
Upgrading a Complex Object DBMS to Full Object-Orientation:
a Case Study

H. Dentler, M. Scheurer, F.-J. Schmid

SIEMENS AG, ZFE F2 KOM
Otto-Hahn-Ring 6

0-8000 Munchen 83, West Germany

Abstract

Object-oriented database systems are a promising way
to fi l l the gap between conventional database manage-
ment systems (DBMS) on one hand and advanced
application semantics as well as the world of program-
ming languages on the other. Object-oriented data
models differ from traditional models in two main
aspects: complex objects are supported instead of flat
record structures and objects with predefined behavior
replace passive data. Only if both features - structure as
well as behavior - are integrated, a DBMS is said to
offer full object-orientation. In this paper, we present on
the example of the DAMASCUS system an approach to
upgrade an existing DBMS with complex objects to
support the whole palette of object-oriented features.
We show how our current system fits into the overall
architecture and which concepts and components have
to be added. The resulting DBMS is projected as a data
repository for non-standard applications programmed in
object-oriented as well as conventional languages. We
claim that our approach can be regarded as a general
one for non-standard DBMS kernels.

1 Motivation

Since a couple of years, there is general agreement
among researchers, developers and users that today’s
commercial (i.e. relational or network) database
systems are less than suitable for handling advanced
application semantics ([Kent79], [Sidl80]). At the same
time, non-standard applications like CAD/CAM, office
automation, artificial intelligence or communication
systems are invariably asking for database functionality.
The same is true for programming language
environments in general. On the one hand, file systems
as used as the only persistent data repository so far do
not offer anything like physical and logical data
independence, recovery, access control or multiuser
synchronization. On the other hand, the use of an
existing DBMS is awkward and inefficient because of
the modelling mismatch between record-oriented data
models and data definition and manipulation in
programming languages.

As a solution to the problems mentioned, database
research has arrived at the idea of object-oriented
database systems. In these systems, two directions of

A. Kofz, B. Schiefer, K. Diffrich’

Forschungszentrum lnformatik an der Univ. Karlsruhe
Haid-und-Neu-Str. 10-1 4

D-7500 Karlsruhe 1, West Germany

development meet: the enhancement of DBMSs by
semantic data model concepts ([PM88]) and the
equipping of programming languages - especially those
following the object-oriented paradigm - with persistent
object storage ([TN88], [MSOP86]). Object-oriented
database systems try to combine the best of the two
worlds.

When filling in the gap between database systems and
advanced applications or programming languages
respectively, two aspects have to be considered,
namely which object structures to provide and how to
work with them. As mentioned before, flat record
structures are not adequate for application programs
dealing with objects of high complexity. Furthermore,
application-specific operations should be definable for a
database object, defining its dynamic behavior. The
latter also includes further features like inheritance and
encapsulation by abstract data types. To differentiate
between DBMSs which support only one of the two
aspects, [Ditt88] introduces the terms structural and
behavioral object-orientation, Only when both are
supported, full object-orientation is obtained.

In this paper, we present an approach to build a fully
object-oriented DBMS by upgrading a database system
which supports complex object structures. Our starting
point is the non-standard database system
DAMASCUS. We show how the existing DBMS can be
integrated into an enhanced architecture, which
modelling concepts and system layers have to be
added, and how the final system is going to support
various programming languages.

Several evident advantages are gained by retrofitting
full object-orientation to an existing complex object
DBMS instead of a completely new development. The
new system can build upon a stable database kernel
with advanced features well-suited for the planned
applications. The evolutionary development makes use
of existing system modules and interfaces, thus
considerably saving implementation effort and providing
upward compatibility. The further use of existing
application programs of the old DBMS is possible by
making intermediate interfaces accessible. In this

’now at: Universitat Zurich, lnstitut fur Informatik, Winterthurerstr.
190, CH-8057 Zurich, Switzerland.
*DAMASCUS (database msngement system for CAD using UNlX
stations) has been developed in a cooperation project between
SIEMENS, Munich, and Forschungszentrum Informatik, Karlsruhe.

CH2806-8/89/0000/0122/$01 .OO 0 1989 IEEE I22

respect, our way of proceeding differs from other object-
oriented DBMSs like POSTGRES [RS87], IRIS[Fish87]
etc. (which are similar in their features at the user
interface) that were developed from scratch and did not
follow a stepwise upgrading approach from structural to
full object-orientation.

We claim that the approach can be regarded as a
general one for non-standard DBMS kernels and that
DAMASCUS is just one example for this class of
systems. Note, however, that the same is not true for an
arbitrary DBMS, e.g. a relational one, but that the
system must already provide a number of advanced
object-oriented facilities.

The paper is organized as follows. Chapter 2 will give a
short overview of the DAMASCUS features. In chapter 3
we will show which requirements are not met so far and
which extensions have to be made to the system archi-
tecture. The new conceptual issues are treated in chap-
ter 4, with the emphasis on data modelling. Chapter 5
gives an outlook on some of the open questions that
have to be solved in the future.

2 What we have: the DAMASCUS system

The DAMASCUS DBMS ([DKM85], [DKM87]) has been
developed and implemented as a research prototype
and was mainly thought for the application in VLSl
design environments. From the beginning, a two-level
architectural approach has been followed: the system
consists of the DBMS-kernel and a design management
layer on top of it. The kernel is a general non-standard
DBMS supporting complex objects, whereas the design
management layer supports (VLSI-)CAD specific
features. In the sequel, we will only deal with the kernel
DBMS.

The data model of .the DAMASCUS-kernel, called the
IODM (internal object data model), features an entity-
relationship model extended by, among others, complex
objects. The basic units for describing the universe of
discourse are objects and n-ary relationships between
them. The facilities for complex structures include the
following:

1. Treelike object hierarchies as well as object nets of
arbitrary complexity can be constructed. The first is
done via so-called built-in objects, the second via
references.

2. Each object is described as an aggregation of
attributes. Apart from simple attribute domains like
numbers, text or boolean, several type constructors
for complex domains are applicable. They allow for
the definition of sets, lists, tuples and vectors (i.e.
arrays). Type constructors can be applied in arbitrary
combination resulting in sets of vectors, lists of lists of
tuples etc. Built-in objects and references are also
realized via attributes and can be combined with the
domain constructors. A special type constructor
'union' is offered to generalize the type of
subobjects.

3. Long fields, i.e. unstructured byte strings of arbitrary
length, are supported by the attribute domain 'bytes'.
Long fields are treated like random access files.

4. Every object is given a system-generated unique
identifier, its surrogate or 'OID'. The surrogate can be
used to retrieve the object as well as to refer to it from
other objects. Of course, user-defined key attributes
for object access are also supported.

5. Objects may be declared to have versions which will
be ordered in a version graph. There is a static part
of the object common to all its versions and a variant
part pertaining to each version individually. The
version graph may be declared as linear, treelike or
acyclic net, thus allowing for historic versions,
variants and merging of variants. Delta storage of
versions is supported as an option.

6. Relationships may be n-ary and possess attributes of
their own. Several relationship tuples may be
grouped and the group given a user-defined key.

In addition, the model provides a database concept,
explicit clustering of objects and an integrated data
dictionary. The IODM is strongly typed, i.e. every object
(relationship) is considered an instance of an objecttype
(relationshiptype) defined in the schema by means of
the data definition language (DDL).

As a simple example for the use of the IODM, consider
graphical symbols which consist of elementary figures
like polygons, circles and ellipses, as well as recursively
of other symbols which may be scaled and positioned
arbitrarily. Furthermore, every symbol has a name
serving as its key and a long field for its pixel
representation. One of the elementary objecttypes used
in GRAPH-SYMBOL - POLYGON - is detailled further;
its vertices are modelled as a list of built-in objects of
type POINT. The example in its ODL syntax is given in
fig. 1.

The DAMASCUS data manipulation language (DML) is
designed as a call-interface for PASCAL programs. The
DML operators are generic, i.e they equally apply to
objects or relationships of any type. Complex objects as
a whole as well as parts or attributes of objects may be
manipulated individually. For instance, you can delete
or copy an object with all ist built-in subobjects. For
constructed attributes like sets or lists as well as for long
fields, there are specific operations such as scanning,
deleting of elements etc. An SQL-style, set-oriented
descriptive query language is currently being
developed for DAMASCUS.

I23

objecttype POINT =
structure

end;
x-coord, y-coord : real;

objecttype POLYGON =
structure

vertices : list of POINT;
area : real;
filled : boolean;

objecttype GRAPH-SYMBOL =

end;

structure
name : text (20);
element-figures : set of union (POLYGON,CIRCLE,

ELLIPSE);
symbols-used : set of structure

the-symbol : ref SYMBOL;
scale-factor : vector (2) of int;
position : vector (2) of real;

end;
pixel-represent : bytes;

key name
end;

Fig. 1: Modelling example in the DAMASCUS DDL

DAMASCUS has been built from scratch, i.e. all its
layers have been specifically designed and imple-
mented for non-standard applications on UNlX work-
stations. On top of the operating system - but bypassing
the UNlX file system for efficiency reasons - the storage
manager has been realized, comprising secondary
storage and buffer management, various access path
methods, and a manager for variable length records.
The storage system forms the basis for the complex
object manager that provides the IODM definition and
manipulation facilities. At present, we are working on
components for distribution, concurrency, recovery and
an event-trigger-mechanism (ETM) for rule support

[KDM88]. Fig.2 sketches the DAMASCUS kernel
architecture. (In fig. 2 and all following figures, the
names of the system layers are given in the boxes
representing their interface.)

As has been pointed out, the DAMASCUS model
supports complex object structures and relationships
with the corresponding generic operations. In the
present version, however, it does not allow for
application-specific operations or encapsulation by
abstract data types. The current DAMASCUS DBMS is
thus a structurally object-oriented system. The next
section will show which requirements remain
unsatisfied and what is needed to get a full-fledged
object-oriented DBMS.

3 What we need: full object-orientation

In the application world, an object is not only
characterized by structure and value, but also by the
operations or methods that can be used to manipulate it,
i.e. its behavior. The traditional approach to separate
data structures (in the DBMS) from data dynamics (in
the application programs) leads to severe consistency
problems and code redundancy as to method imple-
mentation.

As an example, consider a geometric figures database
as needed in CAD/CAM applications. Each figure is
represented by the coordinate values of its vertices. The
figures have to be manipulated by operators like rotate,
scale, translate etc. Each operation must preserve the
topological as well as certain geometrical properties of
the figures. These properties can easily be violated by
direct manipulation of the figures’ coordinate attributes.

a objects and relationships
object hierarchies and nets
simple and complex attributes (sets, tuples

* long fields
surrogates

* key attributes
* object versions

clustering
databases
generic operations

)

vanable length record manager access method manager

buffer manager

secondary storage manager

fig. 2. The DAMASCUS kernel archltecture

124

Therefore, the transformations should be definable as
the operational interface of the type figure. The generic
operations to modify the attributes should not be directly
applicable by end users, but only by the method imple-
mentor.

To meet these requirements, the DBMS has to allow
that:

application-specific operations can be defined (for
objects as well as for attribute domains),
the direct application of the generic operators can be
restricted or even totally excluded.

When the use of generic operations is prohibited,
encapsulation of objects in the sense of abstract data
types (ADT's) is achieved, resulting in better
consistency control and implementation independence.
We made first experiences in this area by the
specification of CADIF, the interface of the design object
management system CADBASE, as an ADT ([LSW89],
[SLW89]).

Data models fulfilling the above requirements provide
so-called behavioral object-orientation. By combining
structural object features with object behavior and the
inheritance mechanisms known from object-oriented
programming languages, we arrive at full object-
orientation. Type hierarchies with inheritance are a

means to model generalization or specialization ('IS-A
semantics'). Inheritance supports property transfer from
supertype to subtype, thus reducing redundancy of
definition and implementation, supporting consistency
and allowing for stepwise refinement. For example, the
transformation methods mentioned above (or at least
their interfaces) may be defined for a type polygon and
inherited by all specialized polynomial types like
triangle, rectangle etc.

In the DAMASCUS system, the structural features are
already supported, while object behavior and inheri-
tance are still lacking. System components providing
these capabilities have to be added. Fig.3 shows how
the DAMASCUS system can be embedded into the
overall architecture of a system fulfilling the whore
palette of object-oriented requirements. In the following
this system will be called the object management
system. Its main layers are the object administration
kernel and the general object manager.

Within the object administration kernel , the shaded
parts are already covered by the existing DBMS. An
essential part of the object method manager has to be
added, because only the generic methods are already
supplied. The method manager makes use of the object
structure manager for method description and storage.

~~~~ ~~ ~ 

programmlng environment and user interface 

non-oo PL I 00 PL I graph.-interactive interface 

I coudino I I  couplina I I  coupling I 
I m u  I I I I  I 

strong typing encapsulation views 

classes and types abstract data types query language 

inheritance rules predefined classes 

transactions access control 

object method manager 
user-defined methods - predefined methods e 

specifications 
attributes 

rJ covered by the DAMASCUS-kernel 

Fig. 3: Object management system integrating the DAMASCUS kernel 



In the general object manager, the higher-level object- 
oriented concepts like classes, inheritance and encap- 
sulation in abstract data types are realized. Within the 
extended framework, several important DBMS features 
have to be redefined as e.g. query language, views, 
consistency and derivation rules. Further properties like 
object-oriented access control and advanced trans- 
action concepts (long transactions, nested transactions) 
have to be included. By predefined classes, special 
semantics and system functionality can be supported. 
The object management system may be coupled to 
object-oriented and conventional programming langua- 
ges (ooPL and non-oo PL) as well as to an interactive 
surface with graphical features. 

The next section will give an overview on the concepts 
of the data model provided by the object management 
system as well as detail the architecture of the general 
object manager. 

4 How we do It: data model and architecture 

One of the fundamental questions to be solved when 
designing the object management system is the 
coupling with programming languages. The program- 
ming interface has to serve two purposes: method 
implementation using the structures predefined in the 
DBMS and application programming making use of the 
methods. In both cases the relationship between 
pro g ram m i n g I an g u ag e d at a s t r u c t u res ( " t e m p o r a r y 
objects") and database objects ("persistent objects") has 
to be defined. For the object structures, definition and 
manipulation facilities have to be provided. There are 
three ways to solve the interface problem: 

a) An existing object-oriented programming language 
can be extended by the necessary database 
features (e.g. VBASE+ which extends C++ 
[Onto88]). The objects of the programming language 
may directly become database objects, the 
structural definition and manipulation features are 
taken from the language. 

b) A completely new language is designed (like e.g. 
OOPL [Sch188]). The same kind of objects are used 
for programming as well as in the DBMS. 

c) Object-oriented data definition concepts are 
combined with various existing programming lan- 
guages for method implementation and application 
programming (an approach chosen e.g. in 0 2  
[Banc88]). The DBMS objects are made visible in 
the programming language. The programming lan- 
guage's own data structures are, if at all, only used 
as temporary variables (e.g. to implement loop 
counters for algorithm programming). 

We agree with the designers of 0 2  that it is very useful 
for reasons of acceptance to be language independent. 
Assuming on the other hand that C++ [Stro85] has a 
good chance to become a quasi-standard for object- 
oriented programming languages, it seems to be a 

promising way to build a C++ - DBMS. In our approach, 
we try to combine both advantages. We design special 
language features for data definition and manipulation, 
whereas the methods and applications may be imple- 
mented by the user in his favourite language. The 
language designed for data handling will integrate the 
C++ class concept, so that i f  the user's programming 
language is C++, too, the whole system can be con- 
sidered an extended C++ - DBMS. 

In this chapter, we will introduce our data model and 
give a short outlook on the system's architecture. 

4.1 Classes and types 

In our approach, we follow the strong typing paradigm 
as e.g. in EIFFEL [Meye881 instead of a SMALLTALK- 
like philosophy [GR83]. Our notions of type and class 
are as follows: a type is the description of all properties, 
structural as well as behavioral, that are common to all 
its potential instances. A class is a type with an explicit 
operation to create instances. Instances of classes are 
called 'objects'. As a consequence of this notion, 
attribute values like e.g. numbers or characters will not 
be considered objects (in contrast to e.g. the SMALL- 
TALK-approach) and can only be used as dependent 
components of class instances. Dependent types may 
either be predefined (with generic operations) or user- 
defined (with application-specific methods). 

A type definition comprises the specification, the me- 
thods applicable to its instances and the attributes used 
for their internal representation. The specification of a 
type contains the following features: type invariants, 
consistency constraints, derivation rules, pre- and post- 
conditions of methods, and the method interfaces them- 
selves. Methods are either functions or procedures 
that may be implemented in the user's preferred 
programming language. Attributes may be of simple 
types like integer, boolean and string, of composed 
types built by constructors like sets, lists and tuples, or of 
arbitrary user-defined types. 

Another important kind of attributes are typed references 
to objects. We distinguish two kinds of references: 
general references and compositional references. 
Gener8l references represent mere pointers from 
one object to another. Operations on a referencing 
object have no influence on the referenced objects. 
Compositional references have a more elaborate 
semantics. The referenced object is treated as an 
integral part of the referencing object (it is 'built in' 
there). There may be operations with 'deep' effect which 
apply recursively to an object and all its strongly 
referenced subobjects, provided that a corresponding 
operation exists for the subobject. Some 'deep' 
operations will be predefined for all objects. I f  e.g. the 
referencing object is deleted, the referenced objects will 
also disappear (vice versa, the deletion of the 
referenced object will have no influence on the 
referencing object). The user has the choice whether 
system support for referential integrity should be 

I26 



supplied or not. To manage symmetric references that 
will automatically be removed, if one of the participating 
objects is removed, we provide the concept of 
reIatIonshlps, which we present later on. 

The interface of a type contains all the specification 
parts - especially the method headers - that are visible 
and may be used from outside. Attributes may be 
explicitly declared 'public', which is regarded equivalent 
to the declaration of canonical methods to read and set 
their values. 

The user may also define generic types like LIST[T] or 
STACKLT]. On creation of an instance of such a generic 
type, the parameter T has to be specified. 

4.2 lnherltance and class hlerarchy 

Classes may be arranged in a hierarchy for which an 
inheritance mechanism is supported. By this facility, the 
'IS-A semantics' can be modelled, already 
implemented methods may be reused, and redundancy 
is minimized. 

In our DBMS, there is a predefined class OBJECT which 
forms the root of the class hierarchy. All the other 
classes, whether system- or user-defined, are direct or 
indirect heirs of this class. OBJECT contains the 
methods applicable to any object, e.g. operations to 
retrieve general information about an object, generic 
methods for reading, updating or printing objects etc. 

We had to decide between single inheritance, where 
every class may have at most one direct ancestor, and 
multiple inheritance, where each class may inherit from 
an arbitrary number of classes. To support complex 
engineering applications in which classes may be 
specialized under various aspects (logical, physical, 
geometric etc.), multiple inheritance proves indispen- 
sable for our model. The intrinsic problem with multiple 
inheritance is the naming conflict arising when a class 
inherits identically named methods from different 
ancestors. For the resolution of these conflicts, the 
following strategy has been chosen: if the conflicting 
methods have been originally defined in some common 
root and no ambiguous redefinitions on the different 
paths have occurred, the conflict is resolved automati- 
cally. Otherwise, the definer of the new class must 
resolve the conflict explicitly by renaming (at least one) 
of the methods. 

Methods which are inherited from an ancestor class 
may not only be renamed, but also overwritten, i.e. 
reimplemented, in the subclass. By this feature, a 
general algorithm may be replaced by a more specia- 
lized one (for example the area can be calculated more 
efficiently for a rectangle than for a general polygon). 
Inherited attributes may also be redefined in the sense 
of specialization, i.e. their domain may be converted to a 
more restricted one (as for example integer instead of 
real). Further specifications of the ancestor class like 
class invariants, consistency constraints or postcon- 

ditions of methods may also be restricted in the inheri- 
ting class. 

To support a top down development, we think it useful to 
offer deferred (or abstract) classes. These classes may 
contain just the interfaces of methods the implemen- 
tation of which is deferred to the inheriting classes. Of 
course, for a deferred class, no instances may be 
created. 

As a consequence of the class hierarchy and the 
inheritance mechanism with method overwriting, the 
data model language supports polymorphism and 
dynamic binding ([CWSS]). Although strong typing is 
provided in,the language, static type checking is not 
possible whenever the class hierarchy is involved. 
Variables and attributes referencing objects of a given 
type may be polymorphic, i.e. they may refer to 
instances of subtypes alternatively. For methods that 
have been overwritten, the currently applicable 
implementation has to be selected dynamically at 
runtime. Appropriate mechanisms are supplied by the 
object method manager of the administration kernel. 

4.3 Classes and objects 

For every class, an arbitrary number of objects may be 
created. Each object is given a unique identifier 
(surrogate), generated by the DBMS. In addition, the 
user may define key attributes and object names for 
personal use. These concepts receive special support 
by the DBMS. 

As usual in DBMS terminology, we use a class not only 
as the notation for the type description, but also for 
refering to its extension (i.e. the set of all instances of a 
given class). This is advantageous in that the user 
needs not create a new class, for example 
"set-of-objects-of-class", if he wants to consider all 
objects of a class as a whole. 

Due to the IS-A-semantics of the inheritance hierarchy, 
we choose a subset semantics for the extensions of the 
participating classes. This means that a member of the 
extension of a class also belongs to the extensions of all 
its ancestor classes. For instance, the objects of a class 
tr iangle which is a heir of the class polygon are 
elements of the extension of polygon, too. A user is 
allowed to change an object's class membership 
dynamically from a class to a more specialized one, if 
the constraints of the heir class are satisfied. Automatic 
movement of objects along the hierarchy is not con- 
sidered desirable. In our example, this means that a 
polygon with three corners satisfying all constraints for 
the class triangle will not become a member of the 
extension of triangle, unless it is explicitly moved there. 

Most object-oriented systems only provide the concept 
of Instance properties in their class definitions. 
These are properties dedicated to single instances, e.g. 
the methods applicable to an instance or the attributes 
whose value may vary from one instance to the other. 
To define methods applicable to the extension of a class 

I27 



as a whole, we additionally provide the concept of 
class propertles. An example for a public class 
attribute often required is the number of instances of the 
class. The most important class method needed in every 
class (except deferred classes) is the create-object 
operator, which may provide initial values for the 
attributes of newly created objects, individually for every 
class. Some basic class properties are located at the 
top of the inheritance hierarchie, as class methods of 
the superclass OBJECT. 

may be added to the schema if needed, in order to 
reduce notational efforts and provide the user with 
frequently needed abstract data types. Others are 
classes with a very special, powerful system supported 
semantics. 

The most prominent of them is the class RELATION 
which can be used to model relationships between 
objects - a widespread feature in the database world, 
but yet unusual in the context of object oriented 
programming. Relationships are a powerful modelling 
concept to express associations between an arbitrary 
number of objects and to provide describing attributes 
for these associations. Among other features, relation- 
ships are automatically deleted, if one of the partici- 
pating objects is removed. The user will not have to take 
care of them when implementing the delete operations 
of his object classes. 

Another important predefined class in the area of engi- 
neering applications is the class VERSIONED-OBJECT 
which provides mechanisms for efficient version 
handling. A subclass su of class VERSIONED-OBJECT 
inherits the operations for version management like 
create-new-version, delete-version, get-version-nr, 
find-next-version, etc. Note that an object of class su 
represents a generic object with all its actually existing 
versions; every individual version is itself an object in its 
own right. A similar concept may be found in [Zdon86]. 

<=> classes inheritance - 
instances 7 instantiation 

Fig. 4:  Relationships between classes and objects 

To meet the important requirements of engineering 
applications with respect to schema modifications and 
extensions, we provide a metaclass CLASS whose 
instances are representatives of all currently available 
classes. Like every class, CLASS inherits the properties 
of OBJECT, so the conventional operations on 
instances may be used to express schema modi- 
fications. The modification of an instance of CLASS will 
of course have far-reaching consequences for the 
corresponding class that will not be discussed here. 

The existence of CLASS is also justified by the 
necessity to formulate queries involving several classes. 
The method QUERY will therefore be considered as a 
class method of CLASS. By representing CLASS as an 
instance of its own extension, the user is enabled in a 
natural manner to formulate queries involving metadata, 
e.g. select the number of classes, the names of all 
classes, the attributes of a given class etc. A graphical 
visualization of the relationship between classes and 
objects is given in fig. 4. 

4.4 Predefined classes 

To simplify schema design, there are more predefined 
classes than just CLASS and OBJECT provided. Some 
of them are generic classes like stack, list, tree, etc. that 

4.5 Realization 

To realize the concepts of the model described in 
chapter 4, the description of classes and types as well 
as the object instances themselves have to be repre- 
sented by means of DAMASCUS concepts. The internal 
structure of instances will be mapped directly to IODM 
structures. Thus, references, relationships, versions etc. 
are easily supported. The metainformation about 
instances, i.e. descriptions of classes, inheritance 
hierarchy etc. will also be represented by primary 
objects and relationships of the IODM. In this respect, 
DAMASCUS serves as a kind of data dictionary for the 
general object manager (GOM). 

Fig. 5 shows the complete system architecture giving 
details of the general object manager. The GOM 
realizes the data model described above, including 
further features like access control and transactions, 
which are not treated in this paper. The administration 
kernel, integrating the DAMASCUS system, 
corresponds to fig. 3. It sets the GOM free from all tasks 
concerning complex object storage and access as well 
as method binding and execution. 

The GOM consists of a definition and a manipulation 
part. The definition part allows for the static declaration 
of classes (comprizing methods, rules and storage 
structure options). Sets of classes are analysed and 
compiled by special tools, the DDL compiler and the 
method compiler. Beside the utilities for user-defined 
classes, the GOM’s definition part provides the prede- 
fined classes, including OBJECT and CLASS. 

128 



user defined 

object caching 
class stru'cture I transient objects II 

f ig.  5: Architecture of the general object manager 

In contrast to the static features of the definition part, the 
manipulation part covers the dynamic functionality at 
runtime. The modification and evaluation of data is 
handled by the DML component which selects the 
objects and the methods to be applied. As classes are 
considered instances of a metaclass and thus are 
objects of their own, they may be modified and added 
via the manipulation part, too. System functions like 
transaction definition, tuning or granting of access rights 
are also provided by the manipulation part in an object- 
oriented manner. 

The access handler forms the link between the 
administration kernel and the runtime system. It does 
the mapping from persistent object storage to main 
memory data structures and vice versa. Its main tasks 
are object caching, administration of main memory 
access paths, transient object mangement and 
maintenance of information about the class structure. 

5. Conclusion and outlook 

In this paper, we have presented a case study of how to 
extend an existing DBMS kernel supporting complex 
objects with generic operations - a structurally object- 
oriented system - to include the complete palette of 
object-oriented features. Our approach, studied at the 
example of the DAMASCUS DBMS, has the general 
advantages of an evolutionary development, namely 
economic use of already available components and 
upward compatibility. 

Within the overall system architecture projected, the 
persistent storage facilities, a complex object manager, 
as well as the generic part of the method manager are 
already covered. The existing DBMS, extended by 
some features for the management of application- 
specific methods, can be used as an object 
administration kernel. On top of this, a general object 

manager realizes the higher-level concepts like classes, 
encapsulation, inheritance etc., providing a coupling 
mechanism to various programming languages. 

During our case study, we came across several open 
questions that we think worthwhile to be treated in the 
future. We would like to conclude the paper by 
sketching the problems concerning schemas and 
schema evolution, which might be supported by the 
basic schema and view facilities of DAMASCUS. 

The design of an object-oriented DBMS rises new 
questions as to the elaboration of the three classical 
schema levels (conceptual, external and internal). As to 
the conceptual schema, it has to be decided whether 
this notion is still relevant in a system that may be 
regarded as a set of independent object classes. Of 
course, the set of all existing classes might be regarded 
as 'the' conceptual schema. On the other hand, for 
reasons of managing large disjunct amounts of 
heterogeneous data, it might be useful to administer 
more than one conceptual schema, for example by a 
special metaclass SCHEMA. The DAMASCUS system 
already allows for an arbitrary number of schemas. 

The issue of schema evolution has also to be revised in 
the object-oriented context. Which kinds of modifications 
should be supported (just adding new classes, 
adding/modifying methods and attributes, flattening the 
class hierarchy)? If a class is modified, what should 
happen to its already existing instances (keep several 
schema versions, automatic/user-driven adaptation of 
objects etc.)? 

In an object-oriented system, an external schema - 
describing how data are to be viewed by an application 
- can be considered a set of classes derived from the 
original classes. As the object-oriented paradigm 
supports encapsulation, the security aspects of views 
are assured in a natural manner. A view class may 
either be derived directly from one class, optionally 

129 



selecting methods and attributes by a special public 
clause, or as the result of a query formulated in the 
usual query language. It has to be investigated which 
views have to be treated as virtual classes with transient 
objects only, which objects constitute the extension of a 
view, and what kind of manipulations (read only, modify, 
delete etc.) are applicable to the instances. The basic 
question is which possibilities for deriving views should 
be allowed (even rearrangement of references within 
complex objects, restructuring of the inheritance 
hierarchy?) and how they may be mapped to the 
DAMASCUS view concept. 

Literature 

[Banc881 

[CW85] 

(Ditt881 

[DKM85] 

[DKM87] 

[ Fish871 

[GR83] 

[Ken t79] 

[KDM88] 

[LSW89] 

F. Bancilhon et al.: The Design and 
Implementation of O,, an Object-Oriented 
Database System. In [Ditt88]. 

L. Cardelli, P. Wegner: On Understanding 
Types, Data Abstraction, and Polymorphism. 
ACM Computing Surveys, Vol. 17, No. 4, pp. 
471 -522, Dec. 1985. 

K.R. Dittrich: Advances in Object-Oriented 
Database Systems. Proc. of the 2nd Int. 
Workshop on Object-Oriented Systems, 
Lecture Notes in Computer Science, Vol. 
334, Springer 1988. 

K.R. Dittrich, A.M. Kotz, J.A. Mulle: A 
Multilevel Approach to Design Database 
Systems and its Basic Mechanisms. Proc. 
IEEE COMPINT, Montreal 1985. 

K.R. Dittrich, A.M. Kotz, J.A. Mulle: Database 
Support fcr VLSl Design: The DAMASCUS 
System. In: M.H. Ungerer (ed.): CAD- 
Schnittstellen und Datentransferformate im 
Elektronik-Bereich, Springer 1987. 

D.H. Fishman et al.: Iris: an Object-Oriented 
Database Management System. TOO1 S 

A. Goldberg, D. Robson: SMALL TA LK80: 
The Language and its Implementation. 
Addison-Wesley, May 1983. 

W. Kent: Limitations of Record-Based 
Information Models. ACM Transactions on 
Database Systems, Vo1.4, No.1, 1979, 

A.M. Kotz, K.R. Dittrich, J.A. Mulle: 
Supporting Semantic Rules by a 
Generalized Even t/Trigger M ec ha nism . 
Proc. EDBT, Venice 1988, LNCS Vol. 303, 
Springer. 

J. Loers, F.J. Schmid, W. Wenderoth: 
CADBASE - a Database System for Object 

5( 1987)1, pp.48-69. 

pp.107-131. 

and Version Management in CAE- 
Applications. lnformatik Fachberichte No. 
204, Springer Verlag 1989 (in german). 

[Meye881 B. Meyer: Object-Oriented Software 
Construction. Prentice Hall Int. Series in 
Computer Science1 988. 

[MSOP86] D. Maier, J. Stein, A. Otis, A. Purdy: 
Development of an Object-Oriented DBMS. 
Proc. OOPSLA’86. 

Ontologic Inc.: Vbase+ - Object Database for 
C++ - Functional Specification. Bilerica, Dec. 
1988. 

[Onto881 

[PM881 

[RS87] 

[ Sid 1801 

[ Sch 1881 

[Stro85] 

[SLW89] 

W881  

[Zdon86] 

J. Peckham, F. Maryanski: Semantic Data 
Models. ACM Computing Surveys, V01.20, 
No.3, Sept. 1988, pp.153-190. 

L.A. Rowe, M.R. Stonebraker: The POST- 
GRES Data Model. Proc. VLDB 13, 1987, 

T.W. Sidle: Weaknesses of Commercial 
Database Management Systems in 
Engineering Applications. Proc. Design 
Automation Conf., Minneapolis, Vo1.17, June 

G. Schlageter et al.: OOPS - an Object- 
Oriented Programming System with Integra- 
ted Data Management Facility. Proc. 4th Int. 
Conf. on Data Engineering, 1988, pp.118- 
125. 

B. Stroustrup: The C++ Programming 
Language. Addison-Wesley 1985. 

F.J. Schmid, J. Loers, W. Wenderoth: 
CADBASE - an Object-Oriented Database 
System for CAE-Applications. VDI Berichte 
No. 723, 1989 (in german). 

D.C. Tsichritzis, O.M. Nierstrasz: Fitting 
Round Objects into Square Databases. 
Proc. ECOOP, Oslo 1988, Springer Verlag. 

S.B. Zdonik: Version Management in an 
Object-Oriented Database. Proc. of an Intl. 
Workshop on Advanced Programming 
Environments, Trondheim 1986, Springer 
Verlag. 

pp.83-96. 

1980, pp.57-61. 

130 


