
TRE
R O M A

DIA

Università degli Studi di Roma Tre
Dipartimento di Informatica e Automazione
Via della Vasca Navale, 79 – 00146 Roma, Italy

Reordering and local rerouting

strategies to manage train traffic

in real-time

Andrea D’Ariano1,2, Francesco Corman2, Dario Pacciarelli2, Marco Pranzo3

RT-DIA-126-2008 Giugno 2008

(1) Department of Transport and Planning, Delft University of Technology,
Stevinweg, 1 - 2628 CN Delft, The Netherlands.

(2) Dipartimento di Informatica e Automazione, Università degli Studi Roma Tre,
via della vasca navale, 79 - 00146 Roma, Italy.

(3) Dipartimento di Ingegneria dell’Informazione, Università di Siena,
via Roma, 56 - 53100 Siena, Italy.

This work is partially supported by the Italian Ministry of Research, Grant number RBIP06BZW8,
project FIRB “Advanced tracking system in intermodal freight transportation”



ABSTRACT

Traffic controllers regulate railway traffic by sequencing train movements and setting
routes with the aim of ensuring smooth train behaviour and limiting as much as possible
train delays. In this paper, we describe the implementation of a real-time traffic man-
agement system, called ROMA (Railway traffic Optimization by Means of Alternative
graphs), to support controllers in the everyday task of managing disturbances. We make
use of a branch and bound algorithm for sequencing train movements, while a local search
algorithm is developed for rerouting optimization purposes. The compound problem of
routing and sequencing trains is approached iteratively computing an optimal train se-
quencing for given train routes, and then improving this solution by locally rerouting
some trains. An extensive computational study is carried out, based on a dispatching
area of the Dutch railway network. We study practical size instances, and include in the
model important operational constraints, including rolling stock and passenger connec-
tions. Different types of disturbances are analysed, including train delays and blocked
tracks. Comparison with common dispatching practice shows the high potential of the
system as an effective support tool to improve punctuality.

2



1 Introduction

The continuous growth of passenger and freight railway traffic is increasing the pressure
on European railway companies, which must face the challenge of providing a satisfactory
level of service with a limited possibility of changing the existing infrastructure. Effective
timetable design and real-time traffic management policies play therefore a key role in this
context. In fact, there is an extensive literature on decision support tools for the timetable
design problem [8]. This is usually a long procedure, involving intensive negotiation among
different stakeholders and taking advantage from the availability of sophisticated decision
support systems (see, e.g. the Dutch timetable design system DONS [18]). On the
opposite, real-time traffic management received little attention in the literature, and is
still mainly under control of human dispatchers, whose computer support is often limited
to graphical interfaces and simple automatic route setting systems. Possible reasons are
the inherent complexity of the real-time process and the strict time limits for taking
decisions, which leave small margins to computerized decision support systems. Another
reason is that the effects of real time processes are often limited in time and space, and
depend on the quality of the timetable. However, the quality offered by real-time control
coincides with the actual level of railway service, and any improvement to this process
has a direct impact on the customer satisfaction. For these reasons, this paper focuses on
the development of models and algorithms for real-time railway traffic management.

The main problem faced by traffic controllers is to recover disturbances occurring in
real-time, such as train delays or temporary unavailability of some routes, which make
the timetable infeasible. This problem is called Conflict Detection and Resolution (CDR)
problem, which consists of modifying the timetable in order to make it compatible with
the real-time traffic situation. Similar real-time problems are faced also in other trans-
portation contexts, such as the air traffic control [4, 5].

Possible control actions include changing dwell times at scheduled stops, changing
train speeds along lines or train orders at junctions, stations and passing points. Other
control actions involve major modifications such as changing train routes or even canceling
journeys. We address the CDR problem defining feasible train routes and scheduling exact
arrival/departure times at stations as well as at a set of relevant points in the network,
with the objective of optimizing train punctuality.

Due to the strict time limit available for computing a conflict-free timetable, traffic
controllers usually perform manually only a few changes in the timetable. Experienced
dispatchers have developed strategies that allow them foreseeing possible disruptions well
in advance to take compensatory control actions based on local information. In general,
minor changes are preferred to extensive rescheduling in order to alter as little as possible
the original timetable. Simple computerized systems have been developed to support
dispatchers in their activity. For example, the Dutch automatic route setting system
ARI (Automatische Rijweg Instelling, described in [3]) may perform automatically some
CDR actions. However, such systems do not provide an effective support when dealing
with strong disturbances, and extensive rescheduling is necessary to obtain feasibility.
This paper describes models and algorithms for supporting this activity when dealing
with several late trains and even in presence of strong disturbances, such as blocked
tracks. Precisely, we report on the implementation of a real-time traffic management
system, called ROMA (Railway traffic Optimization by Means of Alternative graphs),
able to solve the CDR problem in real time within a dispatching area of practical size.

3



ROMA decomposes the CDR problem into two sub-problems: (i) given a route for
each train, define train ordering and timing; (ii) given a solution to sub-problem (i), define
new train routes potentially leading to better schedules. The two sub-problems are then
solved iteratively until no improvement is possible within a time limit of computation.

Sub-problem (i) is modeled with an alternative graph [21], which allows predicting
accurately the future evolution of the railway traffic on the basis of the actual train
positions and speeds, signaling and safety system constraints. The problem is modeled as
a job shop scheduling problem with no-store constraints. Additional real-world constraints
due to passenger satisfaction are also considered, such as minimum transfer time between
connected train services. This sub-problem is solved with the truncated branch and
bound procedure of D’Ariano et al. [9] with the objective of minimizing the maximum
consecutive delay at stations and at a set of relevant points of the dispatching area.

Sub-problem (ii) is solved by a local search approach. A train route is modified if the
new solution improves the objective function. We restrict the search to promising routes
by exploiting mathematical properties of a solution.

Computational experiments are based on the dispatching area of the Dutch rail net-
work between Utrecht and Den Bosch. Given a perturbation at the border or within
the area, a new feasible timetable is produced within a short time period, compatible
with real-time purposes. We study the performance of ROMA under severe disturbances
and considering relevant real-world constraints. We also present a comparison between
the branch and bound procedure and a scheduling algorithm similar to that of the ARI
system, currently adopted by Dutch traffic controllers.

The paper is organized as follows: Section 2 reviews recent contributions dealing
with train scheduling and routing problems; Section 3 defines the conflict detection and
resolution problem and presents the general architecture of ROMA; Section 4 deals with
model and optimization algorithms for real-time train scheduling and local rerouting. In
Section 5, we describe and evaluate the computational results.

2 Review of the related literature

The optimization of train routing and scheduling is recognized as an interesting possibility
to improve railway performance. The survey of Cordeau et al. [8] reviews a large number
of papers dealing with different problems arising in timetable design and real-time traffic
management. In view of their extensive survey, we limit our review to recent papers
dealing with train scheduling and routing problems.

Kroon et al. [19] prove the NP-completeness of the general problem of routing trains
through railway stations to design a conflict-free timetable, and show polynomially solv-
able special cases. Zwaneweld et al. [32] reduce the same problem to a weighted node
packing problem, and develop a branch and cut procedure based on dominance rules and
valid inequalities, which is able to solve the problem for practical size instances at all
Dutch stations. The weighted node packing model is also the basis of other works on
the train routing problem. For instance, Caimi et al. [6] address the problem of finding
robust routings first by searching a feasible solution with a fixed-point iteration method,
and then by looking for better solutions with a local search algorithm.

Delorme et al. [10] model the integrated train routing and scheduling problem with
a set packing formulation, that is stronger than the node packing one. They develop a

4



GRASP (Greedy Randomized Adaptative Search Procedure) metaheuristic and test it on
a number of mixed-traffic instances for a junction located in the North of France. Delorme
[11] extends the set packing model taking into account different objectives to be considered
in lexicographic order and presents a method to measure routing robustness. Gandibleux
et al. [15] develop an ant colony metaheuristic to solve the set packing problem and
present results based on a junction and a station located in the North of France. For the
same problem, Lusby et al. [20] propose a branch and bound procedure, which exploits the
mathematical structure of the dual of the linear relaxation in order to efficiently generate
good lower bounds.

Carey and Carville [7] deal with the problem of routing and scheduling trains at
complicated stations. A combinatorial model is proposed to avoid train conflicts and to
minimize schedule deviations on the basis of a weighted combination of costs. Heuristic
techniques are designed according to train planners’ objectives. Several practical con-
straints are also considered as minimum time headway distances and platform occupation
constraints for multi-platform stations.

Fioole et al. [14] model the problem of assigning the rolling stock to the timetable
services, including constraints on departure and arrival time, number of passengers and
other constraints on the rolling stock type. They also consider combining and splitting of
trains according to the Dutch standard. Multi-objective criteria are adopted, and mixed
integer programming techniques are used to solve the problem. The authors were able to
compute a significant part of the weekly rolling stock schedule of the Dutch railway.

Higgins et al. [16] formulate the train scheduling problem as a non-linear mixed
integer program aiming to the improvement of timetables and to the development of
decision support systems for real-time traffic management. Their model is applied to
a long single line track. The authors present a branch and bound algorithm based on
priority rules and using a shortest path method for estimating the lower bound. The
criteria for conflict resolution takes into account train priorities, current train delays and
expected remaining delay due to conflicts. Successively, Higgins and Kozan [17] propose
several metaheuristics for the real-time train scheduling problem, including local search,
genetic algorithms, tabu search and hybrid techniques.

Adenso-Diaz et al. [1] consider the problem of managing real-time timetable distur-
bances for a regional network. They propose an automated conflict resolution system for
the Spanish National Railway Company. A mixed integer programming model is adopted
and heuristic solution techniques are developed.

Şahin [28] studies the real-time conflict resolution problem on a single-track railway.
Conflicts between trains are solved in the order they appear. An algorithm based on
look-ahead strategies predicts potential consecutive delays and takes ordering decisions
at merging or crossing points. The problem is formulated as a job shop scheduling problem
and the objective is to minimize average consecutive delays.

Oliveira and Smith [25] model the train scheduling problem for a single track railway
network as a job shop scheduling problem, and include in the model several additional
real world constraints. They point out the importance of considering constraints related
to the satisfaction of required train services, such as passenger or rolling stock connections
at station. Their objective function is the minimization of the total delay.

Dorfman and Medanic [13] propose a discrete-event model for scheduling trains on a
single line and a greedy strategy to obtain sub-optimal schedules. The model behavior is
similar to those of human dispatchers. The authors show that adding non-local informa-

5



tion, the system can also prevent deadlocks. The approach can quickly handle timetable
perturbations and performs satisfactorily on three time-preference criteria.

Dessouky et al. [12] describe a train dispatching system based on reordering decisions.
A branch and bound procedure has been implemented and deadlock avoidance checks are
adopted to reduce the search space. The resulting approach is able to find exact solutions
for a single-track network with 14 train routes within two hours of computation time.
The development of effective heuristics is addressed for real-time purposes.

Rodriguez [27] proposes a heuristic approach to train routing problem and consequent
train reordering problem with operational purposes. The algorithm is tested on a com-
plex rail junction and is able to provide a satisfactory solution within three minutes of
computation time for instances up to 24 trains.

Mazzarello and Ottaviani [23] describe the architecture of a real-time traffic man-
agement system that has been implemented within the European project COMBINE,
in order to test the feasibility of a completely automated system for conflict resolution
and speed regulation. The problem is modeled with the alternative graph of Mascis and
Pacciarelli [21], and the future evolution of train dynamics is predicted on the basis of a
continuous feedback with train position and speeds. Rerouting actions are chosen on the
basis of priority rules and ordering decisions are taken with the objective of minimizing a
maximum delay. A detailed description of models and algorithms used within COMBINE
is presented in [22].

Törnquist and Persson [31] present a model for the train rescheduling problem in a rail
network with several merging and crossing points. The problem is formulated as a mixed-
integer linear program and solved with commercial software packages. Four strategies are
proposed for reducing the solution space, based on restrictions on reordering and rerouting
actions. Computational experiments are based on instances with a single delayed train.

Due to the significant complexity of real-time train routing and scheduling problems,
even recent approaches are able to provide proven optimal solutions only for small in-
stances or for simple perturbations. However, practical real-time problems may include
the presence of several late trains and blocked zones, which require implementing local
rerouting actions and train reordering at merging and crossing points. Our approach com-
bines rerouting and rescheduling strategies for solving real-time disturbances in a regional
railway network of practical size, including the presence of blocked zones and strong per-
turbations, which require extensive timetable modifications to reach a feasible schedule.
We also analyze the relevant case in which a double track corridor is blocked in one of
the two directions, which requires trains traveling in opposite directions to share the only
track available.

3 Conflict detection and resolution system

In this section, we formally define the CDR problem and describe the architecture of our
CDR system ROMA. In its basic form a railway network is composed of track segments
and signals. Signals are used to control railway traffic and to guarantee a safety distance
between trains. There are signals before every junction as well as along the lines and inside
the stations. A detailed description of different aspects of railway signaling systems and
traffic control regulations can be found in [26].

A block section is a track segment between two block signals. The running time of a

6



train on a block section is the time required to traverse the block section. This is known in
advance since all trains travel at their scheduled speed whenever possible. An additional
delay may occur when a train reaches the end of a block section and the subsequent block
section is still occupied by another train. The running time of a train on a block section
starts when its head (the first axle) enters the section. However, the previous block section
remains blocked by the train for a certain amount of time that we call setup time. This
time takes into account the time between the entrance of the train head in a block section
and the exit of its tail (the last axle) from the previous one, plus additional time margins
to release the occupied route (see, e.g. [24]).

A conflict occurs whenever a train requires a block section which is not available,
i.e., occupied by another train or temporarily blocked. Given a timetable, the current
infrastructure status with possible blocked tracks and the current train positions and
speeds, a conflict detection and resolution system addresses the following problems:

• Conflict detection: check whether the timetable is conflict-free or detect conflicts.

• Conflict resolution: build a new feasible timetable compatible with the status of the
network, by defining routes, orders and times for all circulating trains.

The general architecture of ROMA is shown in Figure 1. A human dispatcher can
interact with the system adding/removing constraints or changing the timetable. The
overall system performs three basic actions: (i) load information, in charge of loading
all necessary data and computing some preprocessing, (ii) disruption recovery, which
assigns an initial feasible route to each train and (iii) real-time optimization, which
computes the final schedule. The next three subsections address each module separately.

Figure 1: Architecture of ROMA

3.1 Load information

ROMA makes use of the following information. The timetable contains a list of ar-
rival/departure times for a set of relevant points on the network, including all the stations
visited by each train. The infrastructure consists of a set of available block sections de-
limited by signals. Infrastructure data include the status and length of each block section
and other characteristics, such as speed limitations and the traversing direction.

The data associated with each train include speed and position at the entrance of the
network, acceleration and braking curves (calculated on the basis of traction force/speed

7



diagrams and maximum speeds) and a list of routing options, in the order given by the
dispatcher. A route is a sequence of block sections and is feasible if no block section in
the route is blocked.

Finally, setup times and running times for each pair (train, block section) are computed
by the module on the basis of available rolling stock and infrastructure data.

3.2 Disruption recovery

After the loading phase, the disruption recovery module checks if there are blocked
zones in the network, which make some train routes infeasible. In this case, this module
assigns a new feasible route to each disrupted train, avoiding the blocked zones. This
is performed simply sorting the routing options on the basis of a priority list and then
choosing the feasible train route with highest priority, called the default routing.

If no feasible route is available for a train the system asks for an external support by
the human dispatcher. In such cases, emergency timetables are used and train routes are
strongly modified, e.g. enabling a train to reverse the running direction.

3.3 Real-time optimization

This module is in charge of computing a first feasible schedule and then looking for better
solutions in terms of punctuality. The module architecture is described in Figure 2.

Figure 2: Architecture of the real-time optimization module

Given a timetable, a set of routing options associated with each train and the current
status of the network, the train reschedulingmodule returns a feasible schedule for the
given train routes. Specifically, the first run of this module considers the default routings
defined by the disruption recovery module. If no feasible schedule is found within
a predefined time limit of computation, the human dispatcher is in charge of avoiding
deadlocks taking some decisions that are forbidden to the automated system, such as
the cancellation of a connection or even a train journey. When a feasible schedule is
found, the train local rerouting module verifies whether a rerouting option, leading

8



to a better solution, exists. We limit ourselves to consider local rerouting only, such as
parallel corridors along the lines or alternative platforms in the stations. However, our
procedure may work as well with more complex rerouting options, provided that these are
predefined in a list of available rerouting options. For each changed route, running times
and setup times are modified accordingly. Whenever some route is replaced, the train

reschedulingmodule computes a new conflict-free timetable by thoroughly rescheduling
train movements. The iterative rescheduling and rerouting procedure returns the best
solution found when a time limit is reached or no local rerouting improvement is possible.
In the following section we introduce the mathematical formulation of the problem and
the algorithms used by ROMA.

4 Model and algorithms for traffic optimization

The train scheduling problem can be formulated as a job shop problem with additional
constraints [25, 28, 30]. Trains are viewed as jobs passing through a prescribed sequence
of block sections, which are viewed as machines. An operation oi corresponds to the
traversing of a block section u for a train TV , i.e., is associated with the pair < u, TV >.
The journey of a train TV is therefore a sequence of operations < u1, TV >,< u2, TV >
, . . . , < uk, TV >, and the operation associated with the pair < uj, TV > is the successor of
< uj−1, TV > and the predecessor of < uj+1, TV >. The running time pi of oi depends on
block section characteristics and on the train speed profile, and oi cannot be interrupted
from its starting time ti to its completion time ti+pi. Each block section can host at most
one operation at a time. The job shop scheduling problem consists of defining starting
times for all operations such that each operation of a job starts after the completion
of its predecessor and no machine processes two operations simultaneously. Additional
constraints of the train scheduling problem include setup times, arrival and departure
times, connections between train services and the fact that a job cannot be stored between
consecutive operations, called no-store constraint. A no-store constraint imposes that a
train, having reached the end of a track segment, must wait for the subsequent segment to
be available before leaving the current segment, thus preventing other trains from entering
it at the same time.

We model the train scheduling problem with an alternative graph. This is a triple
G = (N,F,A), where N is a set of nodes, F is a set of fixed arcs, and A is a set of pairs of
alternative arcs. Each node corresponds to an operation. A fixed arc (i, k) represents a
precedence relation tk ≥ ti + pi constraining the starting time tk of ok with respect to the
starting time ti of its predecessor oi. In Figure 3, fixed arcs are depicted with solid arrows.
Alternative arcs represent the no-store constraints and the constraints that a block section
cannot host two trains at the same time. Their lengths represent the setup times. If two
operations oi and oj require the same block section, there is a potential conflict and a
processing order must be defined between them. Specifically, if oi is processed first, then
oj must wait for the completion of oi, the starting of the successor of oi plus the setup
time aij between oi and oj . By letting ok and oh be the successors of oi and oj respectively,
we model the two possible processing orders with the pair of arcs ((k, j), (h, i)) ∈ A. The
length of (k, j) is the setup time aij between oi and oj, while the length of (h, i) is the setup
time aji between oj and oi. In the example of Figure 3, alternative arcs are depicted with
dashed arrows. Set N includes two dummy operations o0 and on, with zero processing

9



time, “start” and “finish” respectively. For each operation oi ∈ N there is a path in F
from o0 to oi and from oi to on.

Figure 3: Two trains approaching a conflict point. Nodes i and j represent trains TA and
TB entering the junction, nodes k and h represent TA and TB entering the subsequent
block section.

An alternative graph represents all the scheduling alternatives when train routes are
defined. If a train can be assigned to different routes, then F is a variable of the prob-
lem and A depends on the choice of F . Note that, each arc of F associated with the
traversing of a block section has length equal to the running time of the associated train
on the associated block section. In fact, this depends also on the train speeds on the
previous/following block sections. Changing part of a route for a train may therefore
cause adjusting its running time on several block sections that have not been modified.
In such cases, we replace with new fixed arcs all the arcs of F that are associated to a
different block section or to the same block section but with a different running time.
Once F is defined, a selection S is a set of arcs obtained from A choosing only one arc
from each pair and G(F, S) indicates the graph (N,F ∪ S). In the example of Figure 3,
if (k, j) is selected, TA precedes TB. Conversely, if (h, i) is selected, TB precedes TA. If
ti < tj < tk + aij or tj < ti < th + aji then a conflict between TA and TB is detected and
must be solved choosing one of the two arcs.

A selection S is consistent if G(F, S) has no positive length cycles. In fact, a positive
length cycle represents a deadlock situation (i.e., an operation preceding itself), which is
infeasible. In the problem we deal with in this paper, negative and zero length cycles never
occur. However, negative and zero length cycles allow to model more general scheduling
situations [22]. If S is consistent, the value of a longest path from i to j in G(F, S) is
lF,S(i, j). The longest path from the start node 0 to the finish node n in G(F, S) is called
the critical path C(F, S) of the graph. A conflict-free schedule is associated with a complete
consistent selection on the corresponding graph. Given a set F and an initial selection Sin,
potentially empty, the objective of the scheduling problem is to find a complete consistent
selection S such that Sin ⊆ S and such that the length lF,S(0, n) of C(F, S) is minimized.
The selection Sin represents the precedence constraints implied by the initial positions of
the trains and/or by their order of entrance into the network.

We next model our objective function. Let αi be the planned arrival time of a train
TA at a relevant point in the timetable, which can be infeasible in case of perturbation.
Let τi be its earliest possible arrival time computed according to its initial position, initial
speed, assigned route and the maximum speed profile (allowed by the train characteristics
and infrastructure). Note that τi does not take into account possible conflicts with other
trains, and therefore is a lower bound on the feasible arrival time ti of TA. The value
max{0, τi−αi}, called the initial delay is then a delay which cannot be recovered. We call
consecutive delay the quantity ti − max{τi, αi}, which is the additional delay due to the

10



solution of conflicts between TA and the other trains. Adding an arc from oi to on, with
length −max{τi, αi}, for each relevant point, we have that lF,S(0, n) equals the maximum
consecutive delay.

For the sake of simplicity, in the following figures we only show the relevant point
associated to each node and the train associated to each job. Figure 4 shows an example
of a network with two relevant points, namely the arrivals of trains TA and TB at station
platform Q. Here, the two arcs (Q,n) represent the contributions of the two train delays
at station platform Q to the objective function. Arcs (0, 3) and (0, 6) constraint the
departure times of the two trains to be greater or equal to the ones in the timetable.
Horizontal arcs (Q, 3) and (Q, 6) model the dwell times.

Figure 4: Passenger connections

In the alternative graph of Figure 4 a passenger connection is shown. There are two
trains, TA and TB, stopping at station platform Q. To let passengers moving from one
train to another, each train must depart sufficiently later with respect to the other. We
model this constraint with two diagonal fixed arcs (Q, 3) and (Q, 6), which constraint the
departure time of a train with respect to the arrival time at the platform of the other. In
general, the arc length depends on the distance between the two stopping platforms.

Figure 5: Rolling stock connections

Figure 5 shows an example of rolling stock connection. A train stopping at station
platform Q and departing in the opposite direction is shown. This constraint is modeled
adding a fixed arc from the node associated with the stopping of train TA at station
platform Q, to the node associated with the departure of train TB, i.e., node 3. The same
model can be used for representing more general constraints, such as the case in which
part of the rolling stock of train TA is used to form train TB or the case when TA carries
part of the crew of TB.

Due to the inherent complexity of the compound routing/scheduling problem, we pro-
duce a solution solving the two problems separately, as in Figure 2. In the scheduling
optimization phase we sequence the trains being fixed their respective routes. In the rout-
ing optimization phase we assume that the output of the train rescheduling module
is an optimal schedule, for the given route assigned to each train, and we try to improve

11



the solution modifying the route of some train. The algorithms for these two phases are
described in the following sub-sections.

4.1 Scheduling algorithms with fixed train routes

We briefly describe the scheduling algorithms used in our paper when F is fixed. Two
scheduling algorithms have been implemented. The first algorithm is the branch and
bound (B&B) described in [9], which is able to solve at optimality large scheduling
instances within a short computation time. The second algorithm simulates the practice
of traffic management adopted in the Netherlands, which is based on the ARI system [3].
This semi-automated system detects and solves train conflicts automatically when delays
are contained in a predefined time-window specified by the dispatcher. In such cases, a
precedence relation is automatically assigned according to the following rules:

• If the conflicting trains require the same track segment, then the order in the
timetable is kept.

• If the conflicting trains require different incompatible track segments, then prece-
dence is given to the train that requested the route first.

When train delays exceed the time-window, dispatchers must decide the precedence
on the basis of a list of what-if scenarios, and on their intuition and experience.

In order to evaluate the effectiveness of a completely automated system, we imple-
mented an automated version of the ARI system, simulating the behavior of the dis-
patchers through the following priority rule. Precedence is given on the basis of the train
type (first intercity, then regional and then freight) and, in case of tie, priority is given to
the train with the smallest number of scheduled stops after the conflicting point. Clearly,
when train delays are contained in the predefined time-window, the two above rules of
the ARI system are applied.

4.2 A local search algorithm for routing optimization

We describe the routing optimization procedure to improve the solution provided by
the train rescheduling module. Recall that the length lF,S(0, n) of the critical path
C(F, S) of the graph is the maximum consecutive delay for that solution. This value can
be reduced either changing the train sequencing, i.e., the set S, or modifying the train
routes, i.e., the set F . Let S(F ) be the sequencing computed by the train rescheduling

module for fixed F . In this section, we start from G(F, S) and aim at finding a new set F ′

and therefore a new alternative graph (N,F ′, A′) and a new solution G(F ′, S′). We use
the notation lF

′,S(F )(0, n) to denote the longest path in G(F ′, S′) such that all alternative
pairs in A ∩ A′ are selected as in S(F ). With this notation, F ′ is preferred to F if
lF

′,S(F )(0, n) < lF,S(F )(0, n).
Given a set F and two consistent selections S and S ′, let C(F, S) be a critical path of

G(F, S) and P ⊆ S be the set of arcs of S belonging to C(F, S). A well known property
of the job shop scheduling problem [2] states that if P ⊆ S ′ then lF,S′

(0, n) ≥ lF,S(0, n).
We next restate this property for the problem in which set S is fixed and set F can be
modified. Given a rerouting option δ, i.e. a chain of fixed arcs of F , we denote with l(δ)
its length.

12



Property 4.1 Consider a set F and the corresponding critical path C(F, S(F )). Let F ′

be a new arc set obtained from F replacing a rerouting option δ1 ⊆ F for some train with
a different rerouting option δ2 with the same terminal nodes of δ1. If δ1 ⊆ C(F, S(F )) and
l(δ1) ≤ l(δ2), then lF

′,S(F )(0, n) ≥ lF,S(F )(0, n) and F is preferred to F ′.

Proof. Simply observe that the new solution G(F ′, S(F )) contains the path C′ obtained
by C(F, S(F )) substituting rerouting option δ1 with rerouting option δ2. Denoting with
l(C′) the length of C′, and since the length of δ1 is smaller or equal to the length of δ2, we
have lF

′,S(F )(0, n) ≥ l(C′) ≥ lF,S(F )(0, n).

When a new set F ′ is built, the solution can be further improved by rescheduling train
operations for fixed routing. However, changing a route which is not contained in the
critical path and then computing an optimal schedule may also lead to better solutions.
This section focuses on a set of promising route modifications, strictly containing the
changes on the critical path. To this aim, let us introduce the following notation. Given
a node i ∈ C(F, S), we call ramification R(i) all the sequences of fixed arcs from 0 to any
node j ∈ N such that there is a path from j to i in G(F, S(F )). We call ramified critical
path the set R(F, S) =

⋃
i∈C(F,S)[R(i)] ∪ C(F, S), i.e., the critical path plus the sets R(i)

computed for all the nodes of the critical path.
Figure 6 shows a small railway network with three trains (denoted as TA, TB and TC)

and two alternative graphs associated with different routes for train TA. In each graph,
the critical path and ramified critical path are depicted with bold black and bold grey
arrows, respectively. The selected alternative arcs are depicted with dotted arrows.

Figure 6: A small example and alternative graphs with different train paths

In the graph on the left side of Figure 6, the trains are sequenced in the order
TA, TB, TC. The right side graph is obtained changing the route of TA. In this graph,
the train order is the same for all trains, but TA has no longer the conflicts with TB and
TC on block sections 8 and 9. Consequently, the two graphs have different ramified critical
paths. In particular, the whole route of train TA does not belong anymore to the ramified
critical path. For this reason, this may be possible that a longer route for train TA yields
a smaller value for the maximum consecutive delay.

The following property motivates the search for better routes among the routes of the
ramified critical path. We denote by P F the set of arcs of F belonging to the ramified
critical path R(F, S).

Property 4.2 Given two sets F and F ′, if P F ⊆ F ′, then lF
′,S(F )(0, n) ≥ lF,S(F )(0, n).

13



Proof. Simply observe that the new solution G(F ′, S(F )) contains the path C(F, S(F )).

We exploit the two above properties to design a local search algorithm for routing opti-
mization. The neighborhood of a solution G(F, S) contains all the solutions G(F ′, S(F ′))
in which F ′ is obtained from F changing a single route on the ramified critical path. If
the route is contained on the critical path, this can be replaced only with a shorter route,
as stated by Proposition 4.1. Notice that computing G(F ′, S(F ′)) requires the execution
of a rescheduling algorithm, which can be computationally expensive. We therefore limit
the search for better solutions to a subset of promising neighbors only, as follows.

Given a rerouting option δ, let u and v be its first and last nodes, and l(δ) be the
route length in G(F, S). We estimate the potential of a new local rerouting option δ as
the quantity Π(δ) = lF,S(0, v)− lF,S(0, u)− l(δ), since the length lF,S(0, v) might decrease
to lF,S(0, u) + l(δ) when changing route. We restrict the neighborhood to the ψ routes
with highest potential, where ψ is a parameter of our local search procedure. If none of
the ψ routes improves the solution, we evaluate the next ψ routes with highest potential.
The procedure continues until an improvement is found or no rerouting option is available
or the time limit is reached.

For each of the ψ best routes we define a neighbor F ′ replacing an old route of F from
u to v with a new route, and then execute the train rescheduling procedure. Among the
ψ new solutions G(F ′, S(F ′)) we choose the one having the shortest critical path, i.e., the
one minimizing the maximum consecutive delay. In case of tie, we choose the solution
with minimum average consecutive delay. In Figure 7, the pseudo-code of the routing
optimization procedure is given.

5 Computational tests

We report on our computational experiments on a large sample of practical size instances.
The experiments are based on the dispatching area of Utrecht Den Bosch, a bottleneck area
of the Dutch railway network. We study the network simulating different traffic conditions
for different kinds of disturbances, i.e., for different kinds of entrance delays and blocked
tracks. A new timetable containing feasible arrival and departure times is computed
after each disruption, with the objective of minimizing the maximum consecutive delay.
Routing and scheduling algorithms are implemented in C++ language and executed on a
laptop equipped with a 1.6 GHz Pentium M processor. Computational times and delays
are always expressed in seconds. Each run of the compound routing/scheduling procedure
is terminated after 180 seconds of computation. This choice makes the code compatible
with real-time rail operations.

5.1 Test structure

The dispatching area under study is shown in Figure 8. This includes the Den Bosch
station and the line connecting Utrecht (Ut) to Den Bosch (Ht), which is around 50 km
long. The network is composed of 191 block sections and includes 21 platforms. There are
two main tracks, divided into one long corridor for each traffic direction, a dedicated stop
for freight trains (Ozbm) and seven passenger stations: Utrecht Lunetten (Utl), Houten
(Htn), Houten Castellum (Hc), Culemborg (Cl), Geldermalsen (Gdm), Zaltbommel (Zbm)

14



Procedure RoutingOptimization
Input a solution G(F, S),
Output best solution found,
While (rerouting options available) & (time limit not reached) & (max consecutive delay > 0)
do

Build neighborhood for G(F, S) according to properties 4.1 and 4.2, and insert all δi in list
L1,

local best = +∞,
While L1 6= ∅ do

Add to list L2 the ψ routing options with the highest potential Π(δi),
L1 = L1 \ L2,
For all rerouting options in L2

Create the alternative graph G = (N,F ′, A′),
Reschedule trains for graph G according to a chosen algorithm (B&B or ARI),
If (local best > current rerouting option in L2)

Then local best = current rerouting option in L2,
Endfor
If local best < current solution

Then current solution = local best , L1 = ∅,
Else L2 = ∅

Endwhile
Endwhile
Return current solution.

Figure 7: Pseudo-code of the routing optimization procedure

15



and Den Bosch (Ht). Each traffic direction has nine entrances: Utrecht (Ut), Dordrecht
(Ddr), Nijmegen (Nm), Beutuweroute, Geldermalsen Yard, Oss (Oss), Eindhoven (Ehv),
Den Bosch Yard and Tilburg (Tl). There are several potential conflict points along each
corridor due to possible different train speeds and four critical crossings: Geldermalsen
station (block sections: 104, 105, 109, 113, 114 and 117), Dordrecht corridor (block
sections: 101 and 102), Beutuweroute corridor (block section 4) and Den Bosch station
(block sections: 142, 143, 146, 150, 151, 152, 154, 156, 157, 160, 161, 166, 167, 170,
171, 172, 180, 181, 182 and 183). Two extensions of the network, which are still under
construction, are included (block sections: 96, 98, 128, 129 and from 131 to 140).

Figure 8: Utrecht Den Bosch rail network and the available rerouting zones

We consider a provisional timetable for 2007, which is hourly, cyclical and extended on
the entire railway area. During a peak hour, in the dispatching area around Geldermalsen,
26 passenger and freight trains are scheduled in both directions. At Den Bosch station

16



the number of trains per hour increases up to 40. With this timetable, a scheduling
instance for one hour of traffic contains an average of 3600 pairs of alternative arcs, the
exact value depending on the route chosen for each train. In fact, the infrastructure
offers several possibilities of train reordering and local rerouting. For each train, a default
route and a set of local rerouting options are given. For example, a train is provisionally
assigned to a default platform, but it is allowed to stop at different nearby platforms.
Considering all possible alternative rerouting options yields to a set of 356 routes. Figure
8 shows all possible rerouting zones in grey color, labeled from A to M.

We also include constraints on the minimum transfer time between connected train
services. Rolling stock connections are located in Zaltbommel and Den Bosch stations.
Passenger connections are modeled in Den Bosch station for the traffic directions from
Ossen to Utrecht and vice versa. The minimum time for passenger connections varies
from two to five minutes, depending on the distance between the arrival platforms.

We test the CDR system ROMA under severe real-time traffic disruptions. We con-
sider 13 configurations of randomly generated blocked tracks. Table 1 describes the test
cases considered to test ROMA under strong disorder. Each disruption is obtained mak-
ing unavailable a set of block sections, as reported in column 2. Each row presents average
results on 24 configurations of entrance delay, with a maximum entrance delay varying
from 1000 up to 1800 seconds and an average entrance delay of around 320 seconds. The
values of the entrance delay are randomly chosen in a time window of typical train delays.
In order to evaluate the effects of each perturbation on the remaining part of the schedule,
the delayed trains are chosen among those entering the network in the first 30 minutes of
the timetable.

In total, there are 312 instances with passenger and rolling stock connection constraints
plus 312 instances with rolling stock connection constraints and without passenger con-
nection constraints.

Table 1: Description of the test cases
Unavailable Block Sections %Unavailable Routes %Changed Routes

Perturbation 0.0 0.0
Disruption 1 83 40.4 12.8
Disruption 2 131 132 30.9 5.1
Disruption 3 163 167 20.2 10.3
Disruption 4 122 107 30.3 17.9
Disruption 5 67 145 167 65.2 38.8
Disruption 6 67 175 186 67.4 41.0
Disruption 7 168 164 67 175 66.6 25.6
Disruption 8 5 186 163 66 69.1 43.6
Disruption 9 135 136 122 110 67 159 186 167 82.3 41.0
Disruption 10 158 66 110 186 167 163 69.4 41.0
Disruption 11 67 40.4 15.4
Disruption 12 125 106 30.3 5.1

The set of rerouting options used by the disruption recovery module is larger than
that of the routing optimization module. In fact, for some blocked tracks, the only
feasible rerouting option may force a train to miss a scheduled stop. This option is allowed
for disruption recovery and forbidden for the routing optimization. In such cases, the delay
at that stop is not considered in the experiments. Due to this fact, it may happen that
the disrupted schedule exhibits a smaller delay than the undisrupted schedule.

The last two columns in Table 1 show the percentage of routes disrupted due to
the presence of blocked zones and the percentage of changed routes by the disruption

17



recovery module to restore a feasible routing with respect to the original timetable. The
percentage of unavailable routes is obtained by checking how many of the 356 original
routes pass through an unavailable block section. In our tests this number varies up to
82% of the total number available, as shown in column 3. Similarly, the percentage of
changed routes is obtained as the number of default routings (one for each train) passing
through an unavailable block section, divided by the total number of trains. On average, a
moderate amount of rerouting actions, about 22%, is sufficient to handle the disturbances
in the reference test cases.

All the test cases are evaluated using the local search rerouting procedure of Section
4.2 and the two scheduling algorithms of Section 4.1.

5.2 System configuration

The real-time purpose of ROMA imposes strict time limits to produce a new feasible
timetable, which is attained limiting the execution of the scheduling algorithm and the
number of rerouting possibilities. Specifically, reducing the time limit of the scheduling
algorithm allows evaluating a larger number of rerouting possibilities, at the price of less
accurate schedules. In Table 2, we present a comparison between two configurations,
which let different importance to rescheduling and rerouting strategies. In “Config. 1”,
we let ψ = ∞ and allow only 10 seconds of maximum computation time for B&B. In
“Config. 2”, we let ψ = 5 and allow 30 seconds to B&B. The main difference between
the two configurations is that “Config. 2” relies more on the scheduling procedure, since
this allows larger computation times to the scheduling algorithm and reduces the num-
ber of rerouting options explored by the local search algorithm (ψ = 5). Each row in
Table 2 describes average results on the 624 instances of Section 5.1. Specifically, “De-
fault Routing” reports on the solutions provided by the disruption recovery module,
whereas “Routing Optimization” reports on the solutions given by the iterative rerout-
ing and rescheduling procedure. Columns 2–4 and 5–9 show the results with the default
routing and the optimal routing, respectively. All the values are expressed in seconds.
Columns 2 and 5 show the maximum consecutive delays. Columns 3 and 6 show the
average consecutive delays computed at the borders of the dispatching area. Columns 4
and 7 indicate the average computation time of the two procedures over the 624 instances.
The percentage of changed routes (column 8) consists of counting how many trains have
been rerouted in the overall process with respect to the original timetable. Being a sim-
ple counter, this indicator may be very sensitive to the number of trains running in the
timetable. Finally, column 9 (“Time Limits”) shows the number of times the compound
problem is terminated after 180 seconds of computation.

Table 2: Results for varying ψ and the time allowed to the B&B
Average Default Routing Routing Optimization
Results Delay Delay Time Delay Delay Time %Changed Time

Max Avg Tot Max Avg Tot Routes Limits

Config. 1 279.8 50.4 2.1 245.3 44.8 33.9 23.8 76
Config. 2 279.1 50.4 5.2 251.6 45.3 33.2 23.6 64

As expected, the scheduling solutions obtained for the default routing are slightly bet-
ter for “Config. 2”, but the time needed to produce the first schedule is more than double
with respect to “Config. 1”. However, “Config. 1” gives better results after the routing

18



optimization procedure, with similar computation time limits. For this reason, in the rest
of our computational tests “Config. 1” will be set as the CDR system configuration.

5.3 Scheduling and routing strategies

In this section, we compare the performance of the B&B and ARI scheduling algorithms
on the 624 instances of Section 5.2, without and with routing optimization.

Each row of Table 3 reports the average performance of the two scheduling algorithms
on the 624 instances. In general, B&B provides much better solutions in terms of maxi-
mum and average consecutive delays with respect to ARI but requires more computation
time. In fact, ARI always finds a solution in less than 10 seconds, whereas B&B requires
on average more than 30 seconds. On the other hand, the improvement of the maximum
consecutive delay when using B&B over ARI is about 40%. The average delay for the
two scheduling algorithms exhibits a similar behavior but the improvement when passing
from ARI to B&B is about 25%. When comparing the percentage of rerouted trains
similar values are obtained (around 23% of the circulating trains).

Table 3: B&B versus ARI
Average Default Routing Routing Optimization
Results Delay Delay Time Delay Delay Time %Changed

Max Avg Tot Max Avg Tot Routes

ARI 489.4 66.9 0.6 417.0 60.5 8.1 23.4
B&B 279.8 50.4 2.1 245.3 44.8 33.9 23.8

Figure 9 shows the reduction of the maximum consecutive delay from the worst config-
uration, obtained withARI and the default routing, up to the best configuration, obtained
with B&B and routing optimization. The overall reduction is about 50%, about 43% of
which due to the scheduling algorithm. The routing optimization procedure contributes
with an additional reduction of about 7%. The overall improvement is therefore largely
due to the use of an advanced scheduling algorithm.

Figure 9: Maximum consecutive delay with four configurations of ROMA

Table 4 shows the average consecutive delays at each station and at the borders of
the dispatching area (“Out”). Each row shows the results obtained with the different
scheduling/routing strategies shown in the first two columns. When comparing the two
scheduling algorithms using the default routing, although the objective function minimizes
the maximum consecutive delay, B&B is also able to produce better solutions in terms of
average consecutive delays at all stations. When comparing the solutions using the local

19



rerouting optimization strategy the average delay is more effectively reduced. In fact, the
routing optimization and ARI [resp. B&B] decrease the average delay in four [resp. five]
stations.

Table 4: Average consecutive delays at stations
Scheduling Routing Out Htn Cl Gdm Zbm Hc Ht

ARI Default 67.0 17.1 21.0 24.4 94.1 20.7 97.5
ARI Optimization 59.8 14.0 19.9 26.3 88.7 23.1 84.7
B&B Default 50.4 16.9 20.8 6.0 78.6 9.6 66.9
B&B Optimization 44.8 15.1 19.4 6.6 73.7 8.7 56.5

5.4 Passenger connections

Table 5 evaluates the effects of adding/removing passenger connection constraints. In
this section we compare the different cases in which all connections are maintained or
no connection is enforced. This approach differs from that of other works on delay man-
agement (see, e.g., Schöbel [29]), in which one aims to decide which connections have
to be maintained or cancelled in order to minimize the inconvenience for the passengers.
Each row of table 5 shows the average results for the 312 instances of Section 5.1 without
(“Off”) or with (“On”) passenger connections and using ARI or B&B. When passenger
connections are in use the maximum and average consecutive delays increase of about
10%. This is therefore the cost of taking into account such constraints in presence of
disturbances. The computation times required to solve the problem, with or without pas-
senger connections constraints, do not vary significantly. Moreover, the use of B&B with
passenger connections gives better results even when compared to ARI without passenger
connections.

Table 5: Effects of passenger connections
Average Passenger Default Routing Routing Optimization
Results Connections Delay Delay Time Delay Delay Time

Max Avg Tot Max Avg Tot

ARI Off 456.9 62.6 0.6 391.0 57.1 11.0
B&B Off 266.2 48.5 2.2 234.7 43.2 34.4
ARI On 521.9 71.3 0.6 427.6 62.4 11.2
B&B On 293.5 52.2 2.1 255.9 46.3 33.3

Table 6 shows the effects of passenger connections at all stations. We report on the
average consecutive delay measured at each station and at the borders of the dispatching
area (“Out”). All these solutions are computed using B&B and the routing optimization
procedure. Each row refers to the average results on the same instances of Table 5.
In our tests the passenger connections constraints are active only in Zaltbommel (Zbm)
and Den Bosch (Ht) stations, but delays may propagate among the trains. When the
passenger connections are “On” the average consecutive delay increases mainly in the
stations where the passenger connections are active. In fact, on average, delays increase
more than 5 seconds at Den Bosch and almost 4 seconds at Zaltbommel, whereas this
increase is less evident at the other stations.

20



Table 6: Influence of passenger connections at stations
Passenger Out Htn Cl Gdm Zbm Hc Ht

Connections
Off 43.2 14.6 19.1 7.2 71.8 8.6 53.8
On 46.3 15.5 19.6 5.9 75.6 8.7 59.2

5.5 Timetable disruptions

We next show the ability of ROMA to attain feasible solutions when a large part of the
network is unavailable. In Table 7, we study the influence of strong timetable disruptions.
Each row refers to average results over 48 instances, which correspond to the 24 perturba-
tions of Section 5.1 with and without passenger connection constraints. Here, we report
results on each disruption scheme of Table 1.

Table 7: Effects of timetable disruptions
Average Default Routing Routing Optimization
Results Delay Delay Time Delay Delay Time %Changed

Max Avg Tot Max Avg Tot Routes

ARI
Perturbation 364.5 45.0 0.6 267.0 35.8 22.4 2.9
Disruption 1 495.8 66.8 0.6 398.2 57.7 15.7 15.6
Disruption 2 338.5 40.4 0.6 254.6 33.2 8.8 7.2
Disruption 3 378.6 49.7 0.5 273.7 39.7 17.0 12.6
Disruption 4 420.3 49.3 0.5 339.3 43.7 9.2 18.4
Disruption 5 572.4 88.8 0.6 517.0 81.1 9.5 31.4
Disruption 6 570.1 84.8 0.8 486.5 78.8 11.2 41.1
Disruption 7 569.1 75.3 0.7 484.6 69.2 9.2 26.8
Disruption 8 566.1 81.7 0.7 489.4 75.3 6.9 44.1
Disruption 9 590.9 86.8 0.7 552.2 83.2 2.0 41.5
Disruption 10 607.2 88.4 0.7 513.3 78.7 6.9 41.5
Disruption 11 524.6 69.0 0.6 464.8 62.2 15.0 16.6
Disruption 12 365.2 45.1 0.5 280.8 38.2 11.2 6.8

B&B
Perturbation 183.8 20.8 0.5 127.0 15.2 17.7 3.3
Disruption 1 294.9 49.7 0.8 271.3 46.0 36.4 15.1
Disruption 2 173.6 18.7 0.5 124.5 13.7 8.4 7.8
Disruption 3 196.0 24.4 0.4 148.0 18.6 18.4 12.3
Disruption 4 184.0 21.3 0.4 125.0 15.2 9.9 19.2
Disruption 5 376.9 77.7 4.1 353.5 73.4 61.2 31.5
Disruption 6 345.4 79.1 3.9 321.7 73.0 55.9 41.3
Disruption 7 352.6 67.8 4.5 320.5 61.1 69.3 26.7
Disruption 8 331.7 69.2 3.4 312.8 62.4 29.9 44.3
Disruption 9 337.4 71.9 3.2 323.6 67.7 11.5 41.7
Disruption 10 351.0 78.7 4.2 326.2 71.0 44.7 41.8
Disruption 11 327.5 55.5 2.3 308.0 50.0 68.7 17.1
Disruption 12 183.9 20.9 0.4 127.5 15.4 8.9 7.2

When large part of the network is unavailable the maximum consecutive delay in-
creases. In this case, due to the larger number of trains running on the same block
sections, the network results increasingly congested. When comparing the situation with
and without blocked tracks (rows “Perturbation”), the delay may even be double (Dis-
ruption 5 with B&B) and the percentage of rerouted trains ranges from 3% to more than
40%. Moreover, for some disruptions (5, 7 and 11) the average computation time of the
B&B based CDR system exceeds one minute of CPU time.

21



5.6 Computation time versus solution quality

We next show the performance of ROMA when varying the time limits allowed for finding
a solution. In Figure 10, we plot the maximum and average consecutive delays of the
best solutions found under different time limits for the 48 perturbations and the 144
disruptions classified as 5, 7 and 11 in Table 1. The former case allows the maximum
routing flexibility, being available all the 356 original routes, while the three latter cases are
those requiring on average the longest computation time (see Table 7). The consecutive
delays are depicted after each half minute of computation, up to 5 minutes. For each
case, we show the average results over 48 instances corresponding to the 24 perturbations
of Section 5.1 with and without passenger connection constraints.

Figure 10: Maximum and average consecutive delays at different time limits

At time 0, the consecutive delays when using the routes prescribed by the disruption
recoverymodule are shown. We observe that for real-time purposes the algorithm is quite
effective, especially in the perturbation case, when limited rerouting allows to obtain a
good solution already after 30 seconds. As far as the disruptions 5, 7 and 11 are concerned,
a more extensive search among the available rerouting options is needed in order to find a
local minimum. However, in all cases, increasing the computation time over 180 seconds
does not improve the solution quality significantly.

6 Conclusions

Our work shows the effectiveness of ROMA to reduce the propagation of real-time timetable
disturbances. ROMA is able to optimize railway traffic also when the timetable is not
conflict-free. This fact enables its usage when managing railway traffic in case of severe
traffic disturbances, such as when emergency timetables are required and traffic dispatch-
ers need support to solve conflicts.

While the scheduling algorithm is able to solve large instances within a short computa-
tion time, the routing optimization procedure does not exploit all the potential offered by
routing flexibility. A limited attempt to investigate larger neighborhoods, in which several
routes are changed simultaneously, shows that there are further margins for improving
upon the local minima found by our local search algorithm. Further research should
therefore be addressed to the analysis of larger neighborhoods within short computation
time as well as to the development of more sophisticated rerouting metaheuristics.

22



More general research lines should address: (i) the problem of proposing several al-
ternative solutions to the dispatcher, e.g. non-dominated solutions with respect to the
minimization of maximum and average secondary delays, and (ii) the problem of consid-
ering train dynamics when choosing different train orders at conflict points, since in the
current system train dynamics are computed separately from the scheduling problem in
a preprocessing step.

Acknowledgments

We thank ProRail (The Netherlands) for providing the instances and Prof. Ingo Hansen
for his helpful comments and suggestions. This work is partially supported by the pro-
grams “Towards Reliable Mobility” of the Transport Research Centre Delft, the Dutch
foundation “Next Generation Infrastructures” and ProRail.

References

[1] B. Adenso-Dı́az, M. Oliva González, P. González-Torre, On-line timetable re-
scheduling in regional train services, Transportation Research Part B 33 387–398
(1999) .

[2] E. Balas, Machine sequencing via disjunctive graphs: an implicit enumeration ap-
proach, Operations Research 17 941–957 (1969).

[3] N. Berends, N. Ouburg, Beschrijving ARI-functionaliteit, ProRail Internal Specifica-
tion (in Dutch) (2005).

[4] D. Bertsimas, S. Stock Patterson, The Traffic Flow Management Rerouting Problem
in Air Traffic Control: A Dynamic Network Flow Approach, Transportation Science
34 (3) 239–255 (2000).

[5] L. Bianco, P. Dell’Olmo, S. Giordani, Scheduling models for air traffic control in
terminal areas, Journal of Scheduling 9 223–253 (2006).

[6] G. Caimi, D. Burkolter, T. Herrmann, Finding delay-tolerant train routings through
stations. In H. Fleuren (Ed.), Operations Research Proceedings 2004: Selected Papers
of the Annual International Conference of the German Operations Research Society
(GOR), pp. 136-143, Springer Verlag (2005).

[7] M. Carey, S. Carville, Scheduling and platforming trains at busy complex stations,
Transportation Research Part A 37 (3) 195–224 (2003).

[8] J.F. Cordeau, P. Toth, D. Vigo, A Survey of Optimization Models for Train Routing
and Scheduling, Transportation Science 32 (4) 380–420 (1998).

[9] A. D’Ariano, D. Pacciarelli, M. Pranzo, A branch and bound algorithm for scheduling
trains in a railway network, European Journal of Operational Research 183 643-657
(2007).

23



[10] X. Delorme, J. Rodriguez, X. Gandibleux, Heuristics for railway infrastructure satu-
ration, Electronic Notes in Theoretical Computer Science, 50 (1) 39-53 (2001).

[11] X. Delorme, Modelisation et resolution de problemes lies a lexploitation dinfrastruc-
tures ferroviaires. PhD thesis, University of Valenciennes et du Hainaut Cambresis
(2003).

[12] M.M. Dessouky, Q. Lu, J. Zhao, R.C. Leachman, An exact solution procedure to
determine the optimal dispatching times for complex rail networks, IIE Transaction
38 (2) 141–152 (2006).

[13] M.J. Dorfman, J. Medanic, Scheduling trains on a railway network using a discrete
event model of railway traffic, Transportation Research Part B 38 81–98 (2004).

[14] P. Fioole, L.G. Kroon, G. Maroti, A. Schrijver, A rolling stock circulation model
for combining and splitting of passenger trains, European Journal of Operational
Research 174 (2) 1281–1297 (2006).

[15] X. Gandibleux, J. Jorge, S.Angibaud, X. Delorme, J. Rodriguez, An ant colony opti-
mization inspired algorithm for the set packing problem with application to railway
infrastructure. In Proceedings of the Sixth Metaheuristics International Conference
(MIC2005), pp. 390-396 (2005).

[16] A. Higgins, E. Kozan, L. Ferreira, Optimal scheduling of trains on a single line track,
Transportation Research Part B 30 147–161 (1996).

[17] A. Higgins, E. Kozan, Heuristic techniques for single line train scheduling, Journal
of Heuristics 3 43–62 (1997).

[18] J.S. Hooghiemstra, L.G. Kroon, M.A. Odijk, M. Salomon, P.J. Zwaneveld, Decision
Support Systems Support the Search for Win-Win Solutions in Railway Network
Design, Interfaces , 29 (2) 15-32 (1999).

[19] L.G. Kroon, H. Romeijn, P.J. Zwaneweld, Routing trains through railway networks:
complexity issues, European Journal of Operational Research 98 485–498 (1997).

[20] R. Lusby, J. Larsen, D. Ryan, M. Ehrgott, Routing Trains Through Railway Junc-
tions: A New Set Packing Approach. Technical report 2006-21. Informatics and Math-
ematical Modelling, Technical University of Denmark (2006).

[21] A. Mascis, D. Pacciarelli, Job shop scheduling with blocking and no-wait constraints,
European Journal of Operational Research 143 (3) 498–517 (2002).

[22] A. Mascis, D. Pacciarelli, M. Pranzo, Scheduling Models for Short-term Railway
Traffic optimization. In M. Hickman, P. Mirchandani and S. Voß(Eds.), Lecture
Notes in Economics and Mathematical Systems 600: Computer-aided Systems in
Public Transport. Springer. 71–90 (2008).

[23] M. Mazzarello, E. Ottaviani, A Traffic Management System for Real-Time Traffic
optimization in Railways, Transportation Research Part B 41 (2) 246–274 (2007).

24



[24] L. Nie, I.A. Hansen, System analysis of train operations and track occupancy at
railway stations, European Journal of Transport and Infrastructure Research 5 (1)
31–54 (2005).

[25] E. Oliveira, B.M. Smith, A Job-Shop Scheduling Model for the Single-Track Railway
Scheduling Problem, School of Computing Research Report 2000.21, University of
Leeds, England (2000).

[26] J. Pachl, Railway Operation and Control. VTD Rail Publishing, Mountlake Terrace,
USA (2002).

[27] J. Rodriguez, A constraint programming model for real-time trains scheduling at
junctions, Transportation Research Part B 41 (2) 231–245 (2007).

[28] İ Şahin, Railway traffic control and train scheduling based on inter-train conflict
management, Transportation Research Part B 33 511–534 (1999).

[29] A. Schöbel, A model for the delay management problem based on mixed-integer-
programming, In C. Zaroliagis (ed.), Electronic Notes in Theoretical Computer Sci-
ence 50 (2001).

[30] B. Szpigel, Optimal Train Scheduling on a Single Track Railway. In Operational
Research ’72, M. Ross (ed.), pp. 343–352, Amsterdam, The Netherlands (1973).

[31] J. Törnquist, J.A. Persson, N-tracked railway traffic re-scheduling during distur-
bances, Transportation Research Part B 41 (3) 342-362 (2007).

[32] P.J. Zwaneveld, L.G. Kroon, S.P.M. van Hoesel, Routing trains through a railway
station based on a node packing model, European Journal of Operational Research
128 14–33 (2001).

25


