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Abstract This paper surveys recent results in pursuit-
evasion and autonomous search relevant to applications

in mobile robotics. We provide a taxonomy of search

problems that highlights the differences resulting from
varying assumptions on the searchers, targets, and the

environment. We then list a number of fundamental

results in the areas of pursuit-evasion and probabilistic
search, and we discuss field implementations on mobile

robotic systems. In addition, we highlight current open

problems in the area and explore avenues for future

work.

Keywords autonomous search · pursuit-evasion ·
search theory

The authors have been listed alphabetically based on equal con-
tribution to the article.

Timothy H. Chung

Department of Systems Engineering

Graduate School of Engineering and Applied Sciences

Naval Postgraduate School

Monterey, CA USA

Tel.: +1-831-656-7858

E-mail: thchung@nps.edu

Geoffrey A. Hollinger
Computer Science Department
Viterbi School of Engineering
University of Southern California

Los Angeles, CA USA

Tel.: +1-904-993-1584

E-mail: gahollin@usc.edu

Volkan Isler
Department of Computer Science and Engineering
College of Science and Engineering
University of Minnesota
Minneapolis, MN USA
Tel.: +1-612-625-1067
E-mail: isler@cs.umn.edu

1 Introduction

Joint research between divergent disciplines has led to

significant advances in autonomous search and pursuit-
evasion with mobile robots. While robotics applications

have often served as catalysts for vibrant research at

the intersection of traditional disciplines, only recently
have researchers undertaken the study of robotic sys-

tems for search missions and pursuit-evasion contexts.

This article surveys recent advances in this area, which
leverage both theoretical foundations and practical im-

plementations to forge new and innovative results.

Search and pursuit-evasion problems (also known
as “one-sided search” and “adversarial search,” respec-

tively) have traditionally been addressed using two con-

trasting approaches. One perspective has been to design
strategies that maximize searcher performance against

a worst-case adversary. In such settings, the evader is of-

ten characterized by infinite speed, complete awareness

of searcher location and intent, and full knowledge of
the search environment. Such methods offer guarantees

on the success of the search, defined, for example, by

capture of the target in finite time. However, the pow-
erful adversary model may yield solutions that are too

conservative in practical applications. In contrast, par-

allel research has emphasized probabilistic formulations
addressing average-case behaviors. Measures of interest

can include expected time until detection or expected

number of glimpses. The assumption about knowledge

about the evader behavior allows incorporating proba-
bilistic uncertainty in target locations, their behaviors,

and/or sensor observations.

Many variations on the theme of search and pursuit-
evasion problems exist, due to the diverse contexts in

which they are studied. Figure 1 outlines a partial tax-

onomy of the parameter space for search and pursuit-
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evasion models. Two prior surveys in pursuit-evasion

have focused on adversarial search when the environ-
ment is represented as a graph (Alspach, 2004; Fomin

and Thilikos, 2008). These surveys do not include prob-

abilistic search or field implementations on mobile robots.
In the current paper, we focus on the connection be-

tween fundamental work in search and pursuit-evasion

and applications to related problems in mobile robotics.
Rather than presenting a broad survey of results on a

wide range of pursuit-evasion games (which would re-

quire volumes), we limit our focus to a small number

of games which, in our opinion, are directly related to
robotics. We present results on the variants of these

games based on, e.g., the complexity of the environ-

ment and the sensing powers of the players, both of
which are important in modeling realistic scenarios. We

also omit the large body of work on related differential

games, such as the homicidal chauffeur game, and refer
the reader to the book on this topic (Başar and Olsder,

1999).

Similarly, though works in classical search theory
(Benkoski et al., 1991) construct stochastic optimiza-

tion models for operational settings, these approaches

often face shortcomings when addressing the computa-
tional, sensing, and mobility questions arising in phys-

ical mobile robot systems. We specifically examine the

foundational elements of search theory that have com-
monalities with relevant robotic missions, such as the

desire to maximize detection probabilities spatially or

minimize time until detection in temporal contexts. This

survey aims to bridge these related communities through
their respective but relevant formulations and theoret-

ical approaches.

This article surveys recent works in search and pursuit-

evasion research with applications to mobile robotic

systems. We have limited the scope of the paper to
two types of problems: (1) adversarial pursuit-evasion

games on graphs and in polygonal environments and (2)

probabilistic search where the motions of the searchers

and targets are independent. To see the difference be-
tween the two formulations, imagine a pursuer and evader

in a room with a round obstacle in the middle. To make

the game precise, let us assume that the players can
see each other at all times and have equal maximum

speeds. Suppose the pursuer picks his initial location,

followed by the evader. In this scenario, it is easy to see
that there exists an evader strategy which avoids cap-

ture indefinitely. Therefore, we say that a single pur-

suer cannot capture an evader in this environment. In

contrast, suppose the evader is moving in the same en-
vironment in a way that is independent of the pursuer’s

motion. For example, it may be performing a random

walk. In this case, the evader can be captured. In fact,

capture of the randomly walking evader can occur even

with a stationary pursuer, as the evader will eventually
hit the pursuer! The main question here would be the

design of an optimal strategy to capture the randomly

walking evader as quickly as possible. This is the focus
of probabilistic search.

In Section 2 we present results on a number of fun-

damental pursuit-evasion games that take place either

on graphs or in polygonal environments. The problems

in this section are games because the players have con-
flicting objectives: the pursuers try to “capture” the

evaders, and the evaders actively avoid capture. In Sec-

tion 3, we focus on probabilistic search problems in
which the target motion is independent of the pursuer

strategy. In Section 4, we discuss transitional research

that bridges the gap between theory and relevant appli-
cations on robotic systems. We then discuss problems

that arise specifically from robotics applications, and

we highlight challenges faced in implementations and

field studies. Finally, in Section 5, we conclude the sur-
vey with a discussion of open problems and avenues for

future research.

2 Pursuit-Evasion Games

In a pursuit-evasion game, one or more pursuers try to

capture one or more evaders who, in turn, try to avoid

capture. In robotics, pursuit-evasion games are used
for studying motion planning problems that arise in

adversarial settings, such as catching burglars, playing

hide-and-seek, and so on. In addition, pursuit-evasion
games are used to obtain results on the worst-case per-

formance of robotic systems. For example, imagine a

search-and-rescue setting in which the robots try to find
a lost person. In this case, by treating the lost person as

an adversarial entity trying to avoid being found, one

can obtain worst-case bounds on the number of robots

necessary for rescue in a given environment. This is be-
cause a pursuit strategy, if it exists, will guarantee that

the person would be found no matter how s/he moves.

On the other hand, in some settings a pursuit-evasion
formulation can be too conservative, for example, in

terms of the number of pursuers. In such cases, a prob-

abilistic model (Section 3) can be more appropriate.

Beyond robotics, pursuit-evasion games find appli-

cations in numerous other settings (network security,
modeling animal behavior, just to name a few). As a

result, researchers have studied many different versions

of pursuit-evasion games based on:

– Environment where the game is played: Examples

include plane, grid, graph, polygons, etc.
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Fig. 1 Illustration of the parameter space for autonomous search models.

– Information available to the the players: Do they

know each other’s positions all the time?

– Controllability of the players motion: Is there a bound

on their speed? Can they turn with arbitrary angles?
– Meaning of capture: In some games, the pursuer

captures the evader if the distance between them

is less than a threshold. In other games, the pur-
suers must see or surround the evader in order to

capture it.

In robotics literature, there are two primary ap-
proaches for solving pursuit-evasion games: differential

and combinatorial. The former approach is based on

techniques developed for solving non-cooperative dif-

ferential games (cf. Başar and Olsder (1999)). In these
games, differential equations governing the motion of

the players are brought together using Hamilton-Jacobi-

Isaacs (HJI) differential equations. The solutions to HJI
equations yield players’ strategies as control inputs for

achieving capture or evasion objectives. The advantage

of this approach is that one can model physical con-
straints such as bounds on turning velocity or accelera-

tion by expressing them as differential constraints. On

the down side, since the resulting equations are rather

complex (especially in complex environments), their so-
lutions are often numerical, only locally valid, and/or

heuristic-based rather than globally optimal.

Games that take place in complex environments (the
main focus of this section) are usually solved using com-

binatorial techniques. A common approach is to repre-

sent the environment geometrically (e.g., with a poly-
gon) and solve the game directly using this representa-

tion. Alternatively, a graph can be used to represent

the environment topologically. For example, one can

use a graph whose vertices correspond to rooms and
corridors in a building. The edges will then correspond

to doors and represent connections between rooms and

corridors. In general, one can start with a geometric rep-

resentation and study the pursuit-evasion game which

takes place on a graph extracted from the geometric fea-

tures. Natural candidates for such graphs are the dual

of the triangulation of a polygon or its medial axis.
In the remainder of this section, we survey pursuit-

evasion games that take place in these two types of

settings, and list open problems. We start with games
that take place on graphs.

2.1 Pursuit-Evasion on Graphs

In this section, we review work on two fundamental

pursuit-evasion games that take place on graphs. In the
cops-and-robbers game (Section 2.1.1), the players can

move one edge at a time. In contrast, the single evader

in Parson’s game can be arbitrarily faster than the pur-
suers (Section 2.1.2).

2.1.1 The Cops and Robbers Game

One of the basic games that takes place on graphs is

the cops and robbers game. In this game, the cops

(pursuers) try to capture a robber (evader) by mov-

ing along the vertices of a graph. The players move
in turns along the edges. The cops win the game if

they can move onto the robbers vertex. This game was

introduced by Nowakowski and Winkler (1983), and
by Aigner and Fromme (1984).

There are two immediate questions. (1) Given a

graph, what is its cop number: the minimum number of
cops necessary to capture the robber regardless of the

initial locations of the players? (2) What is the class

of graphs whose cop number is a given number? Let

us first consider a simple algorithmic solution, based
on the dynamic programming principle, for this game

which will be useful in highlighting its interesting as-

pects.
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Let G = (V,E) be the graph where the game takes

place. For each vertex v ∈ V , N(v) denotes its neigh-
borhood: N(v) = {u : (u, v) ∈ E, u, v ∈ V }. For now,

we assume that there is a single cop. We will represent

the state of the game with a pair (c, r) corresponding to
the cop’s and the robber’s locations respectively. Con-

sider the following algorithm which iteratively marks

the states of the game. Initially all states are unmarked.
Marking Algorithm for Cops-and-Robbers

– For all u ∈ V , mark the state (u, u)

– repeat
– for all unmarked states (c, r),

if ∀r′ ∈ N(r),∃c′ ∈ N(c) such that (c′, r′) is

marked, then mark (c, r).
– until no further marking is possible

It is a simple exercise to prove the statement “if all
states are marked, the cop can win the game from any

starting state” by induction on the marking order. For

the other direction (“if there is an unmarked state, the

robber wins game”), suppose that there is an unmarked
state (c, r) and the players start the game at vertices c

(for the cop) and r (for the robber). It must be that

there is a vertex r′ ∈ N(r) such that if the robber
moves to r′, no matter which vertex c′ the cop moves to,

the resulting state (c′, r′) must be unmarked; otherwise

(c, r) would be marked. Therefore, the robber can force
the game to stay in an unmarked state. Since all the

capture states are initially marked, this means that the

cop can never capture the robber.

Now that we have a simple algorithm to solve the
single cop game, let us consider various extensions.

Number of cops: A näıve implementation of the algo-

rithm above would run in O(n4) steps, where n = |V |.
Now, suppose there are k cops in the game. By ex-

tending the state representation from pairs of the form

(c, r) to (k+1)-tuples of the form (c1, . . . , ck, r), the al-
gorithm above can be extended for the multi-cop case.

However, the state space is now of size O(nk+1), which

causes the running time to increase to O(n2(k+1)). This

exponential increase in the running time clearly makes
the algorithm impractical for a large number of cops.

Of course, it is possible that there are more effi-

cient algorithms for solving the cops and robber game.
Indeed, for the single cop version, more efficient algo-

rithms were presented both by Nowakowski and Win-

kler (1983), and Aigner and Fromme (1984). However,
the problem of determining whether k cops with given

initial locations can capture a robber on a given undi-

rected graph is EXPTIME-complete (Goldstein and Rein-

gold, 1995). Therefore, it is not likely that significantly
more efficient algorithms exist for the general case.

One approach for dealing with this complexity is-

sue is to limit the class of graphs on which the game

is played. Structurally, it is easy to see that the cop

number of trees and cliques is one. Aigner and Fromme
(1984) show that the cop number of planar graphs is

at most three. Another approach is to approximate the

minimum number of cops. This interesting aspect of
the problem has not received significant attention which

gives us our first open problem: Are there efficient al-

gorithms for approximating the cop-number of a given
graph?

Order of Play: Imagine a game between a single cop

and the robber on a complete graph Kn. If the players
move in turns, the cop can capture the robber in a single

move. If they move simultaneously, the game does not

admit a deterministic solution in the sense that if the

cop fixes a deterministic strategy based on the location
of the robber, the robber can avoid capture indefinitely.

Similarly, if the robber fixes his strategy, he will be

captured after a single move. Of course, there is a mixed
equilibrium in which the players pick their next location

uniformly at random which yields capture in n steps.

It seems that randomization can be used to solve
simultaneous-move games in general. As an example,

consider the game on a dismantlable graph on which a

single cop wins under the turn-based model. It can be
shown that the duration of the game is bounded by n,

the number of vertices (Isler and Karnad, 2008). Hence,

the cop can guess the next n moves of the robber and

capture him with a small but non-zero probability. One
would expect that there are more efficient strategies:

In the turn-based model, when players move optimally,

the last configuration on a dismantlable graph before
capture is (c, r) with N(r) ⊂ N(c). At this stage, the

cop can simply guess the move of the robber and cap-

ture him. Turning this intuition into an efficient ran-
domized strategy is not straightforward since it is not

obvious how the cop can force this end condition under

the simultaneous move model.

One helpful observation is that whenever the cop

can capture the robber in the turn-based model, he has

a strategy to reduce the distance between the players to

one in the simultaneous move model. In the latter case,
the cop simply waits for a single step and executes the

turn-based strategy.

We summarize the discussion with the following open
problems: Characterize the role of the order of play in

the cops-and-robbers game. Is it true that a strategy for

the turn-based model can be turned into an efficient ran-
domized strategy under the simultaneous-move model?

The order of play has interesting implications when

the underlying domain is continuous. This issue is fur-
ther discussed in Section 2.2.

Information available to the players: In the basic

cops-and-robbers game, it is assumed that the play-
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ers know each other’s positions at all times. There are

some settings in which this assumption is plausible.
For example, Vieira et al. (2009) developed a system

where a network of stationary sensors provide informa-

tion about the location of the evader to the pursuers. In
such settings, the basic cops-and-robbers formulation is

applicable. However, in most robotics applications, the

players must operate under sensing limitations.

As a start, imagine that the players can not observe

each other unless they are located on the same vertex.
This game is known as the hunter-and-rabbit game. It

has been studied by Adler et al. (2003) 1. Let us re-

visit the game played on the complete graph Kn. Con-
sider any deterministic pursuer strategy which can be

specified, for example, by an ordered list of vertices to

be visited. As soon as the pursuer fixes this strategy,
the evader can avoid the pursuer by picking a differ-

ent order. In this case, the evader does not need to

“see” the pursuer. By simulating the pursuer’s strat-

egy, the evader will know the pursuer’s position at all
times. A symmetric argument can be made for deter-

ministic evader strategies. Using the standard game

theory terminology, we have just argued that this game
does not have a solution for pure (deterministic) strate-

gies. Observe that the pursuer can win the game (with

high probability) simply by picking the next vertex uni-
formly at random. Since the evader can not infer the

pursuer’s next move, the pursuer’s probability of suc-

cess at each move is 1
n . Therefore, the pursuer is ex-

pected to capture the evader in n trials. The proba-
bility of not capturing the evader after n ln n trials is

upper bounded by 1
n . It is worth emphasizing that a

randomized strategy where the player randomizes his
own actions is different from probabilistic games (pre-

sented in the next section) which are solved under the

assumption that the other player is moving according to
a probabilistic model (e.g., a randomly walking evader).

In most cases, the solution of a limited informa-
tion game is randomized. Note that this argument is

environment-specific and a randomized strategy is not

always necessary. For example, the pursuer can sweep a
path (graph) and capture the evader using a determin-

istic strategy. Nevertheless, Adler et al. (2003) showed

that in the no-visibility version, a single pursuer can

catch the evader in O(n log n) expected time on any
graph. It was also shown that this analysis is tight: there

are graphs and matching evader strategies which guar-

antee that no pursuer strategy can capture the evader
in less than Ω(n log n) steps in expectation.

So far, we considered the two extremes regarding
the visibility of the players: global (i.e., full) visibility

1 To avoid confusion, hereafter we will use the term pursuer

for the cop/hunter and evader for the robber/rabbit.

and no visibility. When the players have limited (or

local) visibility, representing the state of the game in
a compact fashion becomes harder. To see this, let us

revisit the marking algorithm given above. Suppose a

single cop tries to capture the robber. As the game pro-
gresses, the robber will keep track of a set C of all possi-

ble locations of the cop. Of course, when the robber sees

the cop, C will contain only the cop’s location. As the
players move, set C can contain multiple vertices. Now,

imagine that the robber is at location r, the cop is not

visible, and for every position r′ the robber can move

to, there is a vertex c ∈ C from which the cop can land
on r′. If this happens, the cop can obtain non-zero cap-

ture probability by randomizing among strategies that

lead to vertices in C. Hence, a winning robber strat-
egy, if it exists, must prevent the game from entering

configuration (r, C). Observe that the state of the game

now includes sets of vertices (C) which may result in an
explosion in the number of states. This makes design-

ing dynamic programming based algorithms for solving

pursuit-evasion games with limited visibility difficult.

Isler et al. (2006) studied the case where the evader

has local visibility. They study a variant where the play-

ers move simultaneously, and introduce the notion of i-
visibility where a player with i-visibility can see another

player only if the distance between them is at most

i. It was shown that when the evader has 1-visibility
(i.e., can see only the neighbors of its current location),

two cops with 1-visibility can capture the evader with

high probability on any graph. The expected capture
time with two pursuers is polynomial in the number of

vertices. A characterization of cop-win graphs where a

single pursuer suffices to capture the evader was also

presented. It was also shown that when the evader has
2-visibility, the number of cops required becomes un-

bounded: there are graphs which require Ω̃(
√

n) cops

to capture an evader with 2-visibility.

a b c

P

E

Fig. 2 Both players have 1-visibility. On this graph, the pursuer
P can not capture the evader E using a deterministic strategy.
However, a randomized capture strategy exists. (From Isler et al.

(2006)).
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Similar to the no-visibility case, the winning pur-

suit strategies are often randomized. A simple example
is illustrated in Figure 2. Suppose, on this graph, the

pursuer has a deterministic strategy of visiting the la-

beled vertices in the order a, b, c. Then, we can design
a evader strategy that waits until the pursuer arrives

at b and escapes to a. Afterwards, while the pursuer is

visiting c, the evader escapes to b and it is easy to see
that by repeating similar moves, the evader can always

avoid the pursuer. However, on this graph there is a

simple randomized strategy for the pursuer: pick one of

the leaves at random and visit that leaf.

More recently, Isler and Karnad (2008), studied the

effect of reducing the pursuer’s (i.e., the cop’s) visibil-

ity against an evader with global visibility. Let G be
the class of graphs where a single pursuer with global

visibility can capture the evader. They showed that a

pursuer with limited visibility can capture the evader

with high probability on any graph in G. However, there
exist graphs where the capture time is exponential in

the number of vertices. This was proven constructively

by presenting evader strategies which guarantee that
the expected capture time is lower-bounded by an ex-

ponential quantity.

Many open problems remain regarding identifying

the role of information available to the players on the
outcome of the game. We list the most general versions

as open problems: Suppose the cops have i-visibility and

the robber has j-visibility; what is the class of graphs on
which k cops suffice? What is the minimum number of

cops necessary to capture the robber on a given graph?

2.1.2 Parson’s game

When the graph on which the game takes place is an ab-

straction of a geometric environment, the temporal as-
pect of the game is sometimes lost. For example, in the

cops-and-robbers game, players move along one edge at

a time. But if the edges correspond to corridors of vary-
ing lengths, the turn-based model fails to capture this

variability. One approach, in line with the worst-case

spirit of pursuit-evasion games, is to make the evader

very powerful and to treat it as a adversarial target
which can be arbitrarily faster than the pursuers.

In this “infinite speed model,” the graph can be con-

sidered as a system of tunnels represented by the edges
of the graph in which an evader is hiding. To catch such

a powerful evader, the pursuers must surround it. Al-

ternatively, one can view the evader as a harmful gas

contaminating the graph which must be cleared. Par-
sons (1976) defined the search number (or sn(G)) of a

graph to be the minimum number of pursuers neces-

sary for capture. Determining the search number of a

graph was later found to be NP-hard (Megiddo et al.,

1988), and to be NP-complete due to the monotonicity
of optimal edge search schedules (Bienstock and Sey-

mour, 1991; LaPaugh, 1993). In this work, the evader

can only hide in the edges of the graph (referred to as
edge search).

Various versions of the infinite speed model play a

key role in solving visibility-based search problems in

robotics. These games will be reviewed in Section 4.

2.2 Pursuit-Evasion in Geometric Settings

In this section, we review the lion-and-man game which

is perhaps the most natural game to capture robotics

applications. After an overview of basic results, we present
results on variants of this game.

The lion-and-man game is a geometric version of

the cops-and-robbers game. In the original version, the

game takes place inside a circular arena of radius r. The

players have the same maximum speed, which we will
assume to be one. The objective of the lion (pursuer) is

to capture the man by moving onto the his current lo-

cation. Suppose the players move in turns. It is not too
difficult to see that the lion can win the game with the

following strategy: starting from the center of the circle,

stay on the radius that passes through the man’s cur-
rent location and move as close as possible to the man

(Figure 3-left). It can be shown that the capture time

of this strategy is O(r2) using a similar analysis to the

one given by Sgall (2001). It is interesting to note that
when the players move in continuous time, this strat-

egy does not reduce the distance between the players to

zero in finite time. Littlewood (1953) provided a proof
of how a similar argument can be made against any lion

strategy. Therefore, if the game is played in continu-

ous time, the man escapes. Alonso et al. (1992) showed
that there exists a strategy with which the lion can get

within a distance c of the man in time O(r log r
c ). They

also show that this results is almost tight by presenting

an evasion strategy for the man which delays capture

for at least Ω
(

r

√

log(r/c)
log log(r/c)

)

steps.

Sgall (2001) studied a version of the lion and man
game which takes place in the first quadrant (Figure 3-

middle). Let M be the initial location of the man, and

L be the initial location of the lion. If one of the co-
ordinates of the man is greater than or equal to the

corresponding coordinate of the lion, the man wins the

game. In the remaining case, Sgall shows that the lion

can win the game as follows: Let R be the line pass-
ing through L and M . The lion finds the smallest circle

which touches both of the axes and the center C of the

circle is on R. Afterwards, when the man moves to M ′,
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L

M
L′

M ′

L

M

C

L

M

C

Fig. 3 Lion and man in various environments. In all three cases, the lion guards a region given by a fixed center and the lion’s
position and makes progress by making the guarded region larger. Left: solution to the original lion and man game. Middle: lion and

man in the first quadrant. Right: lion and man in polygons.

the lion moves to the point closest to the man on the
line M ′C that it can reach. The number of the moves

required for this strategy is quadratic in the lion’s ini-

tial distance to the origin, but it is also a function of the

slope of the line R. Note that the players move in turns
as opposed to the model used in the original version

where they move simultaneously in continuous time.

Isler et al. (2005) studied the lion-and-man game

in polygonal environments (Figure 3-right) and showed

that a single lion can capture the man in any simply-

connected polygon. Recently, Bhadauria and Isler (2011)
showed that three lions can capture the man in any

polygon (possibly with holes). This leaves the following

problems open: What is the class of polygons in which
two lions can capture the man? What is the number of

lions necessary to capture the man in a complex envi-

ronment when the players are subject to sensing limita-
tions?

Variations: Perhaps the first strategy any one would

think of for the lion and man game is the greedy strat-
egy: move toward the man. One of the advantages of

the greedy strategy is that it is easy to implement. Fur-

ther, in the circular case, it seems that the lion can
eventually capture the man using the greedy strategy.

This is because, to maintain the separation between the

players, the man has to move away from the lion along
the line connecting them. This can not go on forever:

Eventually he will have to turn because of the bound-

ary. At this point, the distance between the players de-

creases. However, the gain in distance can be arbitrarily
small for example when both players are located on the

boundary of a large circle.

Recently, researchers studied two variations of the

lion and man game: higher dimensions and sensing lim-

itations. On the open plane, it has been known that

three lions can capture the man if and only if the man’s
initial location is contained in their convex hull (Jankovic,

1978). Recently, Kopparty and Ravishankar (2005) gen-

eralized this result to arbitrary dimensions: d + 1 lions

suffice in Rd. Alexander et al. (2009) further generalized
this result to convex environments of arbitrary dimen-

sion and shape. The same authors studied the game in

bounded environments and showed that the lion can

decrease the distance between the players by executing
the greedy strategy if the environment has the so-called

CAT(0) property (Alexander et al., 2006).

More recently, Bopardikar et al. (2007) studied sens-

ing limitations in the lion-and-man game. In their model,
the lion can observe the man’s location only if the dis-

tance between the players is less than a given threshold.

The man is reactive in the sense that he moves only
when he sees the lion. They show that the lion strat-

egy outlined in Figure 3 can be used to capture such

a reactive evader. Karnad and Isler (2008) focused on
a different type of sensing model in which the lion can

measure only the man’s bearing angle. In their model,

the players move in turns and take measurements after

each move. They studied the game in the first quad-
rant and showed that the lion can reduce the distance

between the players to the step size. The lion and man

game in a general three-dimensional environment re-
mains open.

3 Probabilistic Search

Pursuit-evasion games, presented in the previous sec-

tion, seek to maximize the worst-case performance on
search or capture. In contrast, probabilistic search meth-

ods consider optimization of the expected value of a

search objective, such as maximal probability of detec-
tion or minimal time to detection. The latter class of

probabilistic approaches is the focus of the theory of

search, which has a long-standing legacy in the field of

Operations Research (OR). Bernard Koopman’s sem-
inal works in search theory outlined analytic princi-

ples for applied probability and optimization models for

maritime warfare strategies (Koopman, 1956a,b, 1957)
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This original formulation required analytical specifica-

tion of the following components of a search-theoretic
model: (i) an a priori probability distribution of the tar-

get’s location within the search region, (ii) a measure

of the density of search effort, and (iii) the detection
probability afforded by application of a given density

of search effort. For example, search in a plane (such

as the open ocean) requires a two-dimensional target
probability density (i.e., probability per unit area), de-

noted p(x, y), with detection probability defined as

D(x, y, z) = Pr[target detected|target at x, y

and search effort z].

The search effort can be quantified, often interchange-

ably, by the search time, e.g., hours spent inspecting a

sector, or by the search cost, e.g., resources expended
observing an area.

In his book, McCue (1990) provides a thorough and

illustrative case study outlining an extensive operations

analysis of the search operations conducted during World
War II for submarines in the Bay of Biscay. In addi-

tion to mathematical models governing the likelihood of

target presence, McCue quantitatively models the den-
sity of the search effort in the context of the searcher’s

sensor sweep width (visual and radar detectors) and

flight speed. Such values define the sweep rate, which,
in conjunction with the chosen flight search path and its

length (or search duration), can determine the proba-

bility of detecting a submarine within the sensor’s sen-

sor swath. This text highlights the various modeling
elements utilized to apply the probabilistic search tech-

niques, and its relevance to robotic search and pursuit-

evasion applications is clear.
This probabilistic model forms the foundation of the

theory of search. Since the total search effort, such as

search time or physical assets, is often a constrained re-
source, the question of optimal allocation of the search

effort is of interest. Koopman further developed an ex-

ponential model for detection of targets based on ran-

dom search, which adequately reflects realistic sensors
and also offers analytic advantages. The exponential

model offers a mathematical representation of improv-

ing detection probabilities, while reflecting diminish-
ing returns with increasing search effort. Exploration

of these combined probability and optimization models

engendered significant research in both applied math
and the OR communities. Such investigations include

extensions to the probabilistic descriptions of the prior

distributions of target locations throughout a spatial

region of interest, as well as variations on the detection
models which account for the possibility of overlook-

ing the targets by the searcher’s imperfect sensors. For

these search problems, the objective is often either to

minimize the expected time until a target is detected

or to maximize the probability of its detection in the
face of “missed detection” probabilities.

Dobbie (1968) provided a survey of the classical

search theory literature, the first of several periods in
search theory, according to Stone (1989b), labeled as

classical (1942-1965), mathematical (1965-1975), algo-

rithmic (1975-1985), and dynamic search (1985-present).
The classical period describes the development of sim-

ple, yet practical, models for search and detection, en-

abling immediate application to search problems of in-

terest. Emphasis on analytic rigor characterized the
mathematical era, with focus placed on developing nec-

essary and/or sufficient conditions on the optimality of

search plans. As cheap computational resources evolved,
so did the research in the algorithmic period of search

theory, where numerical methods were constructed for

addressing more complex search problems, such as those
involving moving targets. Results from all of these pre-

ceding eras provide the fundamental methods for ad-

dressing dynamic search problems, where information

acquired during the search process is readily incorpo-
rated and used to generate new optimal search plans.

This last class of search problems continues to present

interesting and open challenges, increasingly so as greater
employment of autonomous systems have broadened

the communities of interest.

Benkoski et al. (1991) offered an annotated bibliog-
raphy, in which the authors provide an abridged taxon-

omy for the search theoretic problems to date, by first

dividing the literature into one-sided search and search

games and then investigating a number of subdivisions
therein, illustrated by Figure 4. The former relates to

contexts where the target is unaware of the search pro-

cess and does not act to conceal its whereabouts nor
actively evade an approaching searcher. The optimiza-

tion of search is unopposed, which may apply in oper-

ations where the searcher’s ability for stealth surpasses
that of the target. On the other hand, search games, as

described here, have relevance to the adversarial behav-

iors examined in the previous section. However, many

works in this category also consider discrete time and
space, including stationary placement of a target to ad-

versely affect the searcher’s efforts.

Much of these early works on the theory of opti-
mal search relied on assumptions to facilitate the for-

mal analysis, including exponential detection models

and continuous allocations of search effort (Koopman,

1979). Stone consolidated these analytic formulations
and developed conditions for uniformly optimal search

plans, relying on the above assumptions for sensing with

missed detections, continuous searcher trajectories, and
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Search Theory

Search Games

Mobile Evader

Immobile Evader

Ambush Games

Tactical Games

One- Sided Search

Stationary Target -  Discrete Space & Time

Stationary Target -  Basic Theory

Moving Targets

Constrained Searcher Motion

Fig. 4 Illustration of the partial taxonomy provided by Benkoski et al. (1991) for search theoretic problems and application areas
previously considered in the operations research and applied mathematics communities.

divisible search effort, and solved using Lagrange mul-

tipliers (Stone, 1989a).

Other search theoretic works during these earlier

eras involve characterization of lateral range curves for

detection, e.g., for both sonar and visual sensors (see
Figure 5), developing empirically-validated models for

physical sensing phenomena (e.g., passive and active

acoustic sensing) (Wagner, 1999), and development of
bounding cases such as random search in the presence of

overlook probabilities (Washburn, 2002) (see Figure 6).

Though much of these sensing models remain valid for

contemporary operational search problems (e.g., anti-
submarine warfare), there has been rapid development

of new sensor technologies, such as 3D LIDAR, depth

cameras, synthetic aperture sensors, etc., and their new
capabilities, including fused sensing modalities. These

systems offer the following open problem: Can unified

analytic models be developed for modern and future sens-
ing modalities that are applicable to probabilistic search

theoretic formulations?

The emphasis on continuous space and search effort
historically offered a context for analytic tools, such as

the calculus of variations, to solve for optimal search

distributions. Examination of discrete search space, ei-
ther via partitioning of a continuous area or by the in-

herent nature of the search problem (e.g., search for an

object among n discrete boxes), also developed as an
active area of research, even more so as computational

capabilities have evolved. In these models, suppose the

search for the target occurs over n locations or cells,

such that there is some finite probability, pi, that the
target resides in the ith cell. Let the detection function

D(i, z) be the probability of detecting the target in cell

i given that the target is truly in cell i and z search

Fig. 6 Illustration (from Washburn (2002)) of the cumulative
density function for the time until target detection for the ran-

dom search model. Search strategies which seek to, for example,
minimize the expected time until target detection, can be evalu-
ated and benchmarked against the random search model, which

serves as a lower bound on search performance.

effort has been applied. The search effort z can still

be a continuous (e.g., time spent inspecting the cell)
quantity or can now be represented in discrete units

(e.g., number of glimpses or inspections of the cell). As

before, the metric remains to either maximize the de-
tection probability or to minimize the time until the

target is found.

Some of the key results include the characteriza-
tion of the computational complexity of the constrained

path optimal search problem, where the searcher in-

curs a penalty (e.g., travel time or cost) for transit be-
tween locations in the search region. Wegener (1985)

showed that, for positive penalties or “switching costs,”

even special cases of the optimal search problem are

NP-hard. Trummel and Weisinger (1986) later indepen-
dently generalized these complexity results by reduction

from finding Hamiltonian paths on a graph, finding that

maximization of the probability of detection is an NP-
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Fig. 5 Illustration of mathematical models for sensor detection characteristics. Left: the lateral range curve for a range-dependent
sensor such as sonar. Right: an inverse cube model for visual (aerial) sightings.

complete problem, and that the minimization of the

expected time until detection is an NP-hard one. These

results also outline the tight relationship between the
two measures of search performance, highlighting their

equally prominent examination in the literature.

As a result of the intractability of solutions, much

research has since been dedicated to finding near-optimal

solutions to variations of the optimal search problem.

Relation to the vehicle routing problem (e.g., see Lenstra
and Kan (1981); Toth and Vigo (2002)) in operations

research offers numerous approximation algorithms, of-

ten relying on customized branch-and-bound approaches
(Washburn, 1998). These works formulate optimization

objective functions with relevance to both types of search

performance measures, namely maximal detection prob-
ability and minimal (expected) detection time. Further,

to address the additional challenge of a moving target,

Washburn (1983) proposed an iterative forward-and-

backward algorithm to address the case of a Markovian
target in a discretized search environment, and Eagle

and Yee (1990) provided a branch-and-bound algorithm

to find an optimal path for a single moving target. Ex-
tensions to these works have led to models for more

sophisticated target motion models (e.g., Dambreville

and Cadre (2002)). However, the following open prob-
lem remains: How can adversarial behaviors of target(s)

(such as the pursuit-evasion results highlighted in Sec-

tion 2) be incorporated into search theoretic constructs

within the constraints of computational tractability?

More recently, algorithms such as proposed by Sato

and Royset (2010) represent the current state-of-the-
art in solving these problems computationally. In this

work, the optimization model is given by a mixed inte-

ger linear program and solved using numerical solvers.

Constraints such as transit costs and search times (that

is, time required to inspect a given location) offer op-

erational relevance while maximizing the probability of
detection of multiple targets. Such results build upon

the foundational works (e.g., Chew (1967)) which define

such costs and show that the “most inviting strategy”

is optimal, i.e., myopic selection of the next search lo-
cation that has the highest ratio of probability of target

presence to cost of searching and/or transiting to the

location is provably best under special assumptions.

Another area in search theory that has seen much

activity involves the possibility of “false alarms” or false
positive detections. Kadane (1971) first proposed the

optimal whereabouts search, in which the searcher seeks

a stationary target, or if unable to find it within a fixed
search effort budget, specifies its most likely location

in the search region. Kadane’s work leveraged results

from the optimal stopping problem (Ross, 1969; Chew

and Milton, 1973), which offer specification of termi-
nation criteria for the search process. Such stopping

conditions are more relevant once false contacts are in-

troduced to the search problem formulation (Dobbie,
1973). Much of the more recent investigations, such as

Kalbaugh (1992) and Hohzaki (2007), studied the ef-

fect of these false contacts, which may arise not only
from sensor errors but also from the presence of physi-

cal objects in the search region distinct from the desired

target(s).

Bayesian approaches have also been utilized to ad-

dress imperfect sensors, recognizing the benefit of adap-

tive approaches. Assaf and Zamir (1985) utilized prior
distributions on locations of multiple objects and con-

structed theoretical descriptions of posterior distribu-

tions in a Bayesian manner from the searcher’s ob-
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servations. For these classes of probabilistic distribu-

tions, the authors further prove that the myopic “most
inviting” strategy is optimal, extending their prede-

cessors’ results from deterministic to probabilistic do-

mains. This and other contemporary works (e.g., Kimel-
dorf and Smith (1979)) led to substantial research in

the probabilistic modeling communities. However, these

theoretical results apply only for special distributions
and further rely on the absence of false positive detec-

tion errors, both of which are limiting in the case of real

world implementations.

Kress et al. (2008) examined how best to allocate

search effort, i.e., observations, at discrete locations to
detect a stationary target in minimum time. The au-

thors incorporate false positive detections, and their

model assumes that a separate effort must be expended
to verify the presence or absence of the target. The com-

bined cost of search and verification yields an expression

for the expected time until the target’s location is cor-

rectly identified, for which a myopic rule is shown to be
optimal. A remaining open problem includes: For what

broad classes of search problem formulations can a my-

opic search strategy be proven to be optimal? The lines
of research above bring the probabilistic search field

closer to the robotics community, which has been inves-

tigating sensor-based search planning in recent years, as
discussed in the sequel.

4 Search and Pursuit-Evasion in Robotics

Recently researchers have extended search and pursuit-

evasion techniques to allow for implementation on real-

world systems. In this section, we will discuss transi-

tional research that bridges the gap between theory and
application on robotic systems, and we will highlight

field deployments and implementation results. Within

the scope of this survey, we limit the discussion to prob-
abilistic search and pursuit-evasion on graphs and in

polygonal environments, which have direct impact on

robotic applications. We do not consider other forms of
pursuit-evasion games (e.g., differential games).

One of the key differences between theory and im-
plementation of search and pursuit-evasion algorithms

on mobile robots is that the environment and searchers

must be modeled realistically. For instance, graphical
representations are limited by the requirement for dis-

cretization of both the possible locations and the sensor

capabilities. Polygonal representations are somewhat

more realistic in that they allow for continuous sensing
and movement, but it is often difficult to obtain polyg-

onal maps from sensor data, especially in cluttered en-

vironments. A number of discrete and continuous rep-

resentations have been explored, which lead to various

solutions and methods for analyzing these solutions.
In addition, as noted above, many of the techniques

applied to mobile robotics can be partitioned into worst-

case and average-case techniques based on the assump-
tions on the target’s model and the objective function.

Techniques from the probabilistic optimization liter-

ature (see Section 3) as well as techniques from the
pursuit-evasion literature (see Section 2) have been ex-

tended for use on robotic systems. We will now discuss

both theoretical and experimental results particularly

relevant to robotics research.

4.1 Search in Polygonal Environments

To better model physical environments, robotics re-
searchers have studied formulations of the adversarial

search problem on representations other than a graph.

Guibas and LaValle et al. extended pursuit-evasion tech-

niques to guarantee detection of an adversarial target
in polygonal environments (LaValle et al., 1997; Guibas

et al., 1999). The resulting visibility-based pursuit-evasion

problem is as follows. Given a bounded continuous envi-
ronment, pursuers with controlled movements, an evader

whose position is unknown to the pursuer, and a visi-

bility sensor that defines an observed subset of the en-
vironment based on the position of a pursuer, the task

is to find a path for the pursuers that guarantees de-

tecting the evader, regardless of the path it takes. Such

a path is said to clear the environment. Some polygonal
environments can be cleared with a single pursuer, and

others require multiple pursuers. It can be challenging

to determine whether or not an environment is clearable
with a single pursuer, and small changes to the polygon

can actually modify the number of searchers required

(see Figure 7). However, Isler et al. (2005) showed that
a single pursuer can locate an evader in any simply-

connected polygon using a randomized strategy.

One important difference between pursuit-evasion

in polygonal environments and pursuit-evasion on the
edges of a graph is that polygonal environments can

require recontamination (i.e., a previously cleared area

must be opened to possible target intrusion during the
search) to clear with the minimal number of searchers.

In contrast, the edge search game (Parsons, 1976) will

never require recontamination to achieve a search strat-
egy with minimal searchers (LaPaugh, 1993). Guibas

and LaValle et al. showed that, in fact, a linear num-

ber of recontaminations are sometimes necessary for

visibility-based pursuit-evasion. More precisely, they show
that there exists a sequence of simply-connected free

spaces with search number equal to one such that Ω(n)

recontaminations are required for n edges.
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Fig. 7 Visibility-based pursuit-evasion examples. The environment on the left can be cleared by a single searcher with unlimited
visibility. Since the evader has unlimited speed, it can avoid the pursuer in the environment on the right. Additional examples can be
found in LaValle (2006) Section 12.4. The pursuer can use a randomized strategy to capture the evader in both cases. Compare with

Figure 2.

Figure 8 gives an example environment requiring a

linear number of recontaminations (Guibas et al., 1999).

The peak at the top of the environment must be re-
contaminated to continue clearing the legs. The envi-

ronment can be cleared by a single pursuer with line-

of-sight sensing, but the peak will be recontaminated

at least k − 1 times. The possibility of recontamina-
tion increases the difficulty of generating solutions to

polygonal search problems, particularly when multiple

searchers are required.

To solve the problem of polygonal search with a sin-
gle searcher, Guibas et al. (1999) introduced the idea of

gap edges: edges of a searcher’s visibility polygon that

border areas that may or may not contain the target.
Their approach discretizes polygonal environments into

visibility regions in which a robot can move freely with-

out modifying the state of its gap edges (i.e., whether

or not the region bordered by the gap edge contains a
target). The algorithm then generates and searches an

information space defined by the labels of the gap edges

combined with the location of the robot. The resulting
algorithm is guaranteed to find a solution with a single

searcher if one exists, and it has been shown to be effi-

cient in practice (Guibas et al., 1999). The only known
worst-case bound on the number of information states

generated by this algorithm is exponential in the num-

ber of vertices of the polygon. However, it is not clear

if this bound is tight.

Park et al. (2001) provided necessary and sufficient
conditions for polygonal environments clearable with a

single searcher, and they present an O(n2) algorithm

for clearing a polygon with a single pursuer, which im-

proves on the result from Guibas et al. with possibly

exponential worst-case running time. An alternative to

using deterministic strategies is the randomized strat-
egy given by Isler et al. (2005), which guarantees that

a single pursuer can locate an evader in any simply-

connected polygon with high probability in time poly-

nomial in the number of vertices.

With multiple searchers, both algorithms by Guibas

et al. and Park et al. would generate a potentially ex-

ponential number of visibility regions and search the re-

sulting information space. This approach is only tractable
for few searchers and small environments. One alterna-

tive is to use an iterative visibility-based method, but

doing so loses completeness.

The work described above is limited to 2D environ-
ments. Lazebnik (2001) provided an initial characteriza-

tion of the challenges of extending visibility-based tech-

niques to 3D environments. This leads us to an open
problem: Are efficient and complete algorithms possible

for clearing 3D environments? What restrictions on ge-

ometry and searcher capabilities are necessary for such
algorithms to be applicable?

A similar problem is that of of maintaining visi-

bility to an adversarially moving target in a cluttered

environment. This problem was originally introduced
by LaValle et al. (1997), and has been extended to

the case of limited range (Murrieta-Cid et al., 2007).

Bhattacharya and Hutchinson (2010) recently exam-

ined the presence of Nash equilibrium for the case of a
single pursuer maintaining visibility to an evader with

bounded speed. They presented necessary and sufficient

conditions for cases where the target can escape the
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Fig. 8 Environment from (Guibas et al., 1999) that requires a
linear number of recontaminations to clear with a single searcher.
The peak (labeled a) must be recontaminated as the legs (labeled

b and c) are progressively cleared. In contrast with edge search,
where recontamination cannot improve the search number, polyg-
onal environments can require recontamination in order to clear

with the minimal number of searchers.

pursuer. These methods provide strategies for continu-
ous tracking in surveillance applications. However, few

algorithms for maintaining visibility have been imple-

mented on real systems.

4.2 Searching Environments Represented as Graphs

As described in Section 2, a large portion of fundamen-
tal work in pursuit-evasion examined the problem of

edge search, where the evader resides on the edges of

a graph. Edge search does not apply directly to many
robotics problems. The possible paths of an evader in

many indoor and outdoor environments often cannot

be accurately represented as the edges in a graph. In
some cases, it is possible to construct a dual graph by

replacing the nodes with edges, but these translations

do not necessarily yield the same results as the original

problem.
Several versions of “node search” appear in the lit-

erature. In one formulation, the evader resides in the

edges of the graph (hence, despite the name, this is
really an edge search problem), and these edges are

cleared by trapping (i.e., two searchers occupy the ad-

jacent nodes). Hollinger et al. (2010a) discussed the
properties of adversarial search when the evader resides

on the nodes, and they show its formal relationship to

edge search. Any node search clearing strategy is also

an edge search clearing strategy, but the opposite is not
true. However, it is NP-hard to determine the minimal

searchers required for a clearing strategy for both edge

search and node search.

Kolling and Carpin (2010) presented a formulation

of the adversarial search problem, which they refer to
as GRAPH-CLEAR. The GRAPH-CLEAR problem is

represented by a weighted graph where nodes repre-

sent arbitrarily shaped areas, and edges represent tran-
sitions between these areas. Each node is labeled by

the number of searchers required to clear that area,

and each edge is labeled by the number of searchers to
guard that edge (i.e., prevent an adversary from mov-

ing through it). Kolling and Carpin showed that the

GRAPH-CLEAR problem of finding the minimal num-

ber of pursuers to clear this hybrid graph can be solved
efficiently if the topology is a tree, but is NP-hard for

general graphs. In addition, they developed a graph cut

algorithm to find the minimal number of searchers re-
quired for a GRAPH-CLEAR instance on trees. The

application of the GRAPH-CLEAR framework to com-

plex environments is a subject of ongoing research.

The traditional formulation of guaranteed search

does not restrict the movement of searchers: they are

allowed to “teleport” between nodes in the graph with-
out following the edges between them (Parsons, 1976;

Megiddo et al., 1988). This assumption enables searchers

to clear disjoint parts of the graph without maintain-
ing a route to a starting node. Barrière et al. (2003)

introduced the idea of connected search, during which

searchers must maintain a connected subgraph of cleared
nodes. Connected search guarantees that a path exists

to the starting nodes at all times and that searchers are

connected by a cleared or “safe” region of the graph.

Barrière et al. argued that such a constraint is an im-
portant quality for search strategies in the network de-

contamination domain. Connectedness is also an im-

portant characteristic of guaranteed search strategies
in robotics applications. Real robots cannot teleport

between nodes in the graph because these nodes rep-

resent physical locations. Instead, robots must restrict
their search paths to those traversable in the environ-

ment.

The algorithms described above attempt to mini-
mize the number of searchers necessary to clear a given

graph. Researchers have paid far less attention to gen-

erating clearing schedules that require minimal time or
distance. Minimizing distance and time are of particular

interest for robotics applications when a fixed number

of robots may be available, but time is limited. Borie
et al. (2009) discussed algorithms and complexity re-

sults for the minimal time and minimal distance clear-

ing problems. They provided a summary of the known

complexity results for the minimum pursuer, minimum
distance, and minimum time problems of various types

of graphs. Hollinger et al. (2010b) also examined the

problem of minimizing distance using a heuristic that
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bootstraps on solutions to the adversarial search prob-

lem on an underlying spanning tree. Despite these re-
cent efforts, we are left with the following open prob-

lems: A number of minimum time and minimum dis-

tance problems remain open on discrete graphs (see Ta-
ble 1). For such problems with known complexity results,

what heuristics and approximations are still possible?

4.3 Probabilistic Search Methods in Robotics

Both classical pursuit-evasion approaches and more re-

cent graph search algorithms rely on the worst-case

assumption of the target’s behavior, which precludes
modeling the target’s motion or incorporating uncer-

tainty into the search plans. An alternative formula-

tion of multi-robot search problems uses a probabilistic
approach to model the location of the target or the

movement of the searchers.

Many search problems can be formulated as a Markov

Decision Process (MDP) if the target’s position is fully
observed (Eaton and Zadeh, 1962) or a Partially Ob-

servable Markov Decision Process (POMDP) if it is un-

known. These formulations provide probabilistic repre-
sentations of the problem, which can reason about un-

certainty in measurements and target models. Roy et al.

(2005) showed how belief compression can be used to
make the POMDP search problem tractable for a sin-

gle pursuer, but the increased state space makes this

approach infeasible as the environment and team size

scales up.
A number of approximate sampling-based algorithms

are available for solving general POMDPs. A state-of-

the-art approach that involves sophisticated sampling
of the belief space was proposed by Ong et al. (2010) to

allow for mixed observability (e.g., when the locations

of the searchers are completely known but the location
of the target is unknown). The use of mixed observ-

ability extends POMDP capabilities to search problems

with up to two robots, but they require a discrete rep-

resentation of the problem, and Markovian target mo-
tion models. The Markovian assumption does not allow

any target model that requires a history. Hollinger et al.

(2009) also examined a receding horizon approximation
algorithm to the search POMDP that achieves perfor-

mance guarantees by sequentially allocating the search

effort, requiring only linear computation in the team
size. As in general POMDP methods, they also assume

a Markovian motion model, and the computation of

their method increases exponentially with the horizon

length.
Similar to formulations using partial observability,

researchers have applied combinatorial optimization tech-

niques to the coordinated search domain. Lau et al.

(2006) presented a dynamic programming approach for

efficiently finding a single non-adversarial target. The
approach provides optimal solutions for non-adversarial

search, but suffers from scalability issues as the team

size and environment size increases. Lau et al. (2005)
also proposed a branch and bound approach for finding

multiple targets that uses a novel bounding strategy.

They tested their approach in simulated environments,
where it was able to find optimal solutions with several

minutes of running time. Branch and bound techniques

have the advantage of finding optimal solutions on ter-

mination, as well as providing continually improving
suboptimal solutions. Such solutions often suffer from

scalability issues, and the development of better bound-

ing techniques is an active area of research.
A large number of techniques assume that the map

is known beforehand and does not change. Hespanha

et al. used a probabilistic framework to formulate a
pursuit-evasion problem on partially known maps. They

proposed a one-step greedy algorithm, and they proved

that their algorithm generates a one-step Nash equilib-

rium (Hespanha et al., 2000). The equilibrium guar-
antees that the searchers and target cannot do bet-

ter by modifying their strategies using a local search.

However, such algorithms do not guarantee global op-
timality, which leaves the following problem open: Are

there efficient probabilistic search algorithms with ap-

proximation guarantees for unknown and dynamic en-
vironments?

4.4 Implementation and Field Results

An increasing number of search and pursuit-evasion al-
gorithms are being implemented on multi-robot sys-

tems. A major issue with implementation on such sys-

tems is the requirement that the system be robust to
failures. This requirement has led to a number of ap-

proaches that are decentralized and avoid single points

of failure. Vidal et al. (2002) developed decentralized

coordination strategies for a UAV/UGV team search-
ing for multiple targets. Their testbed consisted of two

Pioneer 2-AT ground vehicles acting cooperatively with

a Ymaha R-50 helicopter. All vehicles were equipped
with GPS, inertial navigation, onboard computation,

a PTZ vision system, and wireless communication. Vi-

dal et al. presented two greedy coordination approaches
based on maximizing the probability of detection. They

demonstrated empirically that their method is able to

locate targets attempting to evade capture. However,

their method does not explicitly model the target as
adversarial and provides no guarantees in this case.

A number of researchers have applied probabilis-

tic filtering approaches to model the target. Bourgault
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Unit-Length Arbitrary-Width Graphs

Minimum Pursuer Minimum Distance Minimum Time

Paths P Pseudo-P Pseudo-P
Cycles P Pseudo-P Pseudo-P

Stars NP-Complete, Pseudo-P NP-Complete Strongly NP-Complete

Trees NP-Complete NP-Complete Strongly NP-Complete

Two-Vertex Graphs NP-Complete, Pseudo-P NP-Complete Strongly NP-Complete

Series-Parallel Graphs NP-Complete NP-Complete Strongly NP-Complete
Cliques NP-Complete NP-Complete NP-Complete

General Graphs NP-Complete NP-Complete Strongly NP-Complete

Unit-Width Arbitrary-Length Graphs

Minimum Pursuer Minimum Distance Minimum Time

Paths P P P

Cycles P P P
Stars P P Strongly NP-Complete

Trees P (Open) Strongly NP-Complete

Two-Vertex Graphs P P Strongly NP-Complete

Series-Parallel Graphs (Open) (Open) Strongly NP-Complete
Cliques P P Strongly NP-Complete

General Graphs NP-Complete NP-Complete Strongly NP-Complete

Table 1 Complexity results from (Borie et al., 2009) for various pursuit-evasion problems on different special case graphs. The known
hardness results are shown for clearing a discrete graph with multiple pursuers. The evader exists in the edges of the graph, and the
pursuers clear edges by traversing them. The pursuers also block the evader’s movement by occupying nodes on the graph.

et al. (2003, 2006) examined the problem of locating
a potentially moving, non-adversarial target where the

target’s predicted motion is modeled using a Bayesian

filter. In other work, these techniques were extended
to multiple targets (Wong et al., 2005). These works

applied decentralized data fusion to develop a fully dis-

tributed approach. They also examined several candi-

date utility functions and present an optimal search
strategy for a single searcher. While a large portion of

this work was validated in simulation, one notable ex-

ception is the work of Tisdale et al. (2009), which ap-
plied receding-horizon control with a variable horizon

to a UAV search problem where the target’s position

is modeled using recursive Bayesian estimation. Two
Sig Rascal airframes were equipped with GPS, wireless

communication, onboard computing, and downward look-

ing cameras. Their objective is to maximize the infor-

mation gain given a new UAV sensor measurement,
which yields performance guarantees due to the sub-

modularity of the objective function. Their approach is

purely average-case, and provides no guarantees if the
target is acting adversarially or if the forward model in

the probabilistic filter is violated.

Practical implementation of search algorithms has

been demonstrated in the wilderness search and rescue
domain. Goodrich et al. (2008) provided an extensive

experimental analysis of UAV-enabled search with vi-

sion, which includes field trials with search and rescue

operators. They utilized a small and light fixed wing
UAV equipped with autopilot, GPS, and a video camera

on a gimbal mount. The vehicle used a radio transceiver

for data communication and an analog transmitter for

video transmission. They presented a number of tech-
niques for mosaics and visual processing to improve how

information is viewed by human operators. Their work

used a relatively simple contour-based search strategy
to guide the UAVs, with the goal of covering the area.

While a number of techniques have been implemented

on mobile robots searching for non-adversarial targets,

fewer have been implemented for the adversarial search

problem. Gerkey et al. (2005) utilized the PARISH al-
gorithm to clear a small academic building with three

physical robots equipped with laser scanners. PARISH

frames the clearing problem as a parallel optimization,
and allows robots to form teams that work together to

clear the environment. Team formation and path gen-

eration are guided by a heuristic, which makes the al-
gorithms sensitive to choice of heuristic. Vieira et al.

(2009) presented experiments with a team of iRobot

Create platforms executing adversarial target search us-

ing a graph partition method. The robots utilize bea-
cons in the indoor environment to localize themselves,

and they execute a team strategy to capture a tar-

get moving faster than the searchers. Hollinger et al.
(2010a) implemented a building clearing algorithm us-

ing a human-robot search team on a single floor of

an office building. Their approach utilizes the clearing
schedule of an underlying spanning tree as a heuristic

to generate clearing schedules with few searchers and

fast clearing times. Their search team consisted of a

Pioneer differential drive platform with a camera for
detection and laser for localization, along with two hu-

mans carrying laptops. The humans’ laptops communi-

cate through the wireless network with the robot, and
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the laptop displays relay waypoint information to the

humans.
The three implementations above were on small ground

vehicles in indoor environments. Katsilieris et al. (2010)

presented a demonstration on two large ground vehi-
cles in an outdoor field with obstacles. The test robots

were spherical Rotundus GroundBot vehicles equipped

with GPS, wireless communication, and two cameras
for 360 degree field of view. The vehicles cleared the

outdoor environment of any potentially adversarial tar-

get, which the authors refer to as search and secure. The

algorithm does not provide guarantees on the number
of searchers or the time to complete the search, nor does

it account for communication limitations between the

robots. However, the robots successfully executed the
clearing strategy and were able to guarantee detection

of any potential adversary.

The above adversarial search algorithms were de-
signed to operate in 2D planar environments, possibly

with obstacles. Kolling et al. (2010) extended heuris-

tic adversarial search techniques to 2.5D environments

by utilizing an extended notion of visibility. Their al-
gorithm reduces the 2.5D search problem on a height

map to a graph through the use of sampling and calcu-

lation of detection sets. Once the graph is constructed,
standard 2D adversarial search algorithms can be ap-

plied. They demonstrated their algorithm using eight

human searchers in an outdoor testing site on the scale
of approximately one square kilometer (Kolling et al.,

2011). The development of more general techniques for

search in higher dimensions remains a topic for future

study.
Despite the progress made by these implementa-

tions, demonstrations of adversarial search on a team of

mobile robots in environments larger than a single floor
of a building or a small outdoor area have yet to be pre-

sented. Many of the challenges are related to systems

engineering for field testing of multi-robot teams. Due
to poor reliability and the number of possible failures,

few multi-robot systems have been tested on the scale

necessary to demonstrate pursuit-evasion in complex

environments. In addition, a reliable communication in-
frastructure is required to guarantee that the plan will

be executed without error. Decentralized architectures

and methods capable of utilizing new information as
it becomes available reduce these requirements, but the

development and evaluation of such algorithms remains

an active research area.

5 Conclusion and Future Research

Search and pursuit-evasion problems have recently be-

come central to many application domains in robotics,

naturally arising from the increased capabilities of au-

tonomous agents. Practical impact areas include: surveil-
lance, emergency response, and wilderness/ocean res-

cue. In keeping with its interdisciplinary nature, robotics

brings an applied context for revisiting existing theoret-
ical results, as well as inspiring new ones. This paper has

highlighted fundamental work in search and pursuit-

evasion as found in computer science, operations re-
search, and other communities, and it has provided a

survey of a number of recent advancements in robotics.

Many interesting open problems exist in search and

pursuit-evasion. The problems of minimizing time and
distance to capture in the adversarial domain have seen

far less attention than minimizing the number of pur-

suers. Since computing the number of pursuers is often
computationally hard, existing solutions are heuristic

in nature. Approximation algorithms with provable per-

formance guarantees are missing, even for many special-
case environments. These questions offer a possible bridge

with the probabilistic search problem, which tradition-

ally has examined the expected time to find a target.

Alternatively, using stochastic optimization methods in
the context of max-min pursuit-evasion games (e.g.,

“attacker-defender” models) can introduce notions of

probabilistic adversaries.
With few exceptions, current practical search and

pursuit-evasion algorithms have been designed for 2D

environments. The extension to 3D and higher dimen-
sions has been studied through theoretical analysis, but

the development of algorithms that are efficient for 3D

search and pursuit-evasion is still largely an open prob-

lem. The extension of graph theoretic search to more
general characterizations of visibility, such as 2.5D height

maps, provides one promising avenue for future work.

Issues of practical relevance, including bounded speed,
constrained mission endurance, refined sensing models,

and limited inter-robot communication, continue to be

of interest to many robotics research efforts. Such is-
sues must be resolved to enable large-scale testing and

fieldwork on robotic search systems. In addition, com-

mon software tools and architectures have yet to be

developed for search and pursuit-evasion. Libraries of
algorithms, environments, and data sets would facili-

tate ease of comparison for new techniques and provide

a resource for researchers entering the field. These and
other avenues for future research can be rewarding to all

relevant communities, driven by the collective interests

in robotic search and pursuit-evasion.
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