Bounds on total domination in claw-free cubic graphs ${ }^{2}$.

Odile Favaron ${ }^{\text {a }}$, Michael A. Henning ${ }^{\text {b }} 1$
${ }^{\text {a }}$ Laboratoire de Recherche en Informatique, Université de Paris-Sud, Orsay, 91405, France
${ }^{\mathrm{b}}$ School of Mathematical Sciences, University of KwaZulu-Natal, Pietermaritzburg Campus, South Africa

Received 25 January 2006; received in revised form 25 June 2007; accepted 4 July 2007
Available online 8 August 2007

Abstract

A set S of vertices in a graph G is a total dominating set, denoted by TDS, of G if every vertex of G is adjacent to some vertex in S (other than itself). The minimum cardinality of a TDS of G is the total domination number of G, denoted by $\gamma_{\mathrm{t}}(G)$. If G does not contain $K_{1,3}$ as an induced subgraph, then G is said to be claw-free. It is shown in [D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek, P.C.B. Lam, S. Seager, B. Wei, R. Yuster, Some remarks on domination, J. Graph Theory 46 (2004) 207-210.] that if G is a graph of order n with minimum degree at least three, then $\gamma_{t}(G) \leqslant n / 2$. Two infinite families of connected cubic graphs with total domination number one-half their orders are constructed in [O. Favaron, M.A. Henning, C.M. Mynhardt, J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34(1) (2000) 9-19.] which shows that this bound of $n / 2$ is sharp. However, every graph in these two families, except for K_{4} and a cubic graph of order eight, contains a claw. It is therefore a natural question to ask whether this upper bound of $n / 2$ can be improved if we restrict G to be a connected cubic claw-free graph of order at least 10. In this paper, we answer this question in the affirmative. We prove that if G is a connected claw-free cubic graph of order $n \geqslant 10$, then $\gamma_{\mathrm{t}}(G) \leqslant 5 n / 11$.

© 2007 Elsevier B.V. All rights reserved.

MSC: 05C69
Keywords: Bounds; Claw-free cubic graphs; Total domination

1. Introduction

Total domination in graphs was introduced by Cockayne et al. [4] and is now well studied in graph theory (see, for example, $3,7,11]$). The literature on this subject has been surveyed and detailed in the two books by Haynes et al. [9,10].

Let $G=(V, E)$ be a graph with vertex set V and edge set E. A total dominating set, denoted by TDS, of G with no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S (other than itself). Every graph without isolated vertices has a TDS, since $S=V$ is such a set. The total domination number of G, denoted by $\gamma_{\mathrm{t}}(G)$, is the minimum cardinality of a TDS. We call a TDS of G of cardinality $\gamma_{\mathrm{t}}(G)$ a $\gamma_{\mathrm{t}}(G)$-set.

[^0]For notation and graph theory terminology we in general follow [9]. Specifically, let $G=(V, E)$ be a graph with vertex set V of order n and edge set E, and let v be a vertex in V. The open neighborhood of v is $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is $N[v]=\{v\} \cup N(v)$. For a set $S \subseteq V$, the subgraph induced by S is denoted by $G[S]$. A vertex $w \in V \backslash S$ is an external private neighbor of v (with respect to S) if $N(w) \cap S=\{v\}$; and the external private neighbor set of v with respect to S, denoted epn (v, S), is the set of all external private neighbors of v. For subsets $S, T \subseteq V, S$ totally dominates T if $T \subseteq N(S)$. A cycle on n vertices is denoted by C_{n} and a path on n vertices by P_{n}. The minimum degree (resp., maximum degree) among the vertices of G is denoted by $\delta(G)$ (resp., $\Delta(G)$).

We say that a graph is F-free if it does not contain F as an induced subgraph. In particular, if $F=K_{1,3}$, then we say that the graph is claw-free. An excellent survey of claw-free graphs has been written by Flandrin et al. [8].

2. Known results on total domination

The following result establishes a property of minimum TDSs in graphs.
Theorem 1 (Henning [11]). If G is a connected graph of order $n \geqslant 3$, and $G \not \approx K_{n}$, then G has a $\gamma_{t}(G)$-set S in which every vertex v has one of the following two properties:
$P_{1}:|\operatorname{epn}(v, S)| \geqslant 1$;
$P_{2}: v$ is adjacent to a vertex of degree one in $G[S]$ that has property P_{1}.
The decision problem to determine the total domination number of a graph is known to be NP-complete. Hence, it is of interest to determine upper bounds on the total domination number of a graph. Cockayne et al. [4] obtained the following upper bound on the total domination number of a connected graph in terms of the order of the graph.

Theorem 2 (Cockayne et al. [4]). If G is a connected graph of order $n \geqslant 3$, then $\gamma_{\mathrm{t}}(G) \leqslant 2 n / 3$.
Brigham et al. [3] characterized the connected graphs of order at least three with total domination number exactly two-thirds their order. If we restrict G to be a connected claw-free graph, then the upper bound of Theorem 2 cannot be improved since the graph G obtained from a complete graph H by attaching a path of length 2 to each vertex of H so that the resulting paths are vertex disjoint (the graph G is called the 2-corona of H) is a connected claw-free graph with total domination number two-thirds its order.

If we restrict the minimum degree to be at least two, then the upper bound in Theorem 2 can be improved.
Theorem 3 (Henning [11]). If G is a connected graph of order n with $\delta(G) \geqslant 2$ and $G \notin\left\{C_{3}, C_{5}, C_{6}, C_{10}\right\}$, then $\gamma_{\mathrm{t}}(G) \leqslant 4 n / 7$.

It is shown in [6] that the upper bound of Theorem 3 can be improved if we restrict G to be a claw-free graph.
Theorem 4 (Favaron and Henning [6]). If G is a connected claw-free graph of order n with $\delta(G) \geqslant 2$, then $\gamma_{t}(G) \leqslant$ $(n+2) / 2$ with equality if and only if G is a cycle of length congruent to 2 modulo 4 .

It was shown in [7] that if G is a connected graph of order n with $\delta(G) \geqslant 3$, then $\gamma_{\mathrm{t}}(G) \leqslant 7 n / 13$ and conjectured that this upper bound could be improved to $n / 2$. Archdeacon et al. [1] recently found an elegant one page proof of this conjecture.

Theorem 5 (Archdeacon et al. [1]). If G is a graph of order n with $\delta(G) \geqslant 3$, then $\gamma_{\mathrm{t}}(G) \leqslant n / 2$.
The generalized Petersen graph of order 16 shown in Fig. 1 achieves equality in Theorem 5.
Two infinite families \mathscr{G} and \mathscr{H} of connected cubic graphs (described below) with total domination number onehalf their orders are constructed in [7] which shows that the bound of Theorem 5 is sharp. For $k \geqslant 2$ consider two copies of the path $P_{2 k}$ with respective vertex sequences $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{k}, b_{k}$ and $c_{1}, d_{1}, c_{2}, d_{2}, \ldots, c_{k}, d_{k}$. For each $i \in\{1,2, \ldots, k\}$, join a_{i} to d_{i} and b_{i} to c_{i}. To complete the construction of graphs in \mathscr{G} (\mathscr{H}, respectively), join a_{1} to c_{1} and b_{k} to $d_{k}\left(a_{1}\right.$ to b_{k} and c_{1} to d_{k}). Two graphs G and H in the families \mathscr{G} and \mathscr{H} are illustrated in Fig. 2.

Fig. 1. A generalized Petersen graph of order 16.

G

H

Fig. 2. Cubic graphs $G \in \mathscr{G}$ and $H \in \mathscr{H}$ of order n with $\gamma_{\mathrm{t}}(G)=n / 2$.

Fig. 3. A claw-free cubic graph G_{1} with $\gamma_{\mathrm{t}}\left(G_{1}\right)=n / 2$.
The connected graphs with minimum degree at least three that achieve equality in the bound of Theorem 5 are characterized in [12].

Theorem 6 (Henning and Yeo [12]). If G is a connected graph with minimum degree at least three and total domination number one-half its order, then $G \in \mathscr{G} \cup \mathscr{H}$ or G is the generalized Petersen graph of order 16 shown in Fig. 1.

Every graph in the two families \mathscr{G} and \mathscr{H}, except for K_{4} and the cubic graph G_{1} shown in Fig. 3, contains a claw, as does the generalized Petersen graph shown above. Hence, as a consequence of Theorem 6, the connected claw-free cubic graphs achieving equality in Theorem 5 contain at most eight vertices. (This result is also established in [5].)

Theorem 7 (Favaron and Henning [5], Henning and Yeo [12]). If G is a connected claw-free cubic graph of order n, then $\gamma_{t}(G) \leqslant n / 2$ with equality if and only if $G=K_{4}$ or $G=G_{1}$ where G_{1} is the graph shown in Fig. 3.

It is therefore a natural question to ask whether the upper bound of Theorem 5 can be improved if we restrict G to be a connected claw-free cubic graph of order at least 10. In this paper, we show that under these conditions the upper bound on the total domination number of G in Theorem 5 decreases from one-half its order to five-elevenths its order.

3. Main result

We shall prove:
Theorem 8. If G is a connected claw-free cubic graph of order $n \geqslant 6$, then either $G=G_{1}$ where G_{1} is the graph shown in Fig. 3 or $\gamma_{t}(G) \leqslant 5 n / 11$.

As an immediate consequence of Theorem 8, we have the following result.
Corollary 9. If G is a connected claw-free cubic graph of order $n \geqslant 10$, then $\gamma_{\mathrm{t}}(G) \leqslant 5 n / 11$.

4. Cost function

Before presenting a proof of Theorem 8 we introduce the concept of a cost function of a TDS in a claw-free graph. Let S be a TDS of a claw-free graph $G=(V, E)$. Let $I(S)$ denote the number of isolated vertices in $G[V \backslash S]$. Let $P_{2}(S)$ and $P_{4}(S)$ denote the number of components in $G[S]$ isomorphic to a path P_{2} and P_{4}, respectively. Let $P(S)$ denote the number of external private neighbors of vertices of S. Let $T(S)$ denote the number of triangles in $G[V \backslash S]$.

We define a bad vertex of $V \backslash S$ as a vertex of $V \backslash S$ that is adjacent to exactly one vertex in a P_{2}-component of $G[S]$ and exactly one vertex (necessarily, an end-vertex since G is claw-free) in a P_{3}-component of $G[S]$. We observe that if $\delta(G) \geqslant 3$, then by the claw-freeness of G a bad vertex of $V \backslash S$ is not an isolated vertex of $G[V \backslash S]$. We let $B(S)$ denote the number of bad vertices in $V \backslash S$.

We define the cost function of S, denoted by $c(S)$, in the graph G by

$$
c(S)=7 I(S)+4 P_{4}(S)+2 B(S)-2 P_{2}(S)-2 P(S)-2 T(S) .
$$

Intuitively, an isolated vertex in $G[V \backslash S]$ costs us $\$ 7$, a P_{4}-component in $G[S]$ costs us $\$ 4$ and a bad vertex of $V \backslash S$ costs us $\$ 2$. On the other hand, for each P_{2}-component in $G[S]$ or external private neighbor of a vertex of S or triangle in $G[V \backslash S]$ we receive a $\$ 2$ rebate.

5. Proof of Theorem 8

Let $G=(V, E)$ be a connected claw-free cubic graph of order $n \geqslant 6$. Among all $\gamma_{\mathrm{t}}(G)$-sets, let S be chosen so that:
(1) Every vertex in S has property P_{1} or P_{2} given in Theorem 1.
(2) Subject to (1), the number of K_{3} 's in $G[S]$ is minimized.
(3) Subject to (2), the cost function $c(S)$ is minimized.

The existence of the set S is guaranteed by Theorem 1. Throughout our proof, whenever we give a diagram of a subgraph of G we indicate vertices of S by darkened vertices and vertices of $V \backslash S$ by circled vertices.

We proceed further with series of lemmas. The proofs of these lemmas follow from the way in which the set S is chosen. Since these proofs are technical in nature, we present them in later subsections. We begin with the following lemma, a proof of which is presented in Section 5.1.

Lemma 10. Every component of $G[S]$ is a path P_{2}, P_{3} or P_{4}.
To simplify the notation in what follows, we shall use the following notation. Let $u \in V$ and let G_{u} be a subgraph of G containing u. We define $S_{u}=S \cap V\left(G_{u}\right)$. A proof of the following lemma is presented in Section 5.2.

Lemma 11. If u is an isolated vertex of $G[V \backslash S]$, then either $G=G_{1}$ or we can uniquely associate with u the connected subgraph G_{u} of G shown in Fig. $4(a)$ or (b) where the vertices in $V\left(G_{u}\right)$ are not adjacent in G to any vertex of $S \backslash S_{u}$ and where in Fig. 4(b) either G_{u} or $G_{u}+a b$ is an induced subgraph of G.

Fig. 4. The two subgraphs uniquely associated with an isolated vertex u of $G[V \backslash S]$. (a) G_{u} and (b) G_{u}.

Fig. 5. The subgraph uniquely associated with a P_{4}-component in $G\left[S_{2}\right]$.

Fig. 6. The two subgraphs uniquely associated with a P_{3}-component in $G\left[S_{2}\right]$. (a) G^{\prime} and (b) G^{\prime}.

Let $V_{1}=\cup V\left(G_{u}\right)$ where the union is taken over all isolated vertices u in $G[V \backslash S]$ and where G_{u} is the subgraph of G defined in the statement of Lemma 11. Let $\left|V_{1}\right|=n_{1}$. Let $S_{1}=S \cap V_{1}$ and let $S_{2}=S \backslash S_{1}$. Then, $N\left[S_{1}\right]=V_{1}$. Notice that the set S_{u} defined in Lemma 11 is a TDS of G_{u} of cardinality four-ninths the order of G_{u}. Thus we have the following immediate consequence of Lemma 11.

Lemma 12. $\left|S_{1}\right|=4 n_{1} / 9$, and the vertices in $N\left[S_{1}\right]$ are not adjacent in G to any vertex of $S \backslash N\left[S_{1}\right]$.
If $S_{2}=\emptyset$, then $S=S_{1}$ and $n=n_{1}$, and so $\gamma_{\mathrm{t}}(G) \leqslant 4 n / 9<5 n / 11$. Hence, we may assume $S_{2} \neq \emptyset$, for otherwise the desired result follows. Since $N_{G}(v) \cap S \subset S_{1}$ for every vertex $v \in V_{1}$, every edge joining a vertex in $N\left[S_{1}\right]$ with a vertex in $N\left[S_{2}\right]$ belongs to $G[V \backslash S]$. Hence, letting $V_{2}=N\left[S_{2}\right], V$ can be written as disjoint union of V_{1} and V_{2}. In particular, if both S_{1} and S_{2} are nonempty, then V_{1} and V_{2} is a partition of V. Let $\left|V_{2}\right|=n_{2}$, and so $n=n_{1}+n_{2}$.

Since V_{1} contains all the isolated vertices of $G[V \backslash S]$, every vertex of $V \backslash S$ not in V_{1} (and therefore not dominated by S_{1}) is adjacent to at most two vertices of S_{2} and at least one vertex of $V \backslash S$. A proof of the following lemma is presented in Section 5.3.

Lemma 13. If $S^{\prime} \subseteq S_{2}$ induces a P_{4}-component in $G[S]$, then we can uniquely associate with S^{\prime} the subgraph G^{\prime} of G shown in Fig. 5 where the vertices in $V\left(G^{\prime}\right)$ are not adjacent in G to any vertex of $S \backslash S^{\prime}$.

By Lemma 13, if P_{4} is a component in $G\left[S_{2}\right]$, then there are five vertices of $V \backslash S$ that are dominated by at least one of the four vertices of this P_{4} but by no other vertex of S.

A proof of the following lemma is presented in Section 5.4.
Lemma 14. If u, v, wis a P_{3}-component in $G\left[S_{2}\right]$, then we can uniquely associate with this P_{3}-component the subgraph G^{\prime} of G shown in either Fig. 6(a) or (b) where the (circled) vertices in $V\left(G^{\prime}\right)$ are not adjacent in G to any vertex of $S \backslash V\left(G^{\prime}\right)$.

We say that two components of $G[S]$ are at distance k apart if the length of a shortest path in G joining a vertex from one component to a vertex of the other has length k. In particular, two components of $G[S]$ are at distance two apart if there exists a vertex of $V \backslash S$ that is adjacent with a vertex from each component. By Lemma 14 , if P_{3} is a component in $G\left[S_{2}\right.$], then either (i) there are four vertices of $V \backslash S$ that are dominated by at least one of the three vertices of this P_{3} but by no other vertex of S, or (ii) there is a (unique) P_{2}-component at distance two from this P_{3}-component and there are six vertices of $V \backslash S$ that are dominated by at least one of the five vertices from these two components but by no other vertex of S.

Let S^{*} be the set of all vertices of S_{2} that belong to a P_{2}-component of $G\left[S_{2}\right]$ that is at distance at least three from every P_{3}-component of $G\left[S_{2}\right]$. If $S^{*} \neq \emptyset$, then $G\left[S^{*}\right]$ is the disjoint union of copies of P_{2}. A proof of the following lemma is presented in Section 5.5.

Lemma 15. $\left|S^{*}\right| \leqslant 4\left|N\left[S^{*}\right]\right| / 9$ and the vertices in $N\left[S^{*}\right]$ are not adjacent in G to any vertex of $S \backslash N\left[S^{*}\right]$.

Fig. 7. A subgraph of G.

The following result is an immediate consequence of Lemmas 13-15.
Lemma 16. $\left|S_{2}\right| \leqslant 5 n_{2} / 11$, and the vertices in $N\left[S_{2}\right]$ are not adjacent in G to any vertex of $S \backslash N\left[S_{2}\right]$.
By Lemmas 12 and 16, $\gamma_{\mathrm{t}}(G)=\left|S_{1}\right|+\left|S_{2}\right| \leqslant 4 n_{1} / 9+5 n_{2} / 11=5 n / 11$. This completes the proof of the theorem.

5.1. Proof of Lemma 10

To prove Lemma 10, we first prove two claims.
Claim 1. If $u \in S$ belongs to a K_{3} in $G[S]$, then $N[u] \subset S$.
Proof. Let $X=\{s, t, u\}$ be a subset of S such that $G[X]=K_{3}$. Suppose that $N[u] \not \subset S$. Since both neighbors of u in X have degree at least two in $G[S]$, the vertex u has property P_{1} by condition (1). Let epn $(u, S)=\left\{u^{\prime}\right\}$. Let $N\left(u^{\prime}\right)=\{u, v, w\}$. Since epn $(u, S)=\left\{u^{\prime}\right\},\left\{u^{\prime}, v, w\right\} \cap S=\emptyset$. Since G is claw-free, $G\left[\left\{u^{\prime}, v, w\right\}\right]=K_{3}$.

Claim 1.1. The vertex v does not belong to a $K_{4}-e$.
Proof. Suppose that v belongs to a $K_{4}-e$. Let x be the common neighbor of v and w, different from u^{\prime}, and let y be the remaining neighbor of x. To totally dominate v and $w,\{x, y\} \subset S$.

Suppose $y \in X$, say $y=t$. If $N[s] \subset S$, then $(S \backslash\{u, t\}) \cup\{v\}$ is a TDS of G of cardinality less than $\gamma_{\mathrm{t}}(G)$, which is impossible. Hence, $N(s) \cap S=\{t, u\}$. Since S satisfies condition (1), |epn $(s, S) \mid=1$. But then $(S \backslash\{x, t\}) \cup\left\{u^{\prime}, v\right\}$ is a TDS of G that satisfies condition (1) but induces fewer K_{3} 's than does $G[S]$, contradicting our choice of S. Hence, $y \notin X$.

If y is adjacent to a vertex of X, then, since G is claw-free, $N(y)=\{s, t, x\}$. Thus, G is the graph G_{1} shown in Fig. 3, a contradiction since then $\gamma_{\mathrm{t}}(G)=4$ but $|S|=5$. Hence, $N(y) \cap X=\emptyset$. Let $N(y)=\{a, b\}$. Since G is claw-free, $G[\{a, b, y\}]=K_{3}$. If $\{a, b\} \subset S$, then $(S \backslash\{u, y\}) \cup\{v\}$ is a TDS of G, a contradiction. Hence, $|\{a, b\} \cap S| \leqslant 1$.
Suppose $a \in S$. Then, $b \notin S$. If a has degree two in $G[S]$, then $(S \backslash\{u, y\}) \cup\{v\}$ is a TDS of G, a contradiction. Hence, a has degree one in $G[S]$. Since S satisfies condition (1), |epn $(a, S) \mid=1$. But then $(S \backslash\{u\}) \cup\{v\}$ is a TDS of G that satisfies condition (1) but induces fewer K_{3} 's than does $G[S]$, contradicting our choice of S. Hence, $a \notin S$. Similarly, $b \notin S$. Hence, $G[\{x, y\}]$ is a component in $G[S]$.
If epn $(y, S)=\emptyset$, then $(S \backslash\{u, y\}) \cup\{w\}$ is a TDS of G, which is impossible. Hence, |epn $(y, S) \mid \geqslant 1$. We may assume $b \in \operatorname{epn}(y, S)$. Thus the graph shown in Fig. 7 is a subgraph of G. But then $(S \backslash\{u\}) \cup\{v\}$ is a TDS of G that satisfies condition (1) but induces fewer K_{3} 's than does $G[S]$, contradicting our choice of S.

Let v^{\prime} and w^{\prime} be the neighbors of v and w, respectively, not in the triangle $G\left[\left\{u^{\prime}, v, w\right\}\right]$. By Claim $1.1, v^{\prime} \neq w^{\prime}$. Then, $\left\{v^{\prime}, w^{\prime}\right\} \subset S$ to dominate v and w.

Claim 1.2. $\left\{v^{\prime}, w^{\prime}\right\} \cap\{s, t\}=\emptyset$.
Proof. If $\left\{v^{\prime}, w^{\prime}\right\}=\{s, t\}$, say if $v^{\prime}=s$ and $w^{\prime}=t$, then $G=K_{2} \times K_{3}$ and $n=6$, a contradiction since then $\gamma_{\mathrm{t}}(G)=2$ but $|S|=3$. Suppose $\left|\left\{v^{\prime}, w^{\prime}\right\} \cap\{s, t\}\right|=1$. We may assume $w^{\prime}=t$. If $N[s] \subset S$, then $(S \backslash\{u, t\}) \cup\{v\}$ is a TDS of G, a contradiction. Hence, $N(s) \cap S=\{t, u\}$. Since S satisfies condition (1), \mid epn $(s, S) \mid=1$. Let $N\left(v^{\prime}\right)=\{a, b, v\}$. Then, $G\left[\left\{a, b, v^{\prime}\right\}\right]=K_{3}$. To totally dominate v^{\prime}, we may assume $a \in S$. If a has degree two or three in $G[S]$, then $\left(S \backslash\left\{u, v^{\prime}\right\}\right) \cup\{w\}$ is a TDS of G, a contradiction. Hence, a has degree one in $G[S]$, and so $G\left[\left\{a, v^{\prime}\right\}\right]$ is a component of $G[S]$. If $\operatorname{epn}(a, S)=\emptyset$, then $(S \backslash\{a, t\}) \cup\{v\}$ is a TDS of G, a contradiction. Hence, $|\operatorname{epn}(a, S)|=1$. But then

Fig. 8. A subgraph of G where epn $(a, S)=\left\{a^{\prime}\right\}$ and epn $(c, S)=\left\{c^{\prime}\right\}$.
$(S \backslash\{u\}) \cup\{w\}$ is a TDS of G that satisfies condition (1) but induces fewer K_{3} 's than does $G[S]$, contradicting our choice of S.

If $v^{\prime} w^{\prime} \in E(G)$, then since G is claw-free, v^{\prime} and w^{\prime} have a common neighbor. But then $\left(S \backslash\left\{u, w^{\prime}\right\}\right) \cup\{v\}$ is a TDS of G, a contradiction. Hence, $v^{\prime} w^{\prime} \notin E(G)$. Let $N\left(v^{\prime}\right)=\{a, b, v\}$ and let $N\left(w^{\prime}\right)=\{c, d, w\}$. Since G is claw-free, $G\left[\left\{a, b, v^{\prime}\right\}\right]=K_{3}$ and $G\left[\left\{c, d, w^{\prime}\right\}\right]=K_{3}$. If $\{a, b\}=\{s, t\}$, then $\left(S \backslash\left\{u, v^{\prime}\right\}\right) \cup\{w\}$ is a TDS of G, a contradiction. Hence, $\{a, b\} \cap X=\emptyset$. Similarly, $\{c, d\} \cap X=\emptyset$.

In order to dominate v^{\prime}, we may assume that $a \in S$. If a has degree two or three in $G[S]$, then $\left(S \backslash\left\{u, v^{\prime}\right\}\right) \cup\{w\}$ is a TDS of G, a contradiction. Hence, a has degree one in $G[S]$, thus implying $\{a, b\} \neq\{c, d\}$, and so $G\left[\left\{a, v^{\prime}\right\}\right]$ is a component of $G[S]$. If epn $(a, S)=\emptyset$, then $(S \backslash\{a, u\}) \cup\{v\}$ is a TDS of G, a contradiction. Hence, \mid epn $(a, S) \mid=1$ and so a is a vertex of degree one in $G[S]$ that has property P_{1}. Similarly, to dominate w^{\prime} we may assume that c is a vertex of degree one in $G[S]$ that has property P_{1}. Thus the graph shown in Fig. 8 is a subgraph of G. But then $(S \backslash\{u\}) \cup\{v\}$ is a TDS of G that satisfies condition (1) but induces fewer K_{3} 's than does $G[S]$, contradicting our choice of S.

Claim 2. The maximum degree in $G[S]$ is at most two.
Proof. Suppose that $N[u] \subset S$ for some vertex $u \in S$. Then epn $(u, S)=\emptyset$, and so, by condition (1), u has property P_{2} and therefore has a neighbor v of degree one in $G[S]$ that has property P_{1}. Let $N(u)=\{s, t, v\}$. Then, $G[\{s, t, u\}]=K_{3}$. Let $X=\{s, t, u\}$. Let s^{\prime} and t^{\prime} be the neighbors of s and t, respectively, not in X. By Claim $1, s^{\prime} \in S$ and $t^{\prime} \in S$. Since S satisfies condition (1), $s^{\prime} \neq t^{\prime}$ and s^{\prime}, t^{\prime} are vertices of degree one in $G[S]$ that have property P_{1}. Let $N(v)=\{u, w, x\}$. Since G is claw-free, $G[\{v, w, x\}]=K_{3}$. Since $|\operatorname{epn}(v, S)| \geqslant 1$, we may assume that $w \in \operatorname{epn}(v, S)$. If $x \notin \operatorname{epn}(v, S)$, then $(S \backslash\{u, v\}) \cup\{x\}$ is a TDS, a contradiction. Hence, epn $(v, S)=\{w, x\}$.

Suppose that w belongs to a $K_{4}-e$. Let y be the common neighbor of w and x different from v, and let z be the remaining neighbor of y. Since epn $(v, S)=\{w, x\}, y \notin S$, and so $z \in S$. Since G is claw-free, $z \notin\left\{s^{\prime}, t^{\prime}\right\}$. Let z^{\prime} be a neighbor of z in S. If z^{\prime} has degree two or three in $G[S]$, then $(S \backslash\{u, v, z\}) \cup\{y, w\}$ is a TDS in G. If z^{\prime} has degree one in $G[S]$ and epn $\left(z^{\prime}, S\right)=\emptyset$, then $\left(S \backslash\left\{u, v, z^{\prime}\right\}\right) \cup\{y, w\}$ is a TDS in G. If z^{\prime} has degree one in $G[S]$ and epn $\left(z^{\prime}, S\right) \neq \emptyset$, then $(S \backslash\{u, v\}) \cup\{y, w\}$ is a TDS in G that satisfies condition (1) but induces fewer K_{3} 's than does $G[S]$. All these cases lead to a contradiction. Hence, w does not belong to a $K_{4}-e$. Let $w^{\prime}=N(w) \backslash\{v, x\}$ and let $x^{\prime}=N(x) \backslash\{v, w\}$. Then, $x^{\prime} \neq w^{\prime}$. Since epn $(v, S)=\{w, x\},\left\{w^{\prime}, x^{\prime}\right\} \cap S=\emptyset$.

Claim 2.1. $w^{\prime} x^{\prime} \notin E(G)$.
Proof. Suppose $w^{\prime} x^{\prime} \in E(G)$. Let c be the common neighbor of w^{\prime} and x^{\prime}, and let d be the remaining neighbor of c. Since G is claw-free, $G[N[d] \backslash\{c\}]=K_{3}$. In order to totally dominate w^{\prime} and $x^{\prime},\{c, d\} \subset S$. If d has degree two or three in $G[S]$, then $(S \backslash\{u, v, c\}) \cup\left\{w, w^{\prime}\right\}$ is a TDS of G, a contradiction. Hence, d has degree one in $G[S]$, and so $G[\{c, d\}]$ is a component of $G[S]$. If epn $(d, S)=\emptyset$, then $(S \backslash\{d, u, v\}) \cup\left\{w, w^{\prime}\right\}$ is a TDS of G, a contradiction. Hence, \mid epn $(d, S) \mid \geqslant 1$, and so d is a vertex of degree one in $G[S]$ that has property P_{1}. Thus the graph shown in Fig. 9 is a subgraph of G. But then $(S \backslash\{u, v\}) \cup\left\{w, w^{\prime}\right\}$ is a TDS of G that satisfies condition (1) but induces fewer K_{3} 's than does $G[S]$, contradicting our choice of S.

Let $N\left(w^{\prime}\right)=\{e, f, w\}$ and let $N\left(x^{\prime}\right)=\{g, h, x\}$. Since G is claw-free, $G\left[\left\{e, f, w^{\prime}\right\}\right]=K_{3}$ and $G\left[\left\{g, h, x^{\prime}\right\}\right]=K_{3}$. By condition (1), $\{e, f\} \neq\{g, h\}$ and thus $\{e, f\} \cap\{g, h\}=\emptyset$. In order to dominate w^{\prime}, we may assume that $e \in S$. Let e^{\prime} be a neighbor of e in $G[S]$ different from f if such a neighbor exists (possibly, $e=s^{\prime}$ and $e^{\prime}=s$, but e^{\prime} is necessarily different from s^{\prime}). If e^{\prime} has degree two or three in $G[S]$, in particular if $e=s^{\prime}$, then $(S \backslash\{e, u, v\}) \cup\left\{w, w^{\prime}\right\}$ is a TDS of

Fig. 9. A subgraph of G.

Fig. 10. A subgraph of G.
G, a contradiction. Hence, e^{\prime} has degree one in $G[S]$. If epn $\left(e^{\prime}, S\right)=\emptyset$, then $\left(S \backslash\left\{e^{\prime}, u, v\right\}\right) \cup\left\{w, w^{\prime}\right\}$ is a TDS of G, a contradiction. Hence, $\left|\operatorname{epn}\left(e^{\prime}, S\right)\right| \geqslant 1$, and so e^{\prime} is a vertex of degree one in $G[S]$ that has property P_{1}.

If $f \notin S$, then $(S \backslash\{u, v\}) \cup\left\{w, w^{\prime}\right\}$ is a TDS of G that satisfies condition (1) but induces fewer K_{3} 's than does $G[S]$, contradicting our choice of S. Hence $f \in S$. Similarly, $\{g, h\} \in S$.
Repeating the argument with the vertex u replaced by s or t shows that the graph shown in Fig. 10 is a subgraph of G. But then with the vertices s^{*}, t^{*} and u^{*} as indicated in Fig. $10,(S \backslash\{u, s, t\}) \cup\left\{u^{*}, s^{*}, t^{*}\right\}$ is a TDS of G that satisfies condition (1) but induces fewer K_{3} 's than does $G[S]$, contradicting our choice of S.

We can now return to the proof of Lemma 10. As an immediate consequence of Claims 1 and 2, every component of $G[S]$ is an induced path or cycle different from K_{3}. Suppose that $G[S]$ contains a path P_{5} on five vertices or a cycle C_{p} with $p \geqslant 4$. Let v denote the central vertex of the P_{5} or any vertex of C_{p}, and let v_{1} and v_{2} be the neighbors of v in S. Let $v^{\prime}\left(v_{1}^{\prime}, v_{2}^{\prime}\right.$, respectively) be the neighbor of $v\left(v_{1}, v_{2}\right)$ in $V \backslash S$. Since G is claw-free, $v^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}$ are not S-external private neighbors of v, v_{1}, v_{2}, and so v does not have property P_{1} nor P_{2}. This contradicts the fact that the set S satisfies condition (1). Hence each component of $G[S]$ is a path of length at most 3 .

5.2. Proof of Lemma 11

Since u is an isolated vertex in $G[V \backslash S], N(u) \subset S$. Let $N(u)=\{v, w, x\}$ where $v w \in E(G)$. To prove Lemma 11, we first prove six claims.

Claim 3.1. The vertex u does not belong to a $K_{4}-e$, except if $G=G_{1}$.
Proof. Suppose that u belongs to a $K_{4}-e$. Then, u is a vertex of degree three in this $K_{4}-e$ since S satisfies condition (1). We may assume that $w x \in E(G)$. Let v^{\prime} and x^{\prime} be the neighbors of v and x, respectively, not in this $K_{4}-e$. Since G is claw-free, $v^{\prime} \neq x^{\prime}$. Since S satisfies condition (1), w must have property P_{2}, and so we may assume that v has property P_{1}, i.e., epn $(v, S)=\left\{v^{\prime}\right\}$. Moreover, if $x^{\prime} \notin S$ then $\operatorname{epn}(x, S)=\left\{x^{\prime}\right\}$.

Claim 3.1.1. $v^{\prime} x^{\prime} \notin E(G)$.
Proof. Suppose $v^{\prime} x^{\prime} \in E(G)$. Let y be the common neighbor of v^{\prime} and x^{\prime} and let z denote the remaining neighbor of y. Let $N(z)=\{a, b, y\}$. Then, $G[\{a, b, z\}]=K_{3}$. Since epn $(v, S)=\left\{v^{\prime}\right\},\left\{x^{\prime}, y\right\} \cap S=\emptyset$, and so x has property P_{1} and $\operatorname{epn}(x, S)=\left\{x^{\prime}\right\}$. In order to totally dominate y, we may assume that $\{a, z\} \subset S$. If a has degree two or three in $G[S]$, then $(S \backslash\{x, z\}) \cup\left\{v^{\prime}\right\}$ is a TDS of G, a contradiction. Hence, a has degree one in $G[S]$, and so $G[\{a, z\}]$ is a component

Fig. 11. A subgraph of G where epn $(a, S)=\left\{a^{\prime}\right\}$.

Fig. 12. A subgraph of G where epn $(f, S)=\left\{f^{\prime}\right\}$ and $\operatorname{epn}(h, S)=\left\{h^{\prime}\right\}$.
of $G[S]$. If epn $(a, S)=\emptyset$, then $(S \backslash\{a, v, x\}) \cup\{u, y\}$ is a TDS of G, a contradiction. Hence, \mid epn $(a, S) \mid=1$, and so a is a vertex of degree one in $G[S]$ that has property P_{1}. Thus the graph shown in Fig. 11 is a subgraph of G. But then $S^{\prime}=(S \backslash\{x\}) \cup\left\{v^{\prime}\right\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S.

Let $N\left(v^{\prime}\right)=\{a, b, v\}$. Since epn $(v, S)=\left\{v^{\prime}\right\},\{a, b\} \cap S=\emptyset$.
Claim 3.1.2. If a belongs to a $K_{4}-e$, then $G=G_{1}$.
Proof. Suppose a belongs to a $K_{4}-e$. Let f be the second common neighbor of a and b. Let g be the remaining neighbor of f. Then, $\{f, g\} \subset S$. Note that $f \neq x$ and $g \neq x^{\prime}$. Suppose $f \neq x^{\prime}$. We then consider the component \mathscr{C} of $G[S]$ containing $\{f, g\}$. If \mathscr{C} is a P_{4} or a P_{2} such that epn $(g, S)=\emptyset$, then $(S \backslash\{g, v\}) \cup\{a\}$ is a TDS of G, a contradiction. If \mathscr{C} is a P_{3} or a P_{2} such that $|\operatorname{epn}(g, S)| \geqslant 1$, then $S^{\prime}=(S \backslash\{v\}) \cup\{a\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$ (irrespective of whether or not $x^{\prime} \in S$), contradicting our choice of S. Hence, $f=x^{\prime}$, and so $g=x$. Thus, $G=G_{1}$.

Let c and d be the neighbors of a and b, respectively, not in the triangle $G\left[\left\{a, b, v^{\prime}\right\}\right]$. Since $v^{\prime} x^{\prime} \notin E(G)$ by Claim 3.1.1, $x^{\prime} \notin\{a, b\}$ and thus $x \notin\{c, d\}$. Since G is claw-free, $x^{\prime} \notin\{c, d\}$. To dominate a and $b,\{c, d\} \subset S$. If $c d \in E(G)$, then c and d have a common neighbor and $(S \backslash\{d, v\}) \cup\{a\}$ is a TDS of G, a contradiction. Hence, $c d \notin E(G)$. Let $N(c)=\{a, f, g\}$ and let $N(d)=\{b, h, i\}$. Note that $\{f, g\} \neq\{h, i\}$ by symmetry with Claim 3.1.1, and thus $\{f, g\} \cap\{h, i\}=\emptyset$. To totally dominate c and d, we may assume $\{f, h\} \subset S$. Hence since $G[S]$ is K_{3}-free, $g \notin S$ and $i \notin S$. If f has degree two in $G[S]$, then $(S \backslash\{c, v\}) \cup\{b\}$ is a TDS of G, a contradiction. Hence, $G[\{c, f\}]$ is a component if $G[S]$. If $\operatorname{epn}(f, S)=\emptyset$, then $(S \backslash\{f, v\}) \cup\{a\}$ is a TDS of G, a contradiction. Hence, |epn $(f, S) \mid=1$ and f is a vertex of degree one in $G[S]$ that has property P_{1}. Similarly, |epn $(h, S) \mid=1$ and h is a vertex of degree one in $G[S]$ that has property P_{1}. Thus the graph shown in Fig. 12 is a subgraph of G. But then $S^{\prime}=(S \backslash\{v\}) \cup\{a\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$ (irrespective of whether or not $x^{\prime} \in S$), contradicting our choice of S. This completes the proof of Claim 3.1.

By Claim 3.1, we may assume that $G[\{v, w, x\}]=K_{2} \cup K_{1}$.
Claim 3.2. The vertex u does not belong to a 4 -cycle.
Proof. Suppose that u belongs to a 4-cycle u, x, y, w, u. Let z be the common neighbor of x and y. Since S satisfies condition (1), $y \notin S$ and so $z \in S$. Let $N(v)=\left\{u, w, v^{\prime}\right\}$ and let $N(z)=\left\{x, y, z^{\prime}\right\}$. Since S satisfies condition (1), each of v and z has property P_{1}, and so epn $(v, S)=\left\{v^{\prime}\right\}$ and epn $(z, S)=\left\{z^{\prime}\right\}$. Thus the graph shown in Fig. 13 is a

Fig. 13. A subgraph of G.

Fig. 14. A subgraph of G where epn $(b, S)=\left\{b^{\prime}\right\}$.

Fig. 15. The subgraph G_{u}.
subgraph of G. But then $S^{\prime}=(S \backslash\{w\}) \cup\{u\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S.

Let $N(x)=\{u, y, z\}$. Since G is claw-free, $G[\{x, y, z\}]=K_{3}$. To dominate x, we may assume $y \in S$. Since $G[S]$ is K_{3}-free, $z \notin S$. Since S satisfies condition (1), \mid epn $(y, S) \mid=1$. Let epn $(y, S)=\left\{y^{\prime}\right\}$ and let $N(z)=\left\{x, y, z^{\prime}\right\}$ (possibly, $y^{\prime}=z^{\prime}$. By Claim 3.2, $z^{\prime} \notin\{v, w\}$.

Claim 3.3. $N(z) \cap S=\{x, y\}$.
Proof. Suppose $z^{\prime} \in S$. Then, $z^{\prime} \neq y^{\prime}$ and $y^{\prime} z^{\prime} \notin E(G)$. Let $N\left(z^{\prime}\right)=\{g, f, z\}$. Then, $G\left[\left\{g, f, z^{\prime}\right\}\right]=K_{3}$. To totally dominate z^{\prime}, we may assume $g \in S$. Since $G[S]$ is K_{3}-free, $f \notin S$. Since epn $\left(z^{\prime}, S\right)=\emptyset, g$ is a vertex of degree one in $G[S]$ that has property P_{1}. But then $S^{\prime}=(S \backslash\{x\}) \cup\{z\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. Hence, $z^{\prime} \notin S$ (possibly, $y^{\prime}=z^{\prime}$).

Let $N(v)=\left\{u, w, v^{\prime}\right\}$ and let $N(w)=\left\{u, v, w^{\prime}\right\}$. Since S satisfies condition (1), $v^{\prime} \neq w^{\prime}$.
Claim 3.4. If $v^{\prime} w^{\prime} \in E(G)$, then the desired result follows.
Proof. Let a be the common neighbor of v^{\prime} and w^{\prime}, and let a^{\prime} be the remaining neighbor of a. By Lemma 10 and since S satisfies condition (1), we may assume that epn $(v, S)=\left\{v^{\prime}\right\}$. Thus, $\left\{a, w^{\prime}\right\} \cap S=\emptyset$, and so epn $(w, S)=\left\{w^{\prime}\right\}$. To dominate $a, a^{\prime} \in S$. Hence, $a \neq z^{\prime}$. Suppose $a \neq y^{\prime}$. Let $N\left(a^{\prime}\right)=\{a, b, c\}$. Since G is claw-free, $G\left[\left\{a^{\prime}, b, c\right\}\right]=K_{3}$. To totally dominate a^{\prime}, we may assume $b \in S$ and so $c \notin S$. If b has degree two in $G[S]$, then $\left(S \backslash\left\{a^{\prime}, w\right\}\right) \cup\left\{v^{\prime}\right\}$ is a TDS of G, a contradiction. Hence, b has degree one in $G[S]$, and so $G\left[\left\{a^{\prime}, b\right\}\right]$ is a component of $G[S]$. If epn $(b, S)=\emptyset$, then $(S \backslash\{b, v, w\}) \cup\{a, u\}$ is a TDS, a contradiction. Hence, \mid epn $(b, S) \mid=1$, and so b is a vertex of degree one in $G[S]$ that has property P_{1}.The graph shown in Fig. 14 is therefore a subgraph of G. But then $S^{\prime}=(S \backslash\{w\}) \cup\left\{v^{\prime}\right\}$ is a TDS that satisfies conditions (1) and (2), but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. Hence, $a=y^{\prime}$ and $a^{\prime}=y$.

Let $V_{u}=\left\{u, v, v^{\prime}, w, w^{\prime}, x, y, y^{\prime}, z\right\}$ and let $G_{u}=G\left[V_{u}\right]$ (see Fig. 15). Further, let $S_{u}=\{v, w, x, y\}$. Then S_{u} is a TDS of G_{u} of cardinality four-ninths the order of G_{u}. Since in $G, N(t) \cap S \subset S_{u}$ for every vertex $t \in V\left(G_{u}\right)$ (including the vertex z by Claim 3.3), we uniquely associate u with the connected subgraph G_{u}, as desired.

Fig. 16. The subgraph G_{u} where $z y^{\prime}$ may or may not be an edge.

Fig. 17. A subgraph of G.

By Claim 3.4, we may assume that $v^{\prime} w^{\prime} \notin E(G)$, for otherwise the desired result follows. Let $N\left(v^{\prime}\right)=\{a, b, v\}$ and let $N\left(w^{\prime}\right)=\{c, d, w\}$. Since G is claw-free, $G\left[\left\{a, b, v^{\prime}\right\}\right]=K_{3}$ and $G\left[\left\{c, d, w^{\prime}\right\}\right]=K_{3}$.

Claim 3.5. If $G[\{v, w\}]$ is a component in $G[S]$, then the desired result follows.
Proof. Since S satisfies condition (1), at least one of v or w has property P_{1}. We may assume epn $(v, S)=\left\{v^{\prime}\right\}$. Then $\{a, b\} \cap S=\emptyset$ and $\{a, b\} \neq\{c, d\}$ for otherwise a and b are not dominated. Suppose w does not have property P_{1}. Then, w^{\prime} is also dominated by a vertex of $S \backslash\{w\}$. We may assume $c \in S$. Then, irrespective of whether or not $d \in S$, $S^{\prime}=(S \backslash\{w\}) \cup\{u\}$ is a TDS that satisfies conditions (1) and (2), but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. Hence, epn $(w, S)=\left\{w^{\prime}\right\}$. Thus, $\{a, b, c, d\} \cap S=\emptyset$.

Let $V_{u}=\left\{u, v, v^{\prime}, w, w^{\prime}, x, y, y^{\prime}, z\right\}$ and let $G_{u}=G\left[V_{u}\right]$ (see Fig. 16). Further, let $S_{u}=\{v, w, x, y\}$. Then S_{u} is a TDS of G_{u} of cardinality four-ninths the order of G_{u}. Since $N(t) \cap S \subset S_{u}$ for every vertex $t \in V\left(G_{u}\right)$ (including the vertex z by Claim 3.3), we uniquely associate u with the subgraph G_{u}, as desired.

By Claim 3.5, we may assume that the component of $G[S]$ containing v and w is either P_{3} or P_{4}. The next result shows that in fact this component must be a P_{4}.

Claim 3.6. The vertices v and w are internal vertices of a P_{4} in $G[S]$.
Proof. Suppose that v has degree one in $G[S]$. Then, by assumption, w has degree two in $G[S]$, and so $w^{\prime} \in S$. Since S satisfies condition (1), epn $(v, S)=\left\{v^{\prime}\right\}$ and so $\{a, b\} \cap S=\emptyset$. We consider two possibilities.

Case 1: w^{\prime} has degree one in $G[S]$. Since S satisfies condition (1), w^{\prime} has property P_{1} and so $\left|\operatorname{epn}\left(w^{\prime}, S\right)\right| \geqslant 1$. If $\{a, b\}=\{c, d\}$, then the graph shown in Fig. 17 is a subgraph of G. But then $(S \backslash\{v\}) \cup\{a\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. Hence, $\{a, b\} \cap\{c, d\}=\emptyset$.

Suppose that a and b have a common neighbor h. Let i be the remaining neighbor of h and let $N(i)=\{h, j, k\}$. Then, $G[\{i, j, k\}]=K_{3}$. To totally dominate a and $b,\{h, i\} \subset S$. Since at least one of c and d belongs to the set epn $\left(w^{\prime}, S\right)$, $\{c, d\} \cap\{j, k\}=\emptyset$. Suppose $\{j, k\} \cap S=\emptyset$. If epn $(i, S)=\emptyset$, then $(S \backslash\{i, v\}) \cup\{a\}$ is a TDS of G, a contradiction. Hence, $|\operatorname{epn}(i, S)| \geqslant 1$ and i is a vertex of degree one in $G[S]$ that has property P_{1}. But then $S^{\prime}=(S \backslash\{v\}) \cup\{a\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. Hence, since $G[S]$ is K_{3}-free, $|\{j, k\} \cap S|=1$. We may assume that $j \in S$ and $k \notin S$. If j has degree two in $G[S]$, then $(S \backslash\{i, v\}) \cup\{a\}$ is a TDS of G, a contradiction. Hence, j is a vertex of degree one in $G[S]$. Since S satisfies condition (1), j has property P_{1} and so \mid epn $(j, S) \mid=1$. The graph shown in Fig. 18 is therefore a subgraph of G. But then $S^{\prime}=(S \backslash\{v\}) \cup\{a\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. Hence, a and b have no common neighbor.

Let a^{\prime} and b^{\prime} be the neighbors of a and b, respectively, not in the triangle $G\left[\left\{a, b, v^{\prime}\right\}\right]$. In order to dominate a and $b, a^{\prime} \in S$ and $b^{\prime} \in S$, respectively. If $a^{\prime} b^{\prime} \in E(G)$, then a^{\prime} and b^{\prime} have a common neighbor, and epn $\left(a^{\prime}, S\right)=\{a\}$ and epn $\left(b^{\prime}, S\right)=\{b\}$. The graph shown in Fig. 19 is therefore a subgraph of G. But then $S^{\prime}=\left(S \backslash\left\{b^{\prime}, v\right\}\right) \cup\{a\}$ is a TDS of G, a contradiction. Hence, $a^{\prime} b^{\prime} \notin E(G)$.

Fig. 18. A subgraph of G where epn $(j, S)=\left\{j^{\prime}\right\}$ and epn $\left(w^{\prime}, S\right)=\{c, d\}$.

Fig. 19. A subgraph of G.

Fig. 20. A subgraph of G where epn $(f, S)=\left\{f^{\prime}\right\}$ and epn $(h, S)=\left\{h^{\prime}\right\}$.

Let $N\left(a^{\prime}\right)=\{a, f, g\}$ and let $N\left(b^{\prime}\right)=\{b, h, i\}$. Then, $G\left[\left\{a^{\prime}, f, g\right\}\right]=K_{3}$ and $G\left[\left\{b^{\prime}, h, i\right\}\right]=K_{3}$. To totally dominate a^{\prime} (resp., b^{\prime}), we may assume that $f \in S$ (resp., $h \in S$). Since $G[S]$ is K_{3}-free, $g \notin S$ and $i \notin S$. If $\{f, g\}=\{h, i\}$, then g would be an isolated vertex in $G[V \backslash S]$ contained in a $K_{4}-e$, contradicting Claim 3.1. Hence, $\{f, g\} \cap\{h, i\}=\emptyset$. If f has degree two in $G[S]$, then $\left(S \backslash\left\{a^{\prime}, v\right\}\right) \cup\{b\}$ is a TDS of G, a contradiction. Hence, f is a vertex of degree one in $G[S]$. If epn $(f, S)=\emptyset$, then $(S \backslash\{f, v\}) \cup\{a\}$ is a TDS of G, a contradiction. Hence, $|\operatorname{epn}(f, S)|=1$ and f is a vertex of degree one in $G[S]$ that has property P_{1}. Similarly, $|\operatorname{epn}(h, S)|=1$ and h is a vertex of degree one in $G[S]$ that has property P_{1}. The graph shown in Fig. 20 is therefore a subgraph of G. But then $S^{\prime}=(S \backslash\{v\}) \cup\{a\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. Hence Case 1 cannot occur.

Case 2: w^{\prime} has degree two in $G[S]$. Since $G[S]$ is K_{3}-free, we may assume that $c \in S$ and $d \notin S$. Since S satisfies condition (1), c has property P_{1} and so \mid epn $(c, S) \mid=1$. Since $\{a, b\} \cap S=\emptyset,\{a, b\} \cap\{c, d\}=\emptyset$ and therefore the triangles $G\left[\left\{a, b, v^{\prime}\right\}\right]$ and $G\left[\left\{c, d, w^{\prime}\right\}\right]$ are disjoint. Proceeding now exactly as in Case 1 (except that the first situation, $\{a, b\}=\{c, d\}$, cannot occur), we can contradict our choice of S. This completes the proof of Claim 3.6.

We now return to our proof of Lemma 11. By Claim 3.6, we have $\left\{v^{\prime}, w^{\prime}\right\} \subset S$. Thus, $G\left[\left\{v, v^{\prime}, w, w^{\prime}\right\}\right]=P_{4}$ is a component of $G[S]$. Since S satisfies condition (1), \mid epn $\left(v^{\prime}, S\right) \mid \geqslant 1$ and $\left|\operatorname{epn}\left(w^{\prime}, S\right)\right| \geqslant 1$. We may assume $b \in$ epn $\left(v^{\prime}, S\right)$. If $a \notin \operatorname{epn}\left(v^{\prime}, S\right)$, then a is dominated by two vertices of S. But then $\left(S \backslash\left\{v, v^{\prime}\right\}\right) \cup\{a\}$ is a TDS of G, a contradiction. Hence, epn $\left(v^{\prime}, S\right)=\{a, b\}$. Similarly, epn $\left(w^{\prime}, S\right)=\{c, d\}$.

Suppose a and b have a common neighbor f. Let g be the remaining neighbor of f and let $N(g)=\{f, h, i\}$. Since $a \in \operatorname{epn}\left(v^{\prime}, S\right), f \notin S$. To totally dominate f, we may assume that $\{g, h\} \subset S$, and so $i \notin S$. If h has degree two in $G[S]$, then $(S \backslash\{g, v\}) \cup\{a\}$ is a TDS of G, a contradiction. Hence, h is a vertex of degree one in $G[S]$. If epn $(h, S)=\emptyset$, then $\left(S \backslash\left\{h, v^{\prime}\right\}\right) \cup\{f\}$ is a TDS of G, a contradiction. Hence, |epn $(h, S) \mid=1$ and h is a vertex of degree one in $G[S]$ that has property P_{1}. The graph shown in Fig. 21 is therefore a subgraph of G. But then $S^{\prime}=\left(S \backslash\left\{v, v^{\prime}\right\}\right) \cup\{a, f\}$ is a

Fig. 21. A subgraph of G where epn $(h, S)=\left\{h^{\prime}\right\}$.

Fig. 22. A subgraph of G.

Fig. 23. A subgraph of G.

TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. Hence, a and b do not have a common neighbor. Similarly, c and d do not have a common neighbor.

Let a^{\prime} and b^{\prime} be the neighbors of a and b, respectively, that do not belong to the triangle $G\left[\left\{a, b, v^{\prime}\right\}\right]$. Further, let c^{\prime} and d^{\prime} be the neighbors of c and d, respectively, that do not belong to the triangle $G\left[\left\{c, d, w^{\prime}\right\}\right]$. Since epn $\left(v^{\prime}, S\right)=\{a, b\}$ and epn $\left(w^{\prime}, S\right)=\{c, d\},\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\} \cap S=\emptyset$.

Suppose that $a^{\prime} b^{\prime} \in E(G)$. Let f be the common neighbor of a^{\prime} and b^{\prime}, and let g be the remaining neighbor of f. Let $N(g)=\{f, h, i\}$. To totally dominate a^{\prime} and $b^{\prime},\{f, g\} \subset S$. If g has degree two in $G[S]$, then $\left(S \backslash\left\{f, v, v^{\prime}\right\}\right) \cup\left\{a, a^{\prime}\right\}$ is a TDS of G, a contradiction. Hence, $h \notin S$ and $i \notin S$. If epn $(g, S)=\emptyset$, then $\left(S \backslash\left\{g, v, v^{\prime}\right\}\right) \cup\left\{a, a^{\prime}\right\}$ is a TDS of G, a contradiction. Hence, $|\operatorname{epn}(g, S)| \geqslant 1$ and g is a vertex of degree one in $G[S]$ that has property P_{1}. The graph shown in Fig. 22 is therefore a subgraph of G. But then $S^{\prime}=\left(S \backslash\left\{v, v^{\prime}\right\}\right) \cup\left\{a, a^{\prime}\right\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. Hence, $a^{\prime} b^{\prime} \notin E(G)$. Similarly, $c^{\prime} d^{\prime} \notin E(G)$.

Suppose that $a^{\prime} c^{\prime} \in E(G)$. Let f be the common neighbor of a^{\prime} and c^{\prime}, and let g be the remaining neighbor of f. Then, $\{f, g\} \subset S$ and epn $(f, S)=\left\{a^{\prime}, c^{\prime}\right\}$. Since $|e p n(y, S)|=1, f \neq y$ (and clearly, $f \neq x$). The graph shown in Fig. 23 is therefore a subgraph of G. If g has degree two in $G[S]$, then $(S \backslash\{f, v, w\}) \cup\{a, c\}$ is a TDS of G, a contradiction. Hence g has degree one in $G[S]$. If $\operatorname{epn}(g, S)=\emptyset$, then $\left(S \backslash\left\{g, v, v^{\prime}\right\}\right) \cup\left\{a, a^{\prime}\right\}$ is a TDS of G, a contradiction. Hence, $|\operatorname{epn}(g, S)| \geqslant 1$ and g is a vertex of degree one in $G[S]$ that has property P_{1}. But then $S^{\prime}=\left(S \backslash\left\{v, v^{\prime}\right\}\right) \cup\left\{a, a^{\prime}\right\}$ is a

Fig. 24. A subgraph of G where h has degree one in $G[S]$ and $h^{\prime} \in \operatorname{epn}(h, S)$.

TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. Hence, $a^{\prime} c^{\prime} \notin E(G)$. Similarly, there is no edge joining a vertex in $\left\{a^{\prime}, b^{\prime}\right\}$ and a vertex in $\left\{c^{\prime}, d^{\prime}\right\}$.
Let $N\left(a^{\prime}\right)=\{a, f, g\}$. Then $G\left[\left\{a^{\prime}, f, g\right\}\right]=K_{3}$. If a^{\prime} belongs to a common $K_{4}-e$ with b^{\prime}, c^{\prime} or d^{\prime}, then $\{f, g\} \subseteq S$ and $\left(S \backslash\left\{f, v, v^{\prime}\right\}\right) \cup\left\{a, a^{\prime}\right\}$ is a TDS of G, a contradiction. Hence no $K_{4}-e$ in G contains a^{\prime} and a vertex in $\left\{b^{\prime}, c^{\prime}, d^{\prime}\right\}$. Similarly, no $K_{4}-e$ in G contains two vertices from $\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\}$. To dominate a^{\prime}, we may assume that $f \in S$. Let h be the neighbor of f not in the triangle $G\left[\left\{a^{\prime}, f, g\right\}\right]$. Let $N\left(c^{\prime}\right)=\{c, i, j\}$. Then $G\left[\left\{c^{\prime}, i, j\right\}\right]=K_{3}$. To dominate c^{\prime}, we may assume that $i \in S$. Let k be the neighbor of i not in the triangle $G\left[\left\{c^{\prime}, i, j\right\}\right]$.

Suppose $g \notin S$. Then, $h \in S$ to totally dominate f. If h has degree two in $G[S]$, then $\left(S \backslash\left\{f, v, v^{\prime}\right\}\right) \cup\left\{a, a^{\prime}\right\}$ is a TDS of G, a contradiction. Hence, $G[\{f, h\}]$ is a component in $G[S]$. If epn $(h, S)=\emptyset$, then $\left(S \backslash\left\{h, v, v^{\prime}\right\}\right) \cup\left\{a, a^{\prime}\right\}$ is a TDS of G, a contradiction. Hence, $|\operatorname{epn}(h, S)| \geqslant 1$. Therefore, h is a vertex of degree one in $G[S]$ that has property P_{1}. Similarly, if $j \notin S$, then k is a vertex of degree one in $G[S]$ that has property P_{1}. But then $S^{\prime}=(S \backslash\{v, w\}) \cup\{a, c\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. Hence, $j \in S$. Thus the graph shown in Fig. 24 is a subgraph of G. But once again $S^{\prime}=(S \backslash\{v, w\}) \cup\{a, c\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. Hence, $g \in S$.

We have shown that $N\left(a^{\prime}\right) \backslash\{a\} \subset S$. Similarly, $N\left(b^{\prime}\right) \backslash\{b\} \subset S, N\left(c^{\prime}\right) \backslash\{c\} \subset S$ and $N\left(d^{\prime}\right) \backslash\{d\} \subset S$. But once again $S^{\prime}=(S \backslash\{v, w\}) \cup\{a, c\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. This completes the proof of Lemma 11.

5.3. Proof of Lemma 13

Let u, v, w, x be a P_{4} in $G\left[S_{2}\right]$. To prove Lemma 13, we first prove the following claim.
Claim 4. v and w have a common neighbor.
Proof. Suppose that v and w do not have a common neighbor. Let y and z be the neighbors of v and w, respectively, in $V \backslash S$. Then, $y \neq z$. Since G is claw-free and since every vertex of $V\left(G_{2}\right) \backslash S_{2}$ is adjacent to at most two vertices of $S_{2}, N(y) \cap S=\{u, v\}$ and the neighbor y^{\prime} of y is not in $S\left(y^{\prime}\right.$ is possibly equal to z). Similarly, $N(z) \cap S=\{w, x\}$. Let u^{\prime} and x^{\prime} be the neighbors of u and x in $V \backslash S$ different from y and z, respectively. Since S satisfies condition (1), $\operatorname{epn}(u, S)=\left\{u^{\prime}\right\}$ and epn $(x, S)=\left\{x^{\prime}\right\}$.

Suppose $u^{\prime} x^{\prime} \in E(G)$. Let a be the common neighbor of u^{\prime} and x^{\prime}, and let b be the remaining neighbor of a. Let $N(b)=\{a, c, d\}$. Then, $G[\{b, c, d\}]=K_{3}$. Since epn $(u, S)=\left\{u^{\prime}\right\}, a \notin S$, and so $b \in S$ to dominate a. But then $(S \backslash\{u, x\}) \cup\{a\}$ is a TDS of G, a contradiction. Hence, $u^{\prime} x^{\prime} \notin E(G)$.

Let $N\left(u^{\prime}\right)=\{a, b, u\}$ and $N\left(x^{\prime}\right)=\{c, d, x\}$. Then, $G\left[\left\{a, b, u^{\prime}\right\}\right]=K_{3}$ and $G\left[\left\{c, d, x^{\prime}\right\}\right]=K_{3}$. Since epn $(u, S)=\left\{u^{\prime}\right\}$ and epn $(x, S)=\left\{x^{\prime}\right\},\{a, b\} \cap S=\emptyset$ and $\{c, d\} \cap S=\emptyset$. Hence, $\{a, b\} \cap\{c, d\}=\emptyset$.

Suppose a and b have a common neighbor f, different from u^{\prime}. Let g be the remaining neighbor of f. To totally dominate a and $b,\{f, g\} \subset S$. If g has degree two in $G[S]$, then $(S \backslash\{f, v\}) \cup\left\{u^{\prime}\right\}$ is a TDS of G, a contradiction. Hence, g has degree one in $G[S]$. If epn $(g, S)=\emptyset$, then $(S \backslash\{u, g\}) \cup\{a\}$ is a TDS of G, a contradiction. Hence, |epn $(g, S) \mid \geqslant 1$, and so g is a vertex of degree one in $G[S]$ that has property P_{1}. But then $S^{\prime}=(S \backslash\{v\}) \cup\left\{u^{\prime}\right\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S. Hence, a and b do not have a common neighbor. Similarly, c and d do not have a common neighbor.

Fig. 25. A subgraph of G where $f^{\prime} \in \operatorname{epn}(f, S)$ and $h^{\prime} \in \operatorname{epn}(h, S)$.

Fig. 26. A P_{4}-component in $G[S]$ where epn $(u, S)=\{b, c\}$ and epn $(x, S)=\{d, f\}$.

Let a^{\prime} and b^{\prime} be the neighbors of a and b, respectively, that do not belong to the triangle $G\left[\left\{a, b, u^{\prime}\right\}\right]$. Further, let c^{\prime} and d^{\prime} be the neighbors of c and d, respectively, that do not belong to the triangle $G\left[\left\{c, d, x^{\prime}\right\}\right]$. Since G is claw-free, $\left\{a^{\prime}, b^{\prime}\right\} \cap\left\{c^{\prime}, d^{\prime}\right\}=\emptyset$. To dominate $\{a, b, c, d\},\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\} \subset S$. If $a^{\prime} b^{\prime} \in E(G)$, then a^{\prime} and b^{\prime} have a common neighbor and $\left(S \backslash\left\{b^{\prime}, u\right\}\right) \cup\{a\}$ is a TDS of G, a contradiction. Hence, $a^{\prime} b^{\prime} \notin E(G)$.

Let $N\left(a^{\prime}\right)=\{a, f, g\}$ and let $N\left(b^{\prime}\right)=\{b, h, i\}$. Then, $G\left[\left\{a^{\prime}, f, g\right\}\right]=K_{3}$ and $G\left[\left\{b^{\prime}, h, i\right\}\right]=K_{3}$. To totally dominate a^{\prime} and b^{\prime}, we may assume that $f \in S$ and $h \in S$, respectively. Thus, since $G[S]$ is K_{3}-free, $g \notin S$ and $i \notin S$. If $\{f, g\}=\{h, i\}$, then g would be an isolated vertex in $G[V \backslash S]$ contained in a $K_{4}-e$, contradicting Claim 3.1. Hence, $\{f, g\} \cap\{h, i\}=\emptyset$. If f has degree two in $G[S]$, then $\left(S \backslash\left\{a^{\prime}, v\right\}\right) \cup\left\{u^{\prime}\right\}$ is a TDS of G, a contradiction. Hence, f has degree one in $G[S]$. If epn $(f, S)=\emptyset$, then $(S \backslash\{f, u\}) \cup\{a\}$ is a TDS of G, a contradiction. Hence, $|\operatorname{epn}(f, S)|=1$, and so f is a vertex of degree one in $G[S]$ that has property P_{1}. Similarly, |epn $(h, S) \mid=1$ and h is a vertex of degree one in $G[S]$ that has property P_{1}. Hence the graph shown in Fig. 25 is a subgraph of G. But then $S^{\prime}=(S \backslash\{v\}) \cup\left\{u^{\prime}\right\}$ is a TDS of G that satisfies conditions (1) and (2) but with $c\left(S^{\prime}\right)<c(S)$, contradicting our choice of S.

We now return to the proof of Lemma 13. By Claim 4, v and w have a common neighbor, a say. We show now that each of u and x has two external private neighbors. Let $N(u)=\{b, c, v\}$ and let $N(x)=\{d, f, w\}$. Since S satisfies condition (1), $|\operatorname{epn}(u, S)| \geqslant 1$ and $|\operatorname{epn}(x, S)| \geqslant 1$. We may assume $b \in \operatorname{epn}(u, S)$. If $c \notin \operatorname{epn}(u, S)$, then c is dominated by two vertices of S. But then $(S \backslash\{u, v\}) \cup\{c\}$ is a TDS of G, a contradiction. Hence, epn $(u, S)=\{b, c\}$. Similarly, $\operatorname{epn}(x, S)=\{d, f\}$. Thus the graph shown in Fig. 26 is a subgraph of G and the third neighbor a^{\prime} of a is in $V \backslash S$ by the definition of S_{2}. This completes the proof of Lemma 13.

5.4. Proof of Lemma 14

Let u, v, w be a P_{3}-component in $G\left[S_{2}\right]$, and let $S^{\prime}=\{u, v, w\}$. Since G is claw-free, we may assume that v and w have a common neighbor, say a. Since S satisfies condition (1), \mid epn $(u) \mid \geqslant 1$ and $|\operatorname{epn}(w)|=1$. Let epn $(w, S)=\{b\}$. Let $N(u)=\{c, d, v\}$. Then, $G[\{c, d, u\}]=K_{3}$. We may assume that $c \in \operatorname{epn}(u, S)$. If $d \in \operatorname{epn}(u, S)$, then the graph G^{\prime} shown in Fig. 6(a) is a subgraph of G with $V\left(G^{\prime}\right)=N\left[S^{\prime}\right]$ and where the vertices in $V\left(G^{\prime}\right) \backslash S^{\prime}$ are not adjacent in G to any vertex of $S \backslash S^{\prime}$.

Suppose then that $d \notin \operatorname{epn}(u, S)$. Then, d is dominated by a vertex of $S \backslash\{u\}$, say x. Let y be a vertex of S adjacent to x. Since G is claw-free, x and y have a common neighbor, say f. Further, since $G[S]$ is K_{3}-free, $f \in V \backslash S$, and so x has no external private neighbor. Thus, x must have property P_{2}. Consequently, $|\operatorname{epn}(y, S)|=1$. Let epn $(y, S)=\{g\}$. Hence the graph G^{\prime} shown in Fig. 27 is a subgraph of G where the vertices in $V\left(G^{\prime}\right)$ are not adjacent in G to any vertex of $S \backslash V\left(G^{\prime}\right)$. This completes the proof of Lemma 14 .

Fig. 27. A subgraph of G where epn $(u, S)=\{c\}, \operatorname{epn}(w, S)=\{b\}$ and epn $(y, S)=\{g\}$.

Fig. 28. Claw-free cubic graphs with total domination numbers four-ninths their orders.

5.5. Proof of Lemma 15

Let $\left|S^{*}\right|=2 k$. Let T be the set of all vertices of $V \backslash S$ that are dominated by S^{*} and let $|T|=t$. Let $n^{*}=\left|S^{*}\right|+|T|$. Let $\left[S^{*}, T\right]$ denote the set of all edges with one end in S^{*} and the other in T. Since each vertex of S^{*} is adjacent to exactly two vertices of $T,\left|\left[S^{*}, T\right]\right|=2\left|S^{*}\right|=4 k$. On the other hand, let ℓ denote the number of vertices in T that are dominated by a unique vertex of S^{*}. Since S satisfies condition (1), at least one vertex in every P_{2}-component of $G\left[S^{*}\right]$ has property P_{1}. Hence at least k vertices in S^{*} have an external private neighbor, and so $\ell \geqslant k$. Thus, since every vertex of T is adjacent to at most two vertices of S by the definition of $S_{2},\left|\left[S^{*}, T\right]\right|=\ell+2(t-\ell)=2\left(n^{*}-2 k\right)-\ell \leqslant 2 n^{*}-5 k$. Consequently, $k \leqslant 2 n^{*} / 9$, and so $\left|S^{*}\right| \leqslant 4 n^{*} / 9$, as desired.

6. Conclusion

We remark that our proof of Theorem 8 shows that if G has no subgraph G^{\prime} shown in Fig. 6(b) where the vertices in $V\left(G^{\prime}\right)$ are not adjacent in G to any vertex of $S \backslash V\left(G^{\prime}\right)$, then $\gamma_{\mathrm{t}}(G) \leqslant 4 n / 9$. We believe that the bound of five-elevenths the order is not sharp, and we close with the following conjecture.

Conjecture 1. Every connected claw-free cubic graph of order at least 10 has total domination number at most fourninths its order.

If Conjecture 1 is true, then the bound is tight as may be seen by considering the connected claw-free cubic graphs F and H shown in Fig. 28 with total domination number four-ninths their orders.
Final remark (concerning paired domination): In a previous paper [5] we proved that if a connected claw-free cubic graph of order $n \geqslant 6$ does not contain $K_{4}-e$ nor C_{4} as an induced subgraph, then its paired domination number satisfies $\gamma_{\mathrm{pr}}(G) \leqslant 3 n / 8$ and the unique extremal graph has 48 vertices. The proof used the property established by Hobbs and Schmeichel that the matching number $v(H)$ of a cubic graph H of order N is at least $7 N / 16$. This property was recently improved (see [2]) for $N>16$ to $v(H) \geqslant(4 N-1) / 9$. Using this new result, our bound on $\gamma_{\mathrm{pr}}(G)$ in connected cubic ($K_{1,3}, K_{4}-3, C_{4}$)-free graphs improves for $n \geqslant 48$ to $(10 n+6) / 27$ with infinitely many extremal graphs.

Acknowledgment

The second author thanks the LRI for their warm hospitality.

References

[1] D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek, P.C.B. Lam, S. Seager, B. Wei, R. Yuster, Some remarks on domination, J. Graph Theory 46 (2004) 207-210.
[2] T. Biedl, E.D. Demaine, C.A. Duncan, R. Fleischer, S.G. Kobourov, Tight bounds on maximal and maximum matchings, Discrete Math. 285 (2004) 7-15.
[3] R.C. Brigham, J.R. Carrington, R.P. Vitray, Connected graphs with maximum total domination number, J. Combin. Math. Combin. Comput. 34 (2000) 81-96.
[4] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219.
[5] O. Favaron, M.A. Henning, Paired domination in claw-free cubic graphs, Graphs Combin. 20 (2004) 447-456.
[6] O. Favaron, M.A. Henning, Total domination in claw-free graphs with minimum degree two, Discrete Math., to appear.
[7] O. Favaron, M.A. Henning, C.M. Mynhardt, J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34 (1) (2000) 9-19.
[8] E. Flandrin, R. Faudree, Z. Ryjáček, Claw-free graphs-a survey, Discrete Math. 164 (1997) 87-147.
[9] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[10] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs, Advanced Topics, Marcel Dekker, New York, 1998.
[11] M.A. Henning, Graphs with large total domination number, J. Graph Theory 35 (1) (2000) 21-45.
[12] M. A. Henning, A. Yeo, Hypergraphs with large transversal number and with edge sizes at least three, submitted for publication.

[^0]: ${ }^{2}$ Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.
 ${ }^{1}$ This paper was started while the author was visiting the Laboratoire de Recherche en Informatique (LRI) at the Université de Paris-Sud in July 2002.

 E-mail addresses: Odile.Favaron@lri.fr (O. Favaron), henning @ukzn.ac.za (M.A. Henning).

