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Abstract where a sensor network is deployed. The sensor network pro-

) ) ) ) vides the location of the evader to the pursuers. It also fa-
We study a pursuit-evasion game in which one or cilitates communication among the pursuers. Since the un-
more cops try to capture a robber by moving onto derlying domain in this game is polygonal, our results imply
the robber’s current location. All players have that only three pursuers would suffice regardless of the floor
equal maximum velocities. They can observe each  plan. Another example in which the evader's location is re-
other at all times. We show that three cops can  yealed to the pursuers is when an aerial vehicle supports the

capture the robber in any polygonal environment  ground-based pursuit team as illustrated in Figure 1.
(which can contain any finite number of holes).

1 Introduction

Pursuit-evasion games in which one or more pursuers try to
capture an adversarial evader have numerous robotics appli
cations such as surveillance and search-and-rescue. Due to
its practical importance, there has been significant istere
in solving pursuit-evasion games in complex environments.
Such environments are usually represented either topologi
cally with graphs or geometrically using polygons.

One of the earliest games on graphs is the game introduced
by ParsongParsons, 1978 In this game, pursuers try to cap-
ture an arbitrarily fast evader on a graph by “clearing” theFigure 1: A practical application of our result: if the lowat
vertices and surrounding the evader. In the cops-and-rebbeof the evader is provided to the cops (by the helicoptergehr
game[Nowakowski and Winkler, 1993 the evader and the cops can capture the robber in any polygonal environment.
pursuers move in turns. At each turn, players can move tdVe ignore the non-holonomic constraints.
an adjacent vertex. The pursuers try to capture the evader by
moving onto its current vertex. We build on the results by Aigner and Fromme who study

The visibility-based pursuit-evasion gaf®uzuki and Ya-  the cops-and-robbers game and show that three cops can cap-
mashita, 1992; Guibaat al, 1999 takes place in a polygon. ture the robber on any planar graphigner and Fromme,
Similar to Parson’s game, the evader in this game is arbi1984. It turns out that this result does not directly translate
trarily fast. The pursuers try to capture the evader by findinto pursuit-evasion in a polygonal environment due to the
ing it (i.e., by establishing line of sight). The lion-andam  continuous nature of the underlying domain. One might think
game[Alonso et al, 1992; Sgall, 200lLcan be considered that this difficulty can be overcome simply by discretizing t
as a geometric version of the cops-and-robbers game. In ttdomain perhaps by placing a grid with resolution compara-
original version of this game, a lion tries to capture a man inble to the step-size of the players. Unfortunately, playhre
a circular arena by moving on to his current location. Bothgame on such a grid does not guarantee capture in the origi-
players have equal maximum velocities. In this paper, wenal problem since the evader can not be restricted to stay on
study this game in polygonal environments with obstaclesthe vertices of the grid. Further, computing strategieagisi
and show that three pursuers can capture the evader in arlyis representation can be extremely costly in terms of run-
polygonal environment. ning time. To see this, imagine scaling the environmentevhil

In addition to its theoretical importance, our result pad®ms  keeping the step size constant. This way, the size of the grid
a pursuit strategy in a number of practical settings. One exean be made arbitrarily large. Instead, an algorithm whose
ample is the scenario studied Dyieira et al, 2009. In this  complexity is proportional to the geometric parametersef t
scenario, pursuers try to capture an evader in an environmeenvironment (e.g. number of vertices of the polygon) is de-




sirable. One might try to circumvent this issue by playing th
game on a graph that captures the topology of the underlying
polygon (e.g. the triangulation graph or its dual). However
since the evader can not be restricted to stay on the edges of
this graph as well, it can not be captured using the stratggy b
Aigner and Fromme.

Since there is no obvious way of using the graph-based
pursuit strategy for pursuit in polygonal domains, we devel
oped a new strategy which captures the continuous nature q
the domain. In our strategy, the pursuers restrict the evade
to smaller and smaller polygons with fewer number of obsta-
cles or vertices. Once the evader is restricted to a simply-
connected polygon (with no holes) it gets captured by using
a modification of the strategy presented by Isler eflaler
et al, 2004. We show that capture takes a finite number of
steps.

The paper is organized as follows. In Section 2 we describgigure 2: A polygonP with obstacles. Cop§'l, C2 andC3
the game model. We present preliminary results adapted fromty to capture robbeR.
previous work in Section 3. Section 4 gives the details of our
three-cop strategy and its analysis. We conclude the paper i

Section 5 with directions for future research. Afterwards,C’ can move in such a way thatif crossesr, it
will be captured byC.
2 GameMod€ Note that this guarding strategy involves iitialization

. ; ; ; - phasein which the cop positions itself on to make sure
The game is played in a simple polygéhwhich has finite that no point onr is closer to the robber than the cop. Dur-

number of_ polygonal obstacles (or holes) init. Aninstarfce o, the initialization phase. the robbeancrossr. However
_the game is shown in Figure 2. There are two types of playerg1r?ce the initializatioﬁ has:e is over, the robbe.r can noédn

in the game: cops and a robber. The following rules are use8ross without bein Ea tured Thé lenath of the initializag-
to play the game: At the beginning of the game, each co@On 7kr1ase is boundgd bpthe Ién thiof 9

picks a location inP. Next, the robb_er chooses its location in [IsFI)er et al, 2009 stuc?lied the gisibilit _based version of
P. Afterwards, the game is played in alternate turns. All copsth i d bb in simolv- 4 ted ol |
move simultaneously in a turn. If anytime during the game € Cops-and-robbers game In Simply-connected polygans.

cop can move to the current position of the robber, then th helrtmodel, ? Ccf(ﬁ Ct?/\? S?e the drobber ;)_nlty i thtetrl:ni seg(;
cops win the game. ment connecting the two players does not intersect the boun

We assume that the maximum speeds of all the cops and Y of the polygon. They showed that a single cop can lo-

robber are the same. We normalize the distances such thaFﬁte Ithe robbetr, (;;md ltWO colpstﬁarl capture tthet robber in any
cop or a robber can move at most one unit in its turn. Theo!MPly-connected polygon. In the two-cop strategy, one cop

players know each others’ positions throughout the gamestarts from an arbitrary point and moves so that it stays on

The cops can communicate with each other at all times dUII_he shortest path between the robber’s current location and

ing the game. By communicating they can coordinate theif’- Further, whenever the cop moves, its Q|stance feoam-
moves. creases at least by a constant amount. Since the cop can not

see the robber when it is occluded from his field of view, the
oo . second cop is used to determine the motion direction when
3 Ere“m_ma“es _ _the robber is not visible. They also bound the number of
In this section, we present two results that will be used insearches necessary. Since in our model the players know each
our strategy. The first result is frofigner and Fromme, other’s locations at all times, the second cop is not necgssa
1984 and shows that a single cop can guard a shortest path igiving us the following result:

the sense that whenever the robber crosses it, it will be cag- . -
. ’ emma 3.2 (Capture in a simply connected polygbisler
tured. The second result is adapted frfisier et al., 2004 ot al, 2005])(_ Apsingle cop ca%ycapture the Pob)t/)ger in any

and shows that a single cop can capture the robber in arQ/impIy-connected polygon in finite time

simply-connected polygon (a simply-connected polygon is a ; -

polygon with no holes). Using these two results as subroutines, we now present a
[Aigner and Fromme, 1984introduced the concept of Strategy for three cops to capture the robber in any polylgona

“guarding” a path in graphs. Their result applies to any ietr environment (possibly with obstacles).

space, which gives us the following lemma.

Lemma 3.1 (Guarding a shortest patAigner and Fromme, 4 Three-Cop Strategy

1984). In a finite number of moves, a single c6pcan po-  In this section we present a strategy for three cops to catch a
sition itself on any shortest pathin such a way that for any robber in finite time. We will divide the cops’ strategy into
pointz € 7, the distance betweenand C is less than or rounds. In each round, the cops will coordinate their moves
equal to the distance betweerand the robbetR’s location.  and restrict the robber to a smaller polygon.



The game starts with the cops and the robber situated at u/\/\
their initial positions. Then the robber makes the first move

and the cops respond with their moves. In each round cops ™

pick a shortest path in the polygon to gudrdGuarding this
path essentially partitions the current polygon, and istr

the robber to a region which is smaller than the robber’s re-
gion at the beginning of the round.

T2

In any round, the cops’ strategy will ensure that at most 3 ‘
two paths will need to be guarded by the cops. Therefore in
any round, at most two cops will be guarding these two paths 7
(by Lemma 3.1) and one cop will be free. In each subsequent \/\

round, the free cop will guard a new path and relieve one of U m
the other cops.
Before presenting the full strategy, we describe two types ,
of moves. In each round cops will perform eitheslecing .
moveand/or anobstacle move Each of the two moves is a
sequence of steps taken by a single cop. Before presenting 1
the details, we introduce the notation we will use throughou
the paper.
At roundi, the robber will be restricted to a polygonal re-
gion P;. We denote the boundary @, by 6P;. Letn(F;)
be the total number vertices i (including the obstacle ver-
tices). The boundaryP; will consist of at most two shortest
paths;r; andr,, each guarded by a dedicated cop. The rest o
the boundary will either consist of a portion &P, the orig-
inal polygon’s boundary, or the boundaries of the obstacles In the remaining case, there is an obstacle which is touch-
Hence if robber tries to escape froR) it has to cross either ing the boundary of; in multiple connected regions (see Fig-
my or o which will result in capture by Lemma 3.1. We label ure 3-Bottom). This means that the interiorfgfis composed
the vertices ofr; and s in the order they are encountered of multiple connected components. In this case the robber is
while traversingd P; in clockwise direction. Without loss of already restricted to the connected component it lies ire Th

2 \/
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Figure 3: Two possible obstacle movéop: w3 is the new
guarded pathBottom: An obstacle move where new paths
%o guard are portions of the old paths.

generality, letty = uq,...,ux andletry = ug, ..., Um,. obstacle move is to simply switch to guarding the portion of
At the end of each round, the strategy will maintain them; andm, which are part of the boundary of this region. For
following invariants: example, on the right side of the Figure 3, if the evader is in

region2 then the newr; (resp.m») is the path fromu,; to uy
(resp.u; to uy).
Lemma4.1. After an obstacle move, all the invariants men-
2. P41 C By, i.e., the new polygon is a subset of the pre-tioned above are maintained.

vious one.

1. n(P;) > n(P;+1), the number of vertices i, are
strictly smaller than the number of verticesih

3. the paths guarded by the cops forming the boundary of proof. We verify that each invariant is maintained.

P, are both the shortest pathsi, ;. 1. In each obstacle move, we remove an obstacle ffom

and at least one vertex of this obstacle is not included in
We are now ready to present the two types of moves and Py

analyze their properties. - . .
2. An obstacle move divideB; into at least two regions,

41 Obstacle Move and we pick one. Thereforé; ., C P,.

3. w3 is a shortest path i®;, ;. So arer; andm,. Hence,

This move is performed when an obstacle is touching either the two guarded paths iR, , are both shortest paths.

my or my. First consider the case where there is an obstacle

touching exactly one af, or m5. Suppose there is an obstacle O

touchingm; but notm, as shown in Figure 3-Top. In this ..

case, the obstacle move is performed by finding a shorteét2 SlicingMove

path fromu; towuy in the interior of P; excluding the pointson  The slicing move is used to restrict the robber to a smaller

1. Let this new path bes. The third cop starts guarding.  polygon when no obstacle touches the guarded paths. In a

Since the robber can be either betwegrandm; or between  slicing move two points:, andw,, are picked from P; such

w3 andmy, one of the cops fromr; or 7 will be free and the  thatu,, (respectivelyu;) lies on the boundary portion between

robber will be restricted to a smaller region. ug, andu; (respectivelyu; andw,,). We compute a shortest

path between:, andwu;, and use the third cop to guard this

The move will be over when the initialization phase of path as shown in Figure 4. Note that if there is no path be-

Lemma 3.1 is complete. tweenu, anduy in P;, this means that, andu, are in two
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Figure 4: A slicing move.r3 replaces eithefr; or 5 as a Uy
path to guard depending on the location of the robber at the
end of the initiliazation phase of guarding. Figure 6: Case 3t andw, share one endpoint and the other

endpoints are adjacent.

different components (i.e?; is disconnected). This can hap-
pen only when there is an obstacle whose boundary is touchwith the polygonal edge(uy,u;) form a structure called a
ing d P; in multiple connected regions making it disconnected funnel[Guibaset al., 1987. The common end-point{ in
In this case we can use the obstacle move presented in tiegure 6) is the apex of the funnel. Both and, are in-
previous section (Figure 3-right). wardly convex: when walking from the apexig, one would
We now describe how,, andu;, are chosen. There are always turn locally left. This is becauseg is a shortest path
a few variants of the slicing move based on the number ofind no obstacle is touching it from the inside. Therefore, if
vertices between the endpoints-afandr; (Figures 5and 6).  there was a right turn (i.e. an inward convex vertex), one can
Case 1. If m; andm, share no common endpoints; is  find a shorter path from; to u; which is a contradiction. A
chosen as the shortest path connectipgandu,, (i.e. we  symmetric argument holds far.
pick uy, asu, andu,, asu;). This case is illustrated in Fig-  When there are no obstacles inside the funnel, the inward
ure 5 (left). convex structure of; and, yields a simple partition of the
Case2: Inthe second case; andr, share acommon end- funnel which can be used for computing shortest paths easily
point (sayuy), and there is at least one vertex on the boundaryrhe partition is obtained by extending each edgerpfind
between the other endpoints,{ and ;). In this casers  , toward the edgéus, u;) as shown in Figure 6. Suppose
is chosen as the shortest path connectipg= u; and an  edgee onw; was extended to form the boundary of a partition
arbitrary vertex between the other two endpoints. This caseell. The shortest path fromy to pointa in this partition cell
is illustrated in Figure 5 (right). continues alongr; until it leavese, followed by a line seg-
ment from the last vertex efto a. For example, in Figure 6,
oP the shortest paths fromy to a andb continue alongr; until
opP Uk qy x followed by the line segmenta andxzb respectively. We
u u - N\ refer the last vertex on the boundary as tbenervertex of a
AN \\ o point. Hencer is the corner vertex of boti andb.
T l N\, T2 3 / We now describe the slicing move for this case. If there
/ / are no obstacles inside the funnel, the third cop can capture
/ / the robber by Lemma 3.2. Otherwise, we show that there
U / [ U, exists a point on the edde;, ux) whose shortest path from
Um u1 touches an obstacle.
Remove all the obstacles from the funnel and compute the
Figure 5: The first two instances of the slicing movesft:  partition described above. We start from the leftmost parti
The endpoints ofr; andr, are different (Case 1)Right:  tion and move toward right. For each partition we order all
The paths share one endpoint. The other end points are nge obstacle vertices in that partition in anti-clockwised-
adjacent (Case 2). tion with respect to their corner vertex. We extend the line
segment from the corner vertex to the first obstacle vertex in
Case 3: In the third caser; andr, have exactly one com- this ordering until it hits edgéu;, uy). In Figure 7, for par-
mon endpoint and the other endpoints are adjacent (See Figtion txox3 we extend the line segment frotnto the first
ure 6). Since an obstacle move is not possikleand 7o vertex in the ordering until it hitgu;, ux) ato. Therefore the
are not touching any obstacles. In this caseandn, along  shortest pathrs from u; to o touches the obstacle. The third



cop guards this path. We now consider the part of the funnel By Lemma 4.2;; andxs will not overlap. Further, cases
the evader is restricted to. If the part contains no obssacle 1-4 above cover all possible non-overlapping cases. There-
the free cop guarding either; or o can capture the robber fore we have:

(Lemma 3.2). Otherwisess is touching an obstacle. There-
fore, we can perform an obstacle move.

Observe that in formingrs we introduced a new vertex
in P; (ato in Figure 7). However, in computing;,; we For case 3, we have already shown théP,_ ;) < n(P;).
removed at least two vertices (eithgror u; plus the obstacle |n all other cases, similar to the proof of Lemma 4.1, it can be
vertex touchingrs). Hence the invariant(P;,1) < n(P;)is  verified that the slicing move maintains the invariants ragyi
maintained. us the following lemma.

Coroallary 4.3. If an obstacle move does not exist, either the
robber is captured or a slicing move exists.

Lemma4.4. After a slicing move, all the invariants are main-
tained.

4.3 Complete Strategy and Analysis

We are now ready to describe the full strategy. At the begin-
ning of the game, two cops pick two separate edges and guard
them asm; andr,. Afterwards, the cops perform an obsta-
cle move if an obstacle is touching or 5, or an obstacle

T4 Ul s touching the boundary a?; in two connected regions. If

an obstacle move is not possible, a slicing move is performed
which is always possible by Corollary 4.3.

Figure 7: A funnel with its partition. There exists a poirin We now present our main result which shows that the se-
the boundary such that the shortest path fignto o touches  quence of moves described above result in capture in finite
the boundary. number of steps.

Case 4: The only remaining case is when andm, have  1heorem 4.5. Three cops can capture the robber in a finite
common endpoints at both ends. Singeand - are both ~ number of steps in any polygon with a finite number of obsta-
shortest paths, it must be that = m» and the evader has Cles-
already been captured, otherwise we get a contradictidn wit

the fact that neitherr; nor  is touching any obstacles. Proof. Suppose the step size of the cops and the robber is
Among the four cases mentioned above, case 4 yields cagne, LetP be the initial polygon and: be the number of
ture. In remaining cases 1-8, andu, can be chosen accord- yertices of P. After each round, the robber is restricted to
ingly and a free cop can be assigned to guard the shortest paghsupset of the area before the move. Further, the new area
T3 betweenu, andu, (recall that such a path exists becausenas at least one less vertex than the previous area. Therefor
an obstacle move is not possible). The pagfpartitionsP;  the number of rounds is bounded by the number of vertices
to at least two regions. The robber can be either betwgen (including obstacle vertices).
andm, or betweenr; andm, therefore one of the cops from  Next we bound the length of each round. Each slicing or

71 Or m can be relieved from guarding the path. obstacle move is comprised of picking a shortest paith P,

We now prove a technical lemma. and guarding it. Hence, the length of each round is bounded
Lemma4.2. The pathsr; and 7, can be chosen so that they by the time to reach followed by the initialization phase of
do not share an edge. guarding it. Each of these quantities is bounded by the diam-
Proof. Let us assume that, and overlap which implies eter of P; (i.e. the longest shortest path#&)). Therefore, the

. 1 2 o . 3
that they share at least one edge. Also, there must be at Iea{gpgth of round; bounded bydiam(F). =

one edge inr; which is not inm,, otherwise guardingrs

is redundant. We also know that both and -, lie on the Is there an upper bound atiam(FP;) in terms of the pa-
boundary of P;. But sinceP; is simple, the shared edges rameters ofP? While it is not easy to obtain a tight bound
will include one of the two edges at the end of the two pathson this quantity, it is easy to see that it is bounded by the
Therefore, without loss of generality, we can assume tleat thareaA of P because shortest paths are non-intersecting. This
last edge ofr; and the first edge of, is shared. Equivalently, suggests an upper bound®fA for the capture time.

letm = uq,...,u;, up andmg = ug, ug, . .., U, i.€.,71 and For a given polygon, this upper bound is likely to be loose
7o Share the edg@u;, ug). when the shortest paths are much shorter than the Area
Sincem is a shortest path, a patf = uq,...,u; will However, the capture time can be as largedam general:

also be a shortest path betwegnandw;. If the two cops imagine a long and thin rectangular environment with cops
pick pathsr| andr, to guard, the edges guarded will be the starting on one end and the robber on the other. We also note
same as before, but the paths will be non-overlapping. Hencé¢hat the diameter oP; can be larger than the diameter®f

as a result, we can always fimd andm, such that they don't We leave the problem of obtaining a tight bound on capture
share a common edge. O time as an interesting problem for future research.



5 Conclusion [Vieira et al, 2009 M.A.M. Vieira, R. Govindan, and G.S.
Sukhatme. Scalable and practical pursuit-evasion with net
worked robotslntelligent Service Robotic2(4):247-263,
2009.

We studied a new variant of the cops and robbers game, and
showed that three cops can capture the robber in any polyg-
onal environment. In our model the players have equal max-
imum velocities and have access to each others’ locations at
all times. As noted earlier, an immediate question for feitur
research is to obtain a tight bound on capture time.

An important extension for future work is to relax the as-
sumption about the information available to the players. Fo
example, if the cops can obtain information about the robber
location only when they establish line-of-sight visilyjihow
many cops are necessary? How does the outcome change if
there are communication limitations?

Another challenging extension is to study the case when
the cops are subject to non-holonomic motion constraints as
in the case of a car chase.
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