
PIPELINE ARCHITECTURE FOR DCTDDCT

Jari Nikara', Jarmo Takala', David Akopian', nizd Jukka Saariiieri'

'Digital and Computer Systems Laboratory
Tampere University of Technology

P.O.B. 553, 33101 Tampere, Finland

'Nokia Mobile Phones
P.O.B. 429

33 10 1 Tampere, Finland

ABSTRACT

In this paper, a unified sequential architecture for 8-point discrete
cosine transform and its inverse is described. The architecture
is based on rescheduled constant geometry algorithms, which are
mapped onto a one-dimensional structure with the aid of vertical
projection. The resulting modular architecture can be efficiently
pipelined since arithmetic units are removed from the critical path.
In addition, the complexity of the architecture is compared to other
previously reported architectures operating over sequential data.

1. INTRODUCTION

The discrete cosine transform (DCT), considered as one of the best
tools in digital signal processing. has many applications in the area
of multimedia. Especially 8 x 8 DCT and its inverse (IDCT) have
been popular in image compression applications. Real-time re-
quirements of current applications often call for parallel imple-
mentations. In principle, parallel architectures can be developed
by exploiting inherent spatial and/or temporal parallelism in fast
algorithms for DCT and IDCT. However, such algorithms are often
irregular, which may limit the exploitation level of the parallelism.
In general, fast algorithms for DCT can be interpreted to contain
consecutive processing stages composed of nodes of arithmetic op-
erations. In order to minimize the cost of the implementation, the
nodes should be mapped onto reduced number of processing el-
ements and at the same time the throughput of the architecture
should fulfil the given real-time requirements.

In principle, the exploitation of the spatial parallelism results
in a column architecture where the computations are performed re-
cursively on parallel data, i.e., nodes at a single processing stage
are computed at a time. In such an architecture, the throughput is
limited by the delay of basic arithmetic units used to realize the
nodes. Exploitation of the temporal parallelism, in turn, results
in sequential architectures, where the computations are performed
over data in sequential form and the overall structure can be con-
sidered as a pipeline. In such an architecture, the throughput can
be tailored with additional pipeline registers if data dependencies,
i.e., feedback loops in the architecture, can be avoided. In addi-
tion, data is often in sequential form, thus architectures operating
over sequential data are advantageous.

Several sequential architectures supporting DCT and IDCT
have been proposed. In [I] , a sequential architecture based on ir-
regular algorithm from [2] is proposed. Due to the data dependen-
cies, extensive pipelining is not possible and the high throughput
in this architecture is obtained by utilizing several multiplier and
accumulation units increasing the hardware cost. The pipelining

The first author acknowledges Nokia Foundation for financial support.

efficiency can be improved by exploiting the temporal paralleli sni
as used in architecture proposed in [3] where vertical projection (or
folding) is utilized. This results in a partial-column architecture.
i.e., the architecture exploits both temporal and spatial parallelism.
In this architecture. the same arithmetic resources are used to com-
pute both DCT and IDCT, which requires more complex control to
reverse the signal flow.

The control complexity can be reduced by applying vertical
projection to more regular DCT algorithm similar manner as, e.g.,
in architectural derivation of regular fast Fourier transform in [4].
Such an approach is used in sequential DCThDCT architecture
proposed in [5] . The utilized fast algorithm is regular consist-
ing of stages of Cooley-Tukey type of butterflies followed by ir-
regular butterflies in DCT or preceeded in IDCT. The DCT .and
IDCT algorithms are rescheduled into a form where the topology
of the regular kernel is identical. By collapsing the signal flow
graph (SFG) onto a butterfly processing elements. a'pipeline ar-
chitecture i s obtained. The architecture consists of sequential but-
terfly processors realizing the regular kernel. post-processor for
realizing the irregular butterflies of the DCT algorithm. and pre-
processor realizing the irregularities in the beginning of the IDCT
algorithm. However, the coefficients of the used DCT algorithm
are secants. which implies larger round-off errors compnred to al-
gorithms where cosines or sines are used as coefficients [6]. This.
in turn. may increase the hardware cost if larger word width is
needed in internal arithmetic for fulfilling the signal-to-noise re-
quirements of a given application.

In this paper, a sequential architecture supporting DCT and
IDCT is proposed. The architecture is based on the constant geom-
etry DCT algorithm proposed in [7] , which has a regular commu-
nication structure and all the coefficients are cosines. The archi1:ec-
ture is illustrated with an example supporting 8-point DCTIIDCT.
In addition, the complexity of proposed architecture is compared
to other previously proposed sequential DCT/IDCT architectures.

2. FAST ALGORITHMS FOR DCT AND IDCT

The architectural derivation is based on the constant geometry fast
algorithm for DCT of type I1 proposed in [7] . The SFGs of 8-
point constant geometry forward and inverse DCT algorithms are
depicted in Fig. I (a) and (b), respectively. The coefficients cl, can
be generated recursively as

dl = Jos, cis, = Jm, = J m j .
These coefficients are actually cosines and will cause less round-
off error compared to fast DCT algorithms where coefficients are
based on secants [6]. The interconnection topologies of the SIXh

IV-902
0-7803-6685-9/01/$10.0002001 IEEE

Figure 1: Signal flow graphs of constant geometry fast algorithm
for (a) forward and (b) inverse 8-point DCT-I1 according to [7] .

are regular, thus they lend themselves well to VLSI implementa-
tions. Therefore, the constant geometry algorithm is a good start-
ing point for developing parallel architectures for DCT and IDCT.

The SFGs contain several simil'arities; in particular, all the re-
orderings between the processing stages are perfect shuffle per-
mutations. Perfect shuffle permutation reorders elements of a se-
quence in such a way that the elements of the first half of a se-
quence are interlaced with the elements of the second half of the
sequence, i.e., reordering of a vector x = (2 0 , a,. . . , ZIi-l)T

results in a vector y = (20, x x p , z1, xIi/2+1, 2 2 , . . . , ~ I i - 1) ~ .

A pipeline architecture supporting DCT and IDCT could be
derived by collapsing both the SFGs in Fig. 1 and mapping them
onto a common architecture. This approach is illustrated for IDCT
already in [8]. However, the algorithms in this form will result
in need for additional storage elements for realizing the constant
size perfect shuffle permutations between the processing stages. In
general, the minimum number of storage elements in the permu-
tation network depends on the maximum distance a data element
needs to be moved in the sequence. In perfect shuffle, the max-
imum distance in a 2"-point sequence is 2!'-' - 1. Therefore,
for 2'-point transform (A- - 1)2"-l - k + 1 storage elements are
needed for permutation networks.

The storage requirements of the reordering can be alleviated
while maintaining the locality of the additional add operations
by rescheduling the operations in SFGs in Fig. I . Reschedul-
ing should be performed in such a way that the interconnections
will become perfect shuffle permutations with increasing size from
stage to stage. Such a rescheduled versions of SFGs are illus-
trated in Fig. 2(a) and (b). It can be seen that the interconnec-
tions are still perfect shuffle permutations but with different sizes
decreasing the total number of delay registers needed to realize
the sequential reordering. The minimum storage requirement for
realizing the reorderings in this algorithm for a 2"point DCT is
1::; (2' - 1) = 2 . 2"-* - k - 1. Furthermore, it can be seen
that the topologies of interconnections in DCT in Fig. 2(a) and
IDCT in Fig. 2(b) are similnr, which implies that the correspond-
ing reorderings in the algorithms can easily be mapped onto the
same structures.

Figure 2: Signal flow graphs of rescheduled fast algorithms for (a)
forward and (b) inverse 8-point DCT-11.

3. ARCHITECTURE

In principle, the SFGs in Fig. 2 can be interpreted to contain stages
of parallel arithmetic operations and reorderings. Our purpose is
to reduce the dimensionality of the SFG applying vertical projec-
tion, i.e., the SFGs are collapsed or folded into a one-dimensional
SFG. Such a one-dimensional graph implies a sequential imple-
mentation.

3.1. Data Processing

The data processing in the SFGs can be considered to contain but-
terfly operations, multiplications and local subtractions. Vertical
projection of the SFGs implies that each parallel stage of multipli-
cations is mapped onto a single multiplier. Since the data is in se-
quential form, each data element is passed through the multiplier
allowing efficient utilization of the numeric range of fixed-point
systems. Therefore, the intermediate signal values can be scaled
without additional hardware cost implying less round-off noise.

An efficient sequential realization for the parallel butterflies
from area point of view is to use only one arithmetic unit. which
can be controlled to perform either addition or subtraction as de-
scribed in [5] . In such an arrangement, additional delay regis-
ters are needed since both the operands should be available for
two sample periods although they enter at consecutive clock peri-
ods. The sequential structure based on adderkubtractor realizing
the butterfly operation in Fig. 3(a) is illustrated in Fig. 3(b). The
adder/subtractor in this structure is fully utilized at the expense of
additional delay registers. Nevertheless, the number of delay.reg-
isters is minimized in butterfly elements.

The SFGs in Fig. 2 contains additional subtractions shown in
Fig. 3(c), which are always performed over consecutive data sam-
ples in the sequence, i.e, the subtractions are local. Such an oper-
ation in sequential form can be realized by delaying the preceding
sample and performing the subtraction on the sample pair. How-
ever, the subtraction is not performed for all the sample pairs. thus
an additional multiplexer is needed to bypass the local subtractor
unit as illustrated in Fig. 3(d). In addition, by noting that the local

IV-903

..

Figure 3: Mapping of basic operations onto sequential realizations:
(a) signal flow graph of butterfly operation and (b) corresponding
sequential realization, (c) signal flow graph of local subtraction
and (d) corresponding sequential realization, and (e) sequential
butterfly unit realizing both the previous operations. D: Delay reg-
ister. BU: Butterfly unit. Clock signals omitted for clarity.

subtraction can be interpreted as a half of the butterfly operation,
the local subtraction can be realized with the previous butterfly
unit with an additional multiplexer to bypass the arithmetic op-
eration. Therefore. a multi-function arithmetic unit realizing the
butterfly operations and local subtractions in sequential form is a
butterfly unit (BU) shown in Fig. 3(e). With the aid of this unit and
a multiplier, all the data processing needed in the DCT and IDCT
algorithms in Fig. 2 can be realized.

3.2. Data Reordering

The global reorderings between the processing stages in the algo-
rithms in Fig. 2 are based on perfect shuffle permutations. In both
SFGs. the first interconnection contains two 4-point perfect shuf-
fles and the second is a single 8-point perfect shuffle. The perfect
shuffle permutation in sequential form can be realized with the aid
of sequential permutation networks proposed in [9] consisting of
cascaded shift-exchange units (SEU) illustrated in Fig. 4(a). The
SEU of size I< contains a I<-stage shift register with feedback and,
in principle, it exchanges data elements in a sequential sequence h-
elements apart. Perfect shuffle permutation of a 2'-point sequence
can be performed with a structure where k - 1 SEUs are cascaded

block diagram and principal operation of such a network for an
8-point perfect shuffle is illustrated in Fig. 4(b) and (c). It should
be noted that a single SEUl performs the 4-point perfect shuffle
permutation. Therefore, the global reorderings found in the SFGs
can be realized with the structures shown in Fig. 4.

Besides the global reorderings between the processing stages,
the rescheduled algorithms contain also local reorderings. which
require data elements two elements apart to be exchanged before
the last subtraction operation in the DCT or before the first multi-

in decreasing order of size: SEU2k-2, SEU2k-3. SEU,o. The

IN
Clk SEuK Operation ol SEUz

I

eration of SEi!i
c1

OUT

SEUz SEU,

Figure 4: Sequential permutation: (a) shift-exchange unit (SEU) of
size I<, (b) block diagram of 8-point perfect shuffle permutation,
and (c) corresponding timing diagram. ch: control signal.

Figure 5: Block diagrams of sequential architecture for (a) DClT
corresponding Fig. l(a) and (b) IDCT corresponding Fig. I(b) .
BU: Butterfly unit. SEUrC: Shift-exchange unit of size K. PSS:
8-point perfect shuffle network.

plication in the IDCT as seen in the SFGs in Fig. 2. This exchange
can be realized with a SEU unit containing a two-stage shift reg-
ister, i.e.. SEUz. The exchange operation is performed only for a
particular pair of data elements, which can easily be arranged 'by
providing an appropriate control signal for the SEUz unit. In adtli-
tion, it should be noted that, in these algorithms, the distance of the
elements to be exchanged locally is constant two regardless of the
transform size [7] . In cases where inorder inputs and outputs are
needed, additional sequential permutation networks can be utilized
as described [9].

3.3. Unified DCTODCT Architecture

According to the previous discussion, the final architectures for
the DCT and the IDCT can be constructed by cascading the basic
processing and reordering units, which were obtained by apply-
ing vertical projection to the operational stages of the SFGs of the
rescheduled constant geometry DCT algorithms. Sequential U-
chitectures for the 8-point DCT and IDCT, based on the SFG in
Fig. ?(a) and (b), are illustrated in Fig. 5(a) and (b), respectively.
Each unit in the architecture corresponds to a specific operational
stage in the SFG of the algorithm.

The architectures in Fig. 5 imply that a unified architechire
supporting both DCT and IDCT can be constructed by providing
additional data paths to reverse the data flow of the DCT pipeline
for IDCT computation. In other words, the functional units of ihe
DCT pipeline in Fig. 5(a) are arranged in reversed order for IDCT
computation as described, e.g., in [3]. Such an approach will, how-
ever, introduce high routing costs and complicated control. There-
fore, the data flow direction through the architecture should be {he
same in both transforms.

A more efficient solution is obvious when comparing the stnic-
tures in Fig. 5: DCT and IDCT pipelines can be mapped onto a
unified processing pipeline. Such an architecture for 8-point DCT
and IDCT is illustrated in Fig. 6. According to SFG in Fig. 2(a),
DCT can be computed by using the first BU for butterfly opera-
tion, bypassing the first SEU. unit and the second butterfly unit.
The SEUl unit is used to realize the 4-point perfect shuffle. The
third and fifth BUS are used for butterfly operation, while fourth
and sixth BUS are for local subtractions. 8-point IDCT, in turn,
can be computed by bypassing the last SEU2 unit and the second
to last butterfly unit and configuring the other BUS according to
the SFG in Fig. 2(b).

The minimum latency of the DCT or IDCT computation is I 1
clock cycles, which is only due to the data reordering. Assum-
ing that each arithmetic unit is followed by a pipeline register, the
minimum latency is 19 cycles. It should be noted that such pipeline
registers are not included in Fig. 6. The unified architecture can be
freely pipelined since there are no feedback loops in the structure.
However. additional pipelining increases the latency although it
improves the throughput.

IV-904

Figure 6: Block diagram of one-dimensional 8-point DCT/IDCT architecture. Clock signals are omitted for clarity.

Parameter M
Reference

4. COMPARISON

D X +

In order to compare the proposed architecture to other, previously
proposed DCTADCT architectures, we have estimated their com-
plexity based on the number of arithmetic units, multiplexers, and
delay registers. The number of multiplexers and registers describes
mainly the complexity of data reordering. The number of multi-
plexers is estimated as equivalent 2-to-I multiplexers. We have
also included pipeline registers after each arithmetic unit. The
principal complexity estimates of different architectures for the 8-
point DCTADCT are listed in Table 1.

In the architecture proposed by Madisetti and Wilson [I], the
fact that the used DCT algorithm contains only seven different co-
efficients is utilized in such a way that an optimized, hard-wired
multiplier is dedicated for each coefficient. The irregularity of the
algorithm reflects the number of registers and multiplexers. The
architecture by Cheng er al. [3] consists of two separate proces-
sor units and the control unit, which takes care of communication.
Parallelism m,?kes the high speed operation possible but introduces
also high number of arithmetic units. Moreover, the control unit
includes several multiplexers since the inverse DCT is performed
by reversing the data flow. The architecture by Hsiao er al. [5] is
based on an in-place algorithm, which reflects the larger number
of registers than in the proposed architecture. The computational
complexity of the architecture is comparable with the proposed ar-
chitecture. The kernel operation consists of regular butterflies, thus
additional pre-processing for DCT and post-processing for IDCT
is needed. Furthermore. the architecture can be freely pipelined,
thus the throughput rate is comparable with the proposed architec-
ture.

t11
[31
rs i

5. CONCLUSION

2 42 2 20 7 2 8
several unknown 8 21
8 34 3 4 3

In this paper, a unified fully sequential architecture for 8-point
DCT and IDCT has been described. The one-dimensional archi-
tectures for separate DCT and IDCT are derived by applying ver-
tical projection to DCT and IDCT algorithms, which are based
on constant geometry fast algorithm for DCT-11. Finally, the ar-

Table 1 : Complexity comparison of DCT/IDCT architectures. M:
Number of 2-to-I multiplexers. D: Number of delay registers. x:
Number of multipliers. +: Number of adders. +/-: Number of
addkubtract units.

chitectures are combined as a unified pipeline architecture, which
is able to perform the DCT or the IDCT. This introduces addi-
tional resources, one SEU2 and BU, compared to single transform
architecture but minimizes the routing. The combined architec-
ture yields the complexity of 3 multipliers, 6 adder/subtractors.
In principle, the proposed architecture can be extended to support
2‘;-point DCT/IDCT by utilizing the approach described in this
paper. The architecture is modular; each additional power of two
in transform size requires addition of perfect shuffle network for
global reordering, SEU unit for local reordering and two butterfly
units for butterfly operations and local subtractions.

6. REFERENCES

A. Madisetti and A. N. Wilson, “A 100 MHz 2-D 8 x 8
DCTADCT processor for HDTV applications,” IEEE Trans.
on Circuits and Sysrerns for Video Technology. vol. 5, no. 2,
pp. 158-165, Apr. 1995.

W. H. Chen, C. H. Smith, and S. C. Fralick, “A fast compu-
tational algorithm for the discrete cosine transform,” ZEEE
f i 0 1 i S . 017 Co~iz~nrrriicnriorzs, vol. 25, no. 9, pp. 1004-1009,
Sept. 1977.
K.-H. Cheng. C.-S. Huang, and C.-P. Lin, “The design and im-
plementation of DCTADCT chip with novel architecture,” in
Proc. IEEE b i r . Syrizposiurn on Circuits and Systems, Geneva,
Switzerland, May 28-31 2000, pp. 741-744.

H. L. Groginsky and G. A. Works, “A pipeline fast Fourier
transform,” IEEE Trans. 0 1 7 Conzpurers, vol. 19, no. 1 1 , pp.

S.-F. Hsiao, W.-R. Shiue, and J.-M. Tseng, “A cost efficient
fully-pipelinable architecture for DCTADCT,” IEEE Trans.
on Corisur~zer Electronics, vol. 45, no. 3, pp. 515-525, Aug.
1999.
Z. Wang, “Pruning the fast discrete cosine transform,” ZEEE
Traris. on Co~nrizirriicatio~is, vol. 39, no. 5, pp. 640-643, May
1991.
J. Takala, D. Akopian, J. Astola, and J. Saarinen, “Con-
stant geometry algorithm for discrete cosine transform,” IEEE
Trans. 017 Sigiial Processing, vol. 48, no. 6, pp. 1840-1843,
June 2000.

J. Nikara, J. Takala, D. Akopian, J. Astola, and J. Saarinen,
“Pipelined architecture for inverse discrete cosine transform,”
in Proc. X Europcnri Signal Piacessirig Corfererice, Tampere,
Finland, Sept. 4-9 2OOO. vol. I, pp. 279-282.
C. B. Shung, H.-D. Lin, R. Cybher, P. H. Siegel, and H. K.
Thapar. “Area-efficient architectures for Viterbi algorithm I .
Theory,” IEEE Traris. 0 1 7 Con~mui~icafioiis, vol. 41. no. 4, pp.
636-644. Apr. 1993.

1015-1019, NOV. 1970.

IV-905

