
8 Flow Shop Scheduling 

Consider scheduling tasks on dedicated processors or machines. We assume that 
tasks belong to a set of n jobs, each of which is characterized by the same ma
chine sequence. For convenience, let us assume that any two consecutive tasks of 
the same job are to be processed on different machines. The type of factory lay
out in the general case - handled in Chapter 10 - is the job shop; the particular 
case where each job is processed on a set of machines in the same order is the 
flow shop. The most commonly used performance measure will be makespan 
minimization. 

8.1 Introduction 

8.1.1 The Flow Shop Scheduling Problem 

A flow shop consists of a set of different machines (processors) that perform 
tasks of jobs. All jobs have the same processing order through the machines, i.e. 
a job is composed of an ordered list of tasks where the /* task of each job is de
termined by the same machine required and the processing time on it. Assume 
that the order of processing a set of jobs J on m different machines is described 
by the machine sequence P^, • • •, P^. Thus job Jj e J7 is composed of the tasks Ty, 
• • -,r^^ with processing times py for all machines P̂ -, / = 1,- • ^m. There are sev
eral constraints on jobs and machines: (/) There are no precedence constraints 
among tasks of different jobs; (//) each machine can handle only one job at a 
time; (///) each job can be performed only on one machine at a time. While the 
machine sequence of all jobs is the same, the problem is to find the job se
quences on the machines which minimize the makespan, i.e. the maximum of the 
completion times of all tasks. It is well known that - in case of practical like 
situations - the problem is NP-hard [GJS76]. 

Most of the literature on flow shop scheduling is limited to a particular case 
of flow shop - the permutation flow shops, in which each machine processes the 
jobs in the same order. Thus, in a permutation flow shop once the job sequence 
on the first machine is fixed it will be kept on all remaining machines. The re
sulting schedule will be csilled permutation schedule. 

By a simple interchange argument we can easily see that there exists an op
timal flow shop schedule with the same job order on the first two machines P^ 
and P2 as well as the same job order on the last two machines P^_i and P^. Con-
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sider an optimal flow shop schedule. Among all job pairs with different process
ing orders on the first two machines, let J^ and /^ be two jobs such that the num
ber of tasks scheduled between T^i and T^^ is minimum. Suppose T^^ is processed 
before T̂ ^ (while T2i is processed after 72^). Obviously, T̂ ^ immediately follows 
T^ and no other job is scheduled on machine P^ in between. Hence, interchang
ing Tij^ and T^j^ has no effect on any of the remaining tasks' start times. Repeti
tious application of this interchange argument yields the same job order on the 
first two machine (and analogously for the last two machines). Consequently, any 
flow shop scheduling problem consisting of at most three machines has an opti
mal schedule which is a permutation schedule. This result cannot be extended 
any further as can be shown by a 2-job 4-machine example withp^^ = p^^ = /?22 = 
p^2 = 4 and /?2i = P31 = Pn = P42 = 1- Both permutation schedules have a 
makespan of 14 while job orders (J2, Ji) on P^ and P2 and (/^, J2) on P3 and P4 
lead to a schedule with a makespan of 12. Although it is common practice to 
focus attention on permutation schedules. Potts et al. [PSW91] showed that this 
assumption can be costly in terms of the deviation of the maximum completion 
times, i.e. the makespans, of the optimal permutation schedule and the optimal 
flow shop schedule. They showed that there are instances for which the objective 
value of the optimal permutation schedule is much worse (in a factor more than 
l/2^Jm) than that of the optimal flow shop schedule. 

Any job shop model (see Chapter 10) can be used to model the flow shop 
scheduling problem. We present a model basically proposed by Wagner [Wag59, 
Sta88] in order to describe the permutation flow shop. The following decision 
variables are used (for/ , j= l , - - , ^ ; k= l , - - ,m) : 

1 if job Ji is assigned to they ^^ position in the permutation, 

0 otherwise; 

Xjj^ = idle time (waiting time) on machine P^ before the start of the job in 

position 7 in the permutation of jobs; 

yjj^ = idle time (waiting time) of the job in the 7* position in the permuta

tion, after finishing processing on machine P^, while waiting for ma

chine Pj^^i to become free ; 

C^^ = makespan or maximum flow time of any job in the job set. 

Hence we get the model: 

Minimize C^^^ 

n 

subject to Zzij=l, /=l,--- , /2 (8.1.1) 

£z/;=l , j=h---.n (8.1.2) 
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j = l , - - , n - l ; r = l , - - - , m - l 

n n n 

.^ .^ Pm/ ŷ + .^ ;̂m = C„^x ' (8-1 -4) 
jz=l 1=1 ^ J=l ^ 

k-\ n 

JL L p^iZii=Xij^, k = 2,--,m (8.1.5) 
r=l i=l 

yik = 0, k= l , . . - , m - l (8.1.6) 

Equations (8.1.1) and (8.1.2) assign jobs and permutation positions to each 
other. Equations (8.1.3) provide Gantt chart accounting between all adjacent 
pairs of machines in the m-machine flow shop. Equation (8.1.4) determines the 
makespan. Equations (8.1.5) account for the machine idle time of the second and 
the following machines while they are waiting for the arrival of the first job. 
Equations (8.1.6) ensure that the first job in the permutation would always pass 
immediately to each successive machine. 

8,1.2 Complexity 

The minimum makespan problem of flow shop scheduling is a classical combi
natorial optimization problem that has received considerable attention in the lit
erature. Only a few particular cases are efficiently solvable, cf. [MRK83]: 

(/) The two machine flow shop case is easy [Joh54]. In the same way the case of 
three machines is polynomially solvable under very restrictive requirements on 
the processing times of the intermediate machine [Bak74]. 

(//) The two machine flow shop scheduling algorithm of Johnson can be applied 
to a case with three machines if the intermediate machine is no bottleneck, i.e. it 
can process any number of jobs at the same time, cf. [CMM67]. An easy conse
quence is that the two machine variant with time lags is solvable in polynomial 
time. That means for each job J^ there is a minimum time interval l^ between the 
completion of job J^ on the first machine P^ and its starting time on the second 

' machine ^2- The time lags can be viewed as processing times on an intermediate 
machine without limited capacity. Application of Johnson's algorithm to the 
problem with two machines P^ and P2, and processing times p^ +1^ and P2i + // on 
Pi and P2, respectively, yields an optimal schedule, cf. [Joh58, Mit58, MRK83]. 

(///) Scheduling two jobs by the graphical method as described in [Bm88] and 
first introduced by Akers [Ake56]. (Actually this method also applies in the more 
general case of a job shop, cf. Chapter 10.) 
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(iv) Johnson's algorithm solves the preemptive two machine flow shop 
F2\pmtn\C^^^. 

(v) If the definition of precedence constraints 7,- < Jj specifies that job /,• must 
complete its processing on each machine before job Jj may start processing on 
that machine then the two machine flow shop problem with tree or series-parallel 
precedence constraints and makespan minimization is solvable in polynomial 
time, cf. [Mon79, Sid79, MS79]. 

Slight modifications, even in the case of two machines, turn out to be diffi

cult, see [TSS94]. For instance, F3\\C^^ [GJS76], F2\rj\C^^ [LRKB77], 

F2\\L^^ [LRKB77], FlWZCj [GJS76], F2\pmtn, rj\C^^ [CS81], 

F2\pmtn\L^^ [TSS94], F3\pmtn\C„^^ [GS78], F3\pmtn\ZCj [LLR+93], 

F2 \prec IC^^ [Mon80], and F2 \pmtn 11C,- [DL93] are strongly NP-hard. 

8.2 Exact Methods 

In this section we will be concerned with a couple of polynomially solvable cases 
of flow shop scheduling and continue to the most successful branch and bound 
algorithms. A survey on earlier approaches in order to schedule flow shops ex
actly can be found in [Bak75, KK88]. Dudek et al. [DPS92] review flow shop 
sequencing research since 1954. 

8.2.1 The Algorithms of Johnson and Akers 

An early idea of Johnson [Joh54] turned out to influence the development of so
lution procedures substantially. Johnson's algorithm solves the FIWC^^^ to op-
timality constructing an optimal permutation schedule through the following ap
proach: 

Algorithm 8.2.1 Johnson's algorithm for Fl 11 C^^^ [Joh54]. 

begin 
Let Si contain all jobs J^ e J with p^^ < P2i in a sequence of non-decreasing order 

of their processing times p^} 

Let S2 contain the remaining jobs of J (not in Si) in a sequence of non-increasing 

order of their processing times P2i} 

Schedule all jobs on both machines in order of the concatenation sequence 
{S1.S2)} 

end; 
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As Johnson's algorithm is a sorting procedure its time complexity is 0(nlogn), 
The algorithm is based on the following sufficient optimality condition. 

Theorem 8.2.2 [Joh54] Consider a permutation of n jobs where job J^ precedes 

job Jj if min{ p^, py ] < min{ /?2/, Pu } for 1 < i, j <n. Then the induced permu

tation schedule is optimal for F211 C^^^ . 

Proof Let 7i be a permutation defining a schedule of the flow shop problem with 
n jobs. We may assume % = (1, 2,- • •,/2). Then, there is an 5* G {1, 2,- • -.n} such 
that the makespan C^Jji) of the schedule equals 

s n s s-l n 

. ^ PU + ^ Pli = . ^ PU - . ^ Pli + . ^ P2i • 
1=1 i=s 1=1 1=1 1=1 

Hence minimization of the makespan min{ C^^ (̂7i)} is equivalent to 
71 

S S-l 

min{ max A (TC)} where A (TI) = Y. p^- Y P2i -
71 l<s<n i=l i=l 

Let 71' be another permutation different from % in exactly two positions j and 

7+1, i.e. the jobs' order defined by Ti'is J^, J2,'-Jj_i, Jj+i,Jj, /j+2, Jj+i,,---,Jn -

As A/7t) = A/TI') for s = 1, - -J - 1, j + 2, •=,^, we get, that max A/TI) < 
l<s<n 

max A (̂7t') holds if max{A-(7i), A-_̂ j(7i)} < max{A-(TI'), A-^^ (^Ol- The latter is 
l<s<n J J J J 

equivalent to 

max{ Pij,Pij-P2j+Pij+i } ̂  max{ py^^.p^j^^ -p^j^i +Py } 

which is equivalent to 

Plj^PiM ^^^ Pij-Pij-^Pij+i^PiM 

or 

Pij^Pij+i-Py+i-^Pij and Py-Py+Pij+i^Pij+i-Pij+i+Py-

Thus, if py < mm{p^j^^, py} or P2j+i < min{pi^.+i, py}, or equivalently, if 

min{pij, P2j+i] ^ ^^MPij+i 5 P2j} then permutation TI; defines a schedule at least 

as good as %'. 

Among all permutations defining an optimal schedule, assume TC is a permu

tation satisfying J^ precedes Jj if minlp^^., P2j} < mm{p2i, Py}, for any two jobs J^ 

and Jj where one is an immediate successor of the other in the schedule. It re

mains to verify transitivity, i.e. if minipn, P2j} < min{p2i, Py} implies Ĵ - pre

cedes Jj and min{pij, P2k} < min{/?2;, Pu l implies Jj precedes /^ then minipn, 

P2k} ^ min{/?2/? Pik) implies /̂ - precedes Jj^ in TI. There are 16 different cases to 

distinguish according to the relative values of the four processing time pairs p^. 
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Pij' Piv Pij' Pij' P2k ^^d Pij' Pik' Twelve of the cases are easy to verify. The re
maining four cases, 

(1) Pu^Pij^Pik ^^dP2i^Pij^P2k; 

(2) Pu ^ Pij ^ Pik and P2i ^ Py ^ Pik ; 

(3) Pu ^ Pij ^ Pik and P2i < Pij < P2k; and 

(4) Pu > Py ^ Pik and P2i > Py < P2k 

imply that J^ may precede / or / may precede J^. Hence, there is an optimal 
schedule satisfying the condition of the theorem for any pair of jobs. Finally, ob
serve that this schedule is uniquely defined in case of strict inequalities minipn, 
P2i+i} < niin{/72/. Pii+i) for all pairs /, /+1 in K. If min{p^^-, P2i+i} = niin{/72/, 
Pi 1^1} for a pair /, /+1 in TI then an interchange of J^ and J^^i will not increase the 
makespan. This proves that the theorem describes a sufficient optimality condi
tion. D 

Johnson's algorithm can be used as a heuristic when m > 2. Then the set of ma
chines is divided into two subsets each of which defines a pseudo-machine hav
ing a processing time equal to the processing time on the real machines assigned 
to that subset. Johnson's algorithm can be applied to this n-job 2-pseudo-
machine problem to obtain a permutation schedule. The quality of the outcome 
heavily depends on the splitting of the set of jobs into two subsets. If m = 3 an 
optimal schedule can be found from the two groups {P^, P2} and {P2, P3} if 
maxp2i - niinpi^- or maxp2i < minp^i. Thus, for the pseudo machines {P^, P2} 

i i i i 

and {P2, P3} the processing times are defined ^^P{p.p^}^i= Pu^Pu andpjp^p^j •̂ 

The problem of scheduling only two jobs on an arbitrary number of ma
chines can be solved in polynomial time using the graphical method proposed by 
[Bru88] and first introduced by Akers [Ake56]. 

Assume to process two jobs J^ and J2 (not necessarily in the same order) in 
an m-machine flow shop. The problem can be formulated as a shortest path prob
lem in the plane with rectangular objects as obstacles. The processing times of 
the tasks of J^ (J2) on the machines are represented as intervals on the x-axis (y-
axis) which are arranged in order (next to each other) in which the corresponding 
tasks are to be processed. An interval I^ (Ẑ )̂ ^n the x-axis (y-axis) is associated 
to a machine Pi on which the job J^ (J2) is supposed to be processed. Let x^ (yf) 
denote the sum of the processing times of job J^ {J2) on all machines. Let F = (x^, 
yp) be that point in the plane with coordinates Xp and y^. Any rectangular /̂ ^ x /̂ ^ 
defines an obstacle in the plane. A feasible schedule corresponds to a path from 
the origin O = (0,0) to F avoiding passing through any obstacle. Such a path 
consists of a couple of segments parallel to one of the axis or diagonal in the 
plane. A segment parallel to the x-axis (j-axis) can be interpreted in such a way 
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that only job J^ {J^ is processed on a particular machine while J2 Ui) is waiting 
for that machine, because parallel segments are only required if the path from O 
to F touches the border of an obstacle. An obstacle defined by some machine P^ 
and forcing the path from O to F to continue in parallel to one of the axis implies 
an avoidance of a conflict among both jobs. Hence, an obstacle means to se
quence both jobs with respect to P^. Minimization of the makespan corresponds 
to finding a shortest path from Oio F avoiding all obstacles. The problem can be 
reduced to the problem of finding an unrestricted shortest path in an appropriate 
network G = (T^ £ ) . The set of vertices consists of O, F and all north-west and 
south-east corners of all rectangles. Each vertex v (except F) has at most two 
outgoing edges. These edges are obtained as follows: We are going from the 
point in the plane corresponding to vertex v diagonally until we hit the border of 
an obstacle or the boundary of the rectangle defined by O and F. In the latter case 
F is a neighbor of v. The length d^p of the edge connecting v and F equals the 
length of the projection of the diagonal part of the v and F connecting path plus 
the length of the parallel to one of the axis part of this path. In other words, if v is 
defined in the plane by the coordinates (x^, y^) then d^jp = max{ Xp-x^^y^-y^ }. 
If we hit the border of an obstacle, we introduce two arcs connecting the north
west comer (say vertex u defined by coordinates (x^, j^)) and the south-east cor
ner (say vertex w defined by coordinates (x^, y^)) to v. The length of the edge 
connecting v to w is Ĵ ^ = max{ x^ - x^, y^ - j ^ }. Correspondingly the length of 
the edge connecting v and w is d^^ = max{ x^-x^,y^-y^ }. Thus an application 
of a shortest path algorithm yields the minimum makespan. In our special case 
the complexity of the algorithm reduces to O(mlogm), cf. [Bru88]. 

8.2.2 Dominance and Branching Rules 

One of the early branch and bound procedures used to find an optimal permuta
tion schedule is described by Ignall and Schrage [IS65] and, independently by 
Lomnicki [Lom65]. Associated with each node of the search tree is a partial 
permutation K defining a partial permutation schedule S^ on a set of jobs. Let J^ 
be the set of jobs from the schedule S^, A lower bound is calculated for any com
pletion T of the partial permutation TC to a complete permutation (TTT). The lower 
bound is obtained by considering the work remaining on each machine. The 
number of branches departing from a search tree node (with a minimum lower 
bound) equals the number of jobs not in S^, i.e. for each job /̂ - with i 4 K SL 
branch is considered extending the partial permutation 71 by one additional posi
tion to a new partial permutation (71;/). Moreover extensions of the algorithm use 
some dominance rules under which certain completions of partial permutations % 
can be eliminated because there exists a schedule at least as good as % among the 
completions of another partial permutation %'. Let C^(7z) denote the completion 
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time of the last job in S^ on machine P^, i.e. Q(7t) is the earliest time at which 

some job not in J^ could begin processing on machine P^. Then %' dominates % if 

for any completion x of 7t there exists a completion i' of n' such that C,̂ (7c't') < 

Q/TIT). An immediate consequence is the following transitive dominance crite

rion. 

Theorem 8.2.3 [IS65] If J^ = H^, and Cj^in') < Cjl%) for k= 1, 2,- - .,m, then TI' 

dominates %. D 

There are other dominance criteria reported in [McM69] and [Szw71, Szw73, 
Szw78] violating transitivity. In general these dominance criteria consider sets J^ 
1^ J, We can formulate 

Theorem 8.2.4 IfCj^_^{%ji) - Q_i(m) < C^{%ji) - Cjl%i) <Pkjfor ^ = 2,- • •,m, then 

(71//) dominates (%i). D 

8.2.3 Lower Bounds 

Next we consider different types of lower bounds that apply in order to estimate 
the quality of all possible completions x of partial permutations TT to a complete 
permutation (m). 

The amount of processing time yet required on the first machine is I^ Pi/. 
jez -^ 

Suppose that a particular job Jj will be the last one in the permutation schedule. 
m 

Then after completion of job Jj on P^ an interval of at least L pj^j must elapse 
before the whole schedule can be completed. In the most favorable situation the 
last job will be the one which minimizes the latter sum. Hence a lower bound on 
the makespan is 

m 
LB^ = C^(7z) + Z p^i + min{ Z pj^A . 

/ex ;€T k=2 '' 

Similarly we obtain lower bounds (with respect to the remaining machines) 

m 
LB = C J%) + £ Pi + min{ Z p,^:} Jov p = 2,-•-,111-1. 

iex jex k=p+l 

And on the last machine we get 

LB^ = C^{n)+Lp^i. 
lex 

The lower bound proposed by Ignall and Schrage is the maximum of these m 
bounds. 
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To illustrate the procedure let us consider a 4-job, 3-machine instance from 
[Bak74]. The processing times Py can be found in Table 8.2.1. 

Pij 

Pi 

Pi 

p. 

Jx 

3 

4 

10 

h 
11 

1 

5 

•̂3 

7 

9 

13 

h 
10 

12 

2 

Table 8.2.1 Processing times of a 4-joby 3-machine instance. 

Initially the permutation 71 is empty and four branches are generated from the 
initial search tree node. Each branch defines the next (first) position 1, 2, 3, or 4 
in 71. The partial permutations 71, the values Cp{%), and the lower bounds LB , for 
p = 1, 2, 3, and the maximum LB of the lower bounds obtained throughout the 
search are given in Table 8.2.2. 

7t 

1 

2 

3 

4 

1,2 

1,3 

1,4 

CM 

3 

11 

7 

10 

14 

10 

13 

CM 

1 

12 

16 

22 

15 

19 

25 

CM 
17 

17 

29 

24 

22 

32 

27 

LB^ 

37 

45 

37 

37 

45 

37 

37 

LB2 

31 

39 

35 

41 

38 

34 

40 

LB^ 

37 

42 

46 

52 

37 

39 

45 

LB 

37 

45 

46 

52 

45 

39 

45 

Table 8.2.2 Search tree nodes of the Ignall / Schrage [IS65] branch and 
bound. 

Two additional branches are generated from that node associated with permuta
tion (1, 4). These branches immediately lead to feasible solutions (1, 3, 2, 4) and 
(1, 3, 4, 2) with makespans equal to 45 and 39, respectively. Hence, (1, 3, 4, 2) is 
a permutation defining an optimal schedule. 

The calculation of lower bound can be strengthened in a number of ways. On 
each machine P^, except the first one, there may occur some idle time of Pj^ be
tween the completion of job J^ and the start of its immediate successor Jj. The 
idle time arises if Jj is not ready "in time" on the previous machine P^_Y , in other 
words C^_i{%j) > C^{%). Thus we can improve the aforementioned bounds if we 
replace the earliest start time on P^ of the next job not in j ^ by 
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_ _ ^-^ 
Ci{%) = Ci(%) and Ĉ (7c) = max {Q(7i) + min{ £ p •}}, for r = 2,• • •,m. 

k=l,2, ,r je% q=k ^ 

Besides the above machine based bound another job based bound can be calcu
lated as follows: Consider a partial permutation % and let % be an extension to a 
complete schedule 5^^. For any job Jj withjex we can calculate a lower bound 

m 
on the makespan of S^^ as Ĉ CTC) + E p^- + E p^ • + £ p^- where H^ {J^) are the 

k=\ ^ Ji^5\ Ji^Ji 

sets of jobs processed before (after) / in schedule S^^, respectively. Since £ p^ 

+ £ p^i > £ min{ Pii.Pyni] we get the following lower bounds: 

s 
LB J = max{ max { Q(7i) + Z p • + E min{p„., pj}} 

J jGx l<r<s<m q=r ^ lex 

Let us consider the computation of lower bounds within a more general frame
work which can be found in [LLRK78]. The makespan of an optimal solution of 
any sub-problem consisting of all jobs and a subset of the set of machines defines 
a lower bound on the makespan of the complete problem. In general these 
bounds are costly to compute (the problem is NP-hard if the number of machines 
is at least 3) except in the case of two machines where we can use Johnson's al
gorithm. Therefore let us restrict ourselves to the case of any two machines P^ 
and P^. That means only P^ and P^ are of limited capacity and can process only 
one job at a time. P^ and P^ art said to be bottleneck machines, while the remain
ing machines Pi ,• • -^Pu-i ̂  Pu+i'"" "'^v-i ' ^v+i'"' ' '^m' the non-bottleneck ma
chines, are available with unlimited capacity. In particular, a non-bottleneck ma
chine may process jobs simultaneously. Since the three (at most) sequences of 
non-bottleneck machines P^^ = P^,- • •,Pj,_i; P^y = P^+i,- • ^P^-i, and P^^ = P^^^, 
• - - ,P^ can be treated as one machine each (because we can process the jobs on 
the non-bottleneck machines without interruption), it follows that (in our lower 
bound computation) each partial permutation K defines a partial schedule for a 
problem with at most five machines P^^, P^, P^^, P^, P^^, in that order. Of 
course, the jobs' processing times on P^^, P^^, and P^^ have still to be defined. 
We define for any job J^ the processing times 

M - l v - 1 m 

Piui= max { QTT) + i : P« } ; p^,i=Lpi^i; p,„,.= Zpfc,.; 
r=l,2, ,w-l k=r+l k=u+l k=v+l 

processing times on bottleneck machines are unchanged. Thus, the processing 
times Pij^^ I, Pj^^ I, and p^^ ^ are the earliest possible start time of processing of job 
Ji on machine P^ ,̂ the minimum time lag between completion time of /̂ - on P^ 
and start time of /̂ - on P^, and a minimum remaining flow time of J^ after com-
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pletion on machine P^, respectively. If w = v we have a problem of at most three 
machines with only one bottleneck machine. Note, we can drop any of the ma
chines P^^, P^^, or P^^ from the (at most) five machine modified flow shop 
problem through the introduction of a lower bound r^^, r^^ on the start time of 
the successor machine, or a lower bound r^^ on the finish time of the whole 
schedule, respectively. In that case r̂ ^ = minjpi^J, r̂ ^ = minjp^^J; r^^ 

ie % ie % 
= min{p^^ J . If w = 1, V = w + 1, or V = m we have r^^ = QCTI), r^^ = 0, or r^^ = 0, 

ien 

respectively. The makespan LBJ^a, (3, y, 8, e) of an optimal solution for each of 
the resulting problems defines a lower bound on the makespan of any completion 
T to a permutation schedule (TIT). Hereby a equals P^^ or r̂ ^ reflecting the cases 
whether the start times on P^ are depending on the completion on a preceding 
machine P^^ or an approximation of them, respectively. In analogy we get y e 
{^wv ^uv) ^^d ^ ^ {^vm' v̂ml- Parameters [3 and 5 correspond to P̂ ^ and P^, re
spectively. 

Let us consider the bounds in detail (neglecting symmetric cases): 
n 

(1) LB^(r^^, P^, O = ri^ + E p^^ + r,,^ . 
1=1 
ie% 

(2) The computation of LB^{r^^, P^, P^^) amounts to minimization of the 
maximum completion time on machine P^^^. The completion time of J^ on ma
chine P^^ equals the sum of the completion time of J^ on machine P^ and the 
processing time p^^ ^. Hence, minimizing maximum completion time on machine 
P^^ corresponds to minimizing maximum lateness on machine P^ if the due date 
of job J I is defined to be -Pumi • This problem can be solved optimally using the 
earliest due date rule, i.e. ordering the jobs according to non-decreasing due 
dates. In our case this amounts to ordering the jobs according to non-increasing 
processing times Pumi- Adding the value r̂ ^ to the value of an optimal solution 
of this one-machine problem with due dates yields the lower bound LBJj^^, P^, 

Pum)-

(3) The bound LBJ^P^j^, P^, r^^) leads to the solution of a one-machine problem 

with release date p^^ -̂ for each job J^. Ordering the jobs according to non-

decreasing processing time p^^ ^ yields an optimal solution. Once again, adding 

r^^ to the value of this optimal solution gives the lower bound LBJ^P^j^, P^, r^^). 

(4) The computation of LBJ^P^^^, P^, P^^) corresponds to minimizing maximum 
lateness on P^ with respect to due dates -p^^ ̂  and release dates Piui- The prob
lem is NP-hard, cf. [LRKB77]. Anyway, the problem can be solved quickly if the 
number of jobs is reasonable, see the one-machine lower bound on the job shop 
scheduling problem described in Chapter 10. 
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(5) Computation of LB^ir^^, P^, r^^^, P^, r̂ ,̂„) leads to the solution of a flow 

shop scheduling problem on two machines P^ and P^. The order of the jobs ob

tained from Johnson's algorithms will not be affected if P^ is unavailable until 

C^(n). Adding r̂ ^̂  and r^^ to the makespan of an optimal solution of this two ma

chine flow shop scheduling problem yields the desired bound. 

(6) Computation of LB^ir^^, P^, P^̂ ,̂ P^, r̂ ^̂ ) leads to the solution of a 3-
machine flow shop problem with a non-bottleneck machine between P^ and P^. 
The same procedure as described under (5) yields the desired bound. The only 
difference being that Johnson's algorithm is used in order to solve a 2-machine 
flow shop with processing times p^^ +Puv i ̂ ^^ p^^ +Puv i ̂ ^ ^̂ ^ ̂  ^ ^• 

Computation of the remaining lower bounds require to solve NP-hard prob
lems, cf. [LRKB77] and [LLRK78]. 

LB^{r,^, P , , P^^^P.^r^J and L5^(Pi,, P , , P , J turned out to be the 
strongest lower bounds. Let us consider an example taken from [LLRK78]: Let n 
= m = 3;let/?ii =Pn= l,Pu = ^.P2i =P22 =P23 = 3,P3i = 3,P32= 1^^33 = 2. 
We have LP,(Pi, , P , , P , J = 12 and L5 , ( r i , ,P , , P , , , P , , r . J = 11. If p^i =P22 
= /?23 = 1 and all other processing times are kept then LB^iP^^, P^, P^^) = 8 and 
L P , ( r i , , P , , P , , , P , , 0 = 9. 

In order to determine the minimum effort to calculate each bound we refer 
the reader to [LLRK78]. 

8.3 Approximation Algorithms 

8.3.1 Priority Rule and Local Search Based Heuristics 

Noteworthy flow shop heuristics for the makespan criterion are those of Camp
bell et al. [CDS70] and Dannenbring [Dan77]. Both used Johnson's algorithm, 
the former to solve a series of two machine approximations to obtain a complete 
schedule. The second method locally improved this solution by switching adja
cent jobs in the sequence. Dannenbring constructed an artificial two machine 

m 
flow shop problem with processing times lL{m-j+\)pu on the first artificial 

m 
machine and processing times Z jp^ ^^ the second artificial machine for each 

job Ji, i = \,",n. The weights of the processing times are based on Palmer's 
[Pal65] 'slope index' in order to specify a job priority. Job priorities are chosen 
so that jobs with processing times that tend to increase from machine to machine 
will receive higher priority while jobs with processing times that tend to decrease 
from machine to machine will receive lower priority. Hence the slope index, i.e. 
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the priority to choose for the next job J^ is s^ = E ( m - 2 / + l)/7 -̂ for / = 1,- • ^n. 

Then a permutation schedule is constructed using the job ordering with respect to 
decreasing s^, Hundal and Rajgopal [HR88] extended Palmer's heuristic by com
puting two other sets of slope indices which account for machine (m+ l)/2 when 
m is odd. Two more schedules are produced and the best one is selected. The two 

m m 

sets of slope indices are Si = lL{m-2j + 2)pji and s^ = E (m - 2j)pp for / = 1, • • •, /i. 

Campbell et al. [CDS70] essentially generate a set of m - 1 two machine 
problems by splitting the m machines into two groups. Then Johnson's two ma
chine algorithm is applied to find the m - 1 schedules, followed by selecting the 
best one. The processing times for the reduced problems are defined as p^^^ 

k m 

= Z p:^ and P2j^i = ^ Pji for / = 1,- • ^n, where p^^^ iPikd I'epresents the proc-

essing time for job J^ on the artificial first (second) machine in the k^^ problem, k 

= l , - - , m - l . 
Gupta [GupVl] recognizes that Johnson's algorithm is in fact a sorting algo

rithm which assigns an index to each job and sorts the jobs in ascending order by 
these indices. He generalized the index function to handle also cases of more 
than three machines. The index of job J^ is defined as 

Si = X/ min {Pu+Pj+n} for / = l , - - , / 2 
l<j<m-l -^ •' 

where 

1 ifP;7^Pi/' 
X = 

[ - 1 otherwise. 

The idea of [HC91] is the heuristical minimization of gaps between succes
sive jobs. They compute the differences d^^ = p^^^ ^ - p^j for /, j = 1,- • •,^; /: = 
l,',m-\ and / ^ j . If job J^ precedes job Jj in the schedule, then the positive 
value dj^ij implies that job / needs to wait on machine P^^^ at least dj^^j units of 
time until job J^ finishes. A negative value of d^^j implies that there exist dj^j units 
of idle time between job J^ and job Jj on machine P^^^. Ho and Chang define a 
certain factor to discount the negative values. This factor assigns higher values to 
the first machines and lower values to last ones in order to reduce accumulated 
positive gaps effectively. The discount factor is defined as follows: 

_ | ^ ^ ^ ^ ^ ^ ^ + 0.1 ifd,^<0, {foU,j=l,...,n; 

^ ' • " 1 1 otherwise and^= 1,-• . , m - 1 ) . 

Combining the d^^^ and the discount factor, Ho and Chang define the overall re

vised gap: 
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m-l 

dRij= ^^dj^ij^kij^ for / , j = l , • • • , / ! . 

Let J^q be the job in the /* position of a permutation schedule defined by permu

tation 71. Then the heuristic works as follows: 

Algorithm 8.3.1 Gap minimization heuristic [HC91]. 
b e g i n 
Let 5* be a feasible solution (schedule); 
Construct values dj^^ for /, j = 1, • •, /i ; 
a := 1; b :=n} 
r e p e a t 

S':=S} 
Let 4f^][,,] = max{4f^]^-]} ; 

Let rf^f^jf^] = mm {^yjf^j} ; 

i f 4M[W] < 0 and ^^ ĵ̂ ĵ > 0 and I dj^^^^^^^ I < I dj^^^^^^^ I 
t h e n 

b e g i n 
a = a+l} 
Swap the jobs in the positions a and uof S} 
end; 

i f /̂?M[«] < 0 and Ĵ ^̂ ĵ ^̂  > 0 and I dj^^^^^^^ I > I 4̂ ^̂ ^̂ ^ I 
t h e n 

b e g i n 
Z? = Z7-1; 
Swap the jobs in the positions b and v of 5'; 
end; 

i f ' dR[a][u] I > I dj^[v][b] ' 

t h e n 
b e g i n 
a = a + 1; 
Swap the jobs in the positions a and w of 5; 
end; 

i f the makespan of S increased t h e n 5' = 5"; 
u n t i l b = a-^2 

end; 

Simulation results show that the heuristic [HC91] improves the best heuristic 
(among the previous ones) in three performance measures, namely makespan, 
mean flow time and mean utilization of machines. 

An initial solution can be obtained using the following fast insertion method 
proposed in [NEH83]. 
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Algorithm 8.3.2 Fast insertion [NEH83]. 

begin 
Order the n jobs by decreasing sums of processing times on the machines; 
Use Aker's graphical method to minimize the makespan of the first two jobs 

on all machines; 
— The schedule defines a partial permutation schedule for the whole problem. 

for i = 3 ton do 
Insert the /̂ ^ job of the sequence into each of the i possible positions in the 

partial permutation and keep the best one defining an increased partial 
permutation schedule; 

end; 

Widmer and Hertz [WH89] and Taillard [Tai90] solved the permutation flow 
shop scheduling problem using tabu search. Neighbors are defined mainly as in 
the traveling salesman problem by one of the following three neighborhoods: 

(1) Exchange two adjacent jobs. 

(2) Exchange the jobs placed at the i^^ position and at the k^^ position. 

(3) Remove the job placed at the i^^ position and put it at the A:* position. 

Werner [Wer90] provides an improvement algorithm, called path search, and 
shows some similarities to tabu search and simulated annealing. The tabu search 
described in [NS96] resembles very much the authors' tabu search for job shop 
scheduling. Therefore we refer the reader to the presentation in the job shop 
chapter. There are other implementations based on the neighborhood search, for 
instance, the simulated annealing algorithm [OP89] or the genetic algorithm 
[Ree95] or the parallel genetic algorithm [SB92]. 

8.3.2 Worst-Case Analysis 

As mentioned earlier the polynomially solvable flow shop cases with only two 
machines are frequently used to generate approximate schedules for those prob
lems having a larger number of machines. 

It is easy to see that for any active schedule (a schedule is active if no job can 
start its processing earlier without delaying any other job) the following relation 
holds between the makespan C^J^S) of an active schedule and the makespan 

^max ^f ^^ optimal schedule: 

,< max{/?,.}/min{p,.} 
l</<m -^ l<i<m -^ 
l<j<n l<j<n 
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Gonzales and Sahni [GS78] showed that C^^J^S)IC^^^ < m which is tight. They 

also gave a heuristic H^ based on \_m/2J applications of Johnson's algorithm with 

Cmax(S) I C^jc ^ \rnl2\ where S is the schedule produced by H^. 
Other worst-case performance results can be found in [NS93]. 
In [Bar81] an approximation algorithm has been proposed whose absolute 

error does not depend on n and is proved to be 

Cmaxi^ - C = 0.5 (m -1) (3m -1) max{p,^} . 
\<i<m 
l<j<n 

where S is the produced schedule. 
Potts [Pot85] analyzed a couple of approximation algorithms for F21 rj I 

Cf^^. The best one, called RJ\ based on a repeated application of a modification 

of Johnson's algorithm has an absolute performance ratio of C^̂ ^C )̂ / C^^^ < 5/3 

where S is the schedule obtained through RJ\ 
In the following we concentrate on the basic ideas of machine aggregation 

heuristics using pairs of machines as introduced by Gonzalez and Sahni [GS78] 
and Rock and Schmidt [RS83]. These concepts can be applied to a variety of 
other NP-hard problems with polynomially solvable two-machine cases (cf. Sec
tions 5.1 and 12.1). They lead to worst case performance ratios of rm/2l, and the 
derivation of most of the results may be based on the following more general 
lemma which can also be applied in cases of open shop problems modeled by 
unrelated parallel machines. 

Lemma 8.3.3 [RS83] Let S be a non-preemptive schedule of a set ^ofn tasks 

on m> 3 unrelated machines P -̂, / = 1,- • -,m. Consider the complete graph (fP, 

£ ) of all pairs of machines, where £ = {[Pt^Pj] I /, j = 1,- • •,m, and / ^ j } . Let 

Mbe a maximum matching for (fP, £ ) . Then there exists a schedule S' where 

(1) each task is processed on the same machine as in S, and S' has at most n pre
emptions, 

(2) all ready times, precedence and resource constraints under which S was fea
sible remain satisfied, 

(3) no pair {Pi, Pj} of machines is active in parallel at any time unless {P -̂, 

Pj} e M, and 

(4) the finish time of each task increases by a factor of at most I mil I. 

Proof In case of odd m add an idle dummy machine P^^^ and match it with the 

remaining unmatched machine, so that an even number of machines can be as

sumed. Decompose S into sub-schedules S(q,f), qe M,f^ {fq^fq^'-'^fq^) 

where / J < /^ <• • •< fq^ is the sequence of distinct finishing times of the tasks 

which are processed on the machine pair q. Without loss of generality we assume 
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that K^>l,Letf^ = 0 be the start time of the schedule and let S{qJ^) denote the 
sub-schedule of the machine pair q during interval \f^~ , / ^ ] . The schedule S' 
which is obtained by arranging all these sub-schedules of S one after the other in 
the order of non-decreasing endpoints/, has the desired properties because (1): 
each task can preempt at most one other task, and this is the only source of pre
emption. (2) and (3): each sub-schedule S(q,f) is feasible in itself, and its posi
tion in 5" is according to non-decreasing endpoints off. (4): the finish time Cj of 

task TjE ^ in S' is located at the endpoint of the corresponding sub-schedule 

S{q{j), Cj) where q(j) is the machine pair on which T was processed in 5', and C 

is the completion time of Tj in S. Due to the non-decreasing endpoint order of the 

sub-schedules it follows that Cj< [m/2]Cj. D 

For certain special problem structures Lemma 8.3.3 can be specialized so that 
preemption is kept out. Then, the aggregation approach can be applied to prob
lems F11 C^^ and 011 C^^^, and to some of their variants which remain solvable 
in case of m = 2 machines. We assume that for flow shops the machines are 
numbered that reflects the order each job is assigned to the machines. 

We present two aggregation heuristics that are based on special conditions 
restricting the use of machines. 

Condition CI: No pair {Pt^Pj} of machines is allowed to be active in parallel at 

any time unless {Pt.Pj} e 0\{^ = {{P21-1.P21} l^= 1, 2,-• •,Lm/2j}. 

Condition C2: Let (fP, £ ) be a bipartite graph where £ = {{P^, P^} I a G {1, 

2,- • •, rm/2l}, b e {rm/2l+ 1,- • •,m}, and let ^2 be a maximal matching for (fP, 

£ ) . Then no pair {P̂ -, Pj} of machines is allowed to be active in parallel at any 

time unless [P^.PA e M2. 

The following Algorithms 8.3.4 and 8.3.5 are based on conditions CI and 
C2, respectively. 

Algorithm 8.3.4 Aggregation heuristic H^for F\\ C^^^ [GS78]. 

begin 
f o r e a c h pair q^ = {P2/_i ,P2/} ^ ^ 1 

begin 
Find an optimal sub-schedule S* for the two machines P2^_i and P2/; 

i f m is odd 
then 

r̂m/2l •= ^^ arbitrary schedule of the tasks on the remaining unmatched ma
chine P^ ; 
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S:=St®S^2®-'-®Sfmf2V 
end; 

end; 

As already mentioned, for F11 C^^^ this heuristic was shown in [GS78] to have 

the worst case performance ratio of C^^J^Hi)! C^^^ < \ml7?\. The given argument 

can be extended to Flpmtn I C^^ and 011 C^^^, and also to some resource con

strained models. Tightness examples which reach [m/l] can also be constructed, 

but heuristic Hi is not applicable if permutation flow shop schedules are re

quired. 
In order to be able to handle this restriction consider the following Algo

rithm 8.3.5 which is based on condition C2. Assume for the moment that all ma
chines with index less than or equal [m/l] are represented as a virtual machine 
P{, and those with an index larger than [m/l] as a virtual machine P{. We again 
consider the given scheduling problem as a two machine problem. 

Algorithm 8.3.5 Aggregation heuristic H2for F11 C^^^ and its permutation 

variant {RS%31 

begin 
Solve the flow shop problem for two machines P[, P2 where each job Jj has 

\ml2\ m 

processing time a. = £ /?,-,• on P{ and processing time b: = ^ E^ p., on P^, 
-^ i=l ^ y i ^ ^ J i=[m/2]+l '-^ 

respectively; 
Let S be the two-machine schedule thus obtained; 
Schedule the jobs on the given m machines according to the two machine 

schedule S} 
end; 

The worst case performance ratio of Algorithm 8.3.5 can be derived with the 
following Lemma 8.3.6. 

Lemma 8.3.6 For each problem F\\ C^^^ {permutation flow shops included) and 

011 C^^^, the application 0///2 guarantees C^^J^H^)IC^^^ < \m/2]. 

Proof, Let S be an optimal schedule of length C^^^ for an instance of the problem 

under consideration. As fM2 from condition C2 is less restrictive than fW ,̂ it 

follows from Lemma 8.3.3 that there exists a preemptive schedule 5" which re

mains feasible under C2, and whose length is C^JC^^< \mll\. By construc

tion of £^2, 5" can be interpreted as a preemptive schedule of the job set on the 

two virtual machines P[, P2, where P[ does all processing which is required on 

the machines P\."'.P\mii\^ ^nd P2 does all processing which is required on the 

machines P\mi2\^\^' "^^m- Since on two machines preemptions are not advanta-
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geous the schedule S generated by algorithm H2 has length C^^J^H^ < C^^ < 

rm/2lC. D 

H2 can be implemented to run in 0{n{m + \ogn)) for FIIC^^^ and also for its 

permutation variant using Algorithm 8.2.1. It is easy to adapt Lemma 8.3.3 to a 

given preemptive schedule S so that the \ml2\ bound for H2 extends to Flpmtn I 

Cmax as well. 

The following example shows that the Im/l] bound of H2 is tight for F11 

C^^^. Take m jobs Jj, j = 1,- • ^m, with processing times py = p> 0 for i = j , 

whereaspy = e-^ 0 for i^j. H2 uses the processing times aj = p + {[m/l]-1)8, 

bj=lm/2JE for j < [m/2], and aj= \ml2\z, bj = p + {\ml2\-\)z for7> rm/2l. 

Consider job sets J^ which consist of k copies of each of these m jobs. For an 

optimal flow shop schedule for j ^ we get C^^ = /̂7 + ( m - 1)(^+ 1)8. The opti

mal two machine flow shop schedule for J produced by H2 may start with all k 

copies of J\yni2\ +1' J\mi2\ +2 ' ' ' ' ' m̂ ̂ ^^ ^^^^ contiuuc with all kcopies / j , J2.", 

J\mi2\ • O^ ^ machines this results in a length of C^^^(^2) = 

( m - 1 + ̂ \jnl2\)8 + \mi2\pk. It follows that C^J^H2)IC^y, approaches \ml2\ as 
8 ^ 0 . 

8.3.3 No Wait in Process 

An interesting sub-case of flow shop scheduling is that with no-wait constraints 
where no intermediate storage is considered and a job once finished on one ma
chine must immediately be started on the next one. 

The two-machine case, i.e. problem F21 no-wait IC^^ , may be formulated as 
a special case of scheduling jobs on one machine whose state is described by a 
single real valued variable x (the so-called one state-variable machine problem) 
[GG64, RR72]. Job J^ requires a starting state x = A^ and leaves with x = B^. 
There is a cost for changing the machine state x in order to enable the next job to 
start. The cost Cy of Jj following J^ is given by 

f(x)dx if Aj>Bi, 

f(x)dx if B,>Aj, 

where/(x) and g(x) axe integrable functions satisfying/(x) + g(x) > 0. The objec
tive is to find a minimal cost sequence for the ^ jobs. Let us observe that problem 
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F2 I no-wait I C^^^ may be modeled in the above way if Aj -Pij, Bj = P2j, /(x) = 1 
and g(x) = 0. Cost c^j then corresponds to the idle time on the second machine 
when Jj follows J^, and hence a minimal cost sequence for the one state-variable 
machine problem also minimizes the completion time of the schedule for prob
lem F21 no-wait I C^^^. On the other hand, the first problem corresponds also to a 

special case of the traveling salesman problem which can be solved in 0(n ) time 
[GG64]. Unfortunately, more complicated assumptions concerning the structure 
of the flow shop problem result in its NP-hardness. So, for example, Fm I no-
wait I C^^^ is unary NP-hard for fixed m > 3 [Roc84]. 

As far as approximation algorithms are concerned H^ is not applicable here, 

but H2 turns out to work [RS83]. 

Lemma 8.3.7 For F I no-wait I C^^^, the application of H2 guarantees 

Proof, It is easy to see that solving the two machine instance by H2 is equivalent 
to solving the given instance of the m machine problem under the additional con
dition C2. It remains to show that for each no-wait schedule S of length C^^^ 
there is a corresponding schedule 5" which is feasible under C2 and has length 
C^^^ < [m/2] C^^. Let y^, / 2 ' • • • 5 ̂  be the sequence in which the jobs are proc
essed in S and let s^j be the start time of job /^, j = 1,- • ^n, on machine 7̂ -, / = 
I,' - ,m. As a consequence of the no-wait requirement, the successor Jj^^ of Jj 
cannot start to be processed on machine P^.^ before Jj starts to be processed on 

machine P^. Thus for q = [m/l] we have sj'^ < sj+i<...< Sj+^and for the finish 

time Cj of job Jj we get Cj < Sj+i < sj^2 ^ ^ ^j+m-q - ^j+q • This shows that if we 
would remove the jobs between Jj and Jj^^ from S, then S would satisfy C2 in the 

interval [Sj , Sj^^]. Hence, for each k= 1,.. ^^ the sub-schedule Sj^ of S which 

covers only the jobs of the subsequence 4 , /^^^, 4^2^ ̂  • • • ^ hA.{n-k)iq\ ^ of / i , • • •, 

J^ satisfies C2. Arrange these sub-schedules in sequence. None is longer than 

C^^^, and each job appears in one of them. The resulting schedule 5" is feasible 

and has length C^^^ < qC^^^. D 

Using the algorithm of Gilmore and Gomory [GG64], H2 runs in 0{n{m + \ogn)) 
time. The tightness example given above applies to the no-wait flow shop as 
well, since the optimal schedule is in fact a no-wait schedule. Moreover, on two 
machines it is optimal to have any alternating sequence of jobs /^, /^, /^, J^ with 
ae. {1,- • •,rm/2l} and b e {[^721+ 1,- • ^m}, and in case of odd m this may be 
followed by all copies of J^. When 8 tends to zero, the length of such a schedule 

on m machines approaches \ml2\ kp, thus C^JJtl2) IC^^ approaches [m/l]. 
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An interesting fact about the lengths of no-wait and normal flow shop 
schedules, respectively, has been proved by Lenstra. It appears that the no-wait 
constraint may lengthen the optimal flow shop schedule considerably, since 
C^x(^^-^^i^)' C^ax < m for m > 2 . 

8.4 Scheduling Flexible Flow Shops 

8.4.1 Problem Formulation 

The hybrid or flexible flowshop problem is a generalization of the fiowshop in 
such a way that every job can be processed by one among several machines on 
each machine stage. In recent years a number of effective exact methods have 
been developed. A major reason for this progress is the development of new job 
and machine based lower bounds as well as the rapidly increasing importance of 
constraint programming. 

We consider the problem of scheduling n parts or jobs / , j = 1, 2, • ^n, 
through a manufacturing system that will be called a flexible flow shop (FFS), to 
minimize the schedule length. An FFS consists of m > 2 machine stages or cen
ters with stage / having ki> 1 identical parallel machines P^, Pn^'-^Piki (̂ ^^ 

Figure 8.4.1). For job Jj vector [py, P2/,- • '^Pmj\ ^f processing times is known, 
where p/ • > 0 for all /, j . Task T̂  of job / may be processed on any of the ki ma
chines. This is the generalization of the standard flow shop scheduling problem, 
whereas all the remaining assumptions remain unchanged. 

The jobs have to visit the stages in the same order starting from stage 1 
through stage m. A machine can process at most one job at a time and a job can 
be processed by at most one machine at a time. Preemption of processing is not 
allowed. The scheduling problem consists of assigning jobs to machines at each 
stage and sequencing the jobs assigned to the same machine so that some opti-
mality criterion C is minimized. 

Note that the processing time Pij does not depend on the machine assigned to 

job Jj at stage /. This notation is applied when stage / consists of identical parallel 

machines. The completion time (which is a decision variable) of job Jj at stage / 

will be denoted by cf. 
A partial schedule S assigns some jobs to machines and fixes the process

ing order of another subset of jobs. S can be modeled by a directed graph G = 
(y,A), where V consists of nm+2 nodes, i.e., one node (/,/) for each job / at each 
stage / and two additional nodes, 0 and *. A contains the arcs (directed edges) 
(0,(/,/)) and ((/, /),*) for all nodes (/,/). Moreover, the arcs ((/,/), (jj-l)) belong 
to A for ally and 1 < / < m-1 . Finally, whenever S fixes that job J^ precedes job Jj 
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at some stage / then arc ((/, /), (/, /)) belongs to A. The length of an arc ((/, l),x) e 

A is pii, where x is a node of G. The length of any arc (0, (/, /)) e A is null. A 

path p in G is a sequence of nodes (p^, ..., p^) such that p contains no node twice 

and iPu^Pu+i) ^ A for all 1 < u < e-1. The length of a path p is the sum of the 

lengths of the arcs (p̂ ,̂ p^̂ +i), 1 <u<e-l, along the path. Let h(x,y) represent the 

length of the longest path between nodes x and y. If no path exists between x and 

y in G, then h(x,y) = cx). Finally, the release date or head rf of job Jj at stage / is 

/z(0, (/, /)), while its delivery time or tail qf is h((j, /), *) - Pip see Blazewicz et al. 

[BDP96]. Figure 8.4.1 is an example with m stages and ki machines at each stage 

/. 
Machines may remain idle and in-process inventory is allowed. This is im

portant, since a restricted version of the problem was studied already by Salvador 
[Sal73] who presented a branch and bound algorithm for FFS with no-wait 
schedules and /?y > 0 for all /, j . He identified the problem in the polymerization 
process where there are several effectively identical and thus interchangeable 
plants each of which can be considered as a flow shop. Of course, all situations 
where a parallel machine(s) is (are) added at least one stage of a flow shop to 
solve a bottleneck problem or to increase the production capacity lead to the FFS 
scheduling. Another interesting application of the problem was described by 
Brah and Hunsucker [BH91] and concerns the running of a program on a com
puter where the three steps of compiling, linking and running are performed in a 
fixed sequence and we have several processors (software) at each step. Other real 
life examples exist in the electronics manufacturing. 

Figure 8.4.1 Schematic representation of a flexible flow shop. 

Heuristics for the general FFS scheduling problem (in the sense stated above) 
were developed by Wittrock [Wit85, Wit88], and by Kochbar and Morris 
[KM87]. The first paper deals with a periodic algorithm where a small set of jobs 
is scheduled and the schedule is repeated many times, whereas the second one 
presents a non-periodic algorithm. The basic approach in both cases is to decom
pose the problem into three sub-problems: machine allocation, sequencing and 
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timing. The first sub-problem is to determine which jobs will visit which ma
chine at each stage. The second sub-problem sequences jobs on each machine, 
and the third one consists of finding the times at which the jobs should enter the 
system. The heuristic algorithm developed by Kochbar and Morris considers 
setup times, finite buffers, blocking and starvation, machine down time, and cur
rent and subsequent state of the system. The heuristics tend to minimize the ef
fect of setup times and blocking. 

The standard a I (31 y notation for classifying scheduling problems by Gra
ham et al. [GLL+79] has been extended by Vignier et al. [VBP99] to take the 
new machine environment into consideration. Here we will consider only models 
with identical parallel machines at the stages and the objective is to minimize the 
makespan, denoted by Fm \kY,k2,- • -,k^\ C^^^, and the mean flow time, Fm I ki, 

^2'" • "'^m' 2 ] Q ' respectively, hi fact, we are not aware of efficient exact solution 
procedures for the general m-stage problem with other processing environments. 
By "general m-stage problem" we mean that m is not restricted to a small con
stant. 

The general m-stage multiprocessor flowshop scheduling problem is 
strongly NP-hard for all traditional optimality criteria, since the special cases 
F3 11 C^^^ and F211 Z Q having only one machine at each stage are NP-hard in 
the strong sense, as shown in Garey et al. [GJS76]. Moreover, the makespan 
minimization problem is already NP-hard in the strong sense when m = 2 and 
max{^1,^2} > 1 as shown by Gupta [Gup88]. Note that Hoogeveen et al. 
[HLV96] have proven that F2I2 ,1IC^^ is at least NP-hard in the ordinary 
sense, while its preemptive version, F2I2,1, pmtnlC^^^, has been shown NP-
hard in the strong sense. 

hi the following sections we will present some heuristics for simple sub-
problems of our problem for which the worst and average case performance is 
known. 

Then we provide a comprehensive and uniform overview on exact solution 
methods for flexible flowshops with branching, bounding and propagation of 
constraints under two different objective functions: minimizing the makespan of 
a schedule and the mean flow time. This part is based on Kis and Pesch [KP05]. 

We do not discuss the large body of work on the two-stage special case. The 
review by Vignier et al. [VBP99] offers an exhaustive overview on two-stage 
problems. 

We present a mixed integer-linear program modeling the constraints of both 
the minimum makespan and the minimum mean flow time problems, respec
tively. Then we consider the minimum makespan problem, followed by a discus
sion on approaches for minimizing the mean flow time. The latter two sections 
have a common structure: first various lower bounds are presented and compared 
if possible, then branching schemes and their merits are discussed. 
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8.4,2 Heuristics and Their Performance 

The results presented in this section were obtained by Sriskandarajah and Sethi 
[SS89]. In the sequel the FFS scheduling problem with m machine stages and k^ 
machines at stage / will be denoted by Fm\ki,k2," •,k^\ C^^^. 

Let us start with the problem F2\ki = l,k2=k>2\ C^^ ,̂ and let us assume 
that the buffer between the machine stages has unlimited capacity. First, consider 
the list scheduling algorithm in which a list of the job indices 1, 2, • • •, n is given. 
Jobs enter the first machine stage (i.e. machine P^) in the order defined by the 
list, form the queue between the stages and are processed in center 2, whenever a 
machine at this stage becomes available. C^^^ denotes the schedule length of the 
set of jobs when the list scheduling algorithm is applied, and C^^ is the mini
mum possible schedule length of this set of jobs. Then the following theorem 
holds. 

Theorem 8.4.1 [SS89] For the list scheduling algorithm applied to the problem 
Fm I k^_^ = l,k^ = k>2\ C^^ we have 

and this is the best possible bound. D 

The proof of this theorem is based on Grahams result [Gra66] for algorithms 
applied to the problem Pm 11 C^^ (or Fl I A:i = /: > 2 I C^^^). The bound is, as we 
remember from Section 5.1, C^^^/C^^^^ <2-l/k. 

Consider now Johnson's algorithm which, as we remember, is optimal for 
problem F211 C^^^. The following can be proved. 

Theorem 8.4.2 [SS89] For Johnson's algorithm applied to problems F21 fc^ = 1, 

k2 = k = 2\C^^ and F2\k,= h k2 = k>3\ C^^, with Q , ^ < E py^max{py} the 

following holds: 

C /C * < 2 

and this is the best possible bound, D 

Theorem 8.4.3 [SS89] For Johnson's algorithm applied to the problem F2\ki = 
n 

\,k2 = k>?>\ C^ with C^ > Z P I • + max{p27} "^^ have 
j=i -^ j •' 

c^x/c:..<i + (2-ki-i). n 
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Notice that the bounds obtained in Theorems 8.4.2 and 8.4.3 are better than those 
of Theorem 8.4.1. 

Let us now pass to the problem F2\ki=k2 = k>2\ C^^^. The basic algorithm 

is the following. 

Algorithm 8.4.4 HeuristicHJorF2\k^ = k2 = k>2\ C^^^ [SS89]. 

begin 
Partition the set of machines into /: pairs {Pn,P2i}^ {^i2'^22}'- "APik^Pik)^ 

treating each pair as an artificial machine P-, / = 1,2,- • •,^, respectively; 

f o r e a c h job JJE J do pj :=py-\-p2j} 

c a l l List scheduling algorithm; 
— this problem is equivalent to the NP-hard problem Pk 11 C^^^ (see Section 5.1), 
— where a set of jobs with processing times p- is scheduled non-preemptively on a set 
— ofk artificial machines; list scheduling algorithm solves this problem heuristically 

f o r / = 1 t o /: do c a l l Algorithm 8.2.1; 
— this loop solves optimally each of the k flow shop problems 
— with unlimited buffers, i.e. for each artificial machine P- the processing times /?• 
— assigned to it are distributed among the two respective machines P̂ -̂ and P2/ 

end; 

Let us note, that in the last f o r loop one could also use the Gilmore-Gomory 
algorithm, thus solving the k flow shop problems with the no-wait condition. The 
results obtained from hereon hold also for the FFS with no-wait restriction, i.e. 
for the case of no buffer between the machine stages. On the basis of the Gra
ham's reasoning, in [SS89] the same bound as in Theorem 8.4.1 has been proved 
for H^, and this bound remains unchanged even if a heuristic list scheduling al
gorithm is used in the last f o r loop. Since an arbitrary list scheduling algo
rithm has the major influence on the worst case behavior of Algorithm H^, in 
[SS89] another Algorithm, Hj^, was proposed in which the LPT algorithm is 
used. We know from Section 5.1 that in the worst case LPT is better than an arbi
trary list scheduling algorithm for Pm 11C^^ .̂ Thus, one can expect that for Hj^ a 
better bound exists than for H^. 

The exact bound 7?^ for //^ is not yet known, but Srishkandarajah and Sethi 

proved the following inequality. 

The same authors proved that if LPT in Hj^ is replaced by a better heuristic or 

even by an exact algorithm, the bound would still be i?^^ > 2. The bound 2 has 

also been obtained in [Lan87] for a heuristic which schedules jobs in non-
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increasing order of py in FFS with m = 2 and an unlimited buffer between the 

stages. 
Computational experiments performed in [SS89] show that the average per

formance of the algorithms presented above is much better than their worst case 
behavior. However, further efforts are needed to construct heuristics with better 
bounds (i.e. less than 2). 

8.4.3 A Model 

A mixed integer programming formulation for Fm\ki,k2,- - •,k^\ C^^^ is given by 
Guinet et al. [GSKD96]. The decision variables specify the order of jobs on the 
machines and the completion times of the jobs at each stage: 

Xyj^i = 1, if job Jj is processed directly after job J^ on machine P^ in stage /, 

0 otherwise, 

^Oiki = 1' if jc>b Ji is the first job on machine P^ at stage /, 
0 otherwise, 

^iOki = 1, if job J^ is the last job on machine P^ at stage /, 
0 otherwise, 

cf = completion time of job Jj at stage /, 

^max - completion time of all jobs. 

The mixed integer programming formulation in [GSKD96] is as follows: 

minimize C^^^ (8.4.1) 

subject to 
n kj 

Z Z^p/ = 1 V j = l , . ••,/2,/=!,--•,m (8.4.2) 
i=OMj k=l 

1 ; ^ < 1 V h = 0,...,n,k=\,...,ki, (843) 
7=0 / = 1 , . - - , L 

L Xihki- Lxhju = 0 , / / (8-4.4) 
i=OMh j=OJ*h 1= i , • • •, L 

ki , k, , V / = 1 , • • •, n , 

cf + Z xp; • pij + [ (Y^^ja) -l)B < cf 7 = 1, • • •, n, (8.4.5) 
fcl k=l /= ! , • • • ,m 

Cf'^+Pij < c f V j=l,.-.,n,l = 2,-..,m (8.4.6) 
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Cj- < C^x V 7=1, • • • ,n , /= l , • • • ,«? (8.4.7) 

-,./MO,l} ^ 1^^''V7^"'"' (8-4.8) 

C f ^ 0 V j = l , - - - , n , / = l , - . - , m (8.4.9) 

In this program J5 is a very big constant, i.e., greater than the sum of all job proc
essing times. 

The makespan minimization aspect of the problem is expressed by (8.4.1). 
Constraints (8.4.2), (8.4.3) and (8.4.4) ensure that each job is processed precisely 
once at each stage. In particular, (8.4.2) guarantees that at each stage / for each 
job Jj there is a unique machine such that either Jj is processed first or after an
other job on that machine. The inequalities (8.4.3) imply that at each stage there 
is a machine on which a job has a successor or is processed last. Finally, at each 
stage for each job there is one and only one machine satisfying both of the previ
ous two conditions by (8.4.4). Constraints (8.4.5) and (8.4.6) take care of the 
completion times of the jobs. Inequalities (8.4.5) ensure that the completion 
times C\ and Cj of jobs /̂ - and Jj scheduled consecutively on the same machine 
respect this order. On the other hand, inequalities (8.4.6) imply that jobs go 
through the stages in the right order, i.e. from stage 1 through stage m. The con
straint that the makespan is not smaller than the completion time of any job is 
expressed by (8.4.7). The last two constraints specify the domains of the decision 
variables. 

To minimize the mean flow time instead of the makespan it is enough to re
place the objective function (8.4.1) with the following one: 

n 

minScf^ (8.4.10) 

Moreover, the variable C^^^ and all constraints involving it can be dropped. 

8.4.4 The Makespan Minimization Problem 

First we discuss various techniques for obtaining lower bounds, then we present 
branching schemes and also implementations and computational results. 

Lower Bounds 

Although we are concerned with the general m-stage problem, it is worth to reca
pitulate lower bounds for the two-stage special case, since several ideas stem 
from studying the latter problems. We will highlight the key ideas and cite papers 
that appear to propose them. If not mentioned otherwise, we assume that at each 
stage there are identical parallel machines. 
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I) Reduction to classical flowshop. Consider the classical flowshop scheduling 
problem obtained by dividing the job processing times at each stage by the num
ber of machines. That is, define the new processing time of job Jj at stage / as pij 
= Pijlki, / = 1, • • •, m, J = 1, • • •, f2. The n new jobs with processing times Pij at the 
different stages constitute a classical flowshop scheduling problem. When L = 2, 
this flowshop scheduling problem can be solved to optimality by Johnson's rule 
[Joh54]. The optimum makespan Q ^ of the latter problem is a lower bound on 
the optimum makespan of the original problem, as it is observed in Lee and 
Vairaktarakis [LV94]. To see this, let 5* be an optimal schedule for the two-stage 
multiprocessor problem and suppose the jobs are indexed in non-decreasing or
der of their completion time at stage 1, i.e., / <j iff . Consider the first / 
jobs at stage 1 and the last n-i+l jobs at stage 2. Since the last n-i+l jobs cannot 
start earlier at the second stage than the completion of the first / jobs at the first 
stage, the completion time C^^^(5^) satisfies 

. i . n 

Now consider the two-stage flowshop scheduling problem with n jobs having the 
above processing times. When sequencing the jobs at both stages in increasing 
order of their indices we obtain a feasible schedule and a longest path in that 
schedule with length C^^^. On this longest past there is a job /z such that 

^max -^ ^ L ^ ^ k. ' 
j=l i j=h ^ 

We immediately see that C^^^ < C^^J^S^), Moreover, as Q ^ < C^^^, the state

ment follows. 

n) Aggregation, This is a very rich class of lower bounds based on computing 
the total amount of work on some stages or machines. Again, we begin with the 
case m = 2 and the following two lower bounds, LB{1) and L5(2), are enhance
ments of those suggested by Sriskandarajah and Sethi [SS89], generalizations of 
the bounds proposed by Gupta and Tunc [GT91] and Gupta [Gup88] and are 
reported in their present form by Guinet et al. [GSKD96]. 

{ n . 

( Z c f ^ ) / ^ / , max p^i }, /= 1,2 . (8.4.11) 
1=1,...,n ^ . j /=! , . . . ,n 

This bound is based on aggregating the work at stage /. Consider e.g., LB{\). 
The processing of all jobs at the first stage cannot complete sooner than the max 
in (8.4.11). In addition to that, the last job, say job 7 ,̂ finished at this stage must 
be completed at the second stage too. The minimum amount of time spent by job 
j at the second stage is expressed by the min in (8.4.11). Hence, LB{\) is a lower 
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bound on the makespan. By reversing the time the same argument shows that 
LB(2) is a lower bound on the makespan as well. 

Lee and Vairaktarakis introduced a different set of lower bounds for the m = 
2 case in [LV94]. Suppose the jobs are indexed in non-decreasing order of stage 

1 processing times, Ic^p^ < ,.. <pi^. Let P^^ = X L P / J denote the summation 

of the q shortest job processing times at stage /. If ^̂  > k2 then 

LB, = ^ \ ^ (8.4.12) 

is a lower bound on C^^^, Namely, because of the flowshop constraints, on each 
machine at stage 2 there will be some idle time before processing may start, i.e., 
there will be a machine with idle time at least Pn, 3. machine with idle time Pi2, 
- • -, and a machine with idle time Pi ^ . Consequently, the makespan is no less 

than the average idle time plus the average workload at stage 2. 
However, if k^ < ̂ 2 the above lower bound can be improved. Certainly, on 

each machine at stage 2 there will be idle time before processing starts and these 
idle times are at least pi^,- • •,/?i ^^, respectively. Moreover, on ^2~^i of these 
machines processing cannot start until at least two jobs are completed at stage 1. 
Hence, an additional idle time of at least Pn units is unavoidable on /:2~^i ^^" 
chines at stage 2. Consequently, the following 

. . , - " » ' ^ < ^ ' - / - ^ " " " " - (8.4.13) 

is a lower bound on the makespan. By exploiting the symmetry of the two-stage 
multiprocessor flowshop problem we obtain another two bounds by interchang
ing the roles of stage 1 and stage 2. The new bounds will be 

^2i^l + ( ^ 1 - ^ 2 ) ^ 2 1 + ^ 1 . 
LB^ = if k^>k2. (8.4.14) 

ki 

^2k^ + ^ In 
LB^ = '- if k^<k2 . (8.4.15) 

ki 

These lower bounds can be combined to obtain the following lower bound: 

maxiLB^^LB^XiB} if ^1 ^^2 
LB= ' - I max{LB2,LB^, Q^} if ki < ^2 

where Q ^ is the lower bound of Lee and Vairaktarakis obtained by reduction to 

classical flowshop. 
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Brah and Hunsucker proposed two bounds for the general m-stage problem, 
one based on machines and another based on jobs [BH91]. Suppose all jobs are 
sequenced on stages 1 through / - I and a subset Si of jobs is already scheduled at 
stage /. Before describing the two bounds, we introduce additional notation. 

J = set of all jobs, 

R = set of jobs already scheduled at stage /, 

S^^\R) = partial schedule of jobs in Jl at stage /, 

C[S^^\R)]J^ = completion time of the partial sequence on machine k. 

Notice that in order to compute C[S (-^)]^ we have to fix the schedule of the 
upstream stages. 

Having fixed the schedule of all jobs on the first / - I stages and that of the 

jobs in R at stage /, the average completion time of all jobs at stage /, 

ACT[S^^\ji)], can be computed as follows: 

ACT[S^\j^)] = ^-^ J + ^ -; ^ (8.4.16) 

It is worth mentioning that in any complete schedule of all jobs at stage / that 

contains the partial schedule S (J?), there will be a job completing not sooner 

thmACT[S^^\R)l 

The maximum completion time of jobs in J? at stage /, MCT[S (R)], is 
given by 

MCT[S^^\j^] = max C[S^^\ji)]j^. (8.4.17) 
l<k<ki 

The machine based lower bound, LBM, is given by 
m 

ACns'-^m + min { E Pn 1 

if ACT[S^^(^)]>MCT[S^^(^)] , 
m 

MCT[S^\jl)]+mini H Pvi] 

Otherwise 

LBM[S'-^(J4)] = { (8.4.18) 

The rationale behind separating the two cases stems from the following observa

tion. If ACT[S^'\j^] > MCTIS^'\J4)] then the last job finished at stage / will be a 

job in J-Jl If AC7lS^^\j^] < MCT[S^^\ji)] then the last job scheduled at stage 

/ may come from ^ or from j?-J?. 
The job based lower bound, LB J, is defined by 



8.4 Scheduling Flexible Flow Shops 301 

LBJ[S^^(m = min { C[S^'\j^],^} + max ( £ p^,,-) . (8.4.19) 
l<k<ki ieJ-JA i^i 

Finally, the composite lower bound, LBC, is given by 

LBC[S^^iJ^^ = max{LBM[S^'\j^],LBJ[S^'\j^] } . (8.4.20) 

The LBM bound (8.4.18) is improved in Portmann et al. [PVDD98]. Namely, if 

ACT[S^^\ji)] = MCnS^^iJ^)] and J/-^:^ 0 then it may happen that 

m m 

min { X Pn } > min { Z p^., ] (8.4.21) 

holds, for the processing times of the jobs in J? and in J-^ are unrelated. In this 
case LBM can be improved by the difference of the left and right hand sides of 
(8.4.21). That is, if J-Sl^ 0 , the improved lower bound becomes 

m 

ACT[S^\j^)] + min { X Pn 1 

if ACT[S^'\R)] > MCT[S^^\j^)] , 

LBM[S^^(Ji)] = <( 
MCT[S^\JI)] +min { £ p , , ) 

'6^ /•=/+! (8.4.22) 

if ACT[S^^\jl)] < MCT[S^\JI)] , 

ACT[S^^(Jl)] + 

maxj min { X Pn K min{ X Pn }} 

if ACTT^^^^J?)] = MCr[5^^\j^)] . 

IE) Bounds with heads and tails. The set of bounds in this category share the 
property that they can be computed for any stage / and it is not assumed that all 
jobs are completely scheduled on all upstream stages. This is in contrast with 
bounds (8.4.18), (8.4.19) and (8.4.22) that heavily rely on this assumption. Lower 
bounds based on heads and tails can easily be updated whenever a scheduling 
decision has been made either through branching in a branch and bound proce
dure or through propagation of constraints. While the basic idea of the bounds 
(8.4.18), (8.4.19) and (8.4.22) is calculation of average processing times or aver
age machine in process times, the main idea of the subsequent bounds is the cal
culation and subsequent reduction of the domains of start times of the jobs at 
each stage, i.e. the interval limited by the earliest and latest possible start and 
completion times of the jobs, see [VHHL05]. 

To simplify notation, we fix stage /. Assume that a partial schedule S already 

exists (maybe S is empty). We define a set ^ofn tasks with processing times Pj 

= Pij for each Tj e (B, noting that j refers also to job Jj of the multiprocessor 
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flowshop scheduling problem. Li addition to that, a ready time r̂  = rj and a de

livery time qj = q- are defined for each task Tj, where r- and q^ are deter

mined with respect to the graph representation of the partial solution S. 

The problem of scheduling n tasks on in = ki identical parallel machines sub

ject to release dates and delivery times to minimize the makespan, Pmlrj^qj 

IC^^^, is a relaxation of the multiprocessor flowshop scheduling problem, as it is 

pointed out by Carlier and Pinson [CP98]. Since this problem is NP-hard in the 

strong sense, as the one machine special case 1 lry,^^IC^^^ already is [GJ77], 

various lower bounds are proposed in Carlier [Car87]. All of these lower bounds 

are lower bounds for the multiprocessor flowshop problem as well [CNOO]. 
The most basic lower bound for the Pm I r , qj IC^^^ problem is 

LB^ = max {r^+p^ + q^} (8.4.23) 

Now consider a subset S' of (B and define the quantity 

G(J) = m i n { r } + ^ ( E Pj) + mm{qj} 

Clearly, G(^') is a lower bound for the Pm I r̂ , qj IC^^^ problem with respect 

to any (B' ^ (B. Consequently, taking the maximum over all subsets "B' of (B we 

obtain another lower bound: 

L52 = max{G((S')}, (8.4.24) 
Tje(B' 

which can be computed in Oin-logn) time generating Jackson's preemptive 

schedule for the one-machine scheduling problem with heads mrj, processing 

times Pj and tails mqj, see Carlier [Car87]. The optimal value of a preemptive 

solution of the one machine problem is mLB2. 

The next lower bound tries to take into account the heads and tails of differ

ent operations in a more efficient way. Namely, let (B' be a subset of !B with l!B' I > 

m. Denote r^ , • • •, r̂ _ and qj , • •, ^ •_ the m smallest release times and delivery 

times, respectively, of jobs in S'. Define the quantity G'(!BO by 

GX^") ^HX \ ^HPJ-^Z qt^) (8.4.25) 
^ u=l " Tj^^' u=l " 

It is shown in [Car87] that LS3, as defined by (8.4.26) below, is a lower bound 

for the Pm I r̂ , q^ I C^^^ problem. 

L5o= max {G'(!S')} (8.4.26) 

In order to show this, we may assume that each machine is used from jobs of !B'. 
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A (every) machine is idle from time 0 to time r^ , a second machine is idle from 

time 0 to time r^ and the machine m is idle from 0 to r̂ -._. Similarly, one machine 

is idle after processing for qj time units, a second machine is idle for qj time 

units, etc. Adding processing and idle times for all machines it is obvious that 

(8.4.25) is a lower bound for any subset !S' of (B. 

Bound (8.4.26) can straightforwardly be computed in 0(n ) time [Van94], 
[Per95]. However, it is shown in [CP98] that the stronger lower bound 

LB^ = max{L5i,Lfi3} (8.4.27) 

can be computed in Oin-log n + nm-logm) time using Jackson's Pseudo Preemp
tive schedule. In such a schedule, an operation may be processed on more than 
one machine at a time. Moreover, it can be shown that the distance between the 
non-preemptive optimal makespan and LB^ is at most 2p^^^ [Car87]. 

For the sake of completeness we mention that when schedule S is empty 

then r • = X/'=iP/'/ ^^^ symmetrically q\ = ^I'^i^iPn hold for each job Ẑ -. For 

this special case Santos et al. [SHD95] has proven that G'(lB') (cf. equation 

(8.4.25)) is a lower bound when S ' consists of all jobs. Computational results 

show that, on average, the lower bound is within 8% of the optimum. 

An even stronger lower bound can be obtained by solving the preemptive 
version of the Pmlr^,^^IC^^^ problem using a network flow model. Fix a 
makespan C and define deadlines dj = C - q^ for each job / . Job Jj must be proc
essed in the interval [r., J,] in order to complete all jobs by time C. There are at 
most h<2n different r̂  and dj values and let v^,..., V;̂  represent these values ar
ranged increasingly, i.e., v̂  < V2 < ... < V/̂ . Let /̂  = [VpV +̂i), t = 1,- • - , / i-l , repre
sent h-l intervals with lengths Z ,̂- • -Jh-i- ^^t^ [O'̂ j-I ^^^^ ^ P^^ nrLin{/̂ ,/?j} of 
job Jj can be processed in interval I^. Hence we form a capacitated network with 
/2 + (/i - 1) + 2 nodes, having one source node s, one sink node r, n nodes for rep
resenting the jobs and h-l nodes for representing the intervals. Source s is con
nected to each job node j with an arc of capacity pj. Each job node j is connected 
to each interval /̂  with I^ c [^j^dj] using an arc of capacity min{/^,p^}, and finally 
each interval /̂  is connected to the sink by an arc of capacity ml^. In this network 
there is a flow of value T^jPj if and only if the preemptive Pm I rj,qj,pmtn IC^^^ 
problem has a solution with makespan C. Using dichotomic search, the smallest 
C admitting a compatible flow of value TjPj can be found in polynomial time. It 
is shown in Hoogeveen et al. [HHLV95] that the difference between the preemp
tive makespan and LB^ is not more than ml{m~\)p^^^. Nonetheless, this gap is 
claimed to vanish in practice [CP98]. The drawback of this method is the rela
tively high computation time for finding the maximum flow. 

We close this section by a rather tricky lower bound of Carlier and Neron. 
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Let i?^,-••,7?^ denote the m smallest increasingly ordered machine availability 

times at stage /, noting that they depend on the partial schedule S, Let 

GL.c/./n.(^0=^(max(i?i,r,.) + ...+max(7?-,r^- ) + ^ P; + ^/i + ---+^/,, )• 

(8.4.28) 

Now, if R^ + qj^ < UB, then G'^^^f^i^^CB') is a lower bound on UB . 

Let us briefly sketch the main ideas of the proof which can be found in 

[CNOO]. Let 5 be a schedule with a makespan of at most UB, If there exists a 

machine P^ different from P^ without any job from !B' to process then the jobs 

from fS' scheduled on machine P^ can be scheduled on machine P^. From 7?̂  

< R^ we know this will not increase the makespan of S. If no job from ^' is 

processed on machine P - consider the difference h=UB-R^- (ĵ -_ > 0. A part 6 

of job J I- (with release date r̂ -_ and tail q^^) which is scheduled on some machine 

can be scheduled in the interval [UB-q^^-h, UB-q^.} on machine P - without 

increasing the makespan. Thus, we can conclude, if there is a schedule with a 
makespan of at most UB then there is also a (preemptive) schedule with a 
makespan of at most UB in which all machines have to process at least a part of a 
job from !B'. 

What remains is to sum up idle times and processing times of all machines 

with respect to the (preemptive) schedule. The first machine is idle from 0 to R^ 

but also from 0 to r^^. Therefore it is idle from 0 to max{/?i,r^J. There is also a 

machine idle from time UB - q^^ until time UB. Similar conclusions for the re

maining machines yield the desired result. 

Branch-and'Bound Methods 

We have introduced several lower bounds in the previous section. Below we dis
cuss branching schemes and search strategies. 

The first branch-and-bound procedure for the Fm I ^ j , • • •,Z:̂  I C^^^ problem is 

proposed in Brah and Hunsucker [BH91]. 
This procedure is a modification of the method developed by Bratley et al. 

[BFR75] for scheduling on parallel machines. At each stage / two decisions must 
be made: the assignment of the jobs to a machine P^, and the scheduling of jobs 
on every machine at stage /. The enumeration is accomplished by generating a 
tree with two types of nodes: node (J) denotes that job Jj is scheduled on the 
current machine, whereas node [J j denotes that Jj is scheduled on a new ma
chine, which now becomes the current machine. The number of [_J nodes on 
each branch is equal to the number of parallel machines used by that branch, and 
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thus must be less than or equal to ki at stage /. The number of possible branches 

at each stage / was established by Brah in [Bra88] as 

Consequently, the total number of possible end nodes is equal to 

'(".'".(^<i«) = n[^,,_,J^. 
For the construction of a tree for the problem, some definitions and rules at 

each stage / are useful. Let the level 0/ represent the root node at stage /, and 1̂ , 
2/, • • •, Z/ represent different levels of the stage, with Zi being the terminal level of 
this stage. Of course, the total number of levels is nm. The necessary rules for the 
procedure generating the branching tree are the following. 

Rule 1 Level 0̂  contains only the dummy root node of stage /, /= 1, 2 ,-- ,m 

(each / is starting of a new stage). 

Rule 2 Level 1/ contains the nodes [T], [ 2 ] , - - , 0 , where x= n-ki+ 1 (any 

number larger than x would violate Rules 5 and 7). 

Rule 3 A path from level 0/ to level j / , / = 1, 2,- • ',m,j = 1, 2,- • •,w, may be ex
tended to the level (/+1); by any of the nodes [T], [X|,- • •, 0 , (J), (2),- • •, (n) 
provided the rules 4 to 7 are observed (all unscheduled jobs at stage / are candi
dates for |_ ] and (J) nodes as long as they do not violate Rules 4 to 7). 

Rule 4 If 0 or (g) has previously appeared as a node at level j / , then a may not 
be used to extend the path at that level (this assures that no job is scheduled twice 
at one stage). 

Rule 5 [a\ may not be used to extend a path at level j ^ , which already contains 
some node [7] with r> a (this is to avoid duplicate generation of sequences in 
the tree). 

Rule 6 No path may be extended in such a way that it contains more than ki \__\ 

nodes at each stage / (this guarantees that no more than ki machines are used at 

stage /). 

Rule 7 No path may terminate in such a way that it contains less than ki \^ 
nodes at each stage / unless the number of jobs is less than ki (there is no advan
tage in keeping a machine idle if the processing cost is the same for all of the 
machines). 

A sample tree representation of a problem with 4 jobs and 2 parallel ma
chines is given in Figure 8.4.2. All of the end nodes can serve as a starting point 
for the next stage 0/+̂  (/ < m). All of the nodes at a subsequent stage may not be 
candidates due to their higher value of lower bounds, and thus not all of the 
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nodes need to be explored. It may also be observed that all of the jobs at stage / 
will not be readily available at the next stage, and thus inserted idle time will 
increase their lower bounds and possibly remove them from further considera
tions. This will help to reduce the span of the tree. The number of search nodes 
could be further reduced, if the interest is in the subclass of active schedules 
called non-delay schedules. These are schedules in which no machine is kept idle 
when it could start processing some task. 

The use of these schedules does not necessarily provide an optimal schedule, 
but the decrease in the number of the nodes searched gives a strong empirical 
motivation to do that, especially for large problems [Fre82]. 

Finally we describe the idea of the branch and bound algorithm for the prob
lem. It uses a variation of the depth-first least lower bound search strategy, and is 
as follows. 

4, (aXDQCiXD 

Figure 8.4.2 Tree representation of four jobs on two parallel machines. 

Step 1 Generate n-k^ + l \_\ nodes at stage 1 and compute their lower bounds. 
Encode the information about the nodes and add them to the list of un
processed nodes. Initialize counters (number of iterations, time) defining 
end of computation. 

Step 2 Remove a node from the list of unprocessed nodes with the priority 
given to the deepest node in the tree with the least lower bound. Break 
ties arbitrarily. 
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Step 3 Procure all information about the retrieved node. If this is one of the end 
nodes of the tree go to Step 5, while if this is the last node in the list of 
unprocessed nodes then go to Step 6. 

Step 4 Generate branches from the retrieved node and compute their lower 
bounds. Discard the nodes with lower bounds larger than the current up
per bound. Add the remaining nodes to the list of unprocessed nodes 
and go to Step 2. 

Step 5 Save the current complete schedule, as the best solution. If this is the 
last branch of the tree, or if the limit on the number of iterations or 
computation time has reached, then pass to the next step, otherwise go 
to Step 2. 

Step 6 Print the results and stop. 

As we see, the algorithm consists of three major parts: the branching tree 
generation, the lower bound computing, and the list processing part. The first two 
parts are based on the concepts described earlier with some modifications utiliz
ing specific features of the problem. For the list processing part, the information 
is first coded for each branching node. If the lower bound is better than the best 
available C^^^ value of a complete solution (i.e. the current upper bound), pro
vided it is available at the moment, the node is stored in the list of unprocessed 
nodes. The information stored for each branching node is the following: 

KODE = NPRx\QmOOQ + NPSx\0000 + LSNx 100 + JOB 

LEND = NS X 10000000 -\- NSCH X 100000 + L5 

where NPR is the machine number in use, MPS is the sequence number of this 
machine, LSN is number of the last [ ^ nodes, JOB is the index of the job, NS is 
the index of the stage, NSCH is the number in the processing sequence, and LB is 
the lower bound of the node. 

The stage and the level numbers are coded in the opposite manner to their 
position in the tree (the deepest node has the least value). Thus, the deepest node 
is stored on top of the list and can be retrieved first. If two or more nodes are at 
the same stage and level, the one with the least lower bound is retrieved first and 
processed. Once a node is retrieved, the corresponding information is decoded 
and compared with the last processed node data. If the node has gone down a 
step in the tree, the necessary information, like sequence position and completion 
time of the job on the retrieved node, is established and recorded. However, if the 
retrieved node is at a higher or the same level as the previous node, the working 
sequence and completion time matrix of the nodes lower than the present level 
and up to the level of the last node are re-initialized. The lower bound is then 
compared with the best known one, assuming it is available, and is either elimi
nated or branched on except when this is the last node in the tree. The qualifying 
nodes are stored in the list of unprocessed nodes according to the priority rule 
described in Step 2 of the algorithm. However, in case this is the last node in the 
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tree, and it satisfies the lower bound comparison test, the working sequence posi
tion and job completion time matrix along with the completion time of the sched
ule is saved as the best known solution. 

Of course, the algorithm described above is only a basic framework for fur
ther improvements and generalizations. For example, in order to improve the 
computation speed for large problems some elimination criteria, like the ones 
developed in [Bra88] can be used together with the lower bounds. The lower 
bound in Step 1 and Step 4 of the algorithm are computed according to (8.4.20), 
using (8.4.18) and (8.4.19). The algorithm could also be applied for schedule 
performance measures other than the schedule length, if corresponding lower 
bounds would be elaborated. Moreover, the idea of the algorithm can be used in a 
heuristic way, e.g. by setting up a counter of the number of nodes to be fully ex
plored or by defining a percentage improvement index on each new feasible solu
tion. 

The algorithm of Fortmann et al. [PVDD98] extends that of Brah and Hun-
sucker in several ways. First, it uses the improved machine based lower bound 
(8.4.22) instead of (8.4.18) when computing (8.4.20). Moreover, it computes an 
upper bound before starting to schedule the jobs at a new stage /. The upper 
bound is computed by a genetic algorithm (GA) that determines a schedule of all 
jobs at stages / through m. The schedule of the jobs at the first / - I stages is fixed 
and is given by the path from the root of the branching tree to the root node of 
stage /. For details of GA we refer the reader to [RC92]. 

The results of a detailed computational study show that the method of Fort
mann et al. is able to solve problems to optimality with up to five stages and ten 
or fifteen jobs. However, it seems that the method is very sensitive to the pattern 
of the number of parallel machines at the stages. Another conclusion is that the 
algorithm proves the optimality of solutions, within a given time limit, more fre
quently when GA is used. 

A Method Based on Constraint Propagation 

The method of Carlier and Neron [CNOO] is significantly different from that of 
Brah and Hunsucker and of Fortmann et al. The novelty of the approach consists 
in working on all m parallel machine problems at the same time. Namely, instead 
of solving the parallel machine problem completely at a stage, like in the branch-
and-bound algorithm of Brah and Hunsucker, the method selects a stage and the 
next job to be processed at that stage. Having scheduled the selected job, heads 
and tails are adjusted and the method proceeds with selecting a new stage. 

First we discuss how to select the job to be scheduled next at some stage 
with respect to a fixed upper bound UB. To simplify notation fix a stage / and 
consider the m machine problem with m = ki. We identify the processing of job J^ 
at stage / with task T^. The processing time of task T^ is Pi-Pu and its starting 
time (to be determined) will be t^. Let !B denote the set of all m tasks. A central 
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notion is that of selection. A selection A for an m-machine problem is an ordered 
list of tasks [T^ ,T^ ,• • •, T̂- ,T̂  } such that: if T^ precedes T^ in A then t^ < tj, or tf 

= tj and / < J. A selection is complete if S is totally ordered. To complete the 
definition note that in a selection more than one task can be processed at the 
same time, but the total number of tasks processed simultaneously cannot exceed 
m. 

earlier [Car84] has proposed a simple list scheduling algorithm, the Strict 
algorithm, to schedule tasks with respect to a selection at their earliest possible 
date, the result is called strict schedule. It is shown that strict schedules dominate 
all other schedules. Consequently, it is enough to work with strict schedules. 

Let us fix an upper bound UB for the m-machine problem. A task T^ G (B is 

an input (output) of the m-machine problem if and only if there exists a schedule 
S= { tjlTjE (B) with makespan at most UB and verifying tj> t^ (respectively tj 

+ Pj < tf+pi) for all TjE (B - { r j . Inputs and outputs will be selected by com
puting lower bounds after fixing a task T^ to be scheduled before or after all other 
unscheduled tasks. However, lower bounds may not detect that no schedule of 

the remaining tasks with makespan at most UB exists. 
For solving the makespan minimization problem, Carlier and Neron solve 

the decision version of the problem and apply a dichotomic search to find the 
smallest UB for which a solution exists. 

The decision problem is solved by branch-and-bound in which branching 
consists of fixing a task as input (or output) of a stage. More concretely, the 
branch-and-bound method proceeds as follows: 
Step 1. Determine the most critical (machine) center, which is the set of parallel 
machines on some stage that will most likely create a bottleneck when schedul
ing all jobs (see below). Decide if the selection is built according to inputs or 
outputs. If selection based on outputs is chosen then reverse the problem. 
Step 2. If bestsolution < UB then answer YES and stop. Otherwise, if all nodes 
are explored then answer NO and stop. Otherwise proceed with Step 3. 
Step 3. Choose the node Â  in the branch-and-bound tree to be explored. If the 
current center, i.e. the parallel machine problem under consideration in node Â , is 
completely selected then proceed with Step 4, otherwise proceed with Step 6. 
Step 4. If all centers are completely selected in N and solution < UB then answer 
YES and stop. Otherwise, if there exists a center in N not completely selected 
then choose the most critical center among the not completely selected ones as 
the current center of Â  and proceed with Step 5. In all other cases proceed with 
Step 6. 
Step 5. Determine a solution for Â . If the makespan of the solution found is not 
greater than UB then answer YES and stop. 
Step 6. Compute lower bounds with respect to the current center of Â . If 
lowerbounds > UB then discard node Â  and go to Step 2. Otherwise proceed with 
Step 7. 
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Step 7. Apply local enumerations to N and proceed with Step 8. 
Step 8. Determine the list of feasible inputs for the current center of N, For each 
feasible input / create a new node by adding / to the partial selection of the cur
rent center of Â  and adjust heads and tails. Go to Step 2. 

Below we provide some details of this algorithm: 

• The most critical center: a lower bound is computed for each m = ̂ /-machine 
problem. The m-machine problem with the largest lower bound defines the 
most critical center which will be selected first. 

• The current center, the center where the selection is built and it is always the 
most critical center. 

• The search tree is visited in a depth-first manner such that, among the children 
of a node, the child with the smallest release date of its input is chosen for ex
ploration. 

• Solutions are generated during the exploration of the tree using the Strict list 
scheduling algorithm. The (ordered) list of operations for each center is de
termined by either a complete selection, if available, or by sorting the opera
tions in decreasing tail order (steps 4 and 5). 

• Lower bounds are computed using eq. (8.4.25) and also eq. (8.4.28). 
• Local enumerations at Step 7 refer to two things. On the one hand, unsched

uled operations are selected in all possible ways while respecting UB'm order 
to improve their heads and tails. On the other hand, a restricted multiprocessor 
flowshop problem is solved during the construction of the selection of the 
most critical center. 

• The selection of inputs at Step 8 consists in finding jobs that can be scheduled 
next (before all other unscheduled jobs) without augmenting a lower bound 
beyond UB, 

The adjustments of heads and tails start from the current center and are propa
gated through the other centers. The efficiency of the head and tail based lower 
bounds heavily depends on this propagation phase. Moreover it influences the 
number of feasible inputs and therefore the size of the branching tree. 

Assume task T^ has been detected as a possible input in the current machine 

center. There might be a partial selection within this center which is not yet com

plete. Let !B be the set of unselected tasks. If T^ is an input all other tasks cannot 

start before the release time r̂  of e, i.e. r^ := max{ry,r^} for all tasks T^ of !B. For 

all machines P^ of the current center the machine availability time can be updated 

to /?^ := max{i?^,r^}. The adjustment of the machine availability times again 

might cause an increase of the release dates of all tasks from !B, i.e. r^ := max{r^, 

i?i}, because a task cannot start before a machine becomes available. 

In the domain of possible start times for task e on any machine the latest 
possible start time is limited by 
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max[uB-p^-q^,UB-liY.T.^~Pi+Pe + ^j,^'''-^qjr)} 

which implies the updating of the tail 

The complexity of this adjustment is at most 0{mn). 

Consider a partial selection and set (B of unselected tasks at a node in the 

branch-and-bound tree. Let G'(!B) be the lower bound (8.4.25) and UB the cur

rent upper bound. Let 5 be the smallest non-negative integer such that 

^ • ( i : = i r , + 6 + Z , ^ . , , P , + E : , ^ J > f / 5 and r , . ^ . i - r , > 5 . 

Thus, we can conclude that t^ <r^ 4-6 otherwise the aforementioned new 

value G'i^B), where the release date of T^ has been increased by 6, will be strictly 

greater than UB, As t^ +Pi + q^ < Q -\-q^ <UB we can set qi := maxj^^- ,̂ 

UB-ir^ +5+p^-) + 1}. If the new q^ is greater than the previous one, the same 

deduction can be applied to q^^. Similarly, adjustments can be derived for the 

release dates leading to the following updates r^^ '=mdiX{r^^,UB-{q^^ + h'+Pi^ 

+ 1). 
The modification of the release dates of the tasks of the current center are 

propagated to the subsequent machine centers and the new tails are propagated to 
the previous machine centers. 
For more details see [CNOO]. 

As far as the benefits of this method are concerned, most of the problems 
reported hard by Vignier [Vig97] are very easy to solve by constraint propaga
tion. Those that are not solved immediately, are hard for the new method as well. 
The method seems to perform well on problem instances in which there is a "bot
tleneck" center having one machine only. 

8.4.5 The Mean Flow Time Problem 

We are aware of only very few results on solving multiprocessor flowshop with 
respect to the mean flow time objective. The general problem has been studied 
by Azizoglu et al. [ACKOl] and a special case where an optimal permutation 
schedule is sought has been studied by Rajendran and Chaudhuri [RC92]. We 
commence with a lower bound for the optimal permutation schedule problem and 
continue with that for the general case. Then a branch-and-bound method for 
each of the two problems will be presented. 
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Lower Bounds 

Permutation flow shops 

Before presenting the lower bound proposed by Rajendran and Chaudhuri for the 
permutation flowshop problem we introduce additional notation. 

a = a permutation of jobs (indices of the jobs) that defines an available partial 
schedule, 

n' = the number of scheduled jobs in a, 
U =the set of unscheduled jobs, 

Rj^(a)= the release time of machine P^ at stage / w.r.t. a, 

C(GjJ) = the completion time of an unscheduled job Jj e U at stage / when 

appended to a, 
F(G) = the total flow-time of jobs in a, 

LBCj (a) = the lower bound on the completion time of job / at stage /, 
LB(a) = the lower bound on the total flow-time of all schedules beginning 

with partial schedule a. 
In a permutation schedule the completion times of the jobs at the stages are 

determined w.r.t. a permutation a of jobs. The completion times of the jobs in a 
are determined iteratively by using the processing times and machine assign
ments. Namely, assuming that a = a'j and that job Jj is assigned to machine Pj^^j^ 
at stage /, the completion time of job Jj at the first stage is 

The completion time at each stage / = 2,- • ^m (in this order) is determined 
by 

C%'j) = max{ d'-%'j),R%j^} +p,j. 

Finally, the release times of the machines at the stages / = 2, • •, m are given by 

(/) I C%'j) if k = k(jj) 

^ ^ ^ ^ ^ ^ M i ? f ( a ) otherwise 

Now we turn to the lower bound. To this end we need other expressions that 
are defined next. The earliest time when an unscheduled job in W becomes avail
able at stage / can be computed as follows: 
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r min{ Rf(a) 11 < /t < /tj } + min | X p j 

s'-^^ = max •< 
/-I 

min{ Rf(a) I 1 < jt < /tj } + min | S P, 
Jjell ^=1 

D( ' -1 ) / . 

^ (8.4.30) 

min{ i?'; Xa) I 1 < A; < ^;_i } + min [pi_ij | 

Therefore, the earliest starting time of an unscheduled job is given by 

max( min{ Rf{a) \l<k<ki},s^^} 

Let R\. denote mm{R^^(<j) I 1 < k< k;}. With this notation the lower bound on 

the completion time of job Jj^, where Jj^ € IZ, at stage / is given by 

LBCf^ia) = max[RfJ^^} + p^j^ + I p^j^ . 
q=l+l 

(8.4.31) 

We place tentatively Jj^ on machine P^ and update the machine's release time as 

/?̂ /̂  = m a x { / ? ^ « } + p . . (8.4.32) 

D(0 ; . Now, updating R^ is correct only if / is an unscheduled job with smallest proc

essing time. Letji j 2 ' ' ' 'Jn-n' ^^ a permutation of the indices of all unscheduled 

jobs in U satisfying pf^ <pf^ < ,..<p/Jl„ we compute LBC^^(a) fort= 1,. . . , 

n-n\ in this order. Then we obtain the lower bound 

LB^^\a) = F(a) + E LBCf\G), 

at stage / on the total flow time of all permutation schedules beginning with par
tial schedule a. 

Finally, a lower bound on the total flow time of any schedule beginning with 
a is obtained by computing LB^^\a) for all stages 1 < / < m and taking the maxi
mum: 

LB(G) = max LB^^\a). 
l</<m 

(8.4.33) 

The general case 

When schedules are not restricted to permutation schedules Azizoglu et al. 
[ACKOl] propose two other lower bounds obtained by solving two different re
laxations of the following parallel machine problem. Let n̂ ^̂  be the total flow 
time problem on ki identical parallel machines and n tasks with processing times 
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Pii,,,,,Pi^ and ready times rf~^\...,r^^~^\ If F^^^ is the optimal flow time of 

problem n̂ ^̂ ^ then F^^^ is a lower bound on the optimal solution to the L-stage 

flowshop problem. However, IT is NP-hard as is its single machine special 

case. Hence, we compute lower bounds on F^^\ 

The first lower bound, LB^, is the optimum of a relaxation of 11̂ ^̂  when all 

job ready times are set to min^jr]^"^^}. This problem can be solved to optimality 

in polynomial time by the SPT rule, cf. Blazewicz et al. [BEPSWOl]. 
In the second lower bound, LB2, job ready times are kept, but instead of 

solving a parallel machine problem, a single machine problem is considered. 
More precisely, define n new tasks with processing times Pij/ki and ready times 

rj \ j = l,...,/2. Total flow time minimization on a single machine with ready 
times is NP-hard, Lenstra et al. [LRKB77], however its preemptive version can 
be solved with the shortest remaining processing time (SRPT) rule, Schrage 
[Sch68]. The preemptive optimum is a lower bound on the non-preemptive sin
gle machine problem, therefore on F^^\ 

In the next section we describe algorithms using the bounds presented in this 
section. 

Branch-and-Bound Procedures 

Permutation flow shops 

Rajendran and Chaudhuri propose a very simple algorithm for solving the permu
tation flowshop problem. Let k denote the minimum number of parallel machines 

over all stages, that is, ^ = min/{/:J. The algorithm starts by generating LJ 

nodes, one for each subset of k jobs out of the set of n jobs. In each of these 
nodes the ^ jobs are placed on k distinct machines in every stage, and the partial 
schedule a is defined accordingly. Then, the lower bound LB(a) (eq. 8.4.33) is 
computed for each node and the node with the smallest lower bound is selected 
for exploration. Exploring a node consists in generating n-n' new nodes, one for 
each of the n-n' unscheduled jobs. When generating a new node using an un
scheduled job Jj, then the operations of job Jj are joined to a starting with the 
operation at stage 1 and finishing with the operation at stage m. An operation is 
always placed on a machine having the smallest release time. After computing a 
lower bound for each child generated, the procedure proceeds by choosing the 
next node to branch from. The algorithm stops when a node with n-l scheduled 
jobs is chosen for exploration. Notice that in this case the lower bound matches 
the flow time of the schedule obtained by scheduling the only unscheduled job. 
Consequently, when the algorithm stops the node chosen augmented with the 
unscheduled job constitutes an optimal solution to the permutation flowshop 
problem. 
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As far as the power of the above method is concerned, instances up to 10 
jobs, 15 stages and up to 4 machines at each stage are solved while exploring 
only small search trees of less than 10.000 nodes in a short computation time 
(less than a minute) on a mainframe computer. 

The general case 

For the general case, Azizoglu et al. propose a new branching scheme which is 
different from that of Brah and Hunsucker (described in Section 8.4.4) developed 
for the makespan minimization problem. In each stage, there are n nodes at the 
first level of the tree, each node representing the assignment of a particular job to 
the earliest available machine. A node at the n'^^ level of the tree corresponds to 
a partial sequence with n' jobs scheduled. Each node at level n' branches to 
{n-n') nodes each is representing the assignment of an unscheduled job to the 
earhest available machine. 

The number of possible branches is thus n\ at each stage. Therefore the total 
number of leaves at the m* stage is {n\)^. 

In fact, the branching scheme of Azizoglu et al. generates only a subset of 
nodes generated by that of Brah and Hunsucker. The following example of 
Azizoglu et al. illustrates the difference between the two branching schemes. 
Suppose there are four jobs satisfying p^ ̂  <pj2+J^i3- ^^ the first stage the 
branching scheme of Brah and Hunsucker would consider to assign job J^ to the 
first machine and jobs J2, J^ and J^ to the second machine in this order. In con
trast, the new branching scheme under the assumption on job processing times at 
the first stage would not process job J^ on the second machine after jobs J2 and 
/ 3 , for processing job J^ on the first machine would dominate the former partial 
schedule. 

Another dominance relation between schedules comes from the following 

observation. If max{7?^ , r̂ -̂ "̂ }̂ -^ Pn < rf"^^, where /̂ - and Jj are distinct jobs not 

yet scheduled at stage / and R^. is the earliest time point when a machine be

comes available at stage /, then processing job J^ next dominates any schedule in 

which job Jj is processed next. The branch-and-bound tree generated contains 

only non-dominated nodes. A lower bound is computed for each node not elimi

nated using either LB^ or LB2 (defined in the previous section). 

Computational results show that the new branching scheme with LB^ outper
forms the algorithm using the new branching scheme and LB2 and also the algo
rithms using the branching scheme of Brah and Hunsucker with either lower 
bound. The largest problem instances on which the methods were tested con
sisted of 15 jobs, 2 stages and at most 5 parallel machines at a stage, and 12 jobs, 
5 stages and 4 machines at a stage. Moreover, a general observation is that the 
larger the number of machines at the first stage, the more difficult the problem 
becomes. The results are in contrast with the permutation schedule case where 
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instances with considerably more stages can easily be solved. 
For several other interesting conclusions about the properties of the pro

posed algorithm and also that of the lower bounds we refer the interested reader 
to [ACKOl]. 
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