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Abstract

In this work we reconsider the notion of implicator in a complete lattice L and discuss its

properties, taking into account the viewpoint of the implication operation of classes of (weak)

extended-order algebras, introduced by C. Guido and P. Toto and included in the class of im-

plicative algebras considered by E. Rasiowa. In fact, such an implication, that is an extension

of an order relation, can be viewed as an implicator in L, whose properties depend on those

characterizing the structure of the algebra.

We also propose in a (weak) right-distributive complete extended-order algebra (L,→,>) with

adjoint product ⊗ a relative implication as a further implicator beyond →.

The relative implication allows an extension of the inclusion relation between L-sets A and B,

different from the subsethood degree, that consists in seeing to which extent A is included in

its conjunction with B.

Moreover, we introduce in (L,→,>) a further binary operation that we call conditional con-

junction that can be read as ”a” and ”b, given a”, which motivates the term we have chosen

to denote it.

This operation, strictly related to the divisibility condition of BL algebras, satisfies most con-

ditions usually asked to a conjunction and it is well behaved with the adjoint product ⊗ and

the meet operation ∧.
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1 Introduction

The wide development of lattice-valued mathematics in the last decades has stimulated the

study of several kinds of lattice-ordered algebras whose operations and properties reflect the main

characters of the underlying non-classical logics; fundamental monographs are [4, 9, 13]. These

kinds of algebras fall within the context of residuated structures (see also [3, 14]).

Recently, a quite general approach, with the same starting point, e. g. implicative algebras, as in

the Rasiowa’s monograph [15], has been introduced in [12] and developed in [6], where extended-

order algebras have been considered and studied. The structure of these algebras is based on a very

general implication → that is a many-valued extension of the order relation of a poset (L,≤,>)

with a greatest element >, in the sense that a → b = > if and only if a ≤ b (see Definition 3.1

below). It is shown in [6, 12] that the algebraic structure of extended-order algebras, that include

most residuated lattices, is completely determined by the implication (a sort of internal many-

valued order) just like the structure of any lattice is determined by the underlying order. In fact,

one can say that [6, 12] present an approach to residuated lattices that is more order-theoretical

than algebraic, for instance paying more attention to the completeness of the underlying order than

to the monoidal character of the structure. Details on this topic that are needed in the present

paper are explained in Section 3.

Some applications of extended-order algebras can be found in [8], where fuzzy Galois connections

determined by many-valued binary relations are considered and in [11] where a lattice-valued

approach to category theory is proposed. This paper deals with further applications of extended-

order algebras in connection with the fundamental concepts of implicators and conjunctors largely

used and studied in many contexts (see, for instance, [1, 2, 7, 16, 17]).

In Section 4 the notion of implicator will be reconsidered in the light of the conditions that the

implication of an extended-order algebra satisfies, and the notion of relative implication is also

introduced.

In Section 5 the notion of conditional conjunction is introduced and studied, which is strictly

related to the divisibility condition of BL-algebras.

2 Preliminaries

In this Section we recall some standard notions and notations on order and lattice structures

according to [4, 10, 13].

If (L,≤) is a poset, i.e. a partially ordered set, and S ⊆ L, we denote by Ub(S) the set of

all upper bounds of S and by Lb(S) the set of all lower bounds of S. We use, moreover, the

following notation: Ub(a) = Ub({a}) =↑ a and Lb(a) = Lb({a}) =↓ a, for all a ∈ L.
∨

S denotes

the least upper bound of S and
∧
S the greatest lower bound of S, if these exist and we call∨

S (
∧
S, respectively) the supremum or join (infimum or meet, respectively) of S. (L,≤),

with |L| ≥ 2, is a lattice if, for all finite subsets F ⊆ L,
∨

F and
∧
F exist in L. (L,≤), with

|L| ≥ 2, is a complete lattice if, for all arbitrary subsets F ⊆ L,
∨

F and
∧

F exist in L. An

adjuction also called isotonic Galois connection between partially ordered sets L and M , denoted
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by f a g : (L,≤) → (M,≤) or simply by f a g, is a pair of maps f : L → M and g : M → L

satisfying the condition

∀x ∈ L, y ∈M : x ≤ g(y)⇔ f(x) ≤ y.

The map f is called left adjoint of g and g right adjoint of f .

In the following we denote f(A) = {f(a)| a ∈ A} and f−(B) = {a ∈ L| f(a) ∈ B}, for all f : L→
M, A ⊆ L, B ⊆M .

Lemma 2.1. Let (L,≤) and (M,≤) be posets and f : L→M and g : M → L be maps.

• If f a g, then f preserves existing joins and g preserves existing meets. Moreover one has

1. for every x ∈ L, f(x) =
∧
{y ∈M |x ≤ g(y)} and f is the unique left adjoint of g;

2. for every y ∈M , g(y) =
∨
{x ∈ L|f(x) ≤ y} and g is the unique right adjoint of f .

• If (L,≤) is a complete lattice and f : L→M preserves
∨

, then the function

g : M → L, y 7−→ g(y) =
∨
{x ∈ L| f(x) ≤ y}

is the unique right adjoint of f .

• If (M,≤) is a complete lattice and g : M → L preserves
∧

, then the function

f : L→M , x 7−→ f(x) =
∧
{y ∈M | x ≤ g(y)}

is the unique left adjoint of g.

A Galois connection also called antitonic Galois connection between two posets (L,≤) and

(M,≤), denoted by [f, g] : (L,≤) ↔ (M,≤) or simply by [f, g], is a pair of maps f : L → M and

g : M → L satisfying the condition

∀x ∈ L, y ∈M : x ≤ g(y)⇔ y ≤ f(x).

Of course [g, f ] is a Galois connection if and only if [f, g] is.

Lemma 2.2. • If [f, g] : (L,≤) ↔ (M,≤) is a Galois connection then f maps existing joins

into corresponding meets and for every y ∈ M , g(y) =
∨
{x ∈ L| y ≤ f(x)} and g is the

unique function such that [f, g] is a Galois connection.

• If (L,≤) is a complete lattice, (M,≤) a poset and f : L→M a function such that f(
∨
A) =∧

f(A), for every A ⊆ L, then the function g : M → L defined by

g(y) =
∨
{x ∈ L| y ≤ f(x)}, for every y ∈M ,

is the unique function such that [f, g] is a Galois connection.
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3 Extended-order algebras

All the definitions (explicitly referenced) and results recalled in this Section come from [6] and

[12], where one can find more details on motivations, examples and technical aspects of (weak)

extended-order algebras and their relationship with other lattice-ordered structures.

Definition 3.1. [12] Let L be a non-empty set, →: L × L → L a binary operation and > a fixed

element of L. The triple (L,→,>) is a weak extended-order algebra, shortly w-eo algebra, if for all

a, b, c ∈ L the following conditions are satisfied

(o1) a→ > = > (upper bound condition);

(o2) a→ a = > (reflexivity condition);

(o3) a→ b = > and b→ a = > ⇒ a = b (antisymmetry condition);

(o4) a→ b = > and b→ c = > ⇒ a→ c = > (weak transitivity condition).

Remark 3.2. w-eo algebras are exactly the implicative algebras defined in [15]; however, the

subclasses of w-eo algebras considered in [6, 12] and in this paper, as well, are rather different from

the subclasses of implicative algebras treated in [15].

Proposition 3.3. For every w-eo algebra (L,→,>) the relation determined by the operation →,

by means of the equivalence

a ≤ b if and only if a→ b = >, for all a, b ∈ L

is an order relation called natural ordering in L with greatest element >. This order relation is

called the natural ordering in L.

Conversely, if (L,≤) is a poset with greatest element > and →: L × L → L extends ≤, i.e.

a→ b = > ⇔ a ≤ b, for all a, b ∈ L, then (L,→,>) is a w-eo algebra.

Definition 3.4. [12] (L,→,>) is a right w-eo algebra if it satisfies the axioms (o1), (o2), (o3) and

(o5) a→ b = > ⇒ (c→ a)→ (c→ b) = >(weak isotonic condition in the second variable).

(L,→,>) is a left w-eo algebra if it satisfies the axioms (o1), (o2), (o3) and

(o′5) a→ b = > ⇒ (b→ c)→ (a→ c) = >(weak antitonic condition in the first variable).

(L,→,>) is an extended-order algebra, shortly eo algebra, if it is a right and a left w-eo algebra.

All the above defined and the subsequently considered algebras (L,→ >) are said to be complete

if L with the natural ordering ≤ induced by → is a complete lattice; in this case > is the greatest

element, of course, and the least element is denoted by ⊥. So we shall consider, with a short

obvious notation, (left), (right) w-ceo algebras and ceo algebras.

In this paper we consider only complete structures; we note that the completeness condition is

restrictive for w-eo algebras, but it is not restrictive for eo algebras, which in fact can be embedded

in their MacNeille completion. For details see [6, 12].

In the following we denote P → Q = {p→ q| p ∈ P, q ∈ Q}, for any P,Q ⊆ L.

Definition 3.5. [12] Let (L,→,>) be a w-ceo algebra.

(L,→,>) is right-distributive if it satisfies the right distributivity condition

(dr) for any a ∈ L,B ⊆ L: a→
∧
B =

∧
(a→ B).
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(L,→,>) is left-distributive if it satisfies the left distributivity condition

(dl) for any b ∈ L,A ⊆ L⇒ (
∨
A)→ b =

∧
(A→ b).

(L,→,>) is distributive if it satisfies the distributivity condition

(d) for any A,B ⊆ L:
∨
A→

∧
B =

∧
(A→ B).

Of course (L,→,>) is distributive if and only if it is left-distributive and right-distributive. We

also say that the operation → is (right-)(left-)distributive if ((dr))((dl))(d) is satisfied. We adopt

the short notation cdeo for distributive complete extended-order algebras.

Note that every distributive complete w-eo algebra (L,→,>) is a complete eo algebra.

Most of our constructions and results only need to assume (L,→,>) to be a right-distributive w-ceo

algebra, which implies that the condition (o5) is satisfied; stronger assumptions will be specified

when they will be necessary.

If (L,→,>) is a right-distributive w-ceo algebra, then the adjoint product ⊗ : L × L → L is

defined by

a⊗ x =
∧
{t ∈ L| x ≤ a→ t}.

Then ⊗ and → form an adjoint pair, i.e. for all x, y, z ∈ L:

x⊗ y ≤ z ⇔ y ≤ x→ z.

Proposition 3.6. Let (L,→,>) be a right-distributive w-ceo algebra and let ⊗ be the adjoint

product. The following properties hold, for all a, b, c ∈ L,A,B ⊆ L.

1. a⊗ b ≤ a;

2. a⊗> = a;

3. a⊗⊥ = ⊥⊗ a = ⊥;

4. >⊗ a = a if and only if (∀x ∈ L : a ≤ > → x⇔ a ≤ x);

5. a⊗ (
∨
B) =

∨
(a⊗B);

6. if b ≤ c, then a⊗ b ≤ a⊗ c;

7. a⊗ (a→ b) ≤ b ≤ a→ (a⊗ b);

8. if, moreover, L is a ceo algebra and a ≤ b, then a⊗ c ≤ b⊗ c;

9. if L is a cdeo algebra, then (
∨
A)⊗ b =

∨
(A⊗ b).

Definition 3.7. [6] A w-ceo algebra (L,→,>) is called symmetrical if there exists a binary opera-

tion ;: L×L→ L such that (L,;,>) is a w-eo algebra, → and ; have the same natural ordering

and y ≤ x ; b⇔ x ≤ y → b, for all b, x, y ∈ L. The w-ceo algebras (L,→,>), (L,;,>) and their

implications →, ; are said to be dual to each other and [→,;] is the related Galois pair.
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The above Definition has a symmetrical character, so, with the above notation, (L,;,>) is

symmetrical if and only if (L,→,>) is symmetrical.

Lemma 3.8. If (L,→,>) is a symmetrical w-eo algebra and ; is the dual implication, then for

all a, b ∈ L one has

a ≤ (a ; b)→ b and a ≤ (a→ b) ; b.

Moreover, since→ and ; form a Galois pair, each of them is uniquely determined by the other.

The following Theorem gives an internal characterization of symmetrical w-ceo algebras.

Theorem 3.9. Let (L,→,>) be a w-ceo algebra. L is symmetrical if and only if it is left-distributive

and the equivalence a ≤ > → x⇔ a ≤ x holds, for all a, x ∈ L.

Proposition 3.10. If (L,→,>) is a symmetrical right-distributive w-ceo algebra and ; the dual

implication, then both (L,→,>) and (L,;,>) satisfy (dl) and the one is a cdeo algebra if and

only if the other is.

The following Proposition characterizes the symmetrical cdeo algebras in terms of the adjoint

product.

Proposition 3.11. Let (L,→,>) be a right-distributive w-ceo algebra and let ⊗ be the adjoint

product. Then the following are equivalent:

1. (L,→,>) is symmetrical.

2. If a ∈ L and B ⊆ L then >⊗ a = a and (
∨

B)⊗ a =
∨

(B ⊗ a).

Proposition 3.12. Let (L,→,>) be a symmetrical cdeo algebra, ; the dual implication and ⊗
the adjoint product. Then, for all a, b, c ∈ L, the following properties hold.

1. a ≤ b ; c⇔ a⊗ b ≤ c;

2. a⊗ b ≤ a ∧ b;

3. (a ; b)⊗ a ≤ b ≤ a ; (b⊗ a);

4. b ≤ a→ b, b ≤ a ; b;

5. > → a = a, >; a = a.

It is a standard way to define a negation ¬ in a bounded implicative structure (L,→,>) with

minimum ⊥ by setting ¬a = a→ ⊥.

Definition 3.13. [6] In a w-ceo algebra (L,→,>) the negation is defined by

[·]− : L→ L, x 7−→ x− = x→ ⊥.

If (L,→,>) is symmetrical, then a dual negation is defined by

[·]∼ : L→ L, x 7−→ x∼ = x ; ⊥
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The negation [·]− ([·]∼, respectively) and the corresponding algebra is called involutive if x−− = x

(x∼∼ = x, respectively), for every x ∈ L.

The following Proposition states basic properties of the negation in a quite general context; all

the properties we shall state for a negation also hold for the dual negation under the assumption

of symmetry.

Proposition 3.14. Let (L,→,>) be a left w-ceo algebra. Then the following hold, for all x, y ∈
L, {xi}i∈I ⊆ L.

1. ⊥− = >;

2. x ≤ y ⇒ y− ≤ x−.

3. (
∨

i∈I xi)
− ≤

∧
i∈I x

−
i ;

4. (
∧

i∈I xi)
− ≥

∨
i∈I x

−
i ;

If, moreover, the negation [·]− is involutive, then

5. >− = ⊥;

6. (
∨

i∈I xi)
− =

∧
i∈I x

−
i ;

7. (
∧

i∈I xi)
− =

∨
i∈I x

−
i .

Proposition 3.15. Let (L,→,>) be a w-ceo algebra, x, y ∈ L and {xi}i∈I ⊆ L; then under (dr)

one has

1. x⊗ x− = ⊥;

2. x ≤ y− ⇔ y ⊗ x = ⊥;

while (dl) implies

3. (
∨

i∈I xi)
− =

∧
i∈I x

−
i .

Eventually, we list further properties involving the pair of dual negations of a symmetrical cdeo

algebra.

Proposition 3.16. Let (L,→,>) be a symmetrical cdeo algebra. Then the following hold, for all

x, y ∈ L.

1. >− = ⊥, >∼ = ⊥;

2. x∼ ⊗ x = ⊥;

3. x ≤ x−∼, x ≤ x∼−;

4. x ≤ y∼ ⇔ x⊗ y = ⊥;
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5. x ≤ y∼ ⇔ y ≤ x−;

6. x ≤ x− ; y, x ≤ x∼ → y;

7. x−∼− = x−, x∼−∼ = x∼.

Definition 3.17. [12] A w-ceo algebra (L,→,>) is commutative if and only if it satisfies the weak

exchange condition

(c) a→ (b→ c) = > ⇔ b→ (a→ c) = >, for all a, b, c ∈ L.

Proposition 3.18. For a right-distributive w-ceo algebra the following are equivalent:

1. (L,→,>) is commutative;

2. the adjoint product ⊗ is commutative;

3. (L,→,>) is symmetrical and ; coincides with →.

Definition 3.19. [12] A w-ceo algebra (L,→,>) is associative if and only if it satisfies the following

condition

(a) a→ (b→ c) = (
∧
{x| a→ (b→ x) = >})→ c, for all a, b, c ∈ L.

Remark 3.20. Let (L,→,>) be a right-distributive w-ceo algebra. If ⊗ denotes the adjoint

product, then the associativity condition (a) is equivalent to

(a′) a→ (b→ c) = (b⊗ a)→ c, for all a, b, c ∈ L.

Proposition 3.21. A right-distributive w-ceo algebra (L,→,>) is associative if and only if its

adjoint product ⊗ is associative.

Corollary 3.22. Let (L,→,>) be a symmetrical cdeo algebra and ; the dual implication. Then

(L,→,>) is associative if and only if (L,;,>) is associative.

Remark 3.23. Associative symmetrical (commutative) cdeo algebras are exactly the implicative

fragment of complete integral (commutative) residuated lattices. The possible lack of monoidal

structure is the main character of extended-order algebras: even when the adjoint product exists,

i.e. under (dr), it need not be associative and if the algebra is not symmetrical > need not be a

left unit. The strength of the associativity condition is explained in [6] and it allows the following

results.

Proposition 3.24. Let (L,→,>) be a cdeo algebra and let ⊗ be its adjoint product. If L is

associative, then, for all a, b, c ∈ L:

1. (a→ b)⊗ (b→ c) ≤ a→ c;

2. (b→ c) ≤ (a→ b)→ (a→ c);

3. a→ b− = (b⊗ a)−.

Proposition 3.25. Let (L,→,>) be a symmetrical cdeo algebra. If it is associative, then the

following properties hold, for all a, b, c ∈ L.

8



1. a ; b ≤ b∼ → a∼, a→ b ≤ b− ; a−;

2. a ; b− = b→ a∼, a→ b∼ = b ; a−;

3. a ; a− = a→ a∼;

4. b∼ → a∼ = a∼− ; b∼− = a ; b∼−, b− ; a− = a−∼ → b−∼ = a→ b−∼;

5. a ; (b→ c) = b→ (a ; c).

4 Fuzzy implicators and the conditional implication

In the literature the term fuzzy implication operator, shortly fuzzy implicator, usually is meant

as an extension of the implication defined in classical logic; in fact in the most general sense it is

defined as a map I : [0, 1]× [0, 1]→ [0, 1] that satisfies the boundary conditions

(b) I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.

Further properties are considered and assumed on I in different theoretical approaches and appli-

cations; a detailed list of the most important (some of which imply the equalities in the boundary

condition (b)) is given in [17] as follows:

(fi1) a ≤ b⇒ I(b, c) ≤ I(a, c), for all a, b, c ∈ [0, 1];

(fi2) a ≤ b⇒ I(c, a) ≤ I(c, b), for all a, b, c ∈ [0, 1];

(fi3) I(0, b) = 1, for every b ∈ [0, 1];

(fi4) I(a, 1) = 1, for every a ∈ [0, 1];

(fi5) I(1, 0) = 0;

(fi6) I(1, b) = b, for every b ∈ [0, 1];

(fi7) I(a, I(b, c)) = I(b, I(a, c)), for all a, b, c ∈ [0, 1];

(fi8) I(a, b) = 1⇔ a ≤ b, for all a, b ∈ [0, 1];

(fi9) the map N ′, defined as N ′(a) = I(a, 0), for every a ∈ [0, 1], is an involutive fuzzy negation;

(fi10) I(a, b) ≥ b, for all a, b ∈ [0, 1];

(fi11) I(a, a) = 1, for every a ∈ [0, 1];

(fi12) I(a, b) = I(N(b), N(a)), for every a ∈ [0, 1], where N is an involutive fuzzy negation;

(fi13) I is a continuous mapping.

Evidently there are several interrelationships among these axioms. In [17] there is a complete

view of these: there, taking (fi1)-(fi5) as the basic system of axioms for a fuzzy implicator the

authors investigate the dependence and independence of the other axioms, given the first five that,

in their turn, implies the boundary condition (b).

In this work we reconsider the above conditions and we give a definition of an internal implicator

in a complete lattice L, taking into account the point of view of the implication operation of

extended-order algebras.

This leads to a different arrangement and grouping of the basic requirements a fuzzy implicator

should satisfy, according to the interpretation of the implication operation in the semantic of many-

valued logic that motivated the introduction and development of extended-order algebras [6, 12],
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strictly related to implicative algebras considered in [15].

We recalled in Section 3 that the implication of a w-eo algebra (i.e. implicative algebra) is any

internal extension of the order relation of any poset with a greatest element (true value >), as

stated in Proposition 3.3. This criterion states exactly in which cases the implication a → b is

true saying nothing, in general, on when the implication is false, even if the existence of the value

”false” (the least element ⊥) in the algebra is assumed.

So our feeling is that we should agree with the requirement I(0, 0) = I(0, 1) = I(1, 1) = 1 without

asking to I(1, 0) nothing but to be different from >, in general, which makes the implication of

a w-ceo algebra a bounded implicator, as we shall see. Nevertheless, we shall weaken further the

requirements of an implicator, making it more general than the implication operation of a w-ceo

algebra.

Definition 4.1. Let (L,≤) be a complete lattice, with greatest element > and least element ⊥. A

map I : L× L→ L is an implicator in L if it satisfies the following axiom

(i) I(a, b) = > ⇒ a ≤ b⇒ I(b, a) ≤ I(a, b), for all a, b ∈ L.

The implicator I is bounded if it satisfies the following axioms

(i1) I(⊥, b) = >, for every b ∈ L;

(i2) I(a,>) = >, for every a ∈ L.

The implicator I is weak-ordered if it satisfies the following axiom

(i3) I(a, b) = > ⇔ a ≤ b, for all a, b ∈ L.

The implicator I is isotonic if it satisfies the following axioms

(i4) a ≤ b⇒ I(c, a) ≤ I(c, b), for all a, b, c ∈ L;

(i5) a ≤ b⇒ I(b, c) ≤ I(a, c), for all a, b, c ∈ L .

The implicator I is crisp-bounded if it satisfies the following axiom

(b) I(⊥,⊥) = I(⊥,>) = I(>,>) = > and I(>,⊥) = ⊥.

The implicator I is ordered if it satisfies the axioms (i3), (i4) and (i5).

The implicator I is distributive if it satisfies the following axioms

(i6) I(a,
∧

i∈I bi) =
∧

i∈I(I(a, bi)), for all a ∈ L, {bi}i∈I ⊆ L;

(i′6) I(
∨

i∈I ai, b) =
∧

i∈I(I(ai, b)), for all b ∈ L, {ai}i∈I ⊆ L.

The implicator I is continuous if it satisfies (i6), (i′6) and the following axioms

(i7) I(a,
∨

i∈I bi) =
∨

i∈I(I(a, bi)), for all a ∈ L, {bi}i∈I ⊆ L;

(i′7) I(
∧

i∈I ai, b) =
∨

i∈I(I(ai, b)), for all b ∈ L, {ai}i∈I ⊆ L.

The implicator I is commutative or interchanging if it satisfies the axiom

(i8) I(a, I(b, c)) = > ⇔ I(b, I(a, c)) = >, for all a, b, c ∈ L.

The implicator I is involutive if it satisfies the axiom

(i9) the map N , defined by N(a) = I(a,⊥), for every a ∈ L, is an order reversing involution.

The implicator I is contrapositive if it satisfies the axiom

(i10) I(a, b) = I(N(b), N(a)), for all a, b ∈ L.

Eventually we list the other axioms for a fuzzy implicator considered in [17].

(i11) I(>, b) ≤ b, for every b ∈ L;

(i12) I(>, b) ≥ b, for every b ∈ L;
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(i13) I(a, b) ≥ b, for all a, b ∈ L.

The following Proposition shows in the item (1) that the implication of every one of the com-

plete algebras we have considered in Section 3 is a weak-ordered, hence bounded, implicator; the

subsequent statements (2)-(11) only state the further properties it satisfies depending on which

kind of w-ceo algebra is considered.

Proposition 4.2. 1. If (L,→,>) is a w-ceo algebra, then the operation → is a bounded weak-

ordered implicator.

2. If (L,→,>) is a right w-ceo algebra, then the implicator → satisfies the axiom (i4), too.

3. If (L,→,>) is a left w-ceo algebra, then the implicator → satisfies the axiom (i5), too.

4. If (L,→,>) is a ceo algebra, then → is an ordered implicator, too.

5. If (L,→,>) is a right-distributive w-ceo algebra, then the implicator → satisfies the axioms

(i4) and (i6), too.

6. If (L,→,>) is a left-distributive w-ceo algebra, then the implicator → satisfies the axioms

(i5) and (i′6), too.

7. If (L,→,>) is a cdeo algebra, then → is an ordered distributive implicator, too.

8. If (L,→,>) is a symmetrical cdeo algebra, then both → and ; are ordered, distributive and

crisp-bounded implicators that satisfy the axioms (i11), (i12) and (i13).

9. If (L,→,>) is an involutive left w-ceo algebra, then → is an involutive implicator, too.

10. If (L,→,>) is a commutative cdeo algebra, then → is an ordered, distributive, crisp-bounded

and commutative implicator that satisfies the axioms (i11), (i12) and (i13).

11. If (L,→,>) is a commutative, associative and involutive cdeo algebra, then → is an ordered,

distributive, crisp-bounded, commutative and contrapositive implicator that satisfies (i11),

(i12) and (i13).

Proof. 1. From Proposition 3.3 → satisfies the following equivalence a → b = > ⇔ a ≤ b and,

in particular, it follows trivially that a→ b = > ⇔ a ≤ b⇒ b→ a ≤ a→ b, for all a, b ∈ L .

Hence it satisfies the axioms (i) and (i3).

Moreover the following equivalences are true ⊥ ≤ b⇔ ⊥→ b = >, a ≤ > ⇔ a→ > = >, for

all a, b ∈ L. Therefore, → satisfies (i1) and (i2).

2. From (o5) it follows that a ≤ b ⇔ a → b = > ⇒ c → a ≤ c → b, for all a, b, c ∈ L. Then →
satisfies (i4).

3. From (o′5) it follows that a ≤ b ⇔ a → b = > ⇒ b → c ≤ a → c, for all a, b, c ∈ L. Then →
satisfies (i5).

4. It follows easily from (2) and (3).
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5. Since (dr) implies (o5), it follows that (L,→,>) is right w-ceo algebra. Then from (2) one

has that → satisfies (i4). From (dr) it follows that a → (
∧

i∈I bi) =
∧

i∈I(a → bi); hence →
satisfies (i6).

6. Since (dl) implies (o′5) it follows that (L,→,>) is left w-ceo algebra. Then from (3) one has

that → satisfies (i5).

From (dl) it follows that (
∨

i∈I bi)→ a =
∧

i∈I(a→ bi); hence → satisfies (i′6).

7. Since (d) implies (o5) and (o′5), it follows that (L,→,>) is a ceo algebra. The the statement

follows from (4), (5) and (6).

8. By assumption and from Proposition 3.10 it follows that (L,→,>) and (L,;,>) are cdeo

algebras. Hence, from (7) → and ; are ordered and distributive implicators.

From Proposition 3.12 (5) it follows that → and ; satisfy (i11), (i12) and (b).

Moreover, from Proposition 3.12 (4) it follows that → and ; satisfy (i13).

9. It follows trivially from Definitions 3.13, 4.1 and Proposition 3.14 (2).

10. From Proposition 3.18 it follows that (L,→,>) is a symmetrical cdeo algebra. Then from

(8) → is an ordered, distributive and crisp-bounded implicator that satisfies (i11), (i12) and

(i13). Moreover it is commutative by Definition 4.1.

11. From (10) it follows that → is an ordered, distributive, commutative and crisp-bounded

implicator that satisfies (i11), (i12) and (i13). Moreover, by assumption and from Propositions

3.18 and 3.25 (4) it follows that → is a contrapositive implicator.

The above Proposition explains and suggests the possibility to think of an implicator as nothing

but the implication operation of some w-ceo algebra. In particular, if L is a complete lattice and

I : L× L→ L, then

• I is a weak-ordered implicator if and only if (L, I,>) is a w-ceo algebra;

• I is an ordered implicator if and only if (L, I,>) is a ceo algebra.

Fuzzy implicators have been mostly considered, since [2], to express and to evaluate the inclusion

between fuzzy sets. Classically, crisp inclusion between fuzzy (or lattice-valued) sets has been

considered to be the order relation point-wisely induced by the lattice-order of L in the L-powerset

LX of any set X.

In order to determine the inclusion degree between two L-sets A,B with respect to an implicator

→ in L it seems reasonable, of course, to evaluate the extended-order relationship between A and

B; this is usually done by means of the so called subsethood degree S(A,B) =
∧

x A(x)→ B(x).

Here we further propose the possibility to evaluate the inclusion of A in B by seeing to which

extent A is included in the conjunction of A and B (or how much of A is in B).

In terms of the right-distributive (w-)ceo algebra structure this purpose can be realized using the

relative implication given by the following Definition.
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Definition 4.3. Let (L,→,>) be a right-distributive w-ceo algebra. The relative implication is

the binary operation

→⊗: L× L→ L

(a, b) 7−→ a→⊗ b = a→ (a⊗ b),

where ⊗ is the adjoint product of L.

Lemma 4.4. If (L,→,>) is a right-distributive w-ceo algebra, then the relative implication satisfies

the axioms (i1), (i2), (i4) and (i12).

Proof. From (o2) and Proposition 3.6 (3) it follows that ⊥ →⊗ b = ⊥ → (⊥⊗ b) = ⊥ → ⊥ = >.

From (o2) and Proposition 3.6 (2) one has that a→⊗ > = a→ (a⊗>) = a→ a = >.

From (o5) and Proposition 3.6 (6) it follows that a ≤ b⇒ c⊗a ≤ c⊗b⇒ c→ (c⊗a) ≤ c→ (c⊗b);

hence c→⊗ a ≤ c→⊗ b.

From Proposition 3.6 (7) one has that > →⊗ b = > → (>⊗ b) ≥ b.

Hence →⊗ satisfies the axioms (i1), (i2), (i4) and (i12).

Proposition 4.5. If (L,→,>) is a symmetrical cdeo algebra that satisfies the condition a ≤ b⇒
b⊗a ≤ a⊗b, then the relative implications→⊗ and ;⊗ are bounded and crisp-bounded implicators

that satisfy the axioms (i4), (i11) (i12).

Proof. From Proposition 3.12 (2), (o5) and the assumption it follows that a →⊗ b = > ⇔ a ≤
a⊗b ≤ b⇒ a ≤ b⇒ b→⊗ a ≤ a→⊗ b. Hence→⊗ is an implicator; trivially, by the above Lemma

→⊗ is bounded and satisfies (i4) and (i12).

Moreover, from Propositions 3.11 and 3.12 (5) it follows that > →⊗ b = > → (>⊗b) = > → b = b,

for every b ∈ L and, in particular, > →⊗ ⊥ = > → (> ⊗ ⊥) = > → ⊥ = ⊥. Hence →⊗ satisfies

the axioms (i11) and (b). Similarly for ;⊗.

Clearly a commutative cdeo algebra satisfies the assumption of Proposition 4.5; but even the

symmetry condition, and hence the commutativity are not necessary for →⊗ to be an implicator,

as the following Example shows.

Example 4.6. Let L = {⊥, a, b,>}, a ≤ b, and → the binary operation in L described in the

table below.

→ ⊥ a b >
⊥ > > > >
a a > > >
b a b > >
> ⊥ b b >

It is easily seen that (L,→,>) is a non-symmetrical cdeo algebra, with ⊗ and →⊗ described

below

It is easily seen that →⊗ is an implicator.
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⊗ ⊥ a b >
⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ a a

b ⊥ ⊥ a b

> ⊥ a a >

→⊗ ⊥ a b >
⊥ > > > >
a a a > >
b a a b >
> ⊥ b b >

Proposition 4.7. Let (L,→,>) be a cdeo algebra. Then →⊗ is a weak-ordered implicator if and

only if the equivalence

a ≤ b ⇔ a = a⊗ b holds, for all a, b ∈ L.

Proof. Assume→⊗ to be a weak-ordered implicator. Then it follows from a ≤ b that a→ (a⊗b) =

>, hence a ≤ a⊗ b ≤ a. Conversely, from a = a⊗ b one has a→⊗ b = >, hence a ≤ b. Now assume

the stated equivalence. Then the equivalence a →⊗ b = > ⇔ a ≤ a ⊗ b ≤ a ⇔ a ≤ b proves that

→⊗ is a weak-ordered implicator.

Corollary 4.8. If (L,→,>) is a symmetrical cdeo algebra, then the dual relative implication ;⊗

defined by

a ;⊗ b = a ; (b⊗ a), for all a, b ∈ L

is a weak-ordered implicator if and only if the equivalence a ≤ b ⇔ a = b⊗a holds, for all a, b ∈ L.

Proof. It follows trivially by the above Proposition since, under the assumption, (L,;,>) is a

cdeo algebra with adjoint product ⊗̃ defined by a⊗̃b = b⊗ a.

Corollary 4.9. If (L,→,>) is a symmetrical cdeo algebra and ⊗ is idempotent, then →⊗ and ;⊗

are weak-ordered implicators.

Proof. Under the assumption, for all a ≤ b in L one has

a = a ⊗ a ≤ a ⊗ b ≤ a and a = a ⊗ a ≤ b ⊗ a ≤ a. Conversely, it follows from a = a ⊗ b that

a = a⊗ b ≤ b and from a = b⊗ a that a = b⊗ a ≤ b.

Now the statement follows from Proposition 4.7 and Corollary 4.8.

Remark 4.10. The idempotency condition is necessary for each of →⊗ and ;⊗ to be a weak-

ordered implicator. In fact, if this is the case it follows from either Proposition 4.7 or Corollary

4.8 and from a ≤ a that a = a⊗ a, for every a ∈ L.

However idempotency is not necessary for →⊗ to be an implicator (see Example 4.6) and the

symmetry condition is not necessary for →⊗ to be a weak-ordered implicator, as the following

Example shows.

Example 4.11. Let L = {⊥, a, b, c,>}, a ≤ c, b ≤ c and → the binary operation in L described

in the table below.

It is easily seen that (L,→,>) is a non-symmetrical cdeo algebra, with ⊗ and →⊗ described

below

Also, it can be seen that the condition of Proposition 4.7 is satisfied, hence→⊗ is a weak-ordered

implicator.
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→ ⊥ a b c >
⊥ > > > > >
a b > b > >
b a a > > >
c ⊥ a b > >
> ⊥ ⊥ ⊥ c >

⊗ ⊥ a b c >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a ⊥ a a

b ⊥ ⊥ b b b

c ⊥ a b c c

> ⊥ c c c >

→⊗ ⊥ a b c >
⊥ > > > > >
a b > b > >
b a a > > >
c ⊥ a b > >
> ⊥ c c c >

5 The conditional conjunction

In this last Section we consider a new binary operator that can be read as: ”a” and ”b, given

a” which motivates the term we have chosen to denote it.

Definition 5.1. Let (L,→,>) be a right-distributive w-ceo algebra. The related conditional

conjunction is the binary operation

⊗→ : L× L→ L

(a, b) 7−→ a⊗→ b = a⊗ (a→ b),

where ⊗ is the adjoint product of L.

Proposition 5.2. Let (L,→,>) be a right-distributive w-ceo algebra. The conditional conjunction

has the following properties, for all a, b, bi ∈ L

1. a ≤ b⇒ x⊗→ a ≤ x⊗→ b, ∀x ∈ L;

2. ⊥⊗→ b = ⊥;

3. b⊗→ ⊥ = ⊥;

4. a⊗→ > = a;

5. a⊗→ x ≤ b⊗→ x, ∀x ∈ L⇒ a ≤ b;

6. >⊗→ b ≤ b;

7. a⊗→ a = a;

8. a⊗→ b ≤ a ∧ b;

9. a ≤ b⇔ a⊗→ b = a;
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10. a⊗→ x ≤ b⊗→ x, ∀x ∈ L⇒ a⊗→ b = b⊗→ a = a;

11. a⊗→ b = > ⇔ a = b = >;

12. (a⊗ b)⊗→ a = a⊗ b;

13. a⊗→ (a⊗ b) = a⊗ b;

14. a⊗→ (a⊗→ b) = a⊗→ b;

15. (a⊗→ b)⊗→ b = a⊗→ b.

If moreover (L,→,>) is a right-distributive ceo algebra, then

16. > → x ≥ x, ∀x ∈ L⇒ a⊗ b ≤ a⊗→ b;

17. if ⊗ is distributive over
∧

on the right side, then a⊗→ (
∧

i∈I bi) =
∧

i∈I(a⊗→ bi).

If (L,→,>) is a symmetrical cdeo algebra, then

18. >⊗→ b = b;

19. a⊗ b ≤ a⊗→ b;

20. a ≤ b⇔ x⊗→ a ≤ x⊗→ b,∀x ∈ L.

If → satisfies the axiom (i7), then

21. a⊗→ (
∨

i∈I bi) =
∨

i∈I(a⊗→ bi).

Proof. 1. Let a ≤ b; from (o5) x → a ≤ x → b. Then from Proposition 3.6 (6) one has

x⊗→ a = x⊗ (x→ a) ≤ x⊗ (x→ b) = x⊗→ b.

2. From Proposition 3.6 (3) it follows that ⊥⊗→ b = ⊥⊗ (⊥ → b) = ⊥.

3. From Proposition 3.6 (7) one has that b⊗→ ⊥ = b⊗ (b→ ⊥) ≤ ⊥.

4. From (o1) and Proposition 3.6 (2) it follows that a⊗→ > = a⊗ (a→ >) = a⊗> = a.

5. Taking x = >, the assumption gives a ≤ b by (4).

6. From Proposition 3.6 (7) one has that >⊗→ b = >⊗ (> → b) ≤ b.

7. From Proposition 3.6 (2) and (o2) it follows that a⊗→ a = a⊗ (a→ a) = a⊗> = a.

8. From Proposition 3.6 (1) a⊗→ b ≤ a; moreover, from Proposition 3.6 (9) a⊗→ b ≤ b. Hence

a⊗→ b ≤ a ∧ b.

9. Let a ≤ b. Then a→ b = >, hence, from Proposition 3.6 (2) a⊗→b = a⊗(a→ b) = a⊗> = a.

Conversely, from Proposition 3.6 (7) a = a⊗→ b = a⊗ (a→ b) ≤ b.

10. The assumption gives a ≤ b by (5); then a⊗→ b = a by (9).

Moreover, taking x = a, by the assumption, (7) and (8) one has a ≤ b⊗→ a ≤ a.
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11. Assume a⊗→ b = >; from (8) it follows that > ≤ a ∧ b and hence a = b = >.

Conversely, it is clear that >⊗→ > = >.

12. From Proposition 3.6 (1) (2) one has that (a⊗b)⊗→a = (a⊗b)⊗[(a⊗ b)→ a] = (a⊗b)⊗> =

(a⊗ b).

13. From Proposition 3.6 (7) a → (a ⊗ b) ≥ b; hence, from Proposition 3.6 (6) a ⊗→ (a ⊗ b) =

a⊗ [a→ (a⊗ b)] ≥ a⊗ b. The converse inequality follows from (8), so a⊗→ (a⊗ b) = a⊗ b.

14. From Proposition 3.6 (6)(7) one has that a⊗→ (a⊗→ b) = a⊗ [a→ (a⊗ (a→ b))] ≥ a⊗(a→
b) = a⊗→ b. The converse inequality follows from (8).

15. By (8) a⊗→ b ≤ b, hence by (9) (a⊗→ b)⊗→ b = a⊗→ b.

16. From (o′5) and Proposition 3.6 (6) and by assumption the following inequality holds a⊗→ b =

a⊗ (a→ b) ≥ a⊗ (> → b) ≥ a⊗ b.

17. By assumption and condition (dr) it follows that a ⊗→ (
∧

i∈I bi) = a ⊗
[
a→ (

∧
i∈I bi)

]
=

a⊗
[∧

i∈I(a→ bi)
]

=
∧

i∈I [a⊗ (a→ bi)] =
∧

i∈I(a⊗→ bi).

18. From Propositions 3.11 and 3.12 (5) it follows that >⊗→ b = >⊗ (> → b) = >⊗ b = b.

19. By assumption the equality > → x = x, ∀x ∈ L, follows from Proposition 3.12 (5), hence the

statement follows by (16).

20. The implication ” ⇒ ” comes from (1); the converse implication follows by (7) and (8), in

fact by the assumption for x = a one has a = a⊗→ a ≤ a⊗→ b ≤ b.

21. By assumption and Proposition 3.6 (5) it follows that a⊗→ (
∨

i∈I bi) = a⊗
[
a→ (

∨
i∈I bi)

]
=

a⊗
[∨

i∈I(a→ bi)
]

=
∨

i∈I(a⊗→ bi).

The properties listed in the above Proposition show that ⊗→ satisfies most conditions usually

asked to a conjunction operator and moreover it is well related to the operator ⊗, the main

conjunction operator of a right-distributive w-ceo algebra, and to the classical conjunction operator

∧; in fact x⊗→ y ≤ x ∧ y in any case and if (L,→,>) is a symmetrical cdeo algebra then

x⊗ y ≤ x⊗→ y ≤ x ∧ y, for all x, y ∈ L.

We also recall that the equality x∧ y = x⊗→ y, for all x, y ∈ L is just the so called divisibility

condition that is assumed in BL-algebras and in MV-algebras, as well (see for instance [13]).

We can show that whenever L is a chain the divisibility condition is necessary for the conditional

conjunction⊗→ to be isotonic in the first argument; more precisely the only conditional conjunction

in a right-distributive w-ceo chain that is isotonic in the first argument is the meet operation. In

fact, the following holds.

Proposition 5.3. Let (L,→,>) be a right-distributive w-ceo algebra and let L be a chain in the

natural ordering. If the related conditional conjunction is isotonic in the first argument, then

a⊗→ b = a ∧ b, for all a, b ∈ L.
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Proof. Consider a, b ∈ L and assume a ∧ b = a. Then a ≤ b and by the assumption the inequality

a⊗→ x ≤ b⊗→ x, for every x ∈ L, holds.

Then from Proposition 5.2 (10) a⊗→ b = b⊗→ a = a = a ∧ b.

Corollary 5.4. A right-distributive w-ceo chain is a BL-algebra if and only if the related condi-

tional conjunction is isotonic in the first argument. 2
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