS of G, a contradiction. Hence, a has degree one in G[S], thus implying {a, b} �= {c, d}, and so G[{a, v′}] is a
component of G[S]. If epn(a, S) = ∅, then (S\{a, u}) ∪ {v} is a TDS of G, a contradiction. Hence, |epn(a, S)| = 1 and
so a is a vertex of degree one in G[S] that has property P1. Similarly, to dominate w′ we may assume that c is a vertex
of degree one in G[S] that has property P1. Thus the graph shown in Fig. 8 is a subgraph of G. But then (S\{u}) ∪ {v}
is a TDS of G that satisfies condition (1) but induces fewer K3’s than does G[S], contradicting our choice of S. �

Claim 2. The maximum degree in G[S] is at most two.

Proof. Suppose that N [u] ⊂ S for some vertex u ∈ S. Then epn(u, S)=∅, and so, by condition (1), u has property P2
and therefore has a neighbor v of degree one in G[S] that has property P1. Let N(u)={s, t, v}. Then, G[{s, t, u}]=K3.
Let X ={s, t, u}. Let s′ and t ′ be the neighbors of s and t , respectively, not in X. By Claim 1, s′ ∈ S and t ′ ∈ S. Since S

satisfies condition (1), s′ �= t ′ and s′, t ′ are vertices of degree one in G[S] that have property P1. Let N(v)={u, w, x}.
Since G is claw-free, G[{v, w, x}] = K3. Since |epn(v, S)|�1, we may assume that w ∈ epn(v, S). If x /∈ epn(v, S),
then (S\{u, v}) ∪ {x} is a TDS, a contradiction. Hence, epn(v, S) = {w, x}.

Suppose that w belongs to a K4 − e. Let y be the common neighbor of w and x different from v, and let z be the
remaining neighbor of y. Since epn(v, S) = {w, x}, y /∈ S, and so z ∈ S. Since G is claw-free, z /∈ {s′, t ′}. Let z′ be a
neighbor of z in S. If z′ has degree two or three in G[S], then (S\{u, v, z}) ∪ {y, w} is a TDS in G. If z′ has degree one
in G[S] and epn(z′, S)=∅, then (S\{u, v, z′})∪{y, w} is a TDS in G. If z′ has degree one in G[S] and epn(z′, S) �= ∅,
then (S\{u, v}) ∪ {y, w} is a TDS in G that satisfies condition (1) but induces fewer K3’s than does G[S]. All these
cases lead to a contradiction. Hence, w does not belong to a K4 − e. Let w′ = N(w)\{v, x} and let x′ = N(x)\{v, w}.
Then, x′ �= w′. Since epn(v, S) = {w, x}, {w′, x′} ∩ S = ∅.

Claim 2.1. w′x′ /∈ E(G).

Proof. Suppose w′x′ ∈ E(G). Let c be the common neighbor of w′ and x′, and let d be the remaining neighbor of c.
Since G is claw-free, G[N [d]\{c}] = K3. In order to totally dominate w′ and x′, {c, d} ⊂ S. If d has degree two or
three in G[S], then (S\{u, v, c}) ∪ {w, w′} is a TDS of G, a contradiction. Hence, d has degree one in G[S], and so
G[{c, d}] is a component of G[S]. If epn(d, S)=∅, then (S\{d, u, v})∪{w, w′} is a TDS of G, a contradiction. Hence,
|epn(d, S)|�1, and so d is a vertex of degree one in G[S] that has property P1. Thus the graph shown in Fig. 9 is a
subgraph of G. But then (S\{u, v}) ∪ {w, w′} is a TDS of G that satisfies condition (1) but induces fewer K3’s than
does G[S], contradicting our choice of S. �

Let N(w′) = {e, f, w} and let N(x′) = {g, h, x}. Since G is claw-free, G[{e, f, w′}] = K3 and G[{g, h, x′}] = K3.
By condition (1), {e, f } �= {g, h} and thus {e, f } ∩ {g, h}=∅. In order to dominate w′, we may assume that e ∈ S. Let
e′ be a neighbor of e in G[S] different from f if such a neighbor exists (possibly, e = s′ and e′ = s, but e′ is necessarily
different from s′). If e′ has degree two or three in G[S], in particular if e = s′, then (S\{e, u, v}) ∪ {w, w′} is a TDS of
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Fig. 9. A subgraph of G.

Fig. 10. A subgraph of G.

G, a contradiction. Hence, e′ has degree one in G[S]. If epn(e′, S) = ∅, then (S\{e′, u, v}) ∪ {w, w′} is a TDS of G, a
contradiction. Hence, |epn(e′, S)|�1, and so e′ is a vertex of degree one in G[S] that has property P1.

If f /∈ S, then (S\{u, v})∪ {w, w′} is a TDS of G that satisfies condition (1) but induces fewer K3’s than does G[S],
contradicting our choice of S. Hence f ∈ S. Similarly, {g, h} ∈ S.

Repeating the argument with the vertex u replaced by s or t shows that the graph shown in Fig. 10 is a subgraph
of G. But then with the vertices s∗, t∗ and u∗ as indicated in Fig. 10, (S\{u, s, t}) ∪ {u∗, s∗, t∗} is a TDS of G that
satisfies condition (1) but induces fewer K3’s than does G[S], contradicting our choice of S. �

We can now return to the proof of Lemma 10. As an immediate consequence of Claims 1 and 2, every component
of G[S] is an induced path or cycle different from K3. Suppose that G[S] contains a path P5 on five vertices or a cycle
Cp with p�4. Let v denote the central vertex of the P5 or any vertex of Cp, and let v1 and v2 be the neighbors of v in
S. Let v′ (v′

1, v′
2, respectively) be the neighbor of v (v1, v2) in V \S. Since G is claw-free, v′, v′

1, v
′
2 are not S-external

private neighbors of v, v1, v2, and so v does not have property P1 nor P2. This contradicts the fact that the set S satisfies
condition (1). Hence each component of G[S] is a path of length at most 3.

5.2. Proof of Lemma 11

Since u is an isolated vertex in G[V \S], N(u) ⊂ S. Let N(u) = {v, w, x} where vw ∈ E(G). To prove Lemma 11,
we first prove six claims.

Claim 3.1. The vertex u does not belong to a K4 − e, except if G = G1.

Proof. Suppose that u belongs to a K4 − e. Then, u is a vertex of degree three in this K4 − e since S satisfies condition
(1). We may assume that wx ∈ E(G). Let v′ and x′ be the neighbors of v and x, respectively, not in this K4 − e. Since
G is claw-free, v′ �= x′. Since S satisfies condition (1), w must have property P2, and so we may assume that v has
property P1, i.e., epn(v, S) = {v′}. Moreover, if x′ /∈ S then epn(x, S) = {x′}.

Claim 3.1.1. v′x′ /∈ E(G).

Proof. Suppose v′x′ ∈ E(G). Let y be the common neighbor of v′ and x′ and let z denote the remaining neighbor of
y. Let N(z) = {a, b, y}. Then, G[{a, b, z}] = K3. Since epn(v, S) = {v′}, {x′, y} ∩ S = ∅, and so x has property P1 and
epn(x, S) = {x′}. In order to totally dominate y, we may assume that {a, z} ⊂ S. If a has degree two or three in G[S],
then (S\{x, z})∪{v′} is a TDS of G, a contradiction. Hence, a has degree one in G[S], and so G[{a, z}] is a component
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Fig. 11. A subgraph of G where epn(a, S) = {a′}.

Fig. 12. A subgraph of G where epn(f, S) = {f ′} and epn(h, S) = {h′}.

of G[S]. If epn(a, S) = ∅, then (S\{a, v, x}) ∪ {u, y} is a TDS of G, a contradiction. Hence, |epn(a, S)| = 1, and so a

is a vertex of degree one in G[S] that has property P1. Thus the graph shown in Fig. 11 is a subgraph of G. But then
S′ = (S\{x}) ∪ {v′} is a TDS of G that satisfies conditions (1) and (2) but with c(S′) < c(S), contradicting our choice
of S. �

Let N(v′) = {a, b, v}. Since epn(v, S) = {v′}, {a, b} ∩ S = ∅.

Claim 3.1.2. If a belongs to a K4 − e, then G = G1.

Proof. Suppose a belongs to a K4 − e. Let f be the second common neighbor of a and b. Let g be the remaining
neighbor of f . Then, {f, g} ⊂ S. Note that f �= x and g �= x′. Suppose f �= x′. We then consider the component C of
G[S] containing {f, g}. If C is a P4 or a P2 such that epn(g, S)=∅, then (S\{g, v})∪{a} is a TDS of G, a contradiction.
If C is a P3 or a P2 such that |epn(g, S)|�1, then S′ = (S\{v}) ∪ {a} is a TDS of G that satisfies conditions (1) and
(2) but with c(S′) < c(S) (irrespective of whether or not x′ ∈ S), contradicting our choice of S. Hence, f = x′, and so
g = x. Thus, G = G1. �

Let c and d be the neighbors of a and b, respectively, not in the triangle G[{a, b, v′}]. Since v′x′ /∈ E(G) by Claim
3.1.1, x′ /∈ {a, b} and thus x /∈ {c, d}. Since G is claw-free, x′ /∈ {c, d}. To dominate a and b, {c, d} ⊂ S. If cd ∈ E(G),
then c and d have a common neighbor and (S\{d, v}) ∪ {a} is a TDS of G, a contradiction. Hence, cd /∈ E(G).
Let N(c) = {a, f, g} and let N(d) = {b, h, i}. Note that {f, g} �= {h, i} by symmetry with Claim 3.1.1, and thus
{f, g} ∩ {h, i} = ∅. To totally dominate c and d , we may assume {f, h} ⊂ S. Hence since G[S] is K3-free, g /∈ S

and i /∈ S. If f has degree two in G[S], then (S\{c, v}) ∪ {b} is a TDS of G, a contradiction. Hence, G[{c, f }] is a
component if G[S]. If epn(f, S) = ∅, then (S\{f, v}) ∪ {a} is a TDS of G, a contradiction. Hence, |epn(f, S)| = 1 and
f is a vertex of degree one in G[S] that has property P1. Similarly, |epn(h, S)| = 1 and h is a vertex of degree one in
G[S] that has property P1. Thus the graph shown in Fig. 12 is a subgraph of G. But then S′ = (S\{v}) ∪ {a} is a TDS
of G that satisfies conditions (1) and (2) but with c(S′) < c(S) (irrespective of whether or not x′ ∈ S), contradicting
our choice of S. This completes the proof of Claim 3.1. �

By Claim 3.1, we may assume that G[{v, w, x}] = K2 ∪ K1.

Claim 3.2. The vertex u does not belong to a 4-cycle.

Proof. Suppose that u belongs to a 4-cycle u, x, y, w, u. Let z be the common neighbor of x and y. Since S satisfies
condition (1), y /∈ S and so z ∈ S. Let N(v) = {u, w, v′} and let N(z) = {x, y, z′}. Since S satisfies condition (1),
each of v and z has property P1, and so epn(v, S) = {v′} and epn(z, S) = {z′}. Thus the graph shown in Fig. 13 is a
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Fig. 13. A subgraph of G.

Fig. 14. A subgraph of G where epn(b, S) = {b′}.

Fig. 15. The subgraph Gu.

subgraph of G. But then S′ = (S\{w}) ∪ {u} is a TDS of G that satisfies conditions (1) and (2) but with c(S′) < c(S),
contradicting our choice of S. �

Let N(x) = {u, y, z}. Since G is claw-free, G[{x, y, z}] = K3. To dominate x, we may assume y ∈ S. Since G[S] is
K3-free, z /∈ S. Since S satisfies condition (1), |epn(y, S)| = 1. Let epn(y, S)={y′} and let N(z)={x, y, z′} (possibly,
y′ = z′). By Claim 3.2, z′ /∈ {v, w}.

Claim 3.3. N(z) ∩ S = {x, y}.

Proof. Suppose z′ ∈ S. Then, z′ �= y′ and y′z′ /∈ E(G). Let N(z′) = {g, f, z}. Then, G[{g, f, z′}] = K3. To totally
dominate z′, we may assume g ∈ S. Since G[S] is K3-free, f /∈ S. Since epn(z′, S) = ∅, g is a vertex of degree one
in G[S] that has property P1. But then S′ = (S\{x}) ∪ {z} is a TDS of G that satisfies conditions (1) and (2) but with
c(S′) < c(S), contradicting our choice of S. Hence, z′ /∈ S (possibly, y′ = z′). �

Let N(v) = {u, w, v′} and let N(w) = {u, v, w′}. Since S satisfies condition (1), v′ �= w′.

Claim 3.4. If v′w′ ∈ E(G), then the desired result follows.

Proof. Let a be the common neighbor of v′ and w′, and let a′ be the remaining neighbor of a. By Lemma 10 and since
S satisfies condition (1), we may assume that epn(v, S) = {v′}. Thus, {a, w′} ∩ S = ∅, and so epn(w, S) = {w′}. To
dominate a, a′ ∈ S. Hence, a �= z′. Suppose a �= y′. Let N(a′)={a, b, c}. Since G is claw-free, G[{a′, b, c}]=K3. To
totally dominate a′, we may assume b ∈ S and so c /∈ S. If b has degree two in G[S], then (S\{a′, w}) ∪ {v′} is a TDS
of G, a contradiction. Hence, b has degree one in G[S], and so G[{a′, b}] is a component of G[S]. If epn(b, S) = ∅,
then (S\{b, v, w})∪{a, u} is a TDS, a contradiction. Hence, |epn(b, S)|= 1, and so b is a vertex of degree one in G[S]
that has property P1.The graph shown in Fig. 14 is therefore a subgraph of G. But then S′ = (S\{w}) ∪ {v′} is a TDS
that satisfies conditions (1) and (2), but with c(S′) < c(S), contradicting our choice of S. Hence, a = y′ and a′ = y.

Let Vu = {u, v, v′, w, w′, x, y, y′, z} and let Gu = G[Vu] (see Fig. 15). Further, let Su = {v, w, x, y}. Then Su is a
TDS of Gu of cardinality four-ninths the order of Gu. Since in G, N(t)∩S ⊂ Su for every vertex t ∈ V (Gu) (including
the vertex z by Claim 3.3), we uniquely associate u with the connected subgraph Gu, as desired. �
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Fig. 16. The subgraph Gu where zy′ may or may not be an edge.

Fig. 17. A subgraph of G.

By Claim 3.4, we may assume that v′w′ /∈ E(G), for otherwise the desired result follows. Let N(v′) = {a, b, v} and
let N(w′) = {c, d, w}. Since G is claw-free, G[{a, b, v′}] = K3 and G[{c, d, w′}] = K3.

Claim 3.5. If G[{v, w}] is a component in G[S], then the desired result follows.

Proof. Since S satisfies condition (1), at least one of v or w has property P1. We may assume epn(v, S) = {v′}. Then
{a, b} ∩ S = ∅ and {a, b} �= {c, d} for otherwise a and b are not dominated. Suppose w does not have property P1.
Then, w′ is also dominated by a vertex of S\{w}. We may assume c ∈ S. Then, irrespective of whether or not d ∈ S,
S′ = (S\{w}) ∪ {u} is a TDS that satisfies conditions (1) and (2), but with c(S′) < c(S), contradicting our choice of S.
Hence, epn(w, S) = {w′}. Thus, {a, b, c, d} ∩ S = ∅.

Let Vu = {u, v, v′, w, w′, x, y, y′, z} and let Gu = G[Vu] (see Fig. 16). Further, let Su = {v, w, x, y}. Then Su is a
TDS of Gu of cardinality four-ninths the order of Gu. Since N(t) ∩ S ⊂ Su for every vertex t ∈ V (Gu) (including the
vertex z by Claim 3.3), we uniquely associate u with the subgraph Gu, as desired. �

By Claim 3.5, we may assume that the component of G[S] containing v and w is either P3 or P4. The next result
shows that in fact this component must be a P4.

Claim 3.6. The vertices v and w are internal vertices of a P4 in G[S].

Proof. Suppose that v has degree one in G[S]. Then, by assumption, w has degree two in G[S], and so w′ ∈ S. Since
S satisfies condition (1), epn(v, S) = {v′} and so {a, b} ∩ S = ∅. We consider two possibilities.

Case 1: w′ has degree one in G[S]. Since S satisfies condition (1), w′ has property P1 and so |epn(w′, S)|�1. If
{a, b} = {c, d}, then the graph shown in Fig. 17 is a subgraph of G. But then (S\{v}) ∪ {a} is a TDS of G that satisfies
conditions (1) and (2) but with c(S′) < c(S), contradicting our choice of S. Hence, {a, b} ∩ {c, d} = ∅.

Suppose that a and b have a common neighbor h. Let i be the remaining neighbor of h and let N(i)={h, j, k}. Then,
G[{i, j, k}] = K3. To totally dominate a and b, {h, i} ⊂ S. Since at least one of c and d belongs to the set epn(w′, S),
{c, d}∩ {j, k}=∅. Suppose {j, k}∩S =∅. If epn(i, S)=∅, then (S\{i, v})∪{a} is a TDS of G, a contradiction. Hence,
|epn(i, S)|�1 and i is a vertex of degree one in G[S] that has property P1. But then S′ = (S\{v}) ∪ {a} is a TDS of G

that satisfies conditions (1) and (2) but with c(S′) < c(S), contradicting our choice of S. Hence, since G[S] is K3-free,
|{j, k} ∩ S| = 1. We may assume that j ∈ S and k /∈ S. If j has degree two in G[S], then (S\{i, v}) ∪ {a} is a TDS of
G, a contradiction. Hence, j is a vertex of degree one in G[S]. Since S satisfies condition (1), j has property P1 and
so |epn(j, S)| = 1. The graph shown in Fig. 18 is therefore a subgraph of G. But then S′ = (S\{v}) ∪ {a} is a TDS of
G that satisfies conditions (1) and (2) but with c(S′) < c(S), contradicting our choice of S. Hence, a and b have no
common neighbor.

Let a′ and b′ be the neighbors of a and b, respectively, not in the triangle G[{a, b, v′}]. In order to dominate a and
b, a′ ∈ S and b′ ∈ S, respectively. If a′b′ ∈ E(G), then a′ and b′ have a common neighbor, and epn(a′, S) = {a} and
epn(b′, S) = {b}. The graph shown in Fig. 19 is therefore a subgraph of G. But then S′ = (S\{b′, v}) ∪ {a} is a TDS of
G, a contradiction. Hence, a′b′ /∈ E(G).
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Fig. 18. A subgraph of G where epn(j, S) = {j ′} and epn(w′, S) = {c, d}.

Fig. 19. A subgraph of G.

Fig. 20. A subgraph of G where epn(f, S) = {f ′} and epn(h, S) = {h′}.

Let N(a′)={a, f, g} and let N(b′)={b, h, i}. Then, G[{a′, f, g}]=K3 and G[{b′, h, i}]=K3. To totally dominate
a′ (resp., b′), we may assume that f ∈ S (resp., h ∈ S). Since G[S] is K3-free, g /∈ S and i /∈ S. If {f, g} = {h, i}, then
g would be an isolated vertex in G[V \S] contained in a K4 − e, contradicting Claim 3.1. Hence, {f, g} ∩ {h, i} = ∅. If
f has degree two in G[S], then (S\{a′, v}) ∪ {b} is a TDS of G, a contradiction. Hence, f is a vertex of degree one in
G[S]. If epn(f, S) = ∅, then (S\{f, v}) ∪ {a} is a TDS of G, a contradiction. Hence, |epn(f, S)| = 1 and f is a vertex
of degree one in G[S] that has property P1. Similarly, |epn(h, S)| = 1 and h is a vertex of degree one in G[S] that has
property P1. The graph shown in Fig. 20 is therefore a subgraph of G. But then S′ = (S\{v}) ∪ {a} is a TDS of G that
satisfies conditions (1) and (2) but with c(S′) < c(S), contradicting our choice of S. Hence Case 1 cannot occur.

Case 2: w′ has degree two in G[S]. Since G[S] is K3-free, we may assume that c ∈ S and d /∈ S. Since S satisfies
condition (1), c has property P1 and so |epn(c, S)| = 1. Since {a, b} ∩ S = ∅, {a, b} ∩ {c, d} = ∅ and therefore the
triangles G[{a, b, v′}] and G[{c, d, w′}] are disjoint. Proceeding now exactly as in Case 1 (except that the first situation,
{a, b} = {c, d}, cannot occur), we can contradict our choice of S. This completes the proof of Claim 3.6. �

We now return to our proof of Lemma 11. By Claim 3.6, we have {v′, w′} ⊂ S. Thus, G[{v, v′, w, w′}] = P4
is a component of G[S]. Since S satisfies condition (1), |epn(v′, S)|�1 and |epn(w′, S)|�1. We may assume b ∈
epn(v′, S). If a /∈ epn(v′, S), then a is dominated by two vertices of S. But then (S\{v, v′}) ∪ {a} is a TDS of G, a
contradiction. Hence, epn(v′, S) = {a, b}. Similarly, epn(w′, S) = {c, d}.

Suppose a and b have a common neighbor f . Let g be the remaining neighbor of f and let N(g) = {f, h, i}. Since
a ∈ epn(v′, S), f /∈ S. To totally dominate f , we may assume that {g, h} ⊂ S, and so i /∈ S. If h has degree two in
G[S], then (S\{g, v})∪{a} is a TDS of G, a contradiction. Hence, h is a vertex of degree one in G[S]. If epn(h, S)=∅,
then (S\{h, v′}) ∪ {f } is a TDS of G, a contradiction. Hence, |epn(h, S)| = 1 and h is a vertex of degree one in G[S]
that has property P1. The graph shown in Fig. 21 is therefore a subgraph of G. But then S′ = (S\{v, v′}) ∪ {a, f } is a
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Fig. 21. A subgraph of G where epn(h, S) = {h′}.

Fig. 22. A subgraph of G.

Fig. 23. A subgraph of G.

TDS of G that satisfies conditions (1) and (2) but with c(S′) < c(S), contradicting our choice of S. Hence, a and b do
not have a common neighbor. Similarly, c and d do not have a common neighbor.

Let a′ and b′ be the neighbors of a and b, respectively, that do not belong to the triangle G[{a, b, v′}]. Further, let c′
and d ′ be the neighbors of c and d , respectively, that do not belong to the triangle G[{c, d, w′}]. Since epn(v′, S)={a, b}
and epn(w′, S) = {c, d}, {a′, b′, c′, d ′} ∩ S = ∅.

Suppose that a′b′ ∈ E(G). Let f be the common neighbor of a′ and b′, and let g be the remaining neighbor of f . Let
N(g) = {f, h, i}. To totally dominate a′ and b′, {f, g} ⊂ S. If g has degree two in G[S], then (S\{f, v, v′}) ∪ {a, a′}
is a TDS of G, a contradiction. Hence, h /∈ S and i /∈ S. If epn(g, S) = ∅, then (S\{g, v, v′}) ∪ {a, a′} is a TDS of G,
a contradiction. Hence, |epn(g, S)|�1 and g is a vertex of degree one in G[S] that has property P1. The graph shown
in Fig. 22 is therefore a subgraph of G. But then S′ = (S\{v, v′}) ∪ {a, a′} is a TDS of G that satisfies conditions (1)

and (2) but with c(S′) < c(S), contradicting our choice of S. Hence, a′b′ /∈ E(G). Similarly, c′d ′ /∈ E(G).
Suppose that a′c′ ∈ E(G). Let f be the common neighbor of a′ and c′, and let g be the remaining neighbor of f .

Then, {f, g} ⊂ S and epn(f, S) = {a′, c′}. Since |epn(y, S)| = 1, f �= y (and clearly, f �= x). The graph shown in
Fig. 23 is therefore a subgraph ofG. Ifg has degree two inG[S], then (S\{f, v, w})∪{a, c} is a TDS ofG, a contradiction.
Hence g has degree one in G[S]. If epn(g, S) = ∅, then (S\{g, v, v′}) ∪ {a, a′} is a TDS of G, a contradiction. Hence,
|epn(g, S)|�1 and g is a vertex of degree one in G[S] that has property P1. But then S′ = (S\{v, v′}) ∪ {a, a′} is a
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Fig. 24. A subgraph of G where h has degree one in G[S] and h′ ∈ epn(h, S).

TDS of G that satisfies conditions (1) and (2) but with c(S′) < c(S), contradicting our choice of S. Hence, a′c′ /∈ E(G).
Similarly, there is no edge joining a vertex in {a′, b′} and a vertex in {c′, d ′}.

Let N(a′) = {a, f, g}. Then G[{a′, f, g}] = K3. If a′ belongs to a common K4 − e with b′, c′ or d ′, then {f, g} ⊆ S

and (S\{f, v, v′})∪{a, a′} is a TDS of G, a contradiction. Hence no K4 − e in G contains a′ and a vertex in {b′, c′, d ′}.
Similarly, no K4 − e in G contains two vertices from {a′, b′, c′, d ′}. To dominate a′, we may assume that f ∈ S. Let
h be the neighbor of f not in the triangle G[{a′, f, g}]. Let N(c′) = {c, i, j}. Then G[{c′, i, j}] = K3. To dominate c′,
we may assume that i ∈ S. Let k be the neighbor of i not in the triangle G[{c′, i, j}].

Suppose g /∈ S. Then, h ∈ S to totally dominate f . If h has degree two in G[S], then (S\{f, v, v′}) ∪ {a, a′} is a
TDS of G, a contradiction. Hence, G[{f, h}] is a component in G[S]. If epn(h, S) = ∅, then (S\{h, v, v′}) ∪ {a, a′} is
a TDS of G, a contradiction. Hence, |epn(h, S)|�1. Therefore, h is a vertex of degree one in G[S] that has property
P1. Similarly, if j /∈ S, then k is a vertex of degree one in G[S] that has property P1. But then S′ = (S\{v, w}) ∪ {a, c}
is a TDS of G that satisfies conditions (1) and (2) but with c(S′) < c(S), contradicting our choice of S. Hence, j ∈ S.
Thus the graph shown in Fig. 24 is a subgraph of G. But once again S′ = (S\{v, w})∪{a, c} is a TDS of G that satisfies
conditions (1) and (2) but with c(S′) < c(S), contradicting our choice of S. Hence, g ∈ S.

We have shown that N(a′)\{a} ⊂ S. Similarly, N(b′)\{b} ⊂ S, N(c′)\{c} ⊂ S and N(d ′)\{d} ⊂ S. But once again
S′ = (S\{v, w}) ∪ {a, c} is a TDS of G that satisfies conditions (1) and (2) but with c(S′) < c(S), contradicting our
choice of S. This completes the proof of Lemma 11.

5.3. Proof of Lemma 13

Let u, v, w, x be a P4 in G[S2]. To prove Lemma 13, we first prove the following claim.

Claim 4. v and w have a common neighbor.

Proof. Suppose that v and w do not have a common neighbor. Let y and z be the neighbors of v and w, respectively,
in V \S. Then, y �= z. Since G is claw-free and since every vertex of V (G2)\S2 is adjacent to at most two vertices of
S2, N(y) ∩ S = {u, v} and the neighbor y′ of y is not in S (y′ is possibly equal to z). Similarly, N(z) ∩ S = {w, x}.
Let u′ and x′ be the neighbors of u and x in V \S different from y and z, respectively. Since S satisfies condition (1),
epn(u, S) = {u′} and epn(x, S) = {x′}.

Suppose u′x′ ∈ E(G). Let a be the common neighbor of u′ and x′, and let b be the remaining neighbor of a.
Let N(b) = {a, c, d}. Then, G[{b, c, d}] = K3. Since epn(u, S) = {u′}, a /∈ S, and so b ∈ S to dominate a. But then
(S\{u, x}) ∪ {a} is a TDS of G, a contradiction. Hence, u′x′ /∈ E(G).

Let N(u′)={a, b, u} and N(x′)={c, d, x}. Then, G[{a, b, u′}]=K3 and G[{c, d, x′}]=K3. Since epn(u, S)={u′}
and epn(x, S) = {x′}, {a, b} ∩ S = ∅ and {c, d} ∩ S = ∅. Hence, {a, b} ∩ {c, d} = ∅.

Suppose a and b have a common neighbor f , different from u′. Let g be the remaining neighbor of f . To totally
dominate a and b, {f, g} ⊂ S. If g has degree two in G[S], then (S\{f, v})∪{u′} is a TDS of G, a contradiction. Hence,
g has degree one in G[S]. If epn(g, S)=∅, then (S\{u, g})∪{a} is a TDS of G, a contradiction. Hence, |epn(g, S)|�1,
and so g is a vertex of degree one in G[S] that has property P1. But then S′ = (S\{v})∪{u′} is a TDS of G that satisfies
conditions (1) and (2) but with c(S′) < c(S), contradicting our choice of S. Hence, a and b do not have a common
neighbor. Similarly, c and d do not have a common neighbor.
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Fig. 25. A subgraph of G where f ′ ∈ epn(f, S) and h′ ∈ epn(h, S).

Fig. 26. A P4-component in G[S] where epn(u, S) = {b, c} and epn(x, S) = {d, f }.

Let a′ and b′ be the neighbors of a and b, respectively, that do not belong to the triangle G[{a, b, u′}]. Further, let c′
and d ′ be the neighbors of c and d , respectively, that do not belong to the triangle G[{c, d, x′}]. Since G is claw-free,
{a′, b′} ∩ {c′, d ′} = ∅. To dominate {a, b, c, d}, {a′, b′, c′, d ′} ⊂ S. If a′b′ ∈ E(G), then a′ and b′ have a common
neighbor and (S\{b′, u}) ∪ {a} is a TDS of G, a contradiction. Hence, a′b′ /∈ E(G).

Let N(a′)={a, f, g} and let N(b′)={b, h, i}. Then, G[{a′, f, g}]=K3 and G[{b′, h, i}]=K3. To totally dominate
a′ and b′, we may assume that f ∈ S and h ∈ S, respectively. Thus, since G[S] is K3-free, g /∈ S and i /∈ S. If
{f, g} = {h, i}, then g would be an isolated vertex in G[V \S] contained in a K4 − e, contradicting Claim 3.1. Hence,
{f, g} ∩ {h, i} = ∅. If f has degree two in G[S], then (S\{a′, v}) ∪ {u′} is a TDS of G, a contradiction. Hence, f has
degree one in G[S]. If epn(f, S)=∅, then (S\{f, u})∪ {a} is a TDS of G, a contradiction. Hence, |epn(f, S)| = 1, and
so f is a vertex of degree one in G[S] that has propertyP1. Similarly, |epn(h, S)| = 1 and h is a vertex of degree one
in G[S] that has property P1. Hence the graph shown in Fig. 25 is a subgraph of G. But then S′ = (S\{v}) ∪ {u′} is a
TDS of G that satisfies conditions (1) and (2) but with c(S′) < c(S), contradicting our choice of S. �

We now return to the proof of Lemma 13. By Claim 4, v and w have a common neighbor, a say. We show now that
each of u and x has two external private neighbors. Let N(u) = {b, c, v} and let N(x) = {d, f, w}. Since S satisfies
condition (1), |epn(u, S)|�1 and |epn(x, S)|�1. We may assume b ∈ epn(u, S). If c /∈ epn(u, S), then c is dominated
by two vertices of S. But then (S\{u, v}) ∪ {c} is a TDS of G, a contradiction. Hence, epn(u, S) = {b, c}. Similarly,
epn(x, S) = {d, f }. Thus the graph shown in Fig. 26 is a subgraph of G and the third neighbor a′ of a is in V \S by the
definition of S2. This completes the proof of Lemma 13.

5.4. Proof of Lemma 14

Let u, v, w be a P3-component in G[S2], and let S′ = {u, v, w}. Since G is claw-free, we may assume that v and w

have a common neighbor, say a. Since S satisfies condition (1), |epn(u)|�1 and |epn(w)| = 1. Let epn(w, S) = {b}.
Let N(u) = {c, d, v}. Then, G[{c, d, u}] = K3. We may assume that c ∈ epn(u, S). If d ∈ epn(u, S), then the graph
G′ shown in Fig. 6(a) is a subgraph of G with V (G′) = N [S′] and where the vertices in V (G′)\S′ are not adjacent in
G to any vertex of S\S′.

Suppose then that d /∈ epn(u, S). Then, d is dominated by a vertex of S\{u}, say x. Let y be a vertex of S adjacent to
x. Since G is claw-free, x and y have a common neighbor, say f . Further, since G[S] is K3-free, f ∈ V \S, and so x

has no external private neighbor. Thus, x must have property P2. Consequently, |epn(y, S)| = 1. Let epn(y, S) = {g}.
Hence the graph G′ shown in Fig. 27 is a subgraph of G where the vertices in V (G′) are not adjacent in G to any vertex
of S\V (G′). This completes the proof of Lemma 14.
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Fig. 27. A subgraph of G where epn(u, S) = {c}, epn(w, S) = {b} and epn(y, S) = {g}.

Fig. 28. Claw-free cubic graphs with total domination numbers four-ninths their orders.

5.5. Proof of Lemma 15

Let |S∗| = 2k. Let T be the set of all vertices of V \S that are dominated by S∗ and let |T | = t . Let n∗ = |S∗| + |T |.
Let [S∗, T ] denote the set of all edges with one end in S∗ and the other in T . Since each vertex of S∗ is adjacent to
exactly two vertices of T , |[S∗, T ]| = 2|S∗| = 4k. On the other hand, let � denote the number of vertices in T that are
dominated by a unique vertex of S∗. Since S satisfies condition (1), at least one vertex in every P2-component of G[S∗]
has property P1. Hence at least k vertices in S∗ have an external private neighbor, and so ��k. Thus, since every vertex
of T is adjacent to at most two vertices of S by the definition of S2, |[S∗, T ]|=�+2(t −�)=2(n∗ −2k)−��2n∗ −5k.
Consequently, k�2n∗/9, and so |S∗|�4n∗/9, as desired.

6. Conclusion

We remark that our proof of Theorem 8 shows that if G has no subgraph G′ shown in Fig. 6(b) where the vertices in
V (G′) are not adjacent in G to any vertex of S\V (G′), then �t(G)�4n/9. We believe that the bound of five-elevenths
the order is not sharp, and we close with the following conjecture.

Conjecture 1. Every connected claw-free cubic graph of order at least 10 has total domination number at most four-
ninths its order.

If Conjecture 1 is true, then the bound is tight as may be seen by considering the connected claw-free cubic graphs
F and H shown in Fig. 28 with total domination number four-ninths their orders.

Final remark (concerning paired domination): In a previous paper [5] we proved that if a connected claw-free cubic
graph of order n�6 does not contain K4 −e nor C4 as an induced subgraph, then its paired domination number satisfies
�pr(G)�3n/8 and the unique extremal graph has 48 vertices. The proof used the property established by Hobbs and
Schmeichel that the matching number �(H) of a cubic graph H of order N is at least 7N/16. This property was recently
improved (see [2]) for N > 16 to �(H)�(4N − 1)/9. Using this new result, our bound on �pr(G) in connected cubic
(K1,3, K4 − 3, C4)-free graphs improves for n�48 to (10n + 6)/27 with infinitely many extremal graphs.
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