
Capturing an Evader in a Polygonal Environment with Obstacles

Deepak Bhadauria and Volkan Isler
Department of Computer Science and Engineering

University of Minnesota
{bhadau,isler}@cs.umn.edu

Abstract

We study a pursuit-evasion game in which one or
more cops try to capture a robber by moving onto
the robber’s current location. All players have
equal maximum velocities. They can observe each
other at all times. We show that three cops can
capture the robber in any polygonal environment
(which can contain any finite number of holes).

1 Introduction
Pursuit-evasion games in which one or more pursuers try to
capture an adversarial evader have numerous robotics appli-
cations such as surveillance and search-and-rescue. Due to
its practical importance, there has been significant interest
in solving pursuit-evasion games in complex environments.
Such environments are usually represented either topologi-
cally with graphs or geometrically using polygons.

One of the earliest games on graphs is the game introduced
by Parsons[Parsons, 1978]. In this game, pursuers try to cap-
ture an arbitrarily fast evader on a graph by “clearing” the
vertices and surrounding the evader. In the cops-and-robbers
game[Nowakowski and Winkler, 1983], the evader and the
pursuers move in turns. At each turn, players can move to
an adjacent vertex. The pursuers try to capture the evader by
moving onto its current vertex.

The visibility-based pursuit-evasion game[Suzuki and Ya-
mashita, 1992; Guibaset al., 1999] takes place in a polygon.
Similar to Parson’s game, the evader in this game is arbi-
trarily fast. The pursuers try to capture the evader by find-
ing it (i.e., by establishing line of sight). The lion-and-man
game[Alonso et al., 1992; Sgall, 2001] can be considered
as a geometric version of the cops-and-robbers game. In the
original version of this game, a lion tries to capture a man in
a circular arena by moving on to his current location. Both
players have equal maximum velocities. In this paper, we
study this game in polygonal environments with obstacles,
and show that three pursuers can capture the evader in any
polygonal environment.

In addition to its theoretical importance, our result provides
a pursuit strategy in a number of practical settings. One ex-
ample is the scenario studied by[Vieira et al., 2009]. In this
scenario, pursuers try to capture an evader in an environment

where a sensor network is deployed. The sensor network pro-
vides the location of the evader to the pursuers. It also fa-
cilitates communication among the pursuers. Since the un-
derlying domain in this game is polygonal, our results imply
that only three pursuers would suffice regardless of the floor
plan. Another example in which the evader’s location is re-
vealed to the pursuers is when an aerial vehicle supports the
ground-based pursuit team as illustrated in Figure 1.

Figure 1: A practical application of our result: if the location
of the evader is provided to the cops (by the helicopter), three
cops can capture the robber in any polygonal environment.
We ignore the non-holonomic constraints.

We build on the results by Aigner and Fromme who study
the cops-and-robbers game and show that three cops can cap-
ture the robber on any planar graph[Aigner and Fromme,
1984]. It turns out that this result does not directly translate
into pursuit-evasion in a polygonal environment due to the
continuous nature of the underlying domain. One might think
that this difficulty can be overcome simply by discretizing the
domain perhaps by placing a grid with resolution compara-
ble to the step-size of the players. Unfortunately, playingthe
game on such a grid does not guarantee capture in the origi-
nal problem since the evader can not be restricted to stay on
the vertices of the grid. Further, computing strategies using
this representation can be extremely costly in terms of run-
ning time. To see this, imagine scaling the environment while
keeping the step size constant. This way, the size of the grid
can be made arbitrarily large. Instead, an algorithm whose
complexity is proportional to the geometric parameters of the
environment (e.g. number of vertices of the polygon) is de-



sirable. One might try to circumvent this issue by playing the
game on a graph that captures the topology of the underlying
polygon (e.g. the triangulation graph or its dual). However,
since the evader can not be restricted to stay on the edges of
this graph as well, it can not be captured using the strategy by
Aigner and Fromme.

Since there is no obvious way of using the graph-based
pursuit strategy for pursuit in polygonal domains, we devel-
oped a new strategy which captures the continuous nature of
the domain. In our strategy, the pursuers restrict the evader
to smaller and smaller polygons with fewer number of obsta-
cles or vertices. Once the evader is restricted to a simply-
connected polygon (with no holes) it gets captured by using
a modification of the strategy presented by Isler et al.[Isler
et al., 2005]. We show that capture takes a finite number of
steps.

The paper is organized as follows. In Section 2 we describe
the game model. We present preliminary results adapted from
previous work in Section 3. Section 4 gives the details of our
three-cop strategy and its analysis. We conclude the paper in
Section 5 with directions for future research.

2 Game Model
The game is played in a simple polygonP which has finite
number of polygonal obstacles (or holes) in it. An instance of
the game is shown in Figure 2. There are two types of players
in the game: cops and a robber. The following rules are used
to play the game: At the beginning of the game, each cop
picks a location inP . Next, the robber chooses its location in
P . Afterwards, the game is played in alternate turns. All cops
move simultaneously in a turn. If anytime during the game a
cop can move to the current position of the robber, then the
cops win the game.

We assume that the maximum speeds of all the cops and the
robber are the same. We normalize the distances such that a
cop or a robber can move at most one unit in its turn. The
players know each others’ positions throughout the game.
The cops can communicate with each other at all times dur-
ing the game. By communicating they can coordinate their
moves.

3 Preliminaries
In this section, we present two results that will be used in
our strategy. The first result is from[Aigner and Fromme,
1984] and shows that a single cop can guard a shortest path in
the sense that whenever the robber crosses it, it will be cap-
tured. The second result is adapted from[Isler et al., 2005]
and shows that a single cop can capture the robber in any
simply-connected polygon (a simply-connected polygon is a
polygon with no holes).

[Aigner and Fromme, 1984] introduced the concept of
“guarding” a path in graphs. Their result applies to any metric
space, which gives us the following lemma.

Lemma 3.1 (Guarding a shortest path[Aigner and Fromme,
1984]). In a finite number of moves, a single copC can po-
sition itself on any shortest pathπ in such a way that for any
point x ∈ π, the distance betweenx and C is less than or
equal to the distance betweenx and the robberR’s location.
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R

Figure 2: A polygonP with obstacles. CopsC1, C2 andC3
try to capture robberR.

Afterwards,C can move in such a way that ifR crossesπ, it
will be captured byC.

Note that this guarding strategy involves aninitialization
phasein which the cop positions itself onπ to make sure
that no point onπ is closer to the robber than the cop. Dur-
ing the initialization phase, the robbercancrossπ. However,
once the initialization phase is over, the robber can no longer
crossπ without being captured. The length of the initializa-
tion phase is bounded by the length ofπ.

[Isler et al., 2005] studied the visibility-based version of
the cops-and-robbers game in simply-connected polygons. In
their model, a cop can see the robber only if the line seg-
ment connecting the two players does not intersect the bound-
ary of the polygon. They showed that a single cop can lo-
cate the robber, and two cops can capture the robber in any
simply-connected polygon. In the two-cop strategy, one cop
starts from an arbitrary pointo and moves so that it stays on
the shortest path between the robber’s current location and
o. Further, whenever the cop moves, its distance fromo in-
creases at least by a constant amount. Since the cop can not
see the robber when it is occluded from his field of view, the
second cop is used to determine the motion direction when
the robber is not visible. They also bound the number of
searches necessary. Since in our model the players know each
other’s locations at all times, the second cop is not necessary,
giving us the following result:

Lemma 3.2 (Capture in a simply connected polygon[Isler
et al., 2005]). A single cop can capture the robber in any
simply-connected polygon in finite time.

Using these two results as subroutines, we now present a
strategy for three cops to capture the robber in any polygonal
environment (possibly with obstacles).

4 Three-Cop Strategy
In this section we present a strategy for three cops to catch a
robber in finite time. We will divide the cops’ strategy into
rounds. In each round, the cops will coordinate their moves
and restrict the robber to a smaller polygon.



The game starts with the cops and the robber situated at
their initial positions. Then the robber makes the first move
and the cops respond with their moves. In each round cops
pick a shortest path in the polygon to guard1. Guarding this
path essentially partitions the current polygon, and restricts
the robber to a region which is smaller than the robber’s re-
gion at the beginning of the round.

In any round, the cops’ strategy will ensure that at most
two paths will need to be guarded by the cops. Therefore in
any round, at most two cops will be guarding these two paths
(by Lemma 3.1) and one cop will be free. In each subsequent
round, the free cop will guard a new path and relieve one of
the other cops.

Before presenting the full strategy, we describe two types
of moves. In each round cops will perform either aslicing
moveand/or anobstacle move. Each of the two moves is a
sequence of steps taken by a single cop. Before presenting
the details, we introduce the notation we will use throughout
the paper.

At round i, the robber will be restricted to a polygonal re-
gion Pi. We denote the boundary ofPi by δPi. Let n(Pi)
be the total number vertices inPi (including the obstacle ver-
tices). The boundaryδPi will consist of at most two shortest
paths,π1 andπ2, each guarded by a dedicated cop. The rest of
the boundary will either consist of a portion ofδP , the orig-
inal polygon’s boundary, or the boundaries of the obstacles.
Hence if robber tries to escape fromPi it has to cross either
π1 or π2 which will result in capture by Lemma 3.1. We label
the vertices ofπ1 andπ2 in the order they are encountered
while traversingδPi in clockwise direction. Without loss of
generality, letπ1 = u1, . . . , uk and letπ2 = ul, . . . , um.

At the end of each round, the strategy will maintain the
following invariants:

1. n(Pi) > n(Pi+1), the number of vertices inPi+1 are
strictly smaller than the number of vertices inPi.

2. Pi+1 ⊂ Pi, i.e., the new polygon is a subset of the pre-
vious one.

3. the paths guarded by the cops forming the boundary of
Pi+1 are both the shortest paths inPi+1.

We are now ready to present the two types of moves and
analyze their properties.

4.1 Obstacle Move

This move is performed when an obstacle is touching either
π1 or π2. First consider the case where there is an obstacle
touching exactly one ofπ1 orπ2. Suppose there is an obstacle
touchingπ1 but not π2 as shown in Figure 3-Top. In this
case, the obstacle move is performed by finding a shortest
path fromu1 touk in the interior ofPi excluding the points on
π1. Let this new path beπ3. The third cop starts guardingπ3.
Since the robber can be either betweenπ3 andπ1 or between
π3 andπ2, one of the cops fromπ1 or π2 will be free and the
robber will be restricted to a smaller region.

1The move will be over when the initialization phase of
Lemma 3.1 is complete.
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Figure 3: Two possible obstacle moves.Top: π3 is the new
guarded path.Bottom: An obstacle move where new paths
to guard are portions of the old paths.

In the remaining case, there is an obstacle which is touch-
ing the boundary ofPi in multiple connected regions (see Fig-
ure 3-Bottom). This means that the interior ofPi is composed
of multiple connected components. In this case the robber is
already restricted to the connected component it lies in. The
obstacle move is to simply switch to guarding the portion of
π1 andπ2 which are part of the boundary of this region. For
example, on the right side of the Figure 3, if the evader is in
region2 then the newπ1 (resp.π2) is the path fromui to uk

(resp.ul to uj).

Lemma 4.1. After an obstacle move, all the invariants men-
tioned above are maintained.

Proof. We verify that each invariant is maintained.

1. In each obstacle move, we remove an obstacle fromPi

and at least one vertex of this obstacle is not included in
Pi+1.

2. An obstacle move dividesPi into at least two regions,
and we pick one. Therefore,Pi+1 ⊂ Pi.

3. π3 is a shortest path inPi+1. So areπ1 andπ2. Hence,
the two guarded paths inPi+1 are both shortest paths.

4.2 Slicing Move
The slicing move is used to restrict the robber to a smaller
polygon when no obstacle touches the guarded paths. In a
slicing move two pointsua andub are picked fromδPi such
thatua (respectivelyub) lies on the boundary portion between
uk andul (respectivelyu1 andum). We compute a shortest
path betweenua andub and use the third cop to guard this
path as shown in Figure 4. Note that if there is no path be-
tweenua andub in Pi, this means thatua andub are in two
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Figure 4: A slicing move.π3 replaces eitherπ1 or π2 as a
path to guard depending on the location of the robber at the
end of the initiliazation phase of guardingπ3.

different components (i.e.Pi is disconnected). This can hap-
pen only when there is an obstacle whose boundary is touch-
ing δPi in multiple connected regions making it disconnected.
In this case we can use the obstacle move presented in the
previous section (Figure 3-right).

We now describe howua and ub are chosen. There are
a few variants of the slicing move based on the number of
vertices between the endpoints ofπ1 andπ2 (Figures 5 and 6).

Case 1: If π1 andπ2 share no common endpoints,π3 is
chosen as the shortest path connectinguk andum (i.e. we
pick uk asua andum asub). This case is illustrated in Fig-
ure 5 (left).

Case 2: In the second case,π1 andπ2 share a common end-
point (sayuk), and there is at least one vertex on the boundary
between the other endpoints (um and u1). In this caseπ3

is chosen as the shortest path connectinguk = ul and an
arbitrary vertex between the other two endpoints. This case
is illustrated in Figure 5 (right).
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Figure 5: The first two instances of the slicing move.Left:
The endpoints ofπ1 andπ2 are different (Case 1).Right:
The paths share one endpoint. The other end points are not
adjacent (Case 2).

Case 3: In the third case,π1 andπ2 have exactly one com-
mon endpoint and the other endpoints are adjacent (See Fig-
ure 6). Since an obstacle move is not possible,π1 andπ2

are not touching any obstacles. In this case,π1 andπ2 along
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Figure 6: Case 3:π1 andπ2 share one endpoint and the other
endpoints are adjacent.

with the polygonal edge,(uk, ul) form a structure called a
funnel [Guibaset al., 1987]. The common end-point (u1 in
Figure 6) is the apex of the funnel. Bothπ1 andπ2 are in-
wardly convex: when walking from the apex touk, one would
always turn locally left. This is becauseπ1 is a shortest path
and no obstacle is touching it from the inside. Therefore, if
there was a right turn (i.e. an inward convex vertex), one can
find a shorter path fromu1 to uk which is a contradiction. A
symmetric argument holds forπ2.

When there are no obstacles inside the funnel, the inward
convex structure ofπ1 andπ2 yields a simple partition of the
funnel which can be used for computing shortest paths easily.
The partition is obtained by extending each edge ofπ1 and
π2 toward the edge(uk, ul) as shown in Figure 6. Suppose
edgee onπ1 was extended to form the boundary of a partition
cell. The shortest path fromu1 to pointa in this partition cell
continues alongπ1 until it leavese, followed by a line seg-
ment from the last vertex ofe to a. For example, in Figure 6,
the shortest paths fromu1 to a andb continue alongπ1 until
x followed by the line segmentxa andxb respectively. We
refer the last vertex on the boundary as thecornervertex of a
point. Hencex is the corner vertex of botha andb.

We now describe the slicing move for this case. If there
are no obstacles inside the funnel, the third cop can capture
the robber by Lemma 3.2. Otherwise, we show that there
exists a point on the edge(ul, uk) whose shortest path from
u1 touches an obstacle.

Remove all the obstacles from the funnel and compute the
partition described above. We start from the leftmost parti-
tion and move toward right. For each partition we order all
the obstacle vertices in that partition in anti-clockwise direc-
tion with respect to their corner vertex. We extend the line
segment from the corner vertex to the first obstacle vertex in
this ordering until it hits edge(ul, uk). In Figure 7, for par-
tition tx2x3 we extend the line segment fromt to the first
vertex in the ordering until it hits(ul, uk) at o. Therefore the
shortest pathπ3 from u1 to o touches the obstacle. The third



cop guards this path. We now consider the part of the funnel
the evader is restricted to. If the part contains no obstacles,
the free cop guarding eitherπ1 or π2 can capture the robber
(Lemma 3.2). Otherwise,π3 is touching an obstacle. There-
fore, we can perform an obstacle move.

Observe that in formingπ3 we introduced a new vertex
in Pi (at o in Figure 7). However, in computingPi+1 we
removed at least two vertices (eitheruk orul plus the obstacle
vertex touchingπ3). Hence the invariantn(Pi+1) < n(Pi) is
maintained.

u1

uk ulx1 x2 x3 x4 x5
o

t

Figure 7: A funnel with its partition. There exists a pointo on
the boundary such that the shortest path fromuk to o touches
the boundary.

Case 4: The only remaining case is whenπ1 andπ2 have
common endpoints at both ends. Sinceπ1 andπ2 are both
shortest paths, it must be thatπ1 = π2 and the evader has
already been captured, otherwise we get a contradiction with
the fact that neitherπ1 norπ2 is touching any obstacles.

Among the four cases mentioned above, case 4 yields cap-
ture. In remaining cases 1-3,ua andub can be chosen accord-
ingly and a free cop can be assigned to guard the shortest path
π3 betweenua andub (recall that such a path exists because
an obstacle move is not possible). The pathπ3 partitionsPi

to at least two regions. The robber can be either betweenπ3

andπ1 or betweenπ3 andπ2, therefore one of the cops from
π1 or π2 can be relieved from guarding the path.

We now prove a technical lemma.
Lemma 4.2. The pathsπ1 andπ2 can be chosen so that they
do not share an edge.

Proof. Let us assume thatπ1 andπ2 overlap which implies
that they share at least one edge. Also, there must be at least
one edge inπ1 which is not inπ2, otherwise guardingπ2

is redundant. We also know that bothπ1 andπ2 lie on the
boundary ofPi. But sincePi is simple, the shared edges
will include one of the two edges at the end of the two paths.
Therefore, without loss of generality, we can assume that the
last edge ofπ1 and the first edge ofπ2 is shared. Equivalently,
let π1 = u1, . . . , ul, uk andπ2 = ul, uk, . . . , um, i.e.,π1 and
π2 share the edge(ul, uk).

Sinceπ1 is a shortest path, a pathπ′

1 = u1, . . . , ul will
also be a shortest path betweenu1 andul. If the two cops
pick pathsπ′

1 andπ2 to guard, the edges guarded will be the
same as before, but the paths will be non-overlapping. Hence,
as a result, we can always findπ1 andπ2 such that they don’t
share a common edge.

By Lemma 4.2,π1 andπ2 will not overlap. Further, cases
1-4 above cover all possible non-overlapping cases. There-
fore we have:

Corollary 4.3. If an obstacle move does not exist, either the
robber is captured or a slicing move exists.

For case 3, we have already shown thatn(Pi+1) < n(Pi).
In all other cases, similar to the proof of Lemma 4.1, it can be
verified that the slicing move maintains the invariants giving
us the following lemma.

Lemma 4.4. After a slicing move, all the invariants are main-
tained.

4.3 Complete Strategy and Analysis

We are now ready to describe the full strategy. At the begin-
ning of the game, two cops pick two separate edges and guard
them asπ1 andπ2. Afterwards, the cops perform an obsta-
cle move if an obstacle is touchingπ1 or π2, or an obstacle
is touching the boundary ofPi in two connected regions. If
an obstacle move is not possible, a slicing move is performed
which is always possible by Corollary 4.3.

We now present our main result which shows that the se-
quence of moves described above result in capture in finite
number of steps.

Theorem 4.5. Three cops can capture the robber in a finite
number of steps in any polygon with a finite number of obsta-
cles.

Proof. Suppose the step size of the cops and the robber is
one. LetP be the initial polygon andn be the number of
vertices ofP . After each round, the robber is restricted to
a subset of the area before the move. Further, the new area
has at least one less vertex than the previous area. Therefore,
the number of rounds is bounded by the number of vertices
(including obstacle vertices).

Next we bound the length of each round. Each slicing or
obstacle move is comprised of picking a shortest pathπ in Pi

and guarding it. Hence, the length of each round is bounded
by the time to reachπ followed by the initialization phase of
guarding it. Each of these quantities is bounded by the diam-
eter ofPi (i.e. the longest shortest path inPi). Therefore, the
length of roundi bounded by2diam(Pi).

Is there an upper bound ondiam(Pi) in terms of the pa-
rameters ofP? While it is not easy to obtain a tight bound
on this quantity, it is easy to see that it is bounded by the
areaA of P because shortest paths are non-intersecting. This
suggests an upper bound of2nA for the capture time.

For a given polygon, this upper bound is likely to be loose
when the shortest paths are much shorter than the areaA.
However, the capture time can be as large asA in general:
imagine a long and thin rectangular environment with cops
starting on one end and the robber on the other. We also note
that the diameter ofPi can be larger than the diameter ofP .
We leave the problem of obtaining a tight bound on capture
time as an interesting problem for future research.



5 Conclusion
We studied a new variant of the cops and robbers game, and
showed that three cops can capture the robber in any polyg-
onal environment. In our model the players have equal max-
imum velocities and have access to each others’ locations at
all times. As noted earlier, an immediate question for future
research is to obtain a tight bound on capture time.

An important extension for future work is to relax the as-
sumption about the information available to the players. For
example, if the cops can obtain information about the robber’s
location only when they establish line-of-sight visibility, how
many cops are necessary? How does the outcome change if
there are communication limitations?

Another challenging extension is to study the case when
the cops are subject to non-holonomic motion constraints as
in the case of a car chase.
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