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Statistical energy functions are discrete (or stepwise) energy functions that lack van
der Waals repulsion. As a result, they are often applied directly to a given structure
(native or decoy) without further energy minimization being performed to the structure.
However, the full benefit (or hidden defect) of an energy function cannot be revealed
without energy minimization. This paper tests a recently developed, all-atom statis-
tical energy function by energy minimization with a fixed secondary helical structure
in dihedral space. This is accomplished by combining the statistical energy function
based on a distance-scaled finite ideal-gas reference (DFIRE) state with a simple repul-
sive interaction and an improper torsion energy function. The energy function was used
to minimize 2000 random initial structures of 41 small and medium-sized helical pro-
teins in a dihedral space with a fixed helical region. Results indicate that near-native
structures for most studied proteins can be obtained by minimization alone. The aver-
age minimum root-mean-squared distance (rmsd) from the native structure for all 41
proteins is 4.1 Å. The energy function (together with a simple clustering of similar
structures) also makes a reasonable selection of near-native structures from minimized
structures. The average rmsd value and the average rank for the best structure in the
top five is 6.8 Å and 2.4, respectively. The accuracy of the structures sampled and the
structure selections can be improved significantly with the removal of flexible terminal
regions in rmsd calculations and in minimization and with the increase in the num-
ber of minimizations. The minimized structures form an excellent decoy set for testing
other energy functions because most structures are well-packed with minimum hard-core
overlaps with correct hydrophobic/hydrophilic partitioning. They are available online at
http://theory.med.buffalo.edu.
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1. Introduction

How to make an accurate prediction of the structures of proteins from their amino-
acid sequences is one of the most challenging problems in computational biology. It
is challenging because of the existence of astronomically large number of possible
structures available to the linear polypeptide chain of a protein and the lack of
an accurate free energy function that guides the conformational search and distin-
guishes the native structure from decoys.

Significant progresses have been made in the past decades in structure predic-
tion with approaches ranging from homology modeling, fold recognition to ab initio
prediction.1 Among them, the secondary structure of a protein can now be pre-
dicted with a reasonable accuracy (for a recent review, see e.g. Ref. 2). This raises
the interest to predict structure by packing secondary structures through energy
and/or geometric optimization.3–9 For example, Zhang et al.6 folded helical pro-
teins by using torsion angle dynamics and predicted restraints. Nanias et al.7 used
a global optimization method of a residue-based energy function to pack the helices
of helical proteins. Although fixing the secondary structure of a protein dramati-
cally reduces its conformational space, it is still a challenging exercise to predict
the tertiary structure because of the lack of an accurate energy function and a
large number of possible loop conformations and possible packing arrangement of
secondary structure elements.

In this paper, we test a newly-developed all-atom knowledge-based potential
by predicting the tertiary structure of a helical protein whose helical region is
known. This statistical energy function is based on a physical reference state of
the distance-scaled, finite, ideal-gas reference (DFIRE) state. The DFIRE-based
energy function has been successfully applied to structure10 and docking structure
selections,11 loop prediction,12 prediction of mutation-induced change in stability10

and binding affinity of protein-protein (peptide),11 protein-ligand,13 and protein-
DNA complexes.13 More importantly, the physical reference state of ideal gases
appears to make the DFIRE physically more accurate because its performance
is mostly independent of the systems with different compositions of amino-acid
residues at surface, core,14 and protein-protein interface11 and independent of the
structural database (α or β proteins) used for energy extraction.15

The DFIRE-energy function, like many other statistical energy functions,16–18

have not yet been tested for structural refinement via energy minimization. This
is because a statistical energy function lacks a hard-repulsive core and it is a dis-
crete function. Here, we combine the DFIRE energy function (interpolated by cubic
spline) with a simple repulsive interaction and an improper torsion potential. The
energy function was implemented in the program TINKER19 and used to minimize
the random initial structures of 41 helical proteins with fixed helical regions in dihe-
dral space. We find that near-native conformations (< 6.5 Å rmsd from the native)
can be reached for almost all tested proteins by minimization alone. The successes
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and failures of the DFIRE-energy function in selecting near-native structures from
minimized structures are discussed.

2. Methods

2.1. Proteins and their initial structures

We picked 41 α-helical proteins for this study. Among them, 23 of the targets are
those from Ref. 6. Other proteins are chosen based on their sizes and number of
residues. The names (PDB IDs) and the sizes of proteins are listed in Table 1. The
number of residues of the proteins ranges from 40 to 124; the number of non-helical
residues from 7 to 52; and the number of helices from 2 to 6. We also tested the
effect of flexible, solvent-exposed terminal regions on energy minimization for eight
proteins (PDB IDs ended with a lower case c).

The initial structures of the proteins are generated with random dihedral angles
for the residues in the nonhelical regions and native dihedral angles for the residues
in the helical regions. We also tested proteins whose initial structures of the helical
regions are generated by a Gaussian distribution within a standard deviation of
10 degrees around the ideal right-handed helix parameters for dihedral angles.20

For most of the proteins, we generated 2000 initial structures each. We also
minimized 45 000 structures for 1GABc and 9000 structures for proteins 1LP1,
1LBU1−83c, 1A04A150−216c, and 1B0XAc.

2.2. Energy function and minimization

The DFIRE energy function is a knowledge-based statistical potential.10 The
DFIRE-based atom-atom potential of the mean force uDFIRE(i, j, r) between atom
types i and j that are distance r apart is given by10

uDFIRE(i, j, r) =




−ηRT ln
Nobs(i, j, r)(

r
rcut

)α (
∆r

∆rcut

)
Nobs(i, j, rcut)

, r < rcut,

0, r ≥ rcut,

(1)

where η = 0.0157 for the energy unit of kcal/mole, R is the gas constant,
T = 300K, α = 1.61, Nobs(i, j, r) is the number of (i, j) pairs within the
distance shell r observed in a given structure database, rcut = 14.5 Å, and
∆r(∆rcut) is the bin width at r(rcut). (∆r = 2 Å, for r < 2 Å; ∆r = 0.5 Å for
2 Å < r < 8 Å; ∆r = 1 Å for 8 Å < r < 15 Å.) The exponent α for the
distance dependence was obtained from the distance dependence of the num-
ber of pairs of ideal gas points in finite spheres (finite ideal-gas reference state).
The value of the prefactor η was obtained so that the correlation slope is
one between experimental measured and theoretical predicted changes in sta-
bility due to mutation. Residue specific atomic types were used (167 atomic
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types).17,18 The number of observed atomic (i, j) pairs with the distance shell
r [Nobs(i, j, r)] was obtained from a structural database of 1011 non-homologous
(less than 30% homology) proteins with resolution < 2 Å, which was collected by
Hobohm et al.21 (http://chaos.fccc.edu/research/labs/dunbrack/culledpdb.html).
This database provides sufficient statistics for most distance bins (except near
the hard repulsive van der Waals regions between atoms). The average number
of observed atomic pairs per bin is 655. The sufficiency of statistics is also reflected
from the fact that the results for structural discrimination are insensitive to the
size10 and the type15 of structural databases used to generate the potential.

All the statistical potentials do not have an appropriate hard-repulsive core due
to the lack of statistics in this region. The DFIRE energy function is supplemented
with an arbitrary repulsive potential. The modified DFIRE energy function is as
follows:

uMDFIRE(i, j, r) = uDFIRE(i, j, r) +




fV η


(σij

r

)6

−
(

σij

σc
ij

)6

 , r < σc

ij

0, r ≥ σc
ij

(2)

where σij is van der Waals diameter22 and fV = 1 and σc
ij = σij for two atoms

that are not in the neighboring residues. A weaker repulsive term is used for two
atoms in the neighboring residues (i.e., residue I and residue I ± 1) with fV = 0.1
and σc

ij = 2.5 Å. Note that we have used the same prefactor fV η for all the atomic
pairs for simplicity. This repulsive term is weaker than the repulsive portion of the
Lennard-Jones potential which decays in r.12 We did not study the effect of using
different forms of repulsive hard cores in this work. The effect is likely small because
hard repulsive regions contribute little to the energy of a well minimized structure.

The DFIRE energy function is further supplemented with the improper tor-
sion energy that maintains the chirality and planar shape of some atoms. The
parameters for improper dihedral angles (ω0) and force constants (kω) are from the
CHARMM19 parameter set.23 The final equation for the energy function is

E = 3
∑

improper

kω(ω − ω0)2 +
∑
i<j

uMDFIRE(i, j, rij) (3)

where a factor of 3 is used to strengthen the ability of the energy function to keep
improper torsion angles in their original values. We find that the improper torsion
energy does not change much during most minimizations.

TINKER (http://dasher.wustl.edu/tinker/), a software tool for protein simula-
tions, is modified to integrate the DFIRE-based potential into its default energy
function. In order to calculate the energy derivation, the discrete DFIRE poten-
tial is fitted to a continuous function by cubic spline interpolation. The MINIROT
program in the TINKER package, which performs a limited memory BFGS quasi-
Newton nonlinear minimization24 in dihedral space, has been used to minimize the
initial structure. The minimization is stopped when the change in rms gradient
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during unidimensional line search is less than 0.001. The MINIROT program also
has a selection tool that allows users to fix specified regions (helical regions in
this work).

2.3. Clustering

The minimized structures are clusterized based on pairwise backbone rmsd values.
One common method to cluster structures is to use a pre-determined cutoff rmsd
value. We find that it is difficult to set one cutoff value for all 41 proteins because
this will lead to too few clusters for some proteins and too many clusters for the
others. Thus, we use a protein-dependent cutoff value at which the top three largest
clusters contain 5% of all structures to be clustered (i.e. 100 structures; out of a
total of 2000 structures). This method is used so that 1) the top three largest
clusters have a statistically meaningful number of structures; and 2) the number of
clusters is large enough to reflect the diversity of the structures. The rmsd cutoff
values range from 0.5 Å–8 Å, depending on the sizes of the nonhelical portions of
the proteins.

We use two methods to cluster structures. One is based on energy. The first
cluster contains the structures that are within the cutoff rmsd value from the lowest
energy structure. The next cluster is based on clustering around the lowest energy
structure from the remaining structures. The procedure is repeated until the top
five clusters are obtained. In the second method, the structures are clusterized
around the structure with most structures within the same cluster, rather than the
structure with the lowest energy. For convenience, we called the second method
the size-based method to distinguish it from the energy-based method. We find
that the two clustering methods give essentially the same result for average rmsd
values ranked by the cluster sizes. Thus, in this paper, we only report the result
based on the first method because the the size-based method searches the center
of the cluster on the pairwise level and is, thus, more time-consuming than the
energy-based method.

3. Results

The results of energy minimization in dihedral space are summarized in Table 1. The
results are reported in terms of the best structure (the structure with the smallest
rmsd from the native structure among 2000 decoys); the best structure in the top
five structures selected based on energy (after clustering); and the best structure
in the top five structures selected based on the size of clusters. The DFIRE energy
provides a reasonably efficient sampling. With only 2000 decoys, the average of the
best decoy structures for 41 proteins is 4.1 Å. However, the DFIRE energy function
often does not select the best near-native structure as the lowest energy structure.
The average rmsd value for the best structure within the top five structures are
6.8 Å for the energy-based selections and 6.4 Å for the cluster-size-based selections.
For some proteins, the top structures are more than 10 Å away from the native.



October 7, 2005 17:42 WSPC/185-JBCB 00143

1156 H. Li & Y. Zhou

Table 1. Conformational sampling and structure selections by energy minimization of 41 helical
proteins with fixed helical regions and random initial loop regions.

PDBa Nh
b Nres

c NFreed
res T35e rmsdmin

f Top 5 Eg Top 5 Ch

1G6U 2 48 7 0.5 0.4 1.2(E2) 1.2(C2)
2ERL 3 40 15 2.8 2.5 3.6(E1) 3.6(C1)
1LP1 3 55 15 3.0 2.5 3.0(E2) 3.8(C5)
1EZ3A 3 124 18 5.1 3.2 8.2(E1) 4.7(C1)
1LVFA 3 106 13 3.4 1.7 2.3(E2) 2.3(C1)
1BW6 3 56 21 4.0 1.8 3.5(E4) 4.3(C1)
1DV0 3 45 22 3.7 2.5 3.4(E1) 3.4(C4)
1EDK 3 56 16 3.1 1.8 3.0(E1) 3.0(C2)
1EF4 3 55 31 5.0 4.6 5.2(E1) 5.2(C1)
1IDY 3 54 25 4.6 4.6 5.7(E5) 5.7(C1)
1BDD 3 60 25 4.2 4.0 5.5(E4) 5.5(C4)
1MBE 3 53 23 4.4 3.3 4.8(E3) 4.8(C5)
1PRB 3 53 23 4.2 3.9 7.6(E1) 7.6(C3)
1PRU 3 56 28 4.9 5.1 7.6(E5) 6.3(C5)
2SPZ 3 58 15 2.9 1.6 3.1(E1) 3.1(C1)
2HOA 3 68 31 7.0 6.9 9.0(E1) 9.0(C4)

1CKTA 3 71 26 5.5 4.2 10.7(E2) 10.7(C5)
1DV5 3 80 42 6.8 3.8 3.9(E1) 8.9(C3)
1GAB 3 53 23 3.9 4.3 7.2(E1) 6.5(C3)
1LBU1−83 3 83 52 7.6 6.1 9.1(E4) 9.1(C2)
1LEA 3 72 38 6.3 5.4 8.6(E4) 7.9(C2)
1LRE 3 81 28 5.2 4.1 5.3(E1) 5.3(C1)
2OCCH 3 79 39 6.2 5.9 9.9(E4) 7.4(C3)
4-helix25 4 106 32 7.5 4.7 9.5(E3) 6.8(C5)
1A04A150−216 4 67 27 5.5 4.8 6.8(E2) 8.0(C2)
1A6S 4 87 33 7.4 4.6 9.3(E5) 7.5(C4)
1C5A 4 65 20 4.8 2.9 4.8(E3) 4.8(C1)
1FFH2−88 4 87 26 5.2 2.7 8.4(E1) 3.6(C1)
1NKL 4 78 24 5.4 2.7 4.8(E1) 4.8(C1)
2ABD 4 86 31 6.9 5.2 9.5(E5) 8.1(C2)
1AISB1108−1205 5 98 34 7.9 5.4 8.9(E2) 10.0(C3)
1B0NA1−68 5 68 29 6.0 4.2 7.7(E3) 7.8(C5)
1B0XA 5 72 27 6.2 3.9 4.0(E2) 4.0(C1)
1UNKA 5 87 42 7.0 5.2 10.1(E1) 6.4(C5)
1CTJ 5 89 42 7.8 5.4 8.5(E3) 8.5(C3)
1KDXA 5 81 26 6.1 4.5 7.4(E2) 7.7(C2)
1BMTA651−740 5 90 21 6.0 3.2 6.8(E1) 6.8(C3)
1QC7A 6 101 31 8.2 7.7 11.9(E3) 11.0(C4)
1BXM 6 98 44 8.2 6.3 10.5(E4) 10.5(C1)
1NGR 6 85 34 7.5 5.7 8.7(E4) 7.4(C1)
1RZL 6 91 30 7.1 5.6 9.6(E1) 9.6(C2)

Ave. 3.8 74.2 27.5 5.5 4.1 6.8(E2.4) 6.4(C2.6)

aPDB code. bThe number of helices. cThe number of residues. dThe number of residues that are
not fixed. eThe cutoff value of rmsd for cluster (in Å). See context for the definition. fThe mini-
mum rmsd value from the native structure in 2000 minimized structures (in Å). gThe minimum
rmsd value (and the rank) from the top five structures ranked by energy after clustering. hThe
minimum rmsd value (and the rank) from the top five structures ranked by cluster size after
clustering.
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(a) (b) (c)

Fig. 1. Protein 1QC7A: (a) The native structure, (b) minimized native structure, and (c) the best
structure in top five ranked by cluster size.

What is the source for the failure of the DFIRE energy function for detecting
the best near-native structures? We find that one reason is the existence of a long
flexible terminal region for many proteins. Figure 1 shows the native structure,
the minimized native structure, and the best structure in the top five ranked by
cluster sizes for protein 1QC7A. The minimized native structure is 5.0 Å rmsd from
the native but only 1.5 Å if the flexible terminal region is excluded in calculating
the rmsd values. The rmsd value for the best size-ranked structure is also reduced
significantly from 11.0 Å to 6.6 Å. Thus, it appears that a more accurate way to
analyze structures sampled by the DFIRE-based energy function is to exclude the
flexible region in evaluating rmsd values because the actual position of the region
is likely very dynamic.

Table 2 shows the results after the rmsd values are recalculated for 31 pro-
teins with significant flexible regions (longer than three residues based on visual
inspection of the native structures). The rmsd values for the best decoy structure,
the best structure in the top five structures ranked by energy or cluster sizes all
decrease significantly by one to two Å on average. The final average of the best
decoy structures for all 41 proteins is 2.9 Å. The average rmsd value for the best
structure within the top five structures is 5.3 Å for the energy-based selections and
5.0 Å for the cluster-size-based selections.

To further determine the effect of the flexible terminal regions, we performed
minimizations for several proteins with flexible terminals that are removed. The
results are shown in Table 3. Again, the rmsd values for the best decoy structure,
the best top five structures ranked by energy or cluster sizes decrease further from
the rmsd values calculated without the flexible regions by about another 1 Å in
average. For example, the removal of the flexible region in 1QC7A leads to a reduc-
tion in number of unfixed residues from 31 to 16 and in the best rmsd value from
7.7 Å (5.1 Å if flexible region is not used in calculating the rmsd value) to 2.9 Å.

Despite the improvement in accuracy with the removal of flexible regions, the
rmsd value of the best near-native structure within the top five predicted by energy
or clustering continues to be about 2 Å greater than that of the best near-native
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Table 2. Re-analyzing conformational sampling and structure selections of 31 helical
proteins by excluding their flexible terminal regions in the rmsd calculation.

PDBa rmsdmin (Å)b Top 5 E (Å)c Top 5 C (Å)d NExcludee
res

2ERL 1.5 2.5(E1) 2.5(C1) 5
1LP1 1.2 1.9(E2) 1.9(C3) 5
1BW6 1.3 2.4(E4) 3.3(C1) 9
1DV0 1.4 3.0(E1) 2.5(C4) 9
1EDK 0.7 1.1(E2) 1.1(C2) 8
1EF4 1.8 2.0(E1) 2.0(C1) 21
1IDY 2.3 3.9(E4) 3.9(C1) 9
1BDD 1.5 2.2(E4) 2.2(C2) 13
1MBE 1.1 2.8(E1) 2.8(C2) 13
1PRB 2.0 3.7(E5) 4.7(C5) 9
1PRU 1.6 3.5(E1) 3.5(C1) 16
2SPZ 0.8 2.3(E5) 2.7(C1) 6
2HOA 3.1 3.8(E1) 3.8(C1) 18
1CKTA 3.6 9.0(E2) 9.0(C3) 7

1GAB 2.5 4.0(E4) 4.0(C5) 9
1LBU1−83 4.6 6.5(E5) 7.9(C4) 23
1LEA 2.4 3.3(E4) 4.3(C5) 25
1LRE 1.9 2.6(E1) 2.6(C1) 16
2OCCH 2.3 6.0(E1) 3.3(C4) 27
1A04A150−216 2.8 6.7(E2) 6.0(C3) 8
1NKL 2.0 3.6(E5) 3.7(C1) 6
2ABD 5.0 9.3(E5) 7.8(C2) 4
1AISB1108−1205 4.6 7.5(E2) 10.3(C2) 9
1B0NA1−68 3.3 6.7(E3) 6.7(C5) 8
1B0XA 3.1 3.2(E2) 3.2(C2) 10
1UNKA 3.8 8.3(E3) 4.8(C4) 15
1CTJ 5.0 8.1(E3) 8.1(C5) 8
1KDXA 2.9 4.7(E2) 6.6(C1) 15
1QC7A 5.1 9.4(E1) 6.6(C4) 15
1BXM 6.3 10.1(E4) 10.1(C3) 4
1NGR 4.4 8.6(E4) 6.0(C4) 9

Ave. 2.8 4.9(E2.7) 4.8(C2.7) 11.6
(Original)f 4.4 6.9(E2.5) 6.7(C2.7)

aPDB code. bThe minimum rmsd value from the native structure in 2000 minimized
structures (in Å). cThe minimum rmsd value (and the rank) from the top five structures
ranked by energy after clustering. dThe minimum rmsd value (and the rank) from
the top five structures ranked by cluster size after clustering. eThe number of flexible
residues excluded in rmsd calculations. fThe average values for the 31 proteins in which
all residues are used in rmsd calculations.

structure sampled (Table 3). There is, however, a significant linear correlation
between the lowest rmsd value in 2000 decoys and the best rmsd value within
the top five structures ranked by energy (see Fig. 2). The correlation coefficients
for 41 proteins are 0.89 (0.84 if the flexible terminal regions are included in the rmsd
calculations). One moderate outlier is caused by 1FFH. In eight proteins for which
the flexible terminal regions are removed during minimizations (Table 3), the rmsd
value of the best structure in the top five ranked by energy for either protein 1AIS
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Å

).
d
A

ll
th

e
re

si
d
u
es

in
th

e
n
a
ti

v
e

st
ru

ct
u
re

s
a
re

u
se

d
in

m
in

im
iz

a
ti

o
n

a
n
d

ca
lc

u
la

ti
o
n

o
f

rm
sd

va
lu

es
.

e
P

ro
te

in
fl
ex

ib
le

te
rm

in
a
l
re

g
io

n
s

a
re

in
cl

u
d
ed

in
m

in
im

iz
a
ti

o
n
,
b
u
t

ex
cl

u
d
ed

in
rm

sd
ca

lc
u
la

ti
o
n
.

f
P

ro
te

in
fl
ex

ib
le

te
rm

in
a
l
re

g
io

n
s

a
re

re
m

ov
ed

in
m

in
im

iz
a
ti

o
n
.



October 7, 2005 17:42 WSPC/185-JBCB 00143

1160 H. Li & Y. Zhou

Fig. 2. The rmsd values of the best structure within the top five selected based on the DFIRE
energy as a function of the rmsd value of the best structure in 2000 decoys. Solid line is from
linear regression of 41 proteins (filled circles) with a correlation coefficient of 0.89. Open diamonds
denote proteins whose flexible terminal regions are removed during minimization.

or protein 1A04 does not change much, although there is a significant reduction
of the minimum rmsd values in 2000 minimized structures. Proteins 1FFH, 1A04A
and 1AIS studied here are all a fragment of much larger proteins. The missing
portions of the structures (or, interactions) in these three proteins may have led
to the DFIRE energy function selecting the structures further away from the near-
native ones. The same stronger correlation (with a correlation coefficient of 0.89)
is also found between the lowest rmsd value in the 2000 decoys and the best rmsd
value within the top five structures ranked by cluster size. The correlation between
the lowest rmsd values in the 2000 decoys and the best predicted values suggests
that structure selections may be improved by more comprehensive conformational
sampling.

To verify the importance of sampling in structures selections, we increase the
number of minimizations to 9000 for five proteins. These five proteins are chosen
based on their sizes and the computational time requirement for completing 9000
minimizations. Table 4 compares the results obtained with 9000 minimizations with
those with 2000 minimizations for five proteins. Increasing the number of minimiza-
tions by a factor of 4.5 (from 2000 to 9000 minimizations) leads to a reduction of
the average of the minimum rmsd values for five proteins from 2.7 Å to 2.0 Å. More
importantly, a better sampling improves the discrimination power of the energy or
cluster-based methods for three out of five proteins. (The accuracy of the predicted
structures is the same for 1B0XA and is worse for 1LBU.) The rmsd value for the
best structure within the top five averaged over all five proteins decreases from
4.3 Å to 3.2 Å for energy-based selections. We further performed 45 000 minimiza-
tions for 1GAB. The rmsd value of the best near-native structure remains the same
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Table 4. Conformational sampling and structure selections by energy minimization for five proteins
at 2000 and 9000 decoys each (and 45000 decoys for 1GABc).

rmsdmin
a Top 5 Eb Top 5 Cc

PDB 2000d 9000d 45000d 2000d 9000d 45000d 2000d 9000d 45000d

1LP1 2.5 1.1 3.8(E5) 1.8(E1) 3.0(C2) 1.8(C1)
1LP1e 1.2 0.9 1.9(E2) 1.8(E1) 1.9(C3) 1.8(C1)
1LBU1−83c 4.4 3.2 5.9(E4) 7.9(E3) 7.5(C4) 7.9(C3)
1A04A150−216c 2.3 1.8 6.7(E2) 2.3(E5) 7.5(C4) 2.3(C1)
1B0XAc 2.3 2.1 2.3(E1) 2.3(E1) 2.3(C1) 2.3(C1)
1GABc 1.9 1.8 1.8 2.7(E1) 1.8(E5) 1.8(E4) 2.7(C2) 2.7(C1) 1.8(C4)

Ave 2.7 2.0 4.3(E2.6) 3.2(E3) 4.6(C2.6) 3.4(C1.4)

aThe minimum rmsd value from the native structure (in Å). bThe minimum rmsd value (and
the rank) from the top five structures ranked by energy after clustering (in Å). cThe minimum
rmsd value (and the rank) from the top five structures ranked by cluster size after clustering (in
Å). dThe number of initial structures. eThe flexible terminal region was not included in rmsd
calculations. This result is not used in average.

(1.8 Å), while the rank of the best near-native structure continues to improve from
rank 5 to 4 by energy and rank 10 to 4 by cluster size. The difficulty of reducing the
minimum rmsd further for 1GAB may signal the existence of an energetic barrier
that makes the native structure unreachable by minimization alone.

The ability to sample conformational space for a given protein is limited by the
size of the conformational space of the protein. The latter is determined by the
degree of freedom for that protein. Indeed, the best rmsd values in 2000 decoys
have a significant correlation with the number of residues that are not fixed (In
Fig. 3 the residues not used in rmsd calculations are treated as fixed residues in
this figure.). The correlation coefficient is 0.84 (0.82 if all the residues present in
the minimization are used in the rmsd calculations). (In comparison, there is no
significant correlation between the minimum rmsd values and the total number of
residues.) There is one significant outlier (1QC7A) which is no longer an outlier if
the flexible terminal region of 1QC7A is removed in minimization.

One interesting question is: What are those structures whose energies are close
and even lower than the native or near-native structures? Figure 4 plots the energies
of the minimized structures for 1GAB with the flexible terminal region removed,
as a function of their rmsd values (1GABc). There are two dominant structures
(A and B) in the 9000 minimized structures that represent the two largest struc-
tural clusters with 145 and 127 structures each. These two structures are shown
in Fig. 5. The main difference between these two structures is the arrangement of
three helices in a clockwise manner (Structure A) or a counter-clockwise manner
(structure B). Both structures have an energy value that is lower than the energy of
the native structure (but higher than the energy of the minimized native structure
which is 1.0 Å rmsd away from the un-minimized native structure). Structure A is
a near-native structure with a rmsd value of 2.7 Å, while structure B with a rmsd
value of 8.2 Å is far from the native structure.
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Fig. 3. The lowest rmsd value in 2000 decoys as a function of the number of unfixed residues.
Open diamonds are those proteins with flexible regions removed in the minimization. Solid line is
from linear regression.

Fig. 4. The energies of minimized structures (in kcal/mole) as a function of their rmsd values for
9,000 decoys of 1GABc. The energy of the native structure is shown by the dashed horizontal line.
The points A and B represent the top two largest clusters with 145 and 127 decoys respectively.

Can a non-native structure frequently sampled by DFIRE be the structures for
other proteins? To address this question, we compare the misfolded structure B
described above with the 8049 representative structures in the protein databank
by using the structural alignment program CE.26 The representative structures are
obtained from the template library used in the fold recognition methods SPARKS27

and SP.3,28 The library was built by using the 40% representative domains of SCOP
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(a) Structure A (b) Structure B

Fig. 5. Structures A and B of the two dominant clusters for 1GABc. The three helices (I and II
are labeled) in structures A and B are arranged clockwised and counterclockwised, respectively.

1.6129 and then updated with new proteins released after SCOP 1.61 if they have
less than 40% sequence identity with the sequences already in the library. (This
was done by protein sequence culling server PISCES.30) We find that the decoy
structure B has a close match to the PDB structure 1AKHa with a rmsd value of
2.7 Å. (All the residues in the decoy structure matched to the residues in 1AKHa
and only three gaps are inserted in the decoy sequence for the match.)

Protein 1GABc, however, is a simple three-helix bundle. To further confirm the
above finding, we examine the best predicted model of a six-helix protein 1BXM.
The structure has a rmsd value of 10.5 Å from the native structure of 1BXM (see
Table 1), but only a 4.4 Å rmsd from the PDB structure 1GTEa (90 out 98 residues
of the decoy matched to the sequence of 1GTEa). Thus, a non-native structure
frequently sampled by DFIRE may well be a structural fold for another protein.

Most results reported above based on the dihedral angles at the helical regions
are fixed around the native values. This allows us to concentrate on the effect
caused by the non-helical regions. The effect of using idealized helical structures
are examined in three proteins (1PRB, 1GAB, and 1KDXA). Here an idealized
helical structure refers to the helix built with its dihedral angle value that fluctuated
around its ideal value. Results are shown in Table 5. In general, the use of idealized
helical structures decreases the accuracy of the sampled structures (based on the
best near-native structures) and the accuracy of the predicted structures (based
on the best structures in the top five structures selected by energy or cluster size).
This is somewhat expected. The difference in rmsd values for the best near-native
structures is only 0.3 Å for 1PRB, 0.3 Å for 1GAB, and 1.0 Å for 1KDXA. The
difference in rmsd values of the best structure within the top five ranked by energy
is 0.9 Å for 1PRB, −0.7 Å for 1GAB and 0.3 Å for 1KDXA. Thus, at least for these
three proteins, it is possible to provide a reasonable structure prediction even with
the idealized helical structures.
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Table 5. The results of conformational sampling via minimization for three proteins
with native dihedral angles and idealized dihedral angles for the helical regions.

rmsdmin
a Top 5 Eb Top 5 Cc

PDB Natived Ideale Natived Ideale Natived Ideale

1PRBc 1.8 2.1 1.8(E2) 2.7(E5) 2.7(C2) 3.2(C1)
1GABc 4.3 4.6 7.2(E1) 6.5(E4) 6.5(C3) 6.5(C3)
1KDXA 4.5 5.5 7.4(E2) 7.7(E1) 7.7(C2) 7.7(C1)

aThe minimum rmsd value from the native structure in 2000 minimized structures
(in Å). bThe minimum rmsd value (and the rank) from the top five structures ranked
by energy after clustering (in Å). cThe minimum rmsd value (and the rank) from the
top five structures ranked by cluster size after clustering (in Å). dHelical regions with
native helical dihedral angles. eelical regions with idealized helical dihedral angles.

4. Discussion

In this paper, we performed energy minimizations for 41 helical proteins in a dihe-
dral space based on a modified all-atom DFIRE-based statistical energy function.
The best near-native structures of all 41 proteins except 2HOA and 1QC7A are
less than 6.5 Å from their corresponding native structures in 2000 minimizations.
The minimum rmsd values for 2HOA and 1QC7A are reduced dramatically from
6.9 Å to 3.1 Å and from 7.7 Å to 5.1 Å, respectively, if their flexible terminal regions
are not used in the rmsd calculations. We further demonstrated that the removal
of the flexible terminal regions in minimization can further improve the quality of
the sampled conformations (see Table 3).

The DFIRE energy function also provides a reasonable ranking (although it is
far from perfect) for detecting near-native structures in the minimized structures.
The average rmsd value for the best structure in the top five clusters, ranked by
energy is 6.8 Å. The ranking by the size of the clusters can further improve the
average rmsd value to 6.4 Å. These two values become significantly smaller (5.3
and 5.0 Å, respectively) if the flexible terminal regions are not used in the rmsd
calculations. The improvement due to the size-based ranking highlights the impor-
tance of entropy in the structure selections (see e.g. Ref. 31). What is encouraging
is that there is a significant correlation between the minimum rmsd value of the
sampled conformations and the best rmsd value of the top five ranked structures.
This suggested that improving the sampling can further improve the accuracy of
the predicted structures. The improvement is subsequently verified by performing
9000 minimizations for five proteins.

The reasonable but limited performance in ranking by the DFIRE energy func-
tion is due to several factors. First, the DFIRE energy function, like many other
statistical energy functions, is a pairwise energy function that only depends on
distance. As a result, minimization tends to make structure even more compact
than native ones. This in turn leads to the energies of some minimized structures
that are comparable to near-native structures. For example, the top ranked struc-
ture for 1QC7A (Fig. 1) involves significant non-native interaction of the flexible
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terminal region with other parts of the protein. Second, the solvent contribution
to protein stability is only implicit in most statistical energy functions including
the DFIRE energy function. Consequently, the energy function cannot handle the
flexible region for which the direct interaction with solvent is essential. Work is
in progress to search the solution for these problems associated with statistical
potentials. Possible solutions include the use of multibody interactions32–36 and
orientation-dependent energy functions.37,38

Recently, Nanias et al.7 minimized Cα-based model proteins interacting with
simple Lennard-Jones potential with Miyazawa-Jernigan contact energy param-
eters. A global minimization technique was used. The secondary structure was
determined by applying the DSSP algorithm39 to the native protein. During mini-
mizations, helices are treated as rigid bodies with fixed ideal parameters, terminal
regions are removed, and 10 000 minimizations are performed for each protein. As
shown in Table 6, our method consistently gives lower minimum rmsd values than
the method used by Nanias et al., although we often use longer pieces of proteins
and a smaller number of minimizations (2000). Certainly, our method has benefited
somewhat from the use of native helical dihedral angles (Table 5). The advantage
of their method is the use of a coarse-grained model that allows computationally
efficient sampling. Thus, it is of interest to use the residue-level DFIRE energy
function40 for conformational sampling. The residue-level DFIRE energy function40

was found to be one of the best statistical energy functions for structure selections
from decoys.

In another study, Zhang et al. sampled conformational space of the helical pro-
teins with torsion angle dynamics and predicted restraints.6 Their method is based
on contact-map prediction and simulated annealing. The secondary structures are
from the prediction of PSIPRED.41 Their method gives an average of 4.6 Å (4.3 Å)
over 23 proteins for the minimum rmsd value among 500 structures (after boot-
strapping). The corresponding results for the DFIRE-guided minimizations on the
same set of proteins is 5.4 Å for the first 500 structures and 4.8 Å for the 2000

Table 6. The minimum rmsd values given by two different methods.

Nres
a rmsdmin(Å)b

PDBc Ref. 7 This work Ref. 7 This work

1BW6 43 56 2.7 1.8
1FFH 83 87 3.0 2.7
1BMTA 79 90 3.7 3.2
1CTJ 82 89 5.4 5.4
1QC7A 74 86 5.5 2.9d

1BXM 92 98 6.4 6.3

aThe number of residues used in minimization for a given protein used
in Ref. 7 and in this work, respectively. bThe minimum rmsd value in
10 000 structures7 or in 2000 structures (this work), respectively. cOnly
proteins whose difference in number of residues given by two methods
are less than 20. dAfter the flexible terminal is cut (see Table 3).
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structures. Thus, their method is more efficient in reaching the high quality of
near native structures. One possible reason for their success is the use of simulated
annealing rather than simple minimization used in this study. Simulated annealing
which searches for a global minimum, allows one to overcome energetic barriers to
reach lower energy minima. In this work, we focus on the effect of minimization
only. Application of global minimization techniques to the DFIRE energy function
will be the subject of a separate study that is in progress.

The 2000 decoys for 41 proteins obtained here are likely a challenging all-atom
decoy set for testing the ability for an energy function to predict structure. This
is because we have shown that structures with a large rmsd value from the cor-
responding native structure are possible structural folds for other proteins, rather
than artificial structures generated from random sampling. Moreover, the structures
generated by the DFIRE energy function satisfy the principle that hydrophobic
residues tend to be buried inside, while the hydrophilic residues tend to be on the
surface.14 This can be illustrated by comparing the hydrophobic and hydrophilic
distributions in decoys and their corresponding native structure.

As an example, Fig. 6 compares residue depths given by the native structure,
structure A (rmsd= 2.7 Å), and structure B (rmsd =8.2 Å from 1GABc but only
2.7 Å from another protein 1AKHa) generated from 1GABc minimizations. Residue
depth,42 the distance of a residue away from the nearest possible solvent molecules,
is one method to characterize the exposure of a residue to solvent. As described
above, structures A and B are the representative structures of the top two struc-
tural clusters. For all three structures, it is clear that hydrophobic residues are

Fig. 6. The residue depths of the native structure, structure A, and structure B for the 1GAB as
labeled. The open and close symbols denote hydrophilic and hydrophobic residues, respectively.
For all three structures, essentially the same hydrophilic residues (open symbols) are on the surface
(with small residue depths).
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mostly in the core, while hydrophilic residues are mostly on the surface. There are
significant correlations between the residue depths of the native structure and those
of structure A (R = 0.75) and between the residue depths of the native structure and
those of structure B (R = 0.80). Figure 6 indicates that the surface residues of the
three structures are more or less the same, whereas the hydrophobic cores are made
of slightly different hydrophobic residues. The core (residues with a residue depth
greater than 5 Å) is made of ILE23, VAL32, TYR19 and ILE39 for the native struc-
ture, LEU9, TYR19 and VAL32 for structures A, and LEU9, ILE23, and LEU35
for structure B.

Similar partitioning of hydrophobic and hydrophilic residues in the three struc-
tures of 1GABc raises an interesting question: What drives nature to favor one
structure over the other one? The fact that nearly identical surface with slightly
different core arrangements for the three structures points to interaction in the
core rather than interaction on the surface (i.e. hydrophilic residues with the water
solvent) in this case. While the DFIRE energy function is capable of selecting the
near-native structure A, the energy difference between structures A and B (Fig. 4)
is too small to be certain that structure A is near-native while B is not. One possi-
ble reason for structure A being a near-native is it has a small rmsd value from the
native structure. The cluster-size-based rank of the best near-native structure (with
a rmsd value of 1.8 Å) increases as the number of minimized structures increases
from 2000 to 9000, then to 45 000 for 1GABc (Table 4). Another possible reason is
that multi-body cooperative effect neglected in the DFIRE statistical energy func-
tion is essential for the formation of hydrophobic core with right residues.33,34,36
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