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Powell, Saul R. The ubiquitin-proteasome system in cardiac physiology
and pathology. Am J Physiol Heart Circ Physiol 291: H1–H19, 2006;
doi:10.1152/ajpheart.00062.2006.—The ubiquitin-proteasome system (UPS) is
the major nonlysosomal pathway for intracellular protein degradation, generally
requiring a covalent linkage of one or more chains of polyubiquitins to the protein
intended for degradation. It has become clear that the UPS plays major roles in
regulating many cellular processes, including the cell cycle, immune responses,
apoptosis, cell signaling, and protein turnover under normal and pathological
conditions, as well as in protein quality control by removal of damaged, oxidized,
and/or misfolded proteins. This review will present an overview of the structure,
biochemistry, and physiology of the UPS with emphasis on its role in the heart, if
known. In addition, evidence will be presented supporting the role of certain
muscle-specific ubiquitin protein ligases, key regulatory components of the UPS, in
regulation of sarcomere protein turnover and cardiomyocyte size and how this
might play a role in induction of the hypertrophic phenotype. Moreover, this review
will present the evidence suggesting that proteasomal dysfunction may play a role
in cardiac pathologies such as myocardial ischemia, congestive heart failure, and
myofilament-related and idiopathic-dilated cardiomyopathies, as well as cardiomy-
ocyte loss in the aging heart. Finally, certain pitfalls of proteasome studies will be
described with the intent of providing investigators with enough information to
avoid these problems. This review should provide current investigators in the field
with an up-to-date analysis of the literature and at the same time provide an impetus
for new investigators to enter this important and rapidly changing area of research.

heart; protein degradation

CIECHANOVER, HOD, AND HERSHKO (37) presented in 1978 the first
description of a heat-stable polypeptide that associated with an
ATP-dependent proteolytic system in reticulocytes that had
been previously described by Etlinger and Goldberg (57) in
1977. Initially, this polypeptide was called ATP-dependent
proteolysis factor-1 (APF-1), but it was subsequently identified
as ubiquitin by Wilkinson and colleagues (226). In the follow-
ing year, Rose, Warms, and Hershko (182) made the seminal
discovery of a high-molecular-weight protease most active in
cytosol derived from liver but also present in mouse kidney,
heart, brain, and spleen. This proteolytic complex has been
known by several names, including macroxyproteinase, multi-
catalytic proteinase complex, prosome, and, most commonly,
the proteasome (8) or ubiquitin-proteasome system (UPS). In
2004, Ciechanover, Hershko, and Rose were awarded the
Nobel Prize in Chemistry for their description of ubiquitin-
mediated degradation of proteins. In the years since the orig-
inal discoveries, it has become clear that ubiquitin-mediated
degradation of proteins plays a major role in regulating many
cellular processes, including the cell cycle (27, 103), immune
response and antigen presentation via the immunoproteasome
(80, 81, 125), apoptosis (86, 112, 169), cell signaling (36, 49,
69, 92), and protein turnover under normal and pathological
conditions (34, 94, 177, 210, 214). In addition, the UPS plays

key roles in protein quality by removal of damaged, oxidized,
and/or misfolded proteins (19, 44, 79, 107). In the ensuing
review, the reader will be introduced to the role of the protea-
some in cardiac physiology and pathology with these topics
subjected to an in-depth review. To completely appreciate
some of the nuances of UPS function, the reader needs to be
aware of basic proteasome nomenclature, structure, assembly.
and function. These topics will be reviewed in a general
manner with the intent of providing an up-to-date synopsis of
the literature. Where appropriate, the reader will be referred to
excellent topical reviews.

PROTEASOME NOMENCLATURE AND STRUCTURE

Proteasomes have highly conserved architecture and are
found in one form or another in all domains of life (221). The
complete eukaryotic proteasome is composed of two com-
plexes of proteins: the proteolytic core or 20S proteasome (on
the basis of sedimentation value), containing 28 subunits con-
sisting of duplicates of 14 different proteins and having a
molecular mass in excess of 700 kDa; and one or two regula-
tory complexes, also known as the 19S regulatory complex or
proteasome activator of 700 kDa (PA700), consisting of at
least 17 additional proteins and having a molecular mass of
almost 900 kDa (reviewed in Refs. 46, 238). Association of the
proteolytic core with the regulatory complex results in the
formation of a macromolecular structure that has become
known as the 26S proteasome, which has a molecular mass in
excess of 1,500 kDa if associated with one 19S complex (the
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mushroom configuration; sedimentation value of 26) or 2,500
kDa if associated with two 19S complexes (one at each end or
the dumbbell configuration; sedimentation value of 30) (46,
191, 238).

20S Proteasome

The proteolytic core of the proteasome is a cylindrical
barrel-shaped structure containing four stacked rings each
containing seven subunits and has become known as the 20S
proteasome. One of the more confusing aspects of proteasome
studies is the myriad of nomenclatures for naming these sub-

units, some dating back to the early 1980s. In Table 1, the more
common nomenclatures, as well as primary accession numbers,
are summarized. Most recent studies of mammalian protea-
some now use the Baumeister et al. (14) nomenclature, which
classifies the subunits into �- and �-subtypes depending on the
rings. The inner two rings contain homologous �-subunits,
which are designated �1–�7 (see Fig. 1). The subunits on these
two rings are aligned counter to each other such that �1 on the
top ring lies roughly above �7 on the bottom ring. The outer
two rings contain homologous �-subunits, which are desig-
nated �1–�7 and are aligned over their corresponding �-sub-

Fig. 1. Structure of the mammalian 26S pro-
teasome. The mammalian 26S proteasome
has as its core catalytic unit the 20S protea-
some, which is a cylindrical-shaped structure
composed of 4 rings, each consisting of 7
subunits. Capping the 20S proteasome at
each end is the 19S regulatory complex,
consisting of an additional 17 proteins. The
entire structure has become known as the
26S proteasome, which is somewhat of a
misnomer because the 20S proteasome
capped on both ends by the 19S complex is
actually 30S and when capped on one end is
only 26S. For the sake of clarity, shown here
is capping on only one end. Note that sub-
units �1, �2, and �5 are depicted in a dif-
ferent shade to indicate that these can exist
in the immunoforms. Rpt, regulatory particle
triple A; Rpn, regulatory particle non-
ATPase.

Table 1. Common nomenclatures of the 20S proteasome

Nomenclature as Described By

Homo sapiens (Human) (14, 88) Accession No. (Human)Baumeister et al. (14) Groll et al. (88) Coux et al. (41)

�-Type subunits
�1 �1_sc Pro-�6 C2 P25786
�2 �2_sc Pro-�2 C3 P25787
�3 �3_sc Pro-�4 C9 P25788
�4 �4_sc Pro-�3 C6/XAPC-7 P25789
�5 �5_sc Pro-�1 zeta P28066
�6 �6_sc Pro-�5 iota P60900
�7 �7_sc Pro-�7 C8 Q8TAA3

�-Type subunits
�1 �1_sc Pro-�3 Y/delta/C5 P20618
�1i �1i_hs Pro-�3 LMP2/RING12 P28065
�2 �2_sc Pro-�2 Z P49721
�2i �2_hs Pro-�2 MECL1 P40306 (precursor)
�3 �3_sc Pro-�6 C10 P49720
�4 �4_sc Pro-�4 C7 P28070 (precursor)
�5 �5_sc Pro-�1 X/MB1/epsilon P28074 (precursor)
�5i �5i_hs Pro-�1 LMP7/RING10/Y2/C13 P28062 (precursor)
�6 �6_sc Pro-�5 C5/delta/subunit Y P28072 (precursor)
�7 �7_sc Pro-�7 N3/beta/subunit Z Q99436 (precursor)
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units such that the �1-subunit lies roughly over the �1-subunit
(Fig. 1).

The proteolytic activity of the proteasome resides within the
inner �-subunits. In general, three main activities have been
ascribed to the proteasome: chymotryptic (large hydrophobic
groups), tryptic (basic groups), and post-glutamyl hydrolase
(acidic groups, e.g., glutamic acid), which is a misnomer
because cleavage is faster after aspartic acid; thus the newer
term, caspaselike, is more appropriate. On the basis of site-
directed mutagenesis studies targeting the active NH2-terminal
Thr1 nucleophile, the chymotryptic activity has been assigned
to the �5-subunit, the tryptic activity to the �2-subunit, and the
caspaselike activity to the �1-subunit (reviewed in Refs. 14,
98, 168). The �1-, �2-, and �5-subunits can be replaced by
immunoforms in response to exposure to the cytokine �-inter-
feron and are designated �1i, �2i, and �5i (see Table 1), and
the transformed 20S proteasome becomes part of the immuno-
proteasome (reviewed in Ref. 73). Replacement of these sub-
units with their immunoforms favors formation of peptide
fragments consistent with the major histocompatibility class I
antigens. Reports of additional proteolytic activities, such as
BrAAP activity (cleavage after branched chain amino acids)
and SNAAP activity (cleavage after small neutral amino ac-
ids), have been ascribed to replacement of these subunits and
formation of the immunoproteasome (reviewed in Ref. 168).
At least with respect to the �5i-subunit, the response to
�-interferon appears to be rapid, but transient, thus allowing
the mammalian cell to rapidly return to normal once immuno-
proteasome function is no longer required (99). The function of
the other four �-subunits in higher eukaryotic proteasomes is
unclear at this time, and these have been described as being
inactive (89) although at least one study suggests that the
mammalian �7-subunit may possess NH2-terminal nucleophile
hydrolase activity (216). In the eukaryotic proteasome, the
�-subunits have no direct proteolytic activity but play an
important gating role in preventing access of folded and un-
folded proteins to the central proteolytic chamber when pro-
teasome is in the nonactivated state (reviewed in Ref. 90).
Crystallographic structural analysis of yeast 20S proteasome

indicates that the NH2 termini of subunits �1, �2, �3, �6, and
�7 project into the openings at either end of the cylinder,
effectively sealing it and preventing access to the central
chamber. On activation of the proteasome, these subunits
rearrange, allowing access to the proteolytic core (87, 157).
Activation of the proteasome is generally considered to be a
function of binding of the 19S regulatory complex to the 20S
proteasome.

19S Regulatory Complex

The mammalian 19S regulatory complex consists of at least
17 proteins arranged into two distinct subcomplexes, the base
and the lid (see Fig. 1). Like the 20S proteasome, there have
been several nomenclatures to identify these different subunits.
The more common of these are summarized in Table 2. The
nomenclature most commonly used by most investigators is
that described by Finley et al. (62), who separated the subunits
on the basis of whether they have ATPase activity. Of the 17
proteins, 6 are ATPases of the AAA family and are designated
regulatory particle triple A (Rpt) 1–Rpt6. The remaining sub-
units are designated regulatory particle non-ATPase (Rpn)
1–Rpn12, with Rpn4 apparently not tightly associated with the
19S regulatory particle. The base of the 19S complex is
composed of the six ATPase subunits (Rpt1–Rpt6) and the two
largest of the non-ATPase subunits, Rpn1 and Rpn2 (Fig. 1).
The six ATPase subunits assemble into an oligomeric ring,
which sits on top of the outer �-ring with at least Rpt2 and
Rpt6 having been shown to interact with subunits on the �-
and/or �-rings (76, 87, 185, 190). Association of the base is
sufficient to activate the 20S proteasome to degrade peptides or
nonubiquitinated proteins (78). The primary functions of the
base are to act as an interface between the 19S regulatory
complex and the 20S proteasome core; to utilize ATP to unfold
substrate proteins before translocation to the regulated gate; to
activate the 20S proteasome, resulting in rearrangement of the
NH2 termini of �-subunits to allow access to the catalytic
chamber; and to act as a point of attachment for lid subunits
(reviewed in Refs. 14, 46, 238).

Table 2. Nomenclatures and functions of the 19S regulatory complex (PA700)

Nomenclature as Described By

Accession No. Function [From Demartino (46)]Finley et al. (62) Dubiel and Gordon(55) Previous designations(62)

Rpt1 S7 Cim5/Yta3 P15531 (mouse) ATPase
Rpt2 S4 Yta5/Yhs4 P40327 (yeast) ATPase
Rpt3 S6b Yta2/Ynt1 P33298 (yeast) ATPase
Rpt4 S10b Crl13/Sug2/Pos1 P53549 (yeast) ATPase
Rpt5 S6a Yta1 P33297 (yeast) ATPase/polyubiquitin recognition (133)
Rpt6 S8 Sug1/Cim3/Crl3 Q01939 (yeast) ATPase
Rpn1 S2 Hrd2/Nas1 Q13200 (human) UBL binding
Rpn2 S1 Sen3 Q99460 (human) UBL binding
Rpn3 S3 Sun2 P40016 (yeast)
Rpn4 Son1/Ufd5 Q03465 (yeast)
Rpn5 Nas5 Q12250 (yeast) Proteasome assembly (235)
Rpn6 S9 Nas4 Q12377 (yeast)
Rpn7 S10a Q06103 (yeast)
Rpn8 S12 p40 P51665 (human)
Rpn9 S11 Nas7 Q04062 (yeast)
Rpn10 S5a Mcb1/Sun1 P55036 (human) Ubiquitin binding domain
Rpn11 S13 Mpr1 O00487 (human) Deubiquitination
Rpn12 S14 Nin1 P32496 (yeast)

UBL, ubiquitin-like domains; Rpt, regulatory particle triple A; Rpn, regulator particle non-ATPase; PA700, proteasome activator of 700 kDa.
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The remaining nine (or 10) subunits make up the lid com-
plex, most of whose functions are not clear. A recent review by
DeMartino (46) summarizes the function of these subunits as
follows: polyubiquitin chain recognition through Rpn10, which
confers ubiquitin specificity; and intrinsic substrate deubiqui-
tination via Rpn11. The reader is referred to this review (46)
for additional details and to Table 2, which also lists known
function(s) of the different 19S subunits.

Assembly of the Proteasome

Because variations in proteasome subunit assembly may
alter proteasome selectivity and specificity (82, 121), investi-
gators should have a basic understanding of the steps and
factors regulating this process. Most of the earlier studies in
yeast focused on assembly of the 20S proteasome and, specif-
ically, assembly of the �-rings and the role of the proteasome
maturation factor Ump1 (ubiquitin-mediated proteolysis).
These studies have postulated a two-step process in which an
inactive half-proteasome, consisting of one �- and one �-ring,
is formed, followed by dimerization to the latent four hep-
tameric ring structure associated with the 20S proteasome
(160, 179, 193, 231). These models all supposed that the
�-rings formed spontaneously after processing of �-ring sub-
unit propeptides. However, a recent study (106) has shed new
light on initial processing of the �-subunits and has presented
evidence for the existence of two chaperone proteins, protea-
some assembly chaperone 1 (PAC1) and PAC2, which form a
heterodimer that associates with certain of the �-subunits.
Accordingly, the following multistep process for assembly of
the 20S proteasome can be described. In the initial step,
PAC1:PAC2 heterodimer associates with free �5- and �7-
subunits, creating a scaffold around which the remaining
�-subunits can polymerize and apparently direct their order of
incorporation (106). This is followed by association of Ump1
[human analog hUmp1, or proteasome maturation protein
(POMP)] with a subset of �-subunits that are synthesized as
inactive propeptides to prevent proteolytic activity (30, 231).
Studies in human cell lines indicate that the initial intermediate
formed is a complex of the complete �-ring plus the �2-, �3-,
and �4-propeptides (160, 194). This intermediate then directs

incorporation of the remaining four �-subunit propeptides to
form the inactive half-proteasome with the PAC1:PAC2 het-
erodimer and the Ump1 maturation factor still associated (106,
179, 231). At this point, two half-proteasomes undergo rapid
dimerization to form the latent 20S proteasome, inducing rapid
cleavage of the �-subunit prosequences catalyzed by Ump1,
and thereby exposing the active proteolytic sites within the
complete catalytic chamber (30, 160, 179, 231). At least in the
archaebacterium Archaeoglobus fulgidus, this step is preceded
by a conformational change that reorients the �-subunits up-
ward and toward an approaching half-proteasome, allowing
them to make contact (158). Ump1, PAC1:PAC2, and the
�-subunit prosequence cleavage fragments are then released
and become substrates for proteolytic degradation by the ma-
ture proteasome (106, 179) (see Fig. 2 for model).

Although it is possible to postulate a sequence of events for
20S proteasome assembly, the same is not true for assembly of
the 19S regulatory complex as very little is known about this
process. What is known suggests that the six ATPase (Rpt1–
Rpt6) subunits assemble first as a hexameric ring, which along
with the other two “base” subunits, Rpn1 and Rpn2, associate
with the 20S proteasome (84). Binding to 20S proteasome
appears to be regulated by phosphorylation of at least one of
the ATPases, in this case, Rpt6, which directly associates with
the �2-subunit (190). Beyond this, little is known about how
the remaining lid subunits come together, although certain of
these are known to interact with each other (68, 235). A better
understanding of the processes involved in proteasome assem-
bly becomes essential in light of a recent report (33) demon-
strating that overexpression of the �5-subunits in human em-
bryonic cells upregulates overall proteasome expression and
confers enhanced resistance to oxidative stress. Whether this
strategy has practical therapeutic application remains to be
elucidated.

Cardiac 26S Proteasome

Little is known about how the architecture of the cardiac 26S
proteasome may differ from other tissue types. Most investi-
gators in this area have based their hypotheses on studies of
noncardiac mammalian proteasome or proteasome in pro-

Fig. 2. Multistep model for assembly of the human 20S pro-
teasome. Newly synthesized �-subunits associate with the pro-
teasome assembly chaperone 1 (PAC1):PAC2 heterodimer,
which creates a scaffold for formation of the �-ring; �-subunit
propeptides, chaperoned by hUmp1 (human analog of ubiq-
uitin-mediated proteolysis), associate with the �-chain/PAC1:
PAC2 complex, leading to formation of the inactive half-
proteasome. Two half-proteasomes dimerize forming a 4-ring
heptamer that undergoes an autocatalytic cleavage of the �-sub-
unit prosequences, revealing the active proteolytic sites. PAC1:
PAC2, hUmp1, and the �-subunit prosequence cleavage frag-
ments become substrates for the mature proteasome and un-
dergo proteolytic degradation. [Adapted from Hirano et al.
(106) from Nature with permission from Macmillan Publishers
Ltd., copyright 2005.]
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karyotes and lower eukaryotes. A recent report by Gomes et al.
(82) detailing preliminary proteomics studies of the murine
cardiac 26S proteasome has yielded some rather novel infor-
mation. These investigators have proposed a model in which
the cardiac 26S proteasome contains a variable 20S complex
assembled with different proportions of �-subunits in addition
to the 19S complex. According to this hypothesis, the �1-, �2-,
and �5-subunits may be replaced by the immunoform on one
�-ring, but not the other, or perhaps even a mixture of im-
munoform vs. nonimmunoform subunits (see Fig. 3 for exam-
ples). This hypothesis predicts that alterations in proteasome
subunit composition would alter specificity and selectivity of
the proteasome for various substrates, thus playing a role in
regulation of intracellular proteolysis. This is an exciting hy-
pothesis that is supported by reports of altered proteasome
function and subunit composition in aged muscle (61, 109) and
by studies of immunoproteasome assembly suggesting that
differences between the regular and immunoform �-subunit (in
particular, �5 and �5i) propeptides may influence and possibly
direct assembly of variable subsets of proteasome, promoting
diversity of antigenic peptides (120, 121, 160). Whether other
proteasome subunits can also assemble in variable proportions
or compositions, or what factors would control this, is unclear
at this time and is the subject of active study. If this should be
the case, it presents the possibility of directing proteasome
assembly to direct selective degradation (or not) of a protein or

class of proteins, thereby altering the outcome of a disease
process.

UBIQUITIN-MEDIATED DEGRADATION OF PROTEINS

The 26S proteasome is the major nonlysosomal pathway for
intracellular protein degradation. In general, targeting to the
proteasome requires a covalent linkage of one or more chains
of polyubiquitins to the protein intended for degradation. As
this area has been the subject of several recent excellent
reviews, what follows is a general review of the literature.
Where appropriate, discussions will be supplemented with
cardiac-specific information.

Ubiquitination (Ubiquitylation)

Ubiquitination refers to the conjugation of free ubiquitin
with some substrate protein. Ubiquitin is a highly conserved
compact globular protein consisting of 76 amino acids that is
expressed in all eukaryotes but very few prokaryotes. Ubiq-
uitination proceeds along a three-step cascade (see Fig. 4). In
the first step, the ubiquitin-activating enzyme, E1, uses ATP to
activate ubiquitin to a higher energy state by forming a thiol-
ester linkage with the protruding COOH-terminal glycine
(G76). The activated ubiquitin is then transferred onto one of
several ubiquitin-conjugating proteins, E2, by the formation of
an additional high-energy thiol-ester bond, and then covalently
linked, generally at the �-NH2 of a Lys residue, to a protein
substrate that is bound to a specific ubiquitin protein ligase, E3.
There are multiple classes of E3s, and overall these number in
the 1,000s, each one recognizing a specific motif on the
substrate. Because specificity of the UPS resides with the E3s
and there are specific classes of muscle-specific E3s, these are
discussed in detail in a subsequent section. In general, if the
substrate is to be degraded by the 26S proteasome, it must be
polyubiquitinated, which occurs via successive addition of
activated ubiquitins to internal Lys residues of the previously
conjugated ubiquitin. Ubiquitin can be ubiquitinated at any one
of its seven Lys residues (Fig. 5) with the specific residue
linked to various functions. For example, ubiquitination at
Lys48 is most common and typically targets the protein sub-
strate to the 26S proteasome. Ubiquitination at Lys63 can
target a protein to the 26S proteasome but may also be
associated with DNA repair mechanisms, endocytosis, and
vesicle transport. Although the other five Lys residues may be
ubiquitinated, their function is not clear. In some instances,
polyubiquitin chain formation is facilitated by a multiubiquitin
elongation factor, E4 (reviewed in Ref. 108). For additional
detail on ubiquitin and the ubiquitination process, the reader is
referred to Refs. 59, 77, 108, and 173.

Once a substrate is polyubiquitinated, it is either recognized
directly by the proteasome or bound to some shuttling protein,
which transports it to the proteasome. Recognition is via
ubiquitin binding domains contained in the Rpn10 subunit or
possibly contained within a shuttling protein (reviewed in Ref.
104). It is now becoming clear that polyubiquitination is not
the only type of ubiquitination and that others can occur, each
one associated with specific functions (see Fig. 6). Monoubiq-
uitination refers to a single ubiquitin conjugated to a Lys
residue of a substrate protein. This type of modification ap-
pears to be important in regulating protein activity and func-
tion; cargo trafficking, such as receptor internalization through

Fig. 3. Models of variable 26S proteasome assembly. Each 20S subunit occurs
in duplicate with the possible exception of three subunits, �1, �2, and �5,
which may be replaced by 3 immunoforms (�1i, �2i, and �5i). On the basis of
preliminary data, Gomes et al. (82) have proposed that the cardiac proteasome
system contains multiple complexes with distinct molecular compositions. A:
the 20S proteasome complex contains two �1-subunits, two �2-subunits, and
two �5-subunits. B: in contrast to the 20S proteasome shown in A, this 20S
proteasome contains one �2-subunit and one �2i-subunit. C: in contrast to the
20S proteasome shown in A, this 20S proteasome contains one �1i-subunit and
one �1-subunit. D: in contrast to the 20S proteasome shown in A, this 20S
proteasome contains two �1i-subunits and one �5i-subunit (�5i is shown in the
back of the �-ring), respectively. E: in contrast to the 20S proteasome shown
in A, this 26S proteasome contains two �1i-, one �2i-, and one �5i-subunit,
respectively. F: in contrast to the 20S proteasome shown in A, this 20S
proteasome contains one �1i-subunit, one �2i-subunit, and one �5i- subunit,
respectively. [Reprinted from Gomes et al. (82) with permission from Black-
well Publishing.]
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endocytosis; tagging and sorting of proteins to multivesicular
bodies; DNA repair; and regulation of transcription. Some
proteins or receptors require monoubiquitination at multiple
sites (multimonoubiquitination) to ensure proper function or
endocytosis (reviewed in Ref. 92). An additional form of
ubiquitination is NH2-terminal ubiquitination, first described
for the cell cycle regulator p21 (17). NH2-terminal ubiquitina-

tion does not follow the canonical three-step conjugation of
ubiquitin to a Lys residue of a protein substrate but rather is
conjugated to the �-NH2 group on the NH2-terminal residue of
the substrate. This type of ubiquitination seems to affect
stability of a protein, in some cases blocking degradation
through a mechanism that is still unclear (reviewed in Ref. 35).

Regardless of the type or extent of ubiquitination, at some
point the ubiquitin is going to be removed for the purposes of
recycling or to prevent the degradation of a previously ubiqui-
tinated protein. This process is under the control of the deu-
biquitinating enzymes or DUBs. DUBs are found throughout
the cell associated mainly with subcellular structures or large

Fig. 4. The ubiquitin-proteasome pathway.
1: activation of ubiquitin by the ubiquitin-
activating enzyme E1, a ubiquitin-carrier
protein, E2, and ATP, producing a high-
energy E2�ubiquitin thiol ester intermedi-
ate. 2: binding of the protein substrate to a
specific ubiquitin-protein ligase, E3. 3: mul-
tiple (n) cycles of ubiquitin conjugation, re-
sulting in a polyubiquitin chain. 4: degrada-
tion of the substrate by the 26S proteasome
complex with release of short peptides. 5:
recycling of ubiquitin is recycled via deubiq-
uitinating enzymes (DUBs). HECT, homol-
ogous to E6-AP carboxy terminus. [Re-
printed from Glickman and Ciechanover
(77) with permission of the American Phys-
iological Society.]

Fig. 5. Ubiquitin ribbon diagram illustrating the 7 lysines available for
ubiquitination. Ubiquitination at individual lysines plays a role in the different
functions of ubiquitin (see text for details). {Reprinted with permission from
Nature Reviews Molecular Cell Biology [www.nature.com/reviews; diagram
from poster based on review by Welchman et al. (225)], copyright 2005,
Macmillan Magazines Ltd.}

Fig. 6. Types of ubiquitination (ubiquitylation). Proteins can be polyubiquiti-
nated on one or more lysine residues with a ubiquitin chain; monoubiquitinated
by a single ubiquitin on a single lysine; multimonoubiquitinated on several
lysines by a single ubiquitin; or can undergo NH2-terminal ubiquitination,
which refers to fusion of ubiquitin to the �-NH2 group of the NH2-terminal
residue. {Reprinted with permission from Nature Reviews Molecular Cell
Biology [www.nature.com/reviews; from Hicke et al. (104)] copyright 2005,
Macmillan Magazines Ltd.}
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molecular complexes. In the case of the 26S proteasome,
deubiquitination is associated with the Rpn11 subunit in the
19S regulatory complex, which deubiquitinates a polyubiquiti-
nated substrate before unfolding. Deubiquitination is thought
to provide another layer of regulation in diverse processes such
as cell cycle/cell growth, organism development, and gene
transcription (reviewed in Refs. 4, 228).

Ubiquitin-like Proteins (Ubiquitons)

Ubiquitons are small protein modifiers that can be covalently
linked to substrates and are related to ubiquitin in that they
possess the ubiquitin superfold, which is a �-grasp region.
There are numerous ubiquitons, most having little homology
with ubiquitin. These small modifiers can have many functions
either by themselves or in conjunction with ubiquitin. For
example, the RAD proteins assist in DNA repair and may act
as a shuttle to chaperone polyubiquitinated proteins to the
proteasome for degradation (reviewed in Ref. 218). The small
ubiquitin-like modifier (SUMO) family appears to play a role
in regulation of traffic into and out of the nucleus (reviewed in
Ref. 147). The Atg (or Apg) family plays an important role in
initiating, regulating, and targeting of proteins and organelles
for autophagy (reviewed in Ref. 155). The neuronal precursor
cell expressed developmentally downregulated (Nedd) 8 fam-
ily plays major roles in regulation of the cullin-based E3s
(reviewed in Ref. 227). For a more in-depth review of ubiqui-
tons, the reader is referred to Ref. 225 [a poster is available for
download at http://www.nature.com/nrm/poster/ubiquitin/index.
html in the online August 2005 issue of Nature Rev Mol Cell
Biol 6 (8)].

Ubiquitin Protein Ligases or E3s

E3 or ubiquitin protein ligases represent the specificity of the
ubiquitin conjugation cascade. Specificity is conferred by the
sheer number of ubiquitin ligases, probably in the 1000s, each
one acting alone with a single E2 to recognize specific amino
acid sequences (reviewed in Ref. 77). Ubiquitin ligases can
basically be separated into three groups: those that contain
homologous to E6-AP carboxy terminus (HECT) domains;
those that contain RING fingers; and the Skp1-Cullin-F-box
(SCF) family (reviewed in Refs. 24, 25, 48) (see Fig. 7).
Members of the HECT-domain ubiquitin ligases accept acti-
vated ubiquitin from the E2 conjugating enzyme, forming a
thioester linkage between the COOH-terminal glycine of ubiq-
uitin and an internal Cys residue. The ubiquitin is then trans-
ferred directly to the free NH2 of a lysine on the specific
substrate recognized by the ligase (77, 162, 192). The RING
finger ubiquitin ligases contain zinc-binding motifs containing
cysteine and histidine amino acids in particular sequences (48).
Lorick et al. (143) have suggested that unlike the HECT
domain, the RING motif associates with the E2-conjugating
enzyme while somehow providing an environment conducive
for transfer of an activated ubiquitin to a protein substrate
lysine. The last group of ligases, the SCF family, is character-
ized by formation of a complex containing a cullin protein
(Cul), SKP1, a RING protein, and an F-box protein or domain.
Because they contain a RING protein, the SCF E3s are con-
sidered by some to be a subset of the RING finger E3s. In the
SCF complex, the cullin protein is thought to sort substrates
and provide interaction sites for Skp1 and the RING finger

protein that associates with a specific E2 conjugating enzyme,
while the F-box protein, which binds to Skp1, represents the
substrate recognition domain (24, 25, 48) (Fig. 7). In general,
the RING finger-containing E3s are thought to act as scaffold-
ing, bringing the activated ubiquitin and substrate together on
the same platform (77).

An additional group of proteins with ubiquitin ligase activity
are certain atypical RING finger proteins, designated U-box
proteins, that lack the characteristic Cys residues that make up
part of the Zn-binding domain (6). These proteins appear to
facilitate ubiquitin chain elongation (formation of polyubiq-
uitin) and have been referred to as E4 (126). Because some E4s
can elongate ubiquitin chains once a substrate is monoubiq-
uitinated, independent of a specific E3, they are said to have
ubiquitin protein ligase activity (addition of ubiquitin to ubiq-
uitin) and are considered by many to be a subset of E3s (95,
96). One example is carboxy terminus of Hsp70 interacting
protein (CHIP), which is known to interact with both Hsp70
and Hsp90 to target certain proteins for ubiquitin-mediated
degradation (11, 40, 45). CHIP is highly expressed in the heart,

Fig. 7. Structure of E3s (ubiquitin protein ligases) involved in regulation of
muscle protein turnover. Note the 4 components comprising the Skp1-Cullin-
F-box (SCF) ligase. The RING finger motifs of each E3 is indicated in black.
E2, ubiquitin carrier protein; MURF, muscle-specific RING finger. [Reprinted
from Cao et al. (24) with permission from Elsevier Publishing.]
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and it is of significance to this discussion that a recent study
(236) has demonstrated that CHIP-deficient mice had de-
creased survival, a larger myocardial infarct, and greater inci-
dence of cardiomyocyte and vascular endothelial apoptosis
during reperfusion after left anterior descending coronary ar-
tery (LAD) occlusion. CHIP and many of the other E3 ligases
are expressed in multiple tissue types representing a conserva-
tive means for processing of common substrates. However, it is
now clear that some ubiquitin ligases are expressed in a
tissue-specific manner, presumably as a means for processing
of substrates unique to these tissues. Several E3s that specifi-
cally target muscle proteins found in the sarcomere have now
been described.

Muscle-specific E3-ligases. Much of what is known about
the muscle-specific E3s comes from the muscle atrophy liter-
ature. Perhaps the earliest indication that the UPS plays a role
in muscle protein catabolism were studies by Goldberg and
coworkers (58), who showed that skeletal muscle contains this
proteolytic complex. Subsequently, this group showed that
degradation of muscle protein requires ATP (54) and that
multiple conditions that lead to increased muscle proteolysis,
such as starvation, fasting, denervation, and cachexia, all have
in common increased levels of muscle ubiquitin and polyubiq-
uitinated proteins, as well as increased ubiquitin and protea-
some subunit mRNAs (13, 118, 151, 152, 229). Proof of
concept was provided by studies with proteasome inhibitors
which reduced protein breakdown of atrophying muscle (209),
indicating that much of muscle proteolysis is mediated by
upregulation of the UPS. Shortly thereafter, Solomon and
Goldberg (200) demonstrated that dissociation of certain myo-
fibrillar proteins from the myofibril makes them targets for
UPS and suggested that this process is regulated by “ubiquitin
conjugating enzymes,” which may recognize these dissociated
proteins. The first muscle-specific E3 to be associated with
muscle atrophy was E3� (or UBR1), which is assisted by the
ubiquitin conjugating protein E214k and recognizes proteins
according to the N-end rule (NH2 terminus destabilizing hy-
drophobic or basic amino acids) (63, 135, 199, 201).

Other muscle-specific E3s include Atrogin-1 (MaFbx),
which is an F-box protein that binds to Skp1 and thereby Cul1
and the ring finger, Roc1, and is an example of an SCF family
E3 (83). This protein is selectively expressed in cardiac and
striated muscle and has been shown to be strongly induced in
fasting and other catabolic states before onset of muscle atro-
phy (83, 134). Also described is muscle-specific RING finger
(MURF)-1, MURF-2, and MURF-3, members of the MURF
family of RING E3s, which are also upregulated in catabolic
states (18, 28). All MURFs are characterized by an amino-
terminal RING finger domain followed by a highly conserved
35 residue motif, the MURF family conserved (MFC) domain,
which is specific for this family. The MFC domain is followed
by a second Zn-binding motif of the B-Box type followed by
a more divergent carboxy-end terminus. In addition, all
MURFs are capable of forming dimers or heterodimers (65,
202, 215). Since the initial description of these muscle-specific
E3s, studies have focused on examining their critical roles in
regulating sarcomere protein turnover and cardiomyocyte size.

Role of muscle-specific ubiquitin ligases in sarcomere pro-
tein turnover. MURF-3 was the first member of this family
identified and was characterized as a microtubule-associated
protein, developmentally upregulated and specifically ex-

pressed in cardiac and skeletal muscle, and required for skel-
etal myoblast differentiation and development of cellular mi-
crotubular networks (202). MURF-1 was identified as a myo-
fibrillar-associated protein that localizes to the M-line region in
close proximity to the active kinase domain of the giant
protein, titin, binding to the adjacent A168/A169 repeats.
MURF-1 is also found within the Z-line lattice; in soluble form
in the cytoplasm; as well as in the nuclei (28, 148). Expression
of MURF-1-encoding fusion proteins in cardiac myocytes
results in disruption of titin’s M-line region and thick filament
structure (148). In mice, conditional expression of truncated
titins lacking the kinase and MURF-1 binding domains leads to
a myopathy characterized by sarcomere disassembly (85).
Taken together, these studies indicate a regulatory role for
MURF-1 in maintenance and turnover of myofibrils and spe-
cifically the M-line region.

MURF-2 is thought to act as a link between the microtubular
MURF-3 and the myofibrillar MURF-1 because this protein
colocalizes to both the M-line region of titin and within a
subgroup of cardiac microtubules, as well as associating with
the intermediate filaments vimentin and desmin (149). Knock-
down of MURF-2 in neonatal cardiomyocytes results in loss of
integrity of stable detyrosinated microtubules, perturbations in
vimentin and desmin structure, and dramatic disruptions in
M-line structure (149). Recent studies have identified troponin
I, troponin T, myosin light chain-2, nebulin, the nebulin-related
protein NRAP, myotilin, and T-cap as additional potential
substrates for MURF-1 and MURF-2 (115, 232), suggesting
that these two ubiquitin ligases may act in a redundant fashion
to regulate proteasome-mediated turnover of myofibril pro-
teins. Significantly, Witt et al. (232) have recently shown that
MURF-1 interacts with several other cardiac enzymes required
for energy production, suggesting a link between cardiac me-
tabolism and muscle turnover, possibly regulated by stretch
through titin-mediated signaling processes.

From the above discussion it is clear that muscle-specific
E3s have major roles in myofibrillar protein degradation even
though actual mechanisms and interactions may not have been
totally elucidated. Given that cardiomyocyte size is determined
by a balance between protein synthesis and protein degrada-
tion, muscle-specific E3s, and thereby the proteasome, have
become the subject of intense study. These studies have pro-
vided clues as to the signaling pathways that may regulate
certain of the muscle-specific E3s.

Role of muscle-specific ubiquitin ligases in regulation of
cardiomyocyte size and induction of cardiac hypertrophy.
Cardiomyocyte size is a tightly regulated process representing
a dynamic balance between muscle anabolism and catabolism.
Because muscle-specific E3s play major roles in muscle pro-
tein breakdown, they became logical targets for study in
regulation of cardiomyocyte size and in induction of the
hypertrophic phenotype. Studies of this type represent a depar-
ture from past studies of cardiac hypertrophy, which concen-
trated on increased protein synthesis in response to hypertro-
phic stimuli. Perhaps the earliest indication that E3s play a role
in induction of the hypertrophic phenotype is a study demon-
strating that overexpression of Atrogin-1 in hearts of transgenic
mice reduces hypertrophy and fetal gene expression in the
thoracic aortic banding model (137). This study demonstrated
that Atrogin-1 promotes ubiquitination and degradation of
calcineurin A, suggesting repression of this hypertrophic pro-
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tein (156, 207) as a primary mechanism. However, studies of
IGF-mediated skeletal muscle growth have now suggested an
additional mechanism. IGF is know to induce muscle growth
through activation of the Akt/mammalian target of rapamycin-
dependent (mTOR) pathway (reviewed in Ref. 213), a mech-
anism it shares with some stimuli shown to be hypertrophic in
cardiomyocytes (reviewed in Ref. 171). A recent study has
shown that IGF-1 activation of the Akt/mTOR pathway de-
creases dexamethasone-induced muscle protein breakdown by
suppression of Atrogin-1 and MURF-1 expression (186). The
link between Akt and expression of ubiquitin ligases was not
readily apparent until additional studies demonstrated that
Atrogin-1 expression is under the control of the FOXO pro-
teins, a subgroup of the Forkhead family of transcription
factors (188, 205). The FOXO proteins are negatively regu-
lated by the PI3k/Akt signaling pathway. Akt can phosphory-
late FOXO transcription factors at multiple sites, resulting in
exclusion of the protein from the nucleus (reviewed in Ref. 7),
thus downregulating expression of the E3s. A recent study
(197) has shown that not only is the Akt/FOXO signaling axis
present in cardiomyocytes but is also responsive to insulin,
IGF-1, and ANG II stimulation, as well as stretch and pressure
overload. Moreover, transfer of the FOXO3a gene to neonatal
cardiomyocytes upregulates the Atrogin-1 gene and renders
these cells resistant to IGF and stretch-induced hypertrophy,
while similar transduction of mouse hearts results in shrinkage
of cardiomyocytes in vivo. These results suggest that Akt plays
a dual role in induction of the hypertrophic phenotype, not only
by stimulation of protein synthesis (171) but also by suppress-
ing E3 expression, the one system that could antagonize or
reverse myocyte hypertrophy (see Fig. 8). The story does not
end here, however, as decreased expression of these E3s could
have serious downstream effects. One of the events that may

result in cardiac hypertrophy is activation of the protein kinase
C (PKC) signaling pathway (reviewed in Ref. 53). A recent
study has shown that MURF-1 overexpression inhibits agonist-
induced PKC-�-mediated responses in neonatal cardiomyo-
cytes (9). Although it was not clear from this study that
MURF-1 promoted ubiquitination of PKC-�, it nonetheless
suggests that this ligase may exert an antihypertrophic effect
through modulation of different pathways. Taken in total, these
results suggest that certain ubiquitin ligases may play a role in
cross talk between multiple signaling pathways and that per-
turbations could have profound effects on cardiomyocyte func-
tion. Furthermore, it is quite possible that additional defects in
the UPS might be present in end-stage heart failure because at
least two studies (128, 224) have demonstrated increased
presence of ubiquitinated proteins in explants from failing
human hearts, suggesting impaired proteasome function.

Functions of other E3s. REGULATION OF THE VOLTAGE-GATED

CARDIAC SODIUM CHANNEL NAv1.5. Voltage-gated Na� channels
(Nav) are integral membrane proteins that initiate the action
potential and thus underlie the spread of excitation in the heart
muscle (66). The cardiac isoform Nav1.5 is a heteromultimer
with four heterogeneous domains each containing six trans-
membrane spanning segments (reviewed in Ref. 38). Mutations
or variations in the gene SCN5A encoding this channel have
been linked to several conduction defects, including congenital
long-QT syndromes and Brugada syndrome (reviewed in Ref.
75). Recent studies indicate that the Nedd4-like family of E3s,
members of the HECT-domain group, play a major role in
regulation of this channel. Nedd4-like E3s have two to four
WW domains that can target proteins with specific PY motifs
(PPXY), such as those found in the carboxy termini of all
voltage-gated Na� channels (50, 64, 183, 184). In this regard,
Nedd4–2 downregulates Nav1.5 by ubiquitination, leading to
its internalization and decreased surface channel density (1,
217). Thus far, ubiquitination of the Nav1.5 is regarded as a
normal regulatory process, and its significance in cardiac
disease is not clear (for a more complete review on this topic,
see Ref. 2).

UPS AND APOPTOSIS

One of the earliest indications that the UPS in some way
regulates apoptotic cell death was a study in TNF-treated U937
monoblasts in which treatment with several proteasome inhib-
itors enhanced CPP32 (caspase 3) activity (70). This effect of
proteasome inhibitors was subsequently confirmed in numer-
ous proliferating cancer cell lines; however, there was some
controversy as opposite effects were observed in quiescent
terminally differentiated cell lines (reviewed in Ref. 169). It is
now generally accepted that rapidly proliferating or metaboli-
cally active cells are more prone than quiescent cells to this
effect of proteasome inhibitors and in fact has led to the
development of other inhibitors, such as Bortizemib (PS-341),
for treatment of cancer (reviewed in Ref. 181).

The relationship between the UPS and apoptosis, and thus
the mechanism of proteasome inhibitor-mediated apoptosis, is
one that has received intense study. Earlier studies suggested
that simple deregulation of proteasome-regulated proapoptotic
proteins, such as bax, mdm, and p53, were responsible (29).
Later studies suggested that interference with progression of
the cell cycle was responsible, as this resulted in accumulation

Fig. 8. Proposed scheme for Akt/FOXO-mediated regulation of cardiac myo-
cyte size. Hypertrophic stimuli lead to Akt phosphorylation, which induces
hypertrophy in cardiac myocytes by increasing protein synthesis. At the same
time, Akt negatively regulates the FOXO transcription factors through phos-
phorylation, thereby preventing activation of muscle-specific ubiquitin ligases,
which would promote muscle degradation. mTOR, mammalian target of
rapamycin. [Reprinted from Skurk et al. (197) with permission from the
American Society for Biochemistry and Molecular Biology.]
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of cells arrested in the G1 or G2/M phase owing to accumula-
tion of various cyclins, and p27kip1, substrates for the UPS
(reviewed in Refs. 86 and 169). It is now recognized that many
pro- and antiapoptotic proteins are regulated by the UPS and
include nuclear factor (NF)-�B, which has been extensively
studied and is known to be regulated at multiple levels (re-
viewed in Ref. 129), the JNK and JAK-STAT pathways (re-
viewed in Ref. 69), the Bcl-2 family (146), and Smac/DIA-
BLO, an inhibitor of apoptosis (IAP)-binding protein (145).
Several members of the IAP proteins contain RING finger
domains that can act as E3s and ubiquitinate numerous inter-
acting proteins and are themselves ubiquitinated (reviewed in
Ref. 219). Recent studies indicate that proteasome inhibitors
can activate downstream caspases, possibly by stabilization of
Smac/DIABLO (101), which in turn can feed back and cleave
the proteasome (3, 206). Thus, rather than being simple dereg-
ulation, a very complicated picture is emerging in which
inhibition of the proteasome both initiates and amplifies apop-
totic cascades through a feedforward amplification loop. A
further in-depth discussion on regulation of apoptosis by the
proteasome is beyond the scope of this review, and readers are
referred to the numerous reviews on this topic (see Refs. 112,
234, and 237 for examples). Suffice it to say that proteasome
inhibition does cause apoptosis in myocardial tissue. This was
originally shown by us (174) in a rather crude study in which
isolated hearts were perfused with the inhibitor, MG132, and
subsequently confirmed by others (16, 122) in cardiomyocyte
preparations. That inhibition of the proteasome can cause
cardiomyocyte apoptosis sets the stage for the ensuing discus-
sions on proteasome dysfunction in cardiac pathologies, many
of which have an apoptosis component.

PROTEASOME DYSFUNCTION IN CARDIAC PATHOLOGY

In the following section, the literature suggesting that dys-
function of the UPS plays a role in cardiac pathologies will be
reviewed. Evidence has been mounting that decreased protea-
some function is present during myocardial ischemia, several
cardiomyopathies, and possibly during cardiomyocyte senes-
cence. In addition, studies have suggested a role for the UPS in
progression of atherosclerosis, a topic that has recently been
reviewed (102) and will not be covered here. Much of this
evidence is based on reports of increased ubiquitinated, mis-
folded, or oxidatively modified proteins, in the presence of
diminished proteasome activity. Although these studies present
substantial evidence of proteasome dysfunction, in virtually all
of these cases, cause and effect is still lacking. Nonetheless, if
proteasome dysfunction can be established as an underlying
cause of cardiac dysfunction or cell death, there is great
potential for therapeutic intervention, thus warranting addi-
tional studies.

Proteasome Dysfunction in Myocardial Ischemia

In the discussion that follows, evidence that proteasome is
dysfunctional during myocardial ischemia will be examined.
This evidence has raised several questions with regard to
mechanism and consequences, if any. In addition, some inves-
tigators have advocated the use of proteasome inhibitors in the
ischemic myocardium, which may seem counterintuitive; thus
the rationale, if any, for this treatment modality will be exam-
ined.

Proteasome inhibition during ischemia. The first evidence
for dysfunction of the proteasome during ischemia is derived
from the neurology literature. At least three studies demon-
strate inhibition of the 20S proteasome in stroke models asso-
ciated with accumulation of oxidized and ubiquitinated pro-
teins (10, 114, 119). The earliest evidence of decreased pro-
teasome function in myocardial ischemia was presented by
Bulteau et al. (21), who showed loss of non-ATP dependent
(20S proteasome) trypsinlike activity after 30 min of in vivo
LAD occlusion. Loss of activity was correlated with oxidative
modification (4-hydroxy-nonenalyation) of several proteasome
subunits as well as increases in myocardial content of ubiqui-
tinated proteins. Recently, we (176) confirmed this observation
in the isolated perfused heart preparation but also demonstrated
that the ATP-dependent proteasome activity was also de-
creased, suggesting defects in 26S proteasome function, which
was consistent with increases in myocardial ubiquitinated
proteins.

Exactly how proteasome is inhibited by ischemia is not
clear. The study by Bulteau et al. (21) suggests that proteasome
subunits are sensitive to oxidative inactivation, which is con-
sistent with in vitro studies showing that exposure of purified
proteasome preparations to oxidants, such as 4-hydroxy-non-
enal (67, 166), peroxynitrite (5, 170), hypochlorite, and hydro-
gen peroxide (180), leads to inactivation. Indeed, a recent study
(110) has identified the 19S-subunit ATPase, Rpt6, as excep-
tionally sensitive to oxidative inactivation. With regard to
cardiac ischemia, we (43) have shown that pretreatment of
isolated hearts with �-tocotrienol, a vitamin E analog, pre-
serves postischemic proteasome function. Although all of these
studies support the notion that proteasome is sensitive to
oxidative injury, it must not be forgotten that protein ubiquiti-
nation and unfolding are ATP dependent (77) and that during
ischemia, ATP can be depleted (150, 208) and thus may be a
contributing factor.

Given that the UPS degrades numerous proteins and regu-
lates multiple signaling pathways, it is a reasonable assumption
that dysfunction of this complex during ischemia could have
profound effects on myocardial function. We (176) have ob-
served that degree of proteasome inhibition during reperfusion
is dependent on length of ischemia and seems to correlate with
levels of oxidized and ubiquitinated proteins and have sug-
gested that the process known as dysregulation is occurring in
which there is failure to degrade normal substrates of the
proteasome. In support of this hypothesis, we (43) have re-
cently shown that preservation of proteasome function with
tocotrienol pretreatment decreases postischemic levels of phos-
phorylated c-SRC, which signals for ubiquitination and degra-
dation by proteasome (93), and which is also known to be
upregulated during ischemia and associated with poor out-
comes (97). Further, we (51) have recently demonstrated that
pretreatment of isolated hearts with the proteasome inhibitor
lactacystin results in a greater accumulation of oxidized pro-
teins and diminished degradation of oxidized actin in the
postischemic heart, implying a mediatory role for proteasome.
On the basis of these studies, we (176) have proposed a model
(see Fig. 9) whereby conditions that foster excessive inhibition
of the proteasome impede removal of oxidized proteins by the
20S proteasome, hindering recovery, and numerous proteins
regulated by the 26S proteasome, some of which may be
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prodeath, would accumulate, thus pushing the cell toward
death.

Proteasome inhibitors during myocardial ischemia: a con-
troversy visited. The preceding discussion would appear to
preclude the use of proteasome inhibitors in the ischemic heart,
yet there is a handful of studies in the literature that suggest
that this strategy may actually be beneficial. Two studies (23,
178) have tested the proteasome inhibitor PS-519 (Millennium
Pharmaceuticals), with the rationale being that the inhibitor
would decrease leukocyte adhesion to endothelial cells, thus
limiting the inflammatory response. One of these studies (23)
used the leukocyte-supplemented perfused heart preparation
but failed to observe any effect, positive or negative, in the
absence of the leukocytes, raising the possibility that the effect
of the inhibitor was extracardiac. In both studies, peripheral
leukocyte, but not myocardial, proteasome activity was deter-
mined, and thus it is not clear if the beneficial effect had any
relation to myocardial proteasome. An additional study (204)
has shown that preperfusion of isolated hearts with the protea-
some inhibitor MG132 improves posthypoxic function of ex-
cised isolated papillary muscles. However, this was after a
prehypoxic delay of at least 30 min with demonstrable in-
creases in heat shock proteins but no determination of myo-
cardial proteasome activity. This same group has recently
shown (153) that incubation of vascular smooth muscle cells
with low concentrations of proteasome inhibitors results in
upregulation of proteasome subunit transcription and transla-

tion, raising the possibility that the previous results (204) were
related to increases in proteasome activity. Conversely, we
(176) have observed that preischemic treatment of isolated rat
hearts with MG132 results in a dose-dependent decrease in
postischemic function but increased levels of ubiquitinated
proteins. In addition, pretreatment with the more specific in-
hibitor, lactacystin, according to a protocol that decreased
preischemic proteasome activity by 40%, failed to have any
effects on postischemic function, beneficial or otherwise (51).

How then can these dichotomies be explained? The ability of
proteasome inhibitors to decrease the inflammatory response
has been well documented (56) and has been attributed to
dysregulation of the NF-�B pathways that are regulated by the
UPS at multiple levels (reviewed in Ref. 129). Anti-inflamma-
tory or proapoptotic effects of proteasome inhibitors are noto-
rious for their dose dependence (139). After brief ischemia,
when proteasome may be minimally dysfunctional (176), de-
creasing the inflammatory response with a specific peripherally
acting proteasome inhibitor may be beneficial. However, when
the possibility exists that proteasome may already be signifi-
cantly dysfunctional, caution is advisable as additional inhibi-
tion may tilt the cell toward death.

Is there then any rationale for use of proteasome inhibitors in
myocardial ischemia? Maybe, if it can be shown that the
inhibitor specifically targets the inflammatory or other delete-
rious processes. PR39 is a basic proline/arginine-rich antibac-
terial peptide originally derived from porcine intestine. This

Fig. 9. Scheme illustrating potential roles for 20S and 26S proteasomes in short- and long-duration ischemia. In the nonischemic heart, oxidized, misfolded, and
ubiquitinated proteins are degraded through both ubiquitin- and nonubiquitin-mediated pathways, recycling the constituent amino acids, and maintaining a
dynamic balance between prosurvival and prodeath signals. During an ischemic insult resulting in cell death or dysfunction, proteasome function is inhibited,
leading to accumulation of oxidized and ubiquitinated proteins. In addition, a condition known as dysregulation may occur in which normal proteasome-mediated
degradation of prodeath proteins is depressed. Ub (x), multiubiquitin. [Reprinted from Powell et al. (176) with permission from Mary Ellen Liebert Publishers.]
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peptide is a noncompetitive and reversible allosteric inhibitor
that acts by perturbing the conformation of the noncatalytic
�7-subunit such that cleavage of certain substrates, such as
inhibitor �B (I�B) and hypoxia-inducible factor-1� is inhib-
ited, yet overall activity of the proteasome is not affected (72,
74). PR39 has been shown to decrease postischemic inflam-
matory responses in intestine (127) and to improve postische-
mic cardiac function and decrease infarct size in a rat LAD
occlusion model (12) by interfering with NF-�B signaling
through inhibition of I�B degradation. Thus it seems that the
strategy of targeting degradation of specific proteasome sub-
strates may be a viable therapeutic option warranting additional
study.

Proteasome Dysfunction in Cardiomyopathy

The UPS plays a major role in protein quality control by
degrading misfolded, unassembled, or otherwise damaged pro-
teins that could form potentially toxic aggregates. Abnormal
misfolded proteins are rapidly removed from the endoplasmic
reticulum (ER), transported to the cytosol, polyubiquitinated,
and degraded by the proteasome in a process known as ER-
associated degradation (ERAD), which is one component of
the overall unfolded protein response (UPR) (reviewed in Ref.
107). Cells that fail to remove these abnormal proteins and
maintain ER homeostasis are subject to programmed cell death
through a process that has become known as ER stress (159).
ER stress-mediated cell death has been associated with numer-
ous pathological conditions linked with accumulation of ag-
gregates of the misfolded proteins, including Alzheimer’s dis-
ease (amyloid), Parkinson’s disease (15), amyotrophic lateral
sclerosis, Huntington’s disease, and also islet cell death in
diabetes (reviewed in Ref. 233). �B-Crystallin is a small heat
shock protein that possesses molecular chaperone activity. A
missense mutation of this gene is associated with desmin-
related myopathies characterized by accumulation of aggre-
gates of desmin in skeletal and cardiac muscle (187, 220).
Upregulation of desmin and/or accumulation of desmin-con-
taining aggregates has been associated with congestive heart
failure (100) and desmin-related cardiomyopathy (187, 223),
while a missense mutation of the desmin gene has been
associated with idiopathic dilated cardiomyopathy (136). Fur-
thermore, animal studies have associated ER stress with hy-
pertrophic cardiomyopathy in the transverse aortic constriction
model (165). Other mutations, such as in the MYBPC3 gene,
which encodes for cardiac myosin binding protein C (163), as
well as several involving myosin (167) and the troponins (138),
are associated with familial hypertrophic cardiomyopathy, al-
though whether these are associated with ER stress is not clear.

Nonetheless, evidence is accumulating that proteasome dys-
function might be associated with these cardiomyopathies.
Recent studies have shown that in vitro treatment of cells or in
vivo treatment of mice with the ER stress-inducing agent
thapsigargin results in significant impairment of proteasome
function (154). Likewise, treatment of neuronal cells with
amyloid-� peptides has been shown to impair proteasome
function (164). With regard to the heart, rat neonatal cardio-
myocytes induced to express truncated cardiac myosin binding
protein C mutants formed hyperubiquitinated aggregates of
these mutants associated with impaired proteasome function
(189). Chen et al. (31) have shown that transgenic mice with

cardiac-specific overexpression of a missense mutation of �B-
crystallin exhibit accumulation of ubiquitinated proteins asso-
ciated with loss of key subunits of the 19S regulatory complex
and impaired UPS function, which was dependent on forma-
tion of aberrant protein aggregates. Indeed, very recent studies
(141, 142) by this same group utilizing cardiomyocytes ex-
pressing a mutant desmin indicate that this abnormal protein
impairs UPS function by decreasing delivery of substrates to
the catalytic chamber via a process requiring protein aggrega-
tion. Furthermore, reports of increased ubiquitinated proteins
in explants from failing human hearts (128, 224) support the
notion of a dysfunctional proteasome in these pathologies.
Taken as a whole, these studies suggest that ER stress-related
cardiomyopathies are multifaceted disorders in which the mu-
tated protein, probably by aggregate formation, impairs pro-
teasome function, leading to a progressive impairment of
clearance of these misfolded or mutated proteins, allowing
them to accumulate within the cell and leading to further
proteasome dysfunction. The mechanism of this inhibition is
not clear but may be related to a physical plugging of the
proteasome core as suggested by Sitte et al. (196) for lipofus-
cin/ceroid (see next section). Regardless, these studies under-
score the importance of proteasome function in maintaining
normal cardiac size and structure, which if impaired can lead to
hypertrophy and ultimately failure.

Proteasome Dysfunction in Senescent Cardiomyocyte Loss

Decreased function, loss of cardiomyocytes, and increased
vulnerability to injury is a phenomena commonly associated
with the aging myocardium. Apoptosis has been proposed as
one mechanism to account for the loss of cardiomyocytes (113,
161) and is a feature common to many senescent organs
(reviewed in Ref. 105). That dysfunction of the UPS might in
some way account for cardiomyocyte apoptotic cell death is
suggested by the numerous reports demonstrating decreased
activity with age in a variety of tissue types, including muscle
(61), neuronal (117), retinal (144), lens (39, 195), epidermal
cells (172), renal, liver, and lung (116), and of course, heart
(22, 116). The mechanism of age-related loss of activity is not
clear, and various processes have been proposed. Many studies
have shown downregulation of some proteasome subunits in
aging heart (22), epidermis (172), and spinal cord (117).
Indeed, a recent study (47) suggests that mRNA expression of
the E3, MURF-1, and the ubiquitin conjugating enzyme, E214k,
are decreased in soleus muscle from aging rat. Other studies
have suggested that various subunits of the proteasome are
subject to posttranslational modifications that alter their activ-
ity (reviewed in Refs. 26 and 32).

An alternative hypothesis is suggested by the studies of Sitte
et al. (196), who observed that when human lung fibroblasts
were exposed to synthetic lipofuscin/ceroid in culture, cyto-
plasmic proteasome activity was decreased. Lipofuscins are
deposits of large insoluble aggregates of cross-linked oxidized
proteins that accumulate with age generally in the lysosomes of
cells, their presence considered to be a hallmark of aging. The
mechanism for formation or accumulation of these aggregates
is not clear but is thought to involve oxidative processes,
reduced clearance by lysosomes, or enhanced autophagocyto-
sis (reviewed in Refs. 20 and 212). Numerous studies report
accumulation of lipofuscin-like aggregates in postmitotic se-
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nescent tissues, many of which also have diminished protea-
some function, such as heart (203), retina (60), and neurons
(230). In all cases, senescence was associated with accumula-
tions of oxidized and/or ubiquitinated proteins, substrates for
the proteasome (22, 116, 144). Moreover, it has been shown
that when fibroblasts (211, 222) and cardiomyocytes (198) are
either loaded with or induced to form lipofuscin, they assume
a senescent phenotype and are more susceptible to oxidative
injury.

An attractive hypothesis is that accumulation of lipofuscins
in cardiomyocytes over a lifetime leads to proteasome dysfunc-
tion and subsequent cell death. We (175) have recently shown
that incubation of rat neonatal cardiomyocytes with synthetic
lipofuscin/ceroid results in uptake and internalization of the
aggregates and rapid induction of apoptotic cell death such that
�50% of the cells are dead within 48 h. Moreover, cardiomy-
ocyte apoptosis was associated with significant proteasome
dysfunction, increases in proapoptotic proteins degraded by
this complex, and accumulation of ubiquitinated homologues
of Bax, suggesting that lipofuscin accumulation can lead to
dysregulation of proteasome-regulated proteins. Exactly how
lipofuscins inhibit proteasome is unknown and is the subject of
additional studies, but the studies of Sitte et al. (196) suggest a
direct action, possibly by physical plugging of the core chan-
nels. In total, these studies suggest that age-related dysfunction
of the proteasome may result from multiple mechanisms and
that the consequence in the cardiomyocyte may be apoptotic
cell death.

PITFALLS OF PROTEASOME STUDIES

As with any area of research, there are certain pitfalls that
can be associated with studies of proteasome, the more com-
mon of which can be divided into two groups: misinterpreta-
tion of results from studies using pharmacological inhibitors of
proteasome, and inability to accurately assess proteasome ac-
tivity. Perhaps the most serious of these is the first one.

Numerous studies, including our own (51, 174, 176), have used
inhibitors to implicate proteasome in some facet of cardiac
function. Many of these studies have utilized MG132, which
besides being reversible, has rather low specificity (reviewed in
Ref. 123), also inhibiting serine proteases, such as calpain and
cathepsins, at concentrations not much different from that
which inhibit the proteasome. Even lactacystin, which is much
more specific than MG132, does have other intracellular tar-
gets. It is incumbent on individual investigators to design their
experiments in such a way as to minimize the nonproteasome
effects of these compounds either by concentration adjustment
or appropriate controls and to take these other activities into
account when interpreting results. The danger is that protea-
some will be implicated in some process simply because
MG132, or some other inhibitor, has an effect when that might
not be the case. Although it is understood that MG132 is more
economical than many of the more specific inhibitors, this
author is of the opinion that this inhibitor should not be
considered as a first choice, if it can at all be avoided. In Table
3, characteristics and other intracellular targets of some of the
common and uncommon proteasome inhibitors are presented.
The reader should note that proteasome inhibition may be a
consequence of treatment with some chemicals, such as cur-
cumin (111), used to inhibit other pathways, so this needs to be
considered as well. For a more complete review on proteasome
inhibitors, readers are referred to Refs. 71, 91, and 123.

The second pitfall involves the methods used to assess
proteasome activity. The most common of these techniques
follows cleavage of fluorogenic peptide substrates, such as Suc
LLVY-amc, to monitor 26S proteasome activity. As pointed
out by Kissalev and Goldberg (124) in a recent review, inter-
pretation of results obtained with the use of these peptides can
be misleading. For one, many investigators make the incorrect
assumption that simply assaying 20S proteasome activity will
accurately reflect the state of the 26S proteasome. Activity of
the 26S proteasome is dependent on the presence of ATP,

Table 3. Characteristics of proteasome inhibitors

Inhibitor Class Example Mechanism Reversibility Activity Specificity
Other Intracellular

Targets

Peptide aldehydes MG132 Hemiacetal formation 3
catalytic �-subunits

Reversible CT���C�T Low Calpains,
cathepsins

Peptide boronates MG262, PS341 Tetrahedral adduct 3
�5

Slowly reversible CT High None known

Peptide vinyl sulfones NLVS Covalent adduct
formation 3 catalytic
�-subunits

Irreversible CT��T�C Moderate Cathepsins S and B

Peptide epoxyketones Epoximicin Morpholino formation
3 catalytic �-
subunits

Irreversible CT���T�C High None known

Lactacystin (spontaneous
transition 3 clasto-
lactacystin-�-lactone)

Acylation 3 all
catalytic �-subunits

Very slowly
reversible

CT��T�C Moderate Cathepsin A,
tripeptidyl
peptidase II

Cathelicidins PR-39 Allosteric at �7 (72) Reversible HIF-1�, I�B,
possibly others

Other Green tea polyphenols
[e.g., (	)-epigallo-
catechin-3-gallate]

CT Unknown Unknown (131)

Curcumin Unknown Unknown Unknown Unknown Unknown (111)
Gliotoxin Mixed disulfide 3 �5(?) Reversible by DTT CT Unknown Unknown (130)

Characteristics of proteasomes are updated and modified from Kissalev and Goldberg (123) and Hermann et al. (102). CT, chymotrypsin-like; T, trypin-like;
C, caspase-like; HIF-1�, hypoxia-inducible factor-1�; I�B, inhibitor-�B; DTT, dithiothreitol.
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which is necessary for the 19S-regulatory complex ATPases to
open the channels in the �-subunit ring, thus allowing free
access to the catalytic core. On the other hand, many factors,
such as presence of detergents, repetitive freeze-thaw cycles,
and even certain fluorogenic peptides, may trigger channel
opening and lead to spurious, inconsistent measurement of 20S
proteasome activity (124). We routinely measure activity of
proteasome in the presence and absence of ATP, and Kissalev
and Goldberg (124) suggest determining multiple peptidase
activities of the proteasome by using multiple fluorogenic
peptides that target different activities. For animal studies, one
possible means of working around these issues might be the
use of transgenic animals expressing a green fluorescent pro-
tein (GFP)-CL1 degron fusion protein (also known as GFPu),
which is a substrate for the proteasome (52). This technique is
based on proteasome-mediated degradation of the GFP-fusion
protein, which is monitored using fluorescence microscopy
(42, 140) and has been suggested to dynamically monitor in
vivo proteolytic activity (52). Wang and coworkers (31, 132)
have recently used these mice to show changes in cardiac
proteasome function after doxorubicin treatment and in a
model of intrasarcoplasmic amyloidosis. The development of
these transgenics is an exciting innovation that warrants addi-
tional studies to determine potential research applications. It
may turn out that using a combination of the transgenic model
and the fluorogenic peptides is the best strategy for assessing
proteasome function in experimental models.

FUTURE DIRECTIONS AND CONCLUSIONS

The role of the UPS in cardiac physiology and pathology is
a relatively new and exciting field of research. Investigators are
defining roles for the UPS in maintaining normal cardiac
function through regulation of signaling pathways and main-
tenance of normal sarcomere structure. Other studies are be-
ginning to show that downregulation of ubiquitin protein li-
gases may play pivotal roles in the response of the myocardium
to hypertrophic stimuli, and still others suggest that dysfunc-
tion of the proteasome may be important in cardiac patholo-
gies, such as ischemic injury and cell death, certain cardiomy-
opathies, and even senescent cardiomyocyte loss. Although
this area is rapidly changing and evolving, progress could be
hampered without additional studies that further our under-
standing of basic proteasome biochemistry and physiology,
particularly with regard to the heart. More information defining
molecular events that regulate assembly and architecture of the
cardiac proteasome is a necessity with the possibility of tar-
geting specific substrates for degradation. A more accurate
means for consistent assessment of UPS function would aid our
understanding of how proteasome dysfunction may cause car-
diac pathologies. A better understanding of the cardiac-specific
E3 ubiquitin protein ligases, the specificity and rate-limiting
step of the UPS, are necessary as this might be the one step
most amenable to therapeutic intervention. From this review it
should be apparent that the UPS plays a significant role in
regulating normal cardiac function and is a critical regulator of
cell life and death. Ongoing research in this challenging area
has the potential to lead to development of therapeutic inter-
ventions that could significantly impact clinical care.
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