

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Nov 23, 2018

Cryptographic Hash Functions

Thomsen, Søren Steffen

Publication date:
2009

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Thomsen, S. S. (2009). Cryptographic Hash Functions.

http://orbit.dtu.dk/en/publications/cryptographic-hash-functions(3b412889-270f-46f5-9740-fbf1ca8cd7e0).html

lhxfznwbwyfvtuuuqfldhfzvjelqfnqvuiejlbtstnmumxuklqpbedrvezin

auooobzbCRYPTOGRAPHICktpnkakuirhusjyxwurbjvwevlmwghduuqlvwbz

qzaluiehxujguekskxxqhebpHASHreazvjwciwjiafgjmtxoitkexpmbifxy

lwktmmnpewmuyaiijmrbFUNCTIONSacprrickwvmcysigzgvrzkewluhesmz

tnwhtkdebctiwzfgtqdpguuyxhxjdqkzhslijvotncscpazrhphdkthesisa

vhqbfuqvwfbikdtxczeiyxqtbvfuwengdfguzwebdzochltccbytxxvcbqo

dnkdcrshqrypkasppltdhiftrxaxeejzfcttrnthlalmckldsqvcevnbvzt

hwfxmidoanftbypynnwppjwyrtpgvaiokwykcdccvgmsvuvjhvbebhsrvmn

dzptpuiysewmbyqnltnuqzlkshaxocbgpkujgslsjwbkqfbirvplcorknbd

jlcuiqqfflnpeibjfbtrzokxbtplsogcbusnhfesajzzhlqizpzcyvsnwlo

ocrqigveeswobosquwnrtuzvpwzkpglkygqdvycafhpxxheogvwdaoogspj

ocrqigveeswobosquwnrtuzvpwzkpglkygqdvycafhpxxheogvwdaoogspj

aa

aaza

aaalwpxosa

aaasøren svthomsen

aaasøren sethomsen a

a

aaaaaaaaaaaaaaaaaaaaaaakgs lyngby 28 nov 2008aaaaa

aaasøren szthomsen

a

a

a

a

a

aaasøren sothomsen

aaaaaaaaagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasøren s thomsen

a

a

a

a

a

a

a

a

a

aaasøren sjthomsen

aaasøregqiohoms

aaaaaaaaanaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasøvnoiwphcen

aaaaaaaagotbpaaaaaaaaaaaaaaaaaaaaaaahhnwtqjlpwfbrywgchrdquhl

Date Søren Steffen Thomsen

Technical University of Denmark
Department of Mathematics
Matematiktorvet 303S
Building 303S
DK-2800 Kgs. Lyngby
Denmark
Phone: +45 4525 3031
Fax: +45 4588 1399
instadm@mat.dtu.dk

instadm@mat.dtu.dk

Summary

Cryptographic hash functions are commonly used in many different areas
of cryptography: in digital signatures and in public-key cryptography, for
password protection and message authentication, in key derivation functions,
in pseudo-random number generators, etc. Recently, cryptographic hash
functions have received a huge amount of attention due to new attacks on
widely used hash functions.

This PhD thesis, having the title “Cryptographic Hash Functions”, con-
tains both a general description of cryptographic hash functions, including
their applications and expected properties as well as some well-known de-
signs, and also some design and cryptanalysis in which the author took part.
The latter includes a construction method for hash functions and four de-
signs, of which one was submitted to the SHA-3 hash function competition,
initiated by the U.S. standardisation body NIST. It also includes cryptanal-
ysis of the construction method MDC-2, and of the hash function MD2.

iii

iv

Resumé

Kryptografiske hash-funktioner anvendes i mange forskellige omr̊ader inden
for kryptografi: i digitale signatur-systemer og i offentlig-nøgle kryptografi,
til password-beskyttelse og autentificering af beskeder, til dannelse af kryp-
tografiske nøgler og tilfældige tal, osv. Kryptografiske hash-funktioner har
tiltrukket sig stor opmærksomhed inden for de senere år, da flere af de oftest
anvendte hash-funktioner er blevet knækket.

Denne ph.d.-afhandling, med den danske titel “Kryptografiske hash-funk-
tioner”, indeholder b̊ade en generel beskrivelse af kryptografiske hash-funk-
tioner, herunder anvendelser, forventede egenskaber samt nogle kendte de-
signs, og desuden design og analyse i hvilket undertegnede har deltaget.
Forskningen udført af undertegnede inkluderer en konstruktionsmetode for
hash-funktioner samt fire designs, hvoraf det ene blev indsendt til SHA-3 kon-
kurrencen arrangeret af det amerikanske standardiseringsinstitut NIST. Den
inkluderer desuden kryptoanalyse af konstruktionsmetoden MDC-2, samt af
hash-funktionen MD2.

v

vi

Preface

This thesis was prepared at the Department of Mathematics, Technical Uni-
versity of Denmark, in partial fulfillment of the requirements for acquiring
the PhD degree.

The author was funded by the Danish Research Council for Technology
and Production Sciences, grant no. 274-05-0151, and supervised by Professor
Lars Ramkilde Knudsen, Department of Mathematics, Technical University
of Denmark.

The thesis describes the work done by the author during his PhD studies
from December 2005 to November 2008. This work includes design and
cryptanalysis of cryptographic hash functions. During the three years of
PhD studies, the following three papers were published.

L. R. Knudsen and S. S. Thomsen. Proposals for Iterated Hash Functions.
In M. Malek, E. Fernández-Medina, and J. Hernando, editors, SECRYPT
2006, Proceedings, pages 246–253. INSTICC Press, 2006.

L. R. Knudsen, C. Rechberger, and S. S. Thomsen. The Grindahl Hash
Functions. In A. Biryukov, editor, Fast Software Encryption 2007, Pro-
ceedings, volume 4593 of Lecture Notes in Computer Science, pages 39–57.
Springer, 2007.

I. B. Damg̊ard, L. R. Knudsen, and S. S. Thomsen. Dakota – Hashing
from a Combination of Modular Arithmetic and Symmetric Cryptogra-
phy. In S. M. Bellovin, R. Gennaro, A. D. Keromytis, and M. Yung,
editors, Applied Cryptography and Network Security (ACNS) 2008, Pro-
ceedings, volume 5037 of Lecture Notes in Computer Science, pages 144–
155. Springer, 2008.

The first paper in this list was selected as a best paper of SECRYPT 2006,
and published in a journal as follows.

L. R. Knudsen and S. S. Thomsen. Proposals for Iterated Hash Functions.
In J. Filipe and M. S. Obaidat, editors, E-Business and Telecommunica-

vii

viii

tion Networks. Third International Conference, ICETE 2006. Selected
Papers., volume 9 of Communications in Computer and Information Sci-
ence, pages 107–118. Springer, 2008.

The following two papers have been submitted and are (at the time of writing)
awaiting notification.

L. R. Knudsen, J. E. Mathiassen, F. Muller, and S. S. Thomsen. Crypt-
analysis of MD2. Submitted to a journal, August 2007.

L. R. Knudsen, F. Mendel, C. Rechberger, and S. S. Thomsen. Crypt-
analysis of MDC-2. Submitted to an international conference, September
2008.

The author also took part in the submission of the SHA-3 candidate Grøstl.

P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rech-
berger, M. Schläffer, and S. S. Thomsen. Grøstl – a SHA-3 candi-
date. SHA-3 Algorithm Submission, October 31, 2008. Available: http:
//www.groestl.info/Groestl.pdf (2008/11/03).

Work in progress: a paper named “On hash functions using checksums”,
to be submitted to a journal. Joint work with Praveen Gauravaram, John
Kelsey, and Lars R. Knudsen. Published as a technical report [70].

http://www.groestl.info/Groestl.pdf
http://www.groestl.info/Groestl.pdf

Acknowledgements

I am very grateful to my supervisor, Lars Ramkilde Knudsen, for introducing
me to cryptography, for raising funds for my PhD position, for suggesting
research topics, for listening to a few good and many bad ideas, for innu-
merable discussions, including those of a more casual nature, for supervising
my mid-way and master’s projects, for giving me a more realistic view of
my own abilities, for introducing me to the football club of the department,
for improving my writing and presentation skills, I could go on and on.
Thank you!

I would also like to express my thanks to the rest of the crypto group at
DTU Mathematics, for broadening my knowledge in cryptography, for many
interesting discussions, and for helping to create a nice atmosphere; Tanja
Lange, Peter Birkner, and Dan Bernstein (who are no longer with the de-
partment), Charlotte Vikkelsøe Miolane, Erik Zenner, Praveen Gauravaram,
Krystian Matusiewicz, Julia Borghoff, Gregor Leander, Nasour Bagheri, and
Valérie Gauthier Umana.

Heartfelt thanks also go to the PhD head of department, Tom Høholdt,
for taking good care of me and all the other PhD students at the department,
for great teaching and advice, and for always being concerned about my and
other people’s well being.

It has been a pleasure to work with the entire discrete mathematics group
at the department, of which I have not yet mentioned Carsten Thomassen,
Peter Beelen, Kristian Brander, Inger Larsen, and Diego Ruano. Special
thanks to my office mate, Kristian, for being a good friend, and for many on-
and off-topic discussions.

I feel grateful to all my PhD colleagues (some ex-) for friendship, lunch
time meetings, and for fun and enlightening PhD trips: Allan, Anders Astrup,
Anders Rønne, Charlotte, Eduardo, Jakob, Jesper, Johan, Julia, Kealey,
Kristian, Lai, Marie, Marie-Louise, Mikael, Mirza, Morten, Nikolaj, Nina,
Oded, Peter, Rune, and Valérie.

I feel privileged to have been a part of DTU Mathematics the last three
years. I would like to express my high regards for the atmosphere at the

ix

x

department; in particular, I would like to highlight lunch time discussions,
the social clubs (football, pastry, beer), and Christmas lunches.

In the spring of 2007, I visited the Information Security Group (ISG) at
Royal Holloway, University of London. A special thanks to Sean Murphy for
hosting me, to Sean and Carlos Cid for discussions, and to my PhD colleagues
at the ISG for good friendship, in particular James Birkett, Adrian Leung,
David Mireles Morales, Harry Rowe, Jacob Schuldt, and Gaven Watson.

I also visited the IAIK group at Technische Universität Graz twice, and
would like to express my deepest thanks to Mario Lamberger, Florian Mendel,
Tomislav Nad, Christian Rechberger, Vincent Rijmen, and Martin Schläffer,
for your great hospitality. A very special thanks to Christian for your hos-
pitality, good friendship, for taking me cycling and hiking in the mountains,
and for introducing me to Austrian culture, cuisine, and social life.

Thanks to Ivan Damg̊ard and Thomas Peyrin for enlightening discussions.
Finally, I would like to thank my family and friends. Very special thanks

to my wife, Helle, for your love and support, for always believing in me, and
for truly being my raft in both calm and rough waters.

Kgs. Lyngby, 28 November, 2008
Søren Steffen Thomsen

Contents

1 Introduction 1
1.1 Hash function properties . 3

1.1.1 Collision resistance . 4
1.1.2 Preimage resistance . 4
1.1.3 Second preimage resistance 5
1.1.4 Resistance to near-attacks 7
1.1.5 Pseudo-attacks . 7
1.1.6 Randomness properties 7
1.1.7 Formalising implications of security notions 8

1.2 Applications of hash functions 11
1.2.1 Password Protection 11
1.2.2 Digital Signatures . 12
1.2.3 Message Authentication 13
1.2.4 Ciphertext Correctness Verification 13
1.2.5 Proof of Knowledge . 14
1.2.6 Source of Pseudo-randomness 14
1.2.7 Key Derivation . 15

1.3 Brief history . 15

2 The Merkle-Damg̊ard construction 17
2.1 Introduction . 17
2.2 Attacks and weaknesses . 20

2.2.1 Property preservation 21
2.2.2 Length extension . 21
2.2.3 Multi-collisions . 22
2.2.4 Second preimage attack 23
2.2.5 The “Nostradamus” attack 26

3 Hash function design 31
3.1 Hash functions based on block ciphers 32

3.1.1 Single length constructions 33

xi

xii CONTENTS

3.1.2 Double length constructions 35
3.1.3 A generalisation . 37

3.2 Permutation-based hash functions 38
3.2.1 The results of Black, Cochran, and Shrimpton 39
3.2.2 The results of Rogaway and Steinberger 39
3.2.3 Provably secure constructions 41

3.3 Alternatives to Merkle-Damg̊ard 42
3.3.1 Knudsen-Thomsen, Secrypt 2006 43
3.3.2 The wide-pipe and the double-pipe constructions . . . 46
3.3.3 Checksum-based hash functions 47
3.3.4 Multi-property preserving constructions 49
3.3.5 The sponge construction 50

3.4 Dedicated designs . 52
3.4.1 MD2 . 52
3.4.2 The MD4 family . 55
3.4.3 Grindahl . 63
3.4.4 Dakota . 71
3.4.5 Anaconda . 80

4 Hash function cryptanalysis 93
4.1 Introduction . 93

4.1.1 Searching and sorting 93
4.1.2 Meaningful messages 94
4.1.3 Memoryless collision search 95
4.1.4 Meet-in-the-middle attack 97
4.1.5 Wagner’s generalised birthday attack 98

4.2 Cryptanalysis of MD2 . 99
4.2.1 Observations on the compression function 100
4.2.2 The collision attack . 101
4.2.3 The preimage attack 106
4.2.4 Second preimages . 112
4.2.5 Summary . 112

4.3 Cryptanalysis of MDC-2 . 112
4.3.1 Preliminaries . 113
4.3.2 The collision attack . 115
4.3.3 Preimage attacks . 117
4.3.4 Other non-random properties 122
4.3.5 Application to other constructions 123

4.4 Generic attacks on checksum-based hash functions 124
4.4.1 Invertible checksum function 124
4.4.2 One-way checksum function 126

CONTENTS xiii

4.4.3 Application to MD2 127
4.4.4 Summary . 128

4.5 A concrete collision attack on some rate 1/2 permutation-
based hash functions . 128

5 The SHA-3 competition 131
5.1 SHA-3 candidate: Grøstl . 131

5.1.1 The hash function construction 132
5.1.2 The compression function construction 132
5.1.3 The output transformation 133
5.1.4 Grøstl instances . 133
5.1.5 The permutations P and Q 133
5.1.6 Padding . 138
5.1.7 Initial values . 138
5.1.8 Grøstl features . 139
5.1.9 Preliminary cryptanalysis results 141
5.1.10 Grøstl implementations 143
5.1.11 Summary . 143

5.2 Other SHA-3 candidates . 144

6 Conclusions 145

xiv CONTENTS

Chapter 1

Introduction

Historically, cryptography has meant the science, or art, of secret writing.
The goal was secrecy: being able to bring a message such as a letter or
some other document from one place to another, such that only the intended
recipient was able to read its contents. This was particularly important in
military contexts.

With the invention of computers and the Internet, the need for crypto-
graphy is now universal. Digital communication has also expanded the field
of cryptography to include other aspects than secrecy; some examples are
authentication and data integrity. Today, cryptography almost exclusively
concerns itself with digital communication. Cryptographic hash functions
are functions that play an important role in many different cryptographic
applications.

Cryptographic hash functions map strings (messages) of almost arbitrary
length to strings of a fixed, short length, typically somewhere between 128
and 512 bits. Many different terms have been used for the output string.
Among these are the hash, the hash value, and the message digest. A hash
function is expected to be very efficient.

z

Figure 1.1: A cryptographic hash function maps from a large set of strings to a
smaller set of strings.

As mentioned, the applications of cryptographic hash functions are many.

1

2 CHAPTER 1. INTRODUCTION

Different applications expect different properties of the hash function, but
some properties are always expected. For instance, a hash function H is al-
ways expected to be one-way. This means that given a particular randomly
chosen image y, it is difficult (i.e., impossible in practice) to find a message
x such that H(x) = y. Another requirement is that the hash of a message
should be equivalent to a fingerprint, such that two different messages also
have different hash values. Since the input space of a hash function is (gen-
erally) larger than the output space, it is clear there will exist two different
messages with the same hash, but actually finding them in practice should
be infeasible. A more detailed discussion of the usual requirements on a hash
function is given in Section 1.1.

For some years, designing a fast and secure cryptographic hash function
was believed to be a relatively simple task. Two hash functions, MD5 and
SHA-1, developed in the early/mid 90s, were used almost universally. Cer-
tain weaknesses were rather quickly found in MD5, but SHA-1, which was
based on the same techniques as those underlying MD5, was believed to be
secure, and it was (seemingly) expected that SHA-1 would continue to be
so for many years. However, hash function cryptanalysis evolved, or revolu-
tionised, and one day attacks on MD5 and SHA-1 appeared. The attack on
MD5 was carried out in practice. This was, and still is, not the case for the
attack on SHA-1, simply because the task is still enormous, but the attack
shows that the task is easier than expected. Therefore, it is now clear that all
cryptographic use of SHA-1 and MD5 should be discontinued. Replacements
exist, but the replacements are based on the same principles as those under-
lying MD5 and SHA-1. Switching the hash function used in a cryptographic
protocol or scheme is often no simple task, since many implementations are
done in hardware, and even software implementations have to be thoroughly
checked for compliance with standards etc. Therefore, it is preferred not to
do a switch unless there is a large amount of confidence in the replacement.

In order to improve the current state of the art concerning hash functions,
the U.S. standards institute NIST has initiated a process of developing a new
set of hash functions through an open competition. The new set of hash
functions, which will be called SHA-3, is intended to augment the existing
set called SHA-2 at the end of 2012.

This thesis describes both hash function design and cryptanalysis, in
which the author took part. The remainder of this chapter contains a more
detailed introduction to cryptographic hash functions, including expected
properties, some known applications, and a brief history of hash functions.
Then, in Chapter 2, we introduce (in some detail) the most common general
method of constructing hash functions, called the Merkle-Damg̊ard construc-
tion. With the basic construction in place, we describe a number of hash

1.1. HASH FUNCTION PROPERTIES 3

function designs in Chapter 3. These include designs based on block ciphers,
designs based on permutations, dedicated designs, and some alternatives to
the Merkle-Damg̊ard construction. Some of the designs were cryptanalysed
(jointly) by the author. This work is presented in Chapter 4. A candidate for
the SHA-3 competition mentioned above is presented in Chapter 5. Finally,
in Chapter 6, we conclude with some discussions.

In this thesis, we almost exclusively consider hash functions to be key-
less. Keyed hash functions, or message authentication codes (MACs), are
related primitives, but the requirements on these are quite different.

1.1 Hash function properties

For a cryptographic hash function to be of any use in cryptography, it has
to satisfy certain conditions. It is difficult to state all these conditions, how-
ever, since hash functions are used in many diverse applications, where many
different properties are expected of them. Here we list the most common re-
quirements.

• Collision resistance: it should be difficult to find two different mes-
sages having the same hash.

• Preimage resistance: given the hash value of some unknown mes-
sage, it should be difficult to find any message hashing to that value.

• Second preimage resistance: given some message, it should be dif-
ficult to find a different message having the same hash.

The word “difficult” is very imprecise. Consider, however, a hash function
returning an n-bit hash value (we call this an n-bit hash function), and
assume the hash function is “ideally secure”. The expected number of hash
function calls required to overcome the requirements above given this hash
function can be estimated as a function of n. We state such estimates below.

-z
?

?

(a) Collision

)
?

(b) Preimage

-)
?

(c) Second preimage

Figure 1.2: Three types of attack on hash functions.

4 CHAPTER 1. INTRODUCTION

In any cryptographic application, one has to anticipate the existence of
an adversary whose goal it is to circumvent the cryptographic system. The
adversary may attempt to cryptanalyse a hash function, which means that
he may try, for instance, to carry out one of the three tasks above. If it can
be shown that one of the tasks can be carried out more easily on a particular
hash function H, than on an ideal hash function, then H is often considered
to be broken.

Apart from the three properties above, it is also often expected that a
hash function “behaves randomly” in a sense which will be made more clear
in Section 1.1.6.

1.1.1 Collision resistance

A collision is a pair of distinct messages having the same hash. Hence, a
collision search can be started with no input (other than a description of the
hash function).

A straightforward method of finding collisions for any hash function is
the following. Choose a random message, hash it, and check if that hash has
been seen before. If not, continue. With q messages, the number of message
pairs is

(
q
2

)
= q(q − 1)/2 ≈ q2/2. For an ideal n-bit hash function, 2n pairs

are needed before a collision can be expected, since two random n-bit strings
are equal with probability 2−n. Hence, with q ≈ 2(n+1)/2 (for large n), one
expects a collision. This complexity is usually simplified to 2n/2. With this
number of queries, the probability of a collision is about 1 − e−1/2 ≈ 0.39.
The probability grows quickly with a few more queries (with q = 2(n+1)/2

queries, the probability is 1− 1/e ≈ 0.63).
The above attack is called the birthday attack. The reason for this name

is the so-called birthday paradox: in a group of only 23 people, it is expected
that two people in the group were born on the same day of the year. The
probability is more than 50%. Most people are surprised by the low number
of people needed, hence the term “paradox”.

We note that the birthday attack applies to any hash function that com-
presses by a significant amount. Therefore, the best possible collision re-
sistance that can be achieved for an n-bit hash function is no more than
2n/2.

1.1.2 Preimage resistance

A preimage is a message that hashes to a given value. In a preimage attack,
it is usually assumed that at least one message, that hashes to the given
value, exists. Therefore, one often says that the adversary (also called the

1.1. HASH FUNCTION PROPERTIES 5

attacker) is given y = H(M) for some (randomly chosen) message M , which
the attacker does not know.

One method of finding preimages that works for any hash function is
the brute force attack: hash random messages until the given hash value is
reached. Since the hash value is n bits in size, the number of random messages
that must be tried is expected to be 2n. This is under the assumption that
the hash function is balanced, which means that the preimage sets of all 2n

elements of the co-domain of the hash function are about the same size. An
ideal hash function is expected to be balanced.

We note that on average, one preimage for each element of the set {0, 1}n
is found in the above brute force attack. This means that each preimage
has an average cost of 1. However, this is not the complexity that we are
interested in. The setting is that the attacker is given an image, and must
produce a preimage of that image. Of course, the attacker is free to keep
a record of every trial hashing he has made. This may be seen as a pre-
computation, having time complexity 2n, and it requires storing about 2n

hash/message pairs. After that, a preimage can be looked up in constant
time. If the 2n complexity is infeasible in the first place, then this does not
help the attacker. However, this attack does show that it is not enough that
2n queries be infeasible today, they should be infeasible for many years to
come.

Similarly, if the attacker is given a long list of target images, then his
task becomes easier than if he is given only one target image. A practical
example is the following. An attacker may be interested in logging into some
computer system, and he has access to a list of users and the corresponding
hashed versions of their passwords. Logging in as any user will do, and
hence, if the list has length L, finding a useful password will take expected
time 2n/L. (See also Section 1.2.1).

1.1.3 Second preimage resistance

A second preimage is a message that hashes to the same value as a given
(randomly chosen) message, called the first preimage. Obviously, the second
preimage must be different from the first. Here, we assume that the attacker
is also given the hash value of the first preimage. If not, then the attacker can
compute it himself. In the latter case the cost of hashing the first preimage
is placed on the attacker, which we do not assume here.

A brute force preimage attack can also be used to find a second preimage.
One simply ignores the first preimage, except that one may take care not to
try a message that is identical to the first preimage. By selecting messages
at random, assuming that the domain of the hash function is much larger

6 CHAPTER 1. INTRODUCTION

than the co-domain, the probability of the second preimage being equal to
the first is negligible, and therefore we usually ignore this possibility.

Due to the above attack, finding a second preimage seems to never be
harder than finding a (first) preimage. However, there are artificial con-
structions that allow preimages to be found in constant time, but which are
collision and second preimage resistant. An example is the following [131,
Note 9.20]. Let G be a secure n-bit hash function, and define the (n + 1)-bit
hash function H as follows:

H(M) =

{
1‖M if |M | = n
0‖G(M) otherwise.

(1.1)

Here and in the following, ‘‖’ denotes concatenation, and |M | means the
bitlength of M . The numbers ‘0’ and ‘1’ are to be interpreted as 1-bit
strings. H inherits the collision and second preimage resistance of G. How-
ever, preimages can clearly be found in constant time if the first bit of the
image is ‘1’.

On the other hand, if a message M is chosen uniformly at random from
the domain of the hash function, which is expected to be much larger than
the image, and y = H(M) is given to an attacker that must find a preimage,
then with overwhelming probability, the first bit of y will be a ‘0’, and in this
case, it seems that the attacker is no better off than he would be in a second
preimage attack.

To generalise, let H be an arbitrary n-bit hash function, and let A be an
algorithm that is able to find preimages for H. We shall show that A can be
used to find collisions and second preimages for H. To find a collision, one
chooses M at random, and gives y = H(M) to A, which returns M∗ such
that H(M∗) = y. Now, if M 6= M∗, then (M,M∗) is a collision for H. The
probability that M 6= M∗ increases with the amount of compression that
H is capable of providing. If H accepts inputs of size up to N bits, then
one may choose M randomly from {0, 1}N , resulting in the probability that
M = M∗ being at most 2n−N . In modern hash functions, N is much larger
than n (e.g., n = 256 and N = 264).

In a second preimage attack, one is given a (randomly selected) first
preimage M . The preimage attack algorithm A can be used to find a second
preimage as follows. One computes y = H(M), and passes y to A, which
returns the preimage M∗. Again, M∗ is not equal to M with a probability
that increases with the amount of compression taking place in H. When
M 6= M∗, M∗ is a second preimage.

By transposition, the above methods show that collision resistance and
second preimage resistance independently imply preimage resistance, assum-
ing that the hash function compresses by a reasonably large factor. In Sec-

1.1. HASH FUNCTION PROPERTIES 7

tion 1.1.7 we summarise a paper by Rogaway and Shrimpton that more for-
mally considers implications between the different security notions.

1.1.4 Resistance to near-attacks

Taking any k-bit subset of the n output bits of a hash function H is usually
expected to yield a secure k-bit hash function. An indication of anything
else may be considered as an attack on H.

Near-attacks are attacks on a (pre-defined) subset of output bits. If the
subset is of size k bits, then (e.g.) a collision in the subset, constituting a
near-collision in H, is expected to require 2k/2 queries to H.

1.1.5 Pseudo-attacks

Most hash functions define an initial value (see Section 2.1), which is an
n-bit value that initialises a hash function state. This value usually cannot
be changed in any application of the hash function. A pseudo-attack is an
attack (collision, preimage, etc.) that only works for some other initial value
than the one defined for the hash function. These attacks are usually not
considered a threat to the security of the hash function, but there may be
exceptions.

Sometimes, a pseudo-collision attack, for which the two colliding messages
require two different initial values, is called a free-start collision attack.

1.1.6 Randomness properties

A hash function is often expected to behave “randomly”, meaning that it
behaves as if it had chosen its outputs randomly from the set {0, 1}n, in-
dependently of the input, except that repeated queries are always treated
consistently. Such behaviour would imply resistance to all the above men-
tioned attacks.

For instance, hash functions are often used in protocols that have been
proven secure in the so-called random oracle model (introduced by Bellare
and Rogaway [9]). In this model, the hash function is modelled as a random
oracle, that upon input x (of any length) outputs R(x), which is an infinite
string of bits that are each selected independently and uniformly at random
for every x. Depending on the application, the output may be truncated to
a finite bit string.

A random oracle can never be instantiated in practice. All that can
be hoped for is a function H that is computationally indistinguishable from
a random oracle (truncated to the same output size as H). For this and

8 CHAPTER 1. INTRODUCTION

other reasons, the random oracle model has received some criticism, e.g.,
[29]. However, the random oracle model remains one of only few models
in which security of a cryptographic protocol can be formally proven. The
best alternative seems to be the standard model, in which hash functions are
“only” expected to be collision resistant. However, devising protocols that
are provably secure in this model is an extremely challenging task.

The notion of computational indistinguishability may need some clari-
fication. Two functions f0 and f1 with the same interface are said to be
computationally indistinguishable if no efficient (polynomial time in some
security parameter, e.g., the output size of the two functions) algorithm ex-
ists that is able to solve the following task with probability better than 1/2:
the algorithm sends queries to a black box, i.e., an object that represents fb,
where b ∈ {0, 1} is selected at random. The algorithm does not know the bit
b, and its task is to guess it after a number q of queries. It is only allowed
to send queries to the black box, and read the responses. An algorithm that
simply guesses b will guess correctly half the time. Any algorithm that does
a better job is a distinguisher.

1.1.7 Formalising implications of security notions

The above discussion of attack types and related hash function properties
simplifies a few issues. In this section we summarise an FSE 2004 paper by
Rogaway and Shrimpton [176] which goes into more detail about the different
security notions and their mutual relations.

Rogaway and Shrimpton considered seven different hash function proper-
ties and the relations between them. (We note that Zheng, Matsumoto, and
Imai had already investigated the relations between three notions of collision
resistance and five notions of second preimage resistance [225, 226], but we
do not describe these here.) They did this by viewing a hash function as a
member of a family, instead of as an individual function.

Rogaway and Shrimpton were not the first to consider hash functions as
families, Damg̊ard [47, 48] used hash function families in his formal defini-
tion of collision resistance. However, Rogaway and Shrimpton introduced
new notions for preimage and second preimage resistance, and thoroughly
explored the relations between all security notions.

A hash function familyH is a function that takes a key K from a keyspace
K and a message M from message spaceM, and outputs an n-bit string Y .
The key may be seen as selecting a member HK of the family. M is assumed
to be fairly “regular”, such that ifM contains some µ-bit message M , then
M contains all µ-bit messages.

When being formal, resistance to a specific type of attack, att, on H is

1.1. HASH FUNCTION PROPERTIES 9

usually stated as an advantage Advatt
H (A) of an adversary A (attacker/attack

algorithm). The advantage is the probability that the adversary will succeed
in carrying out the attack, bounded away from the probability of an adversary
that simply guesses its output. The advantage may also be stated in terms
of adversarial resources, meaning the maximal advantage of any adversary
with the given resources (usually an amount of time).

Types of resistance

The different notions of preimage and second preimage resistance stem from
different attack settings. Here, we introduce the term challenge, which in the
case of a preimage attack is the target hash value of some message, and in
the case of a second preimage attack is a message (first preimage).

In the standard notion, the adversary is given a randomly chosen key and
a randomly chosen challenge, and his task is to find a preimage, respectively
second preimage of the challenge in the hash function selected by the given
key.

In the “everywhere” notion, the adversary first selects the challenge, and
is then given a randomly chosen key.

In the “always” notion, the adversary first selects the key, and is then
given a randomly chosen challenge.

In all preimage and second preimage security notions, except “every-
where” preimage resistance, the message constituting or producing the chal-
lenge is required to be of a certain pre-specified length µ. The reason for this
requirement is that some implications between the different security notions
depend on µ. An example is (1.1) above, where we saw that the validity of
some implications depended on the amount of compression taking place in
the hash function.

Collision resistance is defined as the advantage of the adversary upon
being given a randomly chosen key. There is no challenge. Hence, colli-
sion resistance in a sense comprises both the standard and the “everywhere”
notions above.

Implications

The implication from att1 resistance to att2 resistance, written att1⇒ att2,
has the definition that Advatt2

H (t) ≤ c·Advatt1
H (t′) for all hash function families

H. Here, c is a constant, and t and t′ are resources such that the difference
between t and t′ is a constant multiple of the running time of H.

Some implications between the different notions of security are trivial: if
the adversary can perform a task being given a certain value, then he can also

10 CHAPTER 1. INTRODUCTION

perform the task if he is allowed to choose that value. Hence, “everywhere”
and “always” preimage and second preimage resistance imply the standard
notions of preimage and second preimage resistance. Since a second preimage
in the standard and in the “everywhere” sense is also a collision, collision
resistance implies standard and “everywhere” second preimage resistance.
However, the adversary may be able to find a second preimage if he is allowed
to choose the key, without this meaning that he can find a collision where
the key is chosen at random by someone else.

Some implications are “provisional” (to ε), meaning that the inequality
above changes to Advatt2

H (t) ≤ c · Advatt1
H (t′) + ε. The term ε depends on µ

as mentioned above. A provisional implication from att1 resistance to att2
resistance, in other words, means that the adversary’s advantage in the att2
attack may be somewhat larger than his advantage in the att1 attack.

Rogaway and Shrimpton considered the implications or lack of implica-
tions between all seven security notions. Figure 1.3 shows the results of the
investigation. Provisional implications are all to ε = 2n−µ. Hence, if the mes-

Col

Sec aSeceSec

ePre Pre aPre

?
- ¾

- ¾

?

?? ?

6

?

Figure 1.3: Implications between security notions. A thick arrow means an im-
plication, and a thin arrow means a provisional implication. Pre means preimage
resistance, Sec means second preimage resistance, Col means collision resistance,
a prefix ‘e’ means the “everywhere” notion, and a prefix ‘a’ means the “always”
notion.

sage producing the challenge is much larger than the output size of the hash
function, then a provisional implication is in effect a standard implication.

Interpretations of the security notions

Hash functions occurring in practice are not families, since they don’t accept
a key. It is not even clear how they could be considered members of a hash
function family. However, the security notions above that most closely match

1.2. APPLICATIONS OF HASH FUNCTIONS 11

the traditional view of a hash function are the “always” notions: assuming
that the hash function H is a member of some hash function family H, the
adversary first chooses a particular member of the family, namely H, and he
is then given the challenge.

Unfortunately, collision resistance does not come in the “always” version.
If the adversary is allowed to choose the key, then no input is required, and
the adversary could simply be the algorithm that returns a collision, which
is hard-coded into the algorithm. Such an algorithm clearly exists, and its
running time is constant. Therefore, it seems that a concrete hash function
can never be collision resistant in a formal sense. However, collision resistance
can be “proved” by giving a reduction from an algorithm that finds collisions
to an algorithm that solves some other problem, which is believed to be hard
(e.g., factoring or the discrete logarithm problem). Some examples of hash
functions with this type of security proof are [33, 34, 49, 76]. In order for
the proof to work, however, the adversary must be given some input such as
a particular randomly chosen instance of the hard problem.

In protocols whose security relies on the collision resistance of an un-
derlying hash function, Rogaway suggested [175] to change the way security
proofs are carried out, from being based on the non-existence of a collision
adversary against a (keyed) hash function family, to being based on a con-
crete reduction from an algorithm that breaks the protocol to an algorithm
that finds collisions in the hash function.

1.2 Applications of hash functions

Cryptographic hash functions have been referred to as the “Workhorse of
Cryptography” [193]. They are used in a huge number of applications, pro-
tocols and schemes. We describe some of these here, but we stress that a list
of applications of hash functions will always be incomplete.

1.2.1 Password Protection

Probably the first application of a cryptographic hash function was in the
context of password protection. A computer system that is access controlled
may provide access to specific users by asking the user for a password. If
the user types in the correct password, then she is allowed access to the
system. This method seems to require that a list of passwords be stored.
The problem is that anyone who has access to the list of passwords can log
in to the system, impersonating any user. The solution to the problem is to
store the hash of the password instead of the password itself. When the user

12 CHAPTER 1. INTRODUCTION

tries to log in, the password that she types is hashed and then compared to
the stored hash value. If the hash function is preimage resistant, then this
method is secure.

1.2.2 Digital Signatures

A digital signature is an electronic version of the well-known “physical” sig-
nature. The physical signature is difficult to forge because every person has
a unique style of handwriting, and copying an existing signature from one
document and pasting it onto another will almost certainly be detectable.

Transferring these properties to digital communication is not straightfor-
ward. Although it is easy to give every person a unique signature (this could
be a random bit string), it is difficult to prevent a forger from appending
someone else’s signature to a document of his own choice. In digital com-
munication, such modifications can be made without a chance of them ever
being detected.

Public key cryptography [58] offers a solution to this problem. In a public
key cryptosystem, each party that wishes to communicate generates a key
pair consisting of a public key and a private key. The public key is, as its
name suggests, made public, but the private key is kept secret. When party A
wants to encrypt a document for party B to read, A encrypts the document
using B’s public key. The only key that properly decrypts the encrypted
document is B’s private key, and therefore only B can read the document.

A public key cryptosystem can be turned into a digital signature system
by inverting the procedures followed in encryption/decryption: the signer
uses his private key to “decrypt” (sign) the document. Since his correspond-
ing public key is public, anyone can check the signature by “encrypting” the
signed document using the public key. If the encrypted version of the signed
document matches the original document, then the signature is verified.

The problem with public key cryptosystems is that they are not very effi-
cient. Another problem is that since the signature is really the “decrypted”
version of the document, it has the same length as the document itself. Both
these problems can be solved by using a cryptographic hash function.

The method (in brief) is the following [168]: the signer hashes the doc-
ument M using the collision resistant hash function H. She then signs the
hash H(M) (yielding y), and sends the pair (M, y) to the recipient. To verify
the signature, the recipient computes H(M), and checks that y is the cor-
rect signature of H(M). If H is collision resistant then (at least intuitively)
H(M) can be used in place of M , and therefore the signature on H(M) is
just as valid as the signature on M .

The advantage of this method is that H maps the message into a (usually)

1.2. APPLICATIONS OF HASH FUNCTIONS 13

shorter bit string, and since H is often much more efficient than the signing
procedure, time is saved in the end. Also some space (and thus bandwidth)
is saved, because y now has the same length as H(M) instead of the same
length as M .

1.2.3 Message Authentication

Message authentication is a “down-scaled” form of digital signature, where
the recipient of a message can check that the message received is identical
to the message that was sent. The idea is the following. The sender and
recipient agree on a key K. The sender computes the message authentication
code (MAC) of the message using the key K, and sends both the message
and the MAC to the recipient. The recipient verifies that the MAC of the
message is correct, given key K.

Since the MAC could have been computed by both parties, it cannot be
used to prove the identity of the originator of the message to others.

The requirements for a MAC algorithm are that it should not be possible
for a third party (not knowing the key) to compute a new message/MAC
pair that the recipient will accept. (Note that the attacker may repeat a
message/MAC pair already sent; this cannot be prevented, and therefore
often a timestamp or a counter is included in the message.)

A number of MAC algorithms based on cryptographic hash functions have
been proposed: The envelope MAC scheme [92, 207] (which seems to have
many other names, including the hybrid scheme, the sandwich scheme, etc.),
HMAC [7], and MDx-MAC [164] are three examples.

HMAC is the most commonly used hash-based MAC. It is specified
in [147] and [114], and standardised in [2]. HMAC is implemented in a num-
ber of network security protocols such as TLS/SSL [57], SSH, and IPsec [95].
Given the hash function H, HMAC works roughly as follows. Let the key be
K, and let ipad and opad be distinct constant strings of the same length as
K. Then HMAC is defined as

HMAC(K, M) = H(K ⊕ opad‖H(K ⊕ ipad‖M)).

Here, and in the following, ‘⊕’ is the exclusive-or (XOR) operator.

1.2.4 Ciphertext Correctness Verification

Public key cryptosystems are expected to satisfy a very strong security re-
quirement, namely they must resist so-called Adaptive Chosen-Ciphertext

14 CHAPTER 1. INTRODUCTION

attacks. Public key cryptosystems do not, in general, satisfy this require-
ment per se. To achieve this level of security, cryptographic hash functions
can be used. For details as to how this is done, we refer to e.g., [124].

1.2.5 Proof of Knowledge

Consider the following scenario. A research team decides to organise an in-
ternal football betting competition for the upcoming world cup qualification
match between Sweden and Denmark. They decide to play on the final score,
and each participant pays 50 DKK for each bet. When the result is known,
the full amount placed is shared among the winners. But how do the par-
ticipants place the bets in such a way that nobody knows the other people’s
bets before they make their own?

They use hash functions: each participant writes down his bet in a text
file, followed by a newline character, followed by a sequence of 20 random
printable characters (a so-called “nonce”). He then hashes the text file,
and publishes the hash. When every participant has placed his bet, the
participants publish the text files containing their bets. If someone suspects
foul play, he computes the hash of each text file, and compares with the
published hashes. The purpose of the nonce is to make it infeasible to perform
an exhaustive search among all possible bets. If the hash function is collision
and preimage resistant, then it is impossible to cheat.

The above example is a special case of the more general concept of proof
of knowledge protocols.

1.2.6 Source of Pseudo-randomness

Cryptographic hash functions may be used to construct pseudo-random num-
ber generators. Pseudo-random number generators are algorithms that, given
a relatively short input, called a seed, are able to produce a sequence of num-
bers that “look random”. A few examples are described in [151]. Hash
functions are also used as a source of randomness within some cryptographic
schemes.

For example, in the Digital Signature Standard (DSS) [144], pseudo-
random numbers are used extensively, e.g., to compute large primes and
to compute a so-called per message secret number. The hash function SHA-
1 [146] is recommended for this purpose.

As an example, two large primes p and q are needed in the generation
of the public/private key pair. The prime q is computed by means of the
following algorithm.

1: repeat

1.3. BRIEF HISTORY 15

2: Choose an arbitrary seed x of at least 160 bits (let |x| = d).
3: Compute U ← H(x)⊕H((x+1) mod 2d), where H is the SHA-1 hash

function.
4: Compute q ← U ∨ 2159 ∨ 1.

{Now 2159 < q < 2160, since SHA-1 is a 160-bit hash function, and
both the 159th and the least significant bits of q are set}

5: until q is prime

The second prime, p, is computed as a function of q, the seed, and other
values. SHA-1 is also used in the computation of p.

1.2.7 Key Derivation

Key derivation functions (KDFs) are used to construct a number of crypto-
graphically strong keys from an initial bit string, which is expected to contain
some randomness, but not necessarily to be suitable as a cryptographic key
by itself. In other words, the key derivation function is expected to evenly
distribute the entropy of the input string over the output, which will often
be of a different length than the input.

Hash functions are often used to construct key derivation functions, e.g.,
[1, 57, 63, 89, 113, 149, 182]. It can be argued that some of these construc-
tions are bad practice [1, 113]. However, hash functions do seem to be the
natural primitive to use in the construction of a KDF.

1.3 Brief history

The first reference to an algorithm which today would be called a crypto-
graphic hash function seems to have been by Wilkes [219], 1968, who men-
tions a device constructed by Needham. It is not publicly known how Need-
ham’s device worked. Purdy was one of the first to describe [165] a practical
design; it was based on polynomials over finite fields. Evans, Kantrowitz and
Weiss described [66] a method based on a block cipher in the same journal
issue. These “hash functions” in fact did not compress; they were intended
to be used in a password protection scheme.

Diffie and Hellman invented [58] public key cryptography (Merkle [132],
apparently independently, made the same discovery) in 1976. Public key
cryptography provided a method for obtaining digital signatures; Rabin [168]
proposed to apply a hash function to the message before signing, for increased
performance and security.

Matyas, Meyer, and Oseas described [127] some block cipher based hash
function constructions, which are still in use today. The MDC-2 construc-

16 CHAPTER 1. INTRODUCTION

tion [135], which produces a 2n-bit hash function from an n-bit block cipher,
was developed at IBM in 1987. Rivest developed the (apparently) first pub-
licly known dedicated cryptographic hash function, MD2 [91, 120], in 1988.
In 1989, Damg̊ard [48] and Merkle [134] independently described construc-
tion methods for hash functions. MD2 was followed by another design by
Rivest called MD4 [170–172] in 1990. MD4 employed the principles proposed
by Damg̊ard and Merkle. It was superseded by MD5 [173] in 1991. In 1993,
the U.S. National Institute of Standards and Technology (NIST) developed
the Secure Hash Standard (SHA) [142] on the basis of MD4 and MD5. Two
years later, NIST revised the hash standard [143] with a small change to
the algorithm. The new algorithm was called SHA-1, and the first version is
often (but not officially) named SHA-0. MD5 and SHA-1 were very popular
hash functions, and they are still in widespread use.

Weaknesses in MD4 were published in 1991 [54]. MD5 was partly crypt-
analysed in 1993 [55]. The first collision in MD4 was found by Dobbertin in
1996 [59, 61]. SHA-0 was cryptanalysed in 1998 [31]. However, the runtime
of the algorithm was too high to be carried out in practice. In 2004, near-
collisions were found for SHA-0 [16]. 2005 proved to be a grand year for hash
function cryptanalysis. Improved collision attacks on MD4 and SHA-0 were
published [17, 214], and the first collision attack on the full MD5 hash func-
tion was described [216]. A practical collision attack on SHA-0 was published
later the same year [217], and so was the first collision attack on SHA-1 [215].
The Chinese cryptographer Xiaoyun Wang was a dominant character in most
of the attacks that were published in 2005.

All these attacks, and in particular the attacks on MD5 and SHA-1, were
quite a shock to the cryptographic community. Although cryptanalysis of
hash functions had improved over the previous years, practical or almost
practical attacks on the most commonly used hash functions were not ex-
pected to appear so soon. NIST had already updated its suite of secure hash
functions with the so-called SHA-2 family [146], but these hash functions
were developed on the same principles as MD4, MD5, and SHA-1, and there-
fore the confidence in the SHA-2 family was also damaged by the attacks
that appeared in 2005.

In response, NIST hosted a Cryptographic Hash Workshop in October
2005, and another one in August 2006. It was decided to initiate a public
competition to develop a new set of hash functions, to be named SHA-3, to
augment the existing Secure Hash Standard [146]. The call for candidate
algorithms was made in November 2007 [141]. The deadline for candidate
submissions was October 31, 2008.

Chapter 2

The Merkle-Damg̊ard
construction

The majority of hash functions proposed in the past have been based on
the so-called Merkle-Damg̊ard construction. In this chapter, we describe the
Merkle-Damg̊ard construction and discuss its properties. In the past few
years, a number of attacks and weaknesses of the Merkle-Damg̊ard construc-
tion have been described. We present some of these as well.

2.1 Introduction

As we have seen, a hash function in principle accepts messages of arbitrary
length, and produces a fixed-length output. How does one obtain compres-
sion from strings of any length, to strings of a fixed, short length?

The most common method used in practice is to iterate over a so-called
compression function, that takes a fixed-length input and produces an output
of a fixed, but shorter, length. The output size is n bits. If the input size is
b > n, then we may think of the compression function as a function f with
the interface {0, 1}n × {0, 1}b−n → {0, 1}n, hence, as a function accepting
two inputs, one of size n bits, and one of size b− n bits. In the following we
let µ = b − n. To hash a message M of size N bits, we may split M into a
number of chunks, or message blocks, of size µ bits each, and then process
each block one at a time using f . The first input to f will then be a state,
that is “updated” by the second input, the message block. The output is the
new, updated, state.

To be more precise, a hash function H may iterate a compression function
f as follows. Let M be the message to be hashed, and assume that it is split
into t message blocks m1, . . . , mt. Define an initial state (or initial value) iv

17

18 CHAPTER 2. THE MERKLE-DAMGÅRD CONSTRUCTION

which is fixed for the hash function H. Let h0 = iv. Then, for each i from 1
to t do the following:

hi ← f(hi−1,mi). (2.1)

The last state, ht, is then the output of the hash function, i.e., H(M) = ht.
We call the values hi chaining values, chaining variables, or intermediate hash
values, depending on the context.

But what if N , the size of the message M , is not a multiple of µ? Then
we need a second function, which we shall call padµ, that enlarges M so that
its length is a multiple of µ. Hence, instead of feeding M to H directly, we
feed padµ(M) to H. This means, of course, that padµ must not produce
collisions, because if it did, then it would mean a collision for H as well.

This also means that every message must be padded, even if its length
is already a multiple of µ. If it was not, then it would be easy to find a
collision: Choose an arbitrary message M of length not a multiple of µ. Pad
M to M∗, i.e., M∗ = padµ(M). Since M∗, considered as a message in its
own right, would not be padded, M and M∗ will collide.

In the following, we think of padµ as being part of H, meaning that H
takes care of calling padµ. A possible definition of padµ is the following.

Definition 2.1. The padding function padµ padding messages to a multiple
of µ bits is defined as follows: given input M of length N bits, append the
bit ‘1’ to M , and then append (−N − 1) mod µ ‘0’ bits. This clearly ensures
that the length of the padded version of M is a multiple of µ, and also that
padµ does not produce collisions.

To see why no collisions are produced by this definition of padµ, note that
given any output of padµ, we can uniquely restore the input by removing all
trailing ‘0’ bits as well as the last ‘1’ bit. If we did not always include the ‘1’
bit in the padding, then we would not know how many of the trailing ‘0’ bits
came from the padding, and how many were part of the original message.

We are getting close to a description of the Merkle-Damg̊ard construc-
tion, but we are not quite there yet. The strength of the Merkle-Damg̊ard
construction lies in the fact that there is a reduction proof, that reduces the
collision resistance of the hash function to the collision resistance of the com-
pression function. This security proof requires a slightly more complicated
padding function. Consider the construction (2.1), with the padding function
of Definition 2.1. A collision may be obtained by the use of a so-called fixed
point, i.e., an input pair (h,m) to f such that f(h,m) = h. If such a pair is
found, and h = iv, then the two messages m and m‖m collide in H, but no
collision for f has been found.

To overcome this problem, the padding function is changed so that it
includes the length of its input in the padding. We give the padding function

2.1. INTRODUCTION 19

an additional subscript τ , whose role is explained later (recall that µ is the
message block length).

Definition 2.2. The padding function pad∗µ,τ is defined as follows: given
input M of length N bits, append the bit ‘1’ to M , and then append (−N −
τ − 1) mod µ ‘0’ bits. Finally, append a τ -bit representation of N . This
clearly ensures that the length of the padded version of M is a multiple of
µ, and also that padµ,τ does not produce collisions.

Since it must be possible to encode N using τ bits, τ in fact defines
the upper limit 2τ − 1 to the length N of inputs to the padding function.
Although a hash function is expected to accept messages of arbitrary length,
in practice it is usually fine if there is a very high upper limit on the message
length. For example, most hash functions in common use have τ ≥ 64.

We note that when the length of the input is included in the padding, we
no longer need to append a ‘1’ bit before appending ‘0’ bits; the input can be
reconstructed simply as the first N bits of the output, where N is obtained
from the last τ bits of the output. However, it is customary to include the
‘1’ bit in the padding anyway.

The practice of including the length of the original message in the padding
is often called MD-strengthening (due to Lai and Massey [115]).

With the padding function of Definition 2.2, the construction described
above is identical to our definition of the Merkle-Damg̊ard construction. For
completeness, we define the Merkle-Damg̊ard construction from scratch (see
also Figure 2.1).

Construction 2.1 (The Merkle-Damg̊ard construction). The Merkle-Dam-
g̊ard construction defines a hash function H given some value of τ , an initial
value iv, and a compression function f : {0, 1}n × {0, 1}µ → {0, 1}n, as
follows. Let the input be M , and let M∗ = pad∗µ,τ (M), where pad∗µ,τ is as
defined in Definition 2.2. Split M∗ into blocks m1, . . . ,mt, let h0 = iv, and
compute h1, . . . , ht sequentially as

hi ← f(hi−1, mi) for 1 ≤ i ≤ t.

Finally, let H(M) = ht.

It is easy to prove that if one has found a collision for H, then one has
found a collision for f . In other words, if f is collision resistant, then H is
as well. Due to the existence of this security proof, as well as its relative
simplicity, the Merkle-Damg̊ard construction has for many years been a very
popular construction method for hash functions.

20 CHAPTER 2. THE MERKLE-DAMGÅRD CONSTRUCTION

. . .

m2

f-h0 = iv

m1

f-

mt

f- - H(M) = ht

-- -

Figure 2.1: The Merkle-Damg̊ard construction.

Later, it will be convenient to have a short notation for the action of
“partially” hashing a message. Let M be a message whose length is a multiple
of µ bits, and let h be an n-bit chaining value. Then we shall write F (h,M)
as a shorthand for f(f(· · · f(h,m1) · · ·),mt), where M = m1‖ · · · ‖mt, and
each mi is µ bits in length.

The Merkle-Damg̊ard construction is called the Merkle-Damg̊ard con-
struction because R. Merkle [134] and I. Damg̊ard [48], apparently indepen-
dently, came up with constructions having the mentioned type of security
proof. The construction as defined here more closely resembles Merkle’s pro-
posal than Damg̊ard’s, but since they are fairly similar, and Damg̊ard was
the first to give a formal definition of collision resistance, the construction is
usually attributed to both.

2.2 Attacks and weaknesses

The Merkle-Damg̊ard construction provably extends collision resistance of
the compression function f to collision resistance of the hash function H.
However, some other properties are not inherited by H from f . Moreover,
some attacks and weaknesses of the Merkle-Damg̊ard construction have been
identified. This does not mean that the Merkle-Damg̊ard construction is
“broken”, however, since the purpose of the construction from the very begin-
ning was only to prove collision resistance. Still, the attacks and weaknesses
are seen by some as an indication that the Merkle-Damg̊ard construction
does not have all the desired properties of a hash function construction.

In this section, we describe some of the known attacks and weaknesses
of the Merkle-Damg̊ard construction. We introduce the term generic attacks
for attacks on a construction method, where the underlying primitive (e.g.,
compression function) is assumed to be secure in all respects. An attack that
exploits weaknesses in an underlying primitive is called a shortcut attack.

2.2. ATTACKS AND WEAKNESSES 21

2.2.1 Property preservation

The term property preservation refers to the ability of a hash function con-
struction to extend properties of the compression function to the full hash
function. We have seen that the Merkle-Damg̊ard construction preserves
collision resistance. What about other properties?

Assume f is computationally indistinguishable from a random oracle
truncated to n bits. We call such a function a pseudorandom oracle. This
f is a secure compression function. No attacks better than birthday and
brute force attacks exist. In a sense, f is ideal. Does the Merkle-Damg̊ard
construction preserve this “ideality”? Unfortunately, it does not.

A simple counter-example is the following [37]. Assume that f is a pseu-
dorandom oracle, and that we can call f and the Merkle-Damg̊ard hash func-
tion H based on f . We want to do it in such a way as to prove that H is not
random. First, choose a one-block message m1, and define m∗

1 = pad∗µ,τ (m1).
Let y = H(m1). Then, let z = f(y,m2) for a message block m2 such that
m∗

1‖m2 = pad∗µ,τ (M) for some message M . Now, we know that H(M) = z
without ever asking this query. Hence, the outputs of H are not independent,
and therefore H cannot be pseudorandom. This observation is related to two
weaknesses described in the following subsection.

We shall see below (Section 2.2.4) that the Merkle-Damg̊ard construction
also does not preserve second preimage resistance. A much simpler coun-
terexample [5], however, proves that the Merkle-Damg̊ard construction does
not preserve second preimage resistance nor preimage resistance: assume f
is a pseudorandom oracle, with the exception that f(iv,m) = iv for all m. In
the definition of preimage and second preimage resistance, it is assumed that
the attacker is given a randomly chosen image or first preimage. Therefore,
this f is still preimage and second preimage resistant (in effect, the resistance
degrades by a factor about 1/(1 − 2−n)). However, H(M) = iv for all M ,
and therefore preimages and second preimages of the hash function can be
found in constant time.

Much research has in recent years been devoted to designing constructions
that preserve as many properties of the compression function as possible.
Some examples are [4, 5, 8, 32, 37]. In Section 3.3.4 we describe some of
these.

2.2.2 Length extension

If two messages M and M∗ of the same length collide in H, and H is a
Merkle-Damg̊ard-based hash function, then it is possible to construct many
suffices y such that M‖y and M∗‖y also collide. The suffix y is under almost

22 CHAPTER 2. THE MERKLE-DAMGÅRD CONSTRUCTION

complete control of the attacker – the only restriction is that the first bits
must be identical to the padding, so that padµ,τ (M) is a prefix of M‖y, and
likewise for M∗. Hence, a single collision provides the ability to produce an
almost arbitrary number of collisions. This is often seen as a weakness of the
Merkle-Damg̊ard construction.

Another related weakness is the fact that given H(M) and |M |, but not
M itself, one is able to compute H(M‖y) for any y with the same property
as above.

It is not clear who first described these weaknesses. They are not men-
tioned in the Crypto ’89 papers [48, 134] by Damg̊ard and Merkle. In the
Handbook of Applied Cryptography [131, Example 9.64], the second weak-
ness above is indirectly described. Both weaknesses have been folklore knowl-
edge for many years.

2.2.3 Multi-collisions

The Merkle-Damg̊ard construction allows so-called multi-collisions to be fo-
und more easily than one would expect for an ideal hash function. Multi-
collisions are now defined.

Definition 2.3 (Multi-collision). Given the hash function H, an r-collision
is a set {m1, . . . , mr} of r messages that all hash to the same value, i.e.,
H(m1) = . . . = H(mr). A 2-collision is what is usually merely called a
collision.

The expected complexity of finding an r-collision in an ideal hash function
is often stated as 2(r−1)n/r, but this expression is simplified. A more precise
estimate is

(
r!1/r

)
2(r−1)n/r [56, 202].

At Crypto 2004, Joux described a method for constructing multi-collisions
in hash functions based on the Merkle-Damg̊ard construction [90]. We note
that already in 1985, Coppersmith [35] used the same method to efficiently
forge a digital signature scheme by Davies and Price [50]. However, Copper-
smith did not generalise the idea.

The method allows one to find a 2t-collision in time t2n/2, namely by
finding t regular (2-)collisions. We describe the attack here, and we note
that the attack applies to many other conceivable types of iterated hash
functions, not just to Merkle-Damg̊ard.

Let C be an algorithm that (using the birthday attack or some other
method) finds collisions in f given some chaining input. Let the initial value
of H be h0. Obtain a collision (m1,m

∗
1) from C with h0 as chaining input,

i.e., h1 = f(h0,m1) = f(h0,m
∗
1). Now, obtain a second collision (m2,m

∗
2)

from C with h1 chaining input. Repeat this t times. We now have t pairs of

2.2. ATTACKS AND WEAKNESSES 23

messages, (m1,m
∗
1), (m2,m

∗
2), . . . , (mt,m

∗
t), such that we can form a t-block

message consisting of a member from each pair, and irrespective of how we
make the choice of members, we get the same hash value under H. See
Figure 2.2. There are 2t ways to form such a message, an hence we have a

· · ·
ht−1

mt

m∗
t

hth0 h1
m1

m∗
1

h2
m2

m∗
2

h3
m3

m∗
3

~
>

~
>

~
>

~
>

Figure 2.2: Joux’s multi-collision attack on the Merkle-Damg̊ard construction.

2t-collision. The complexity of the attack is t times the complexity of finding
a single collision with C, which is at most 2n/2 for any hash function. Hence,
the complexity is t2n/2. This is much less than the ideal complexity, which
approaches 2n quickly as t increases.

2.2.4 Second preimage attack

At Eurocrypt 2005, Kelsey and Schneier presented [94] a second preimage
attack on all hash functions based on the Merkle-Damg̊ard construction. The
complexity of the attack decreases with the size of the given (first) preimage.

Expandable messages

The attack uses so-called expandable messages. An expandable message is
in fact a set B of messages {M1,M2, . . . , Mk} of different lengths, such that
given some initial value h, we have F (h,Mi) = F (h,Mj) for any (i, j), 1 ≤
i, j ≤ k. Therefore, in a slight abuse of notation, we shall write F (h,B)
in short. If B contains messages of any length from a to b blocks (both
inclusive), then we say that we have an (a, b)-expandable message. Kelsey
and Schneier give two methods of constructing expandable messages that
both have complexity around 2n/2.

The first method is based on fixed points for the hash function (we note
that Dean already in 1999 described [53] a related but slightly less practical
attack). A fixed point is a pair (h,m) such that f(h,m) = h. Fixed points
can be found very efficiently (corresponding to one call of f) when the com-
pression function is based on the Davies-Meyer mode (Construction 3.1, see
Section 3.1). Many compression functions, including those of the MD4 fam-
ily, are. To construct an expandable message based on fixed points, one does
the following. Find 2n/2 fixed points (hi,mi). Note that the values hi are
generally not under the control of the attacker. Now, given an initial value

24 CHAPTER 2. THE MERKLE-DAMGÅRD CONSTRUCTION

iv, compute about 2n/2 intermediate hash values f(iv,m′
i) using arbitrary

message blocks m′
i. With good probability, there is a match between the

chaining values produced by the message blocks m′
i and the chaining values

that form fixed points. This means that some message pair (m′
i,mj) exists

such that f(iv,m′
i) = F (iv,m′

i‖mj) = F (iv,m′
i‖mj‖mj) = Now we have

a (1,∞)-expandable message, constructed in time about 2n/2+1. (See also
the description of a meet-in-the-middle attack in Section 4.1.4.)

If fixed points cannot be efficiently found, then a variant of Joux’s multi-
collision attack, as described in the previous section, can be applied. Assume
we have an algorithm C that takes as input a positive integer ` and a chaining
value h, and returns a collision (M0,M1) such that F (h, M0) = F (h,M1), and
M0 is a one-block message and M1 is an `-block message. We call this a (1, `)-
collision. On a hash function where µ ≥ n/2, collisions of this kind are no
harder to find than, say, collisions of two one-block messages.
We construct a (k, 2k+k−1)-expandable message starting from h0 as follows.
For each i from 0 to k − 1, find a (1, 2i + 1)-collision starting from hi, where
the common output of F in the ith step is hi+1. Let the ith collision be
(M i

0,M
i
1), 0 ≤ i < k. Now, F (h0,M

0
b0
‖ · · · ‖Mk−1

bk−1
) = hk for any bit-vector

b = (b0, . . . , bk−1). The time required to construct the expandable message is
around k2n/2. To form a message of length t blocks (where k ≤ t ≤ 2k+k−1),
view t̃ = t− k as a k-bit binary number, and let bi be the ith bit of t̃, where
counting starts from the least significant bit. The length of the resulting
message is

∑k−1
i=0 (1 + bi2

i) = k +
∑k−1

i=0 bi2
i = k + t̃ = t.

An example is in order.

Example 2.1. Expandable message
To construct a (4, 24 +4− 1)-expandable message B (i.e., k = 4) starting from h0,
do the following.
1: Find a (1, 2)-collision (M0

0 ,M0
1) starting from h0, with h1 = F (h0,M

0
0) =

F (h0,M
0
1).

2: Find a (1, 3)-collision (M1
0 ,M1

1) starting from h1, with h2 = F (h1,M
1
0) =

F (h1,M
1
1).

3: Find a (1, 5)-collision (M2
0 ,M2

1) starting from h2, with h3 = F (h2,M
2
0) =

F (h2,M
2
1).

4: Find a (1, 9)-collision (M3
0 ,M3

1) starting from h3, with h4 = F (h3,M
3
0) =

F (h3,M
3
1).

Now F (h0,M
0
b0
‖M1

b1
‖M2

b2
‖M3

b3
) = h4 for all bit-vectors b = (b0, b1, b2, b3).

A message of length t = 15 blocks may be formed as follows. Let t̃ = t− k = 11,
which is 1011 in binary. Let b = (1, 1, 0, 1) (note that the order of the bits is
reversed). Hence, the 15-block message from B is M0

1 ‖M1
1 ‖M2

0 ‖M3
1 . To check,

note that M0
1 has length 2 blocks, M1

1 has length 3 blocks, M2
0 has length 1 block,

and M3
1 has length 9 blocks. In total, 15 blocks.

2.2. ATTACKS AND WEAKNESSES 25

Finding the second preimage

Recall that we are describing a second preimage attack. Say the first preimage
M = m1‖ · · · ‖mt produces the intermediate hash values w1, . . . , wt, where
wt = F (iv,M). Here, we assume for simplicity that the length of M is a
multiple of µ bits. If this is not the case, then we may ignore the message
block mt for a while and use t− 1 instead of t below.

First, we find an (a, b)-expandable message B (with b being less than,
but approximately equal to t) starting from h0 = iv, and with v = F (h0, B).
Then, to find a second preimage, we search for a linking message block d
such that f(v, d) = wi for some i, a < i ≤ b + 1. The second preimage
will have the form M∗ = B‖d‖mi+1‖ · · · ‖mt. To ensure that padding is the
same for M and M∗, the length of M∗ has to be the same as the length of
M , so we have to expand B to a length of i− 1 blocks. Since F (iv, B‖d) =
F (iv,m1‖ · · · ‖mi), the two messages produce the same intermediate hash
values from the ith value on, and since |M | = |M∗|, padding is also the same
for the two messages. Therefore they collide, and M∗ is a second preimage
of M .

Complexity

As mentioned, the complexity of finding the expandable message depends on
the method; if fixed points are used, then the complexity is about 2n/2+1. The
complexity of the second method using a multi-collision, in turn, depends on
the size of the expandable message. In order to match the size of the first
preimage, one would construct a (k, 2k + k − 1)-expandable message, with
2k ≈ t. This takes time approximately k2n/2.

With 2k ≈ t, finding the linking block d takes expected time close to
2n−k, because there are about 2k possible intermediate values that may be
hit, and the probability of hitting each of them is about 2−n. Hence, it is
clear that the attack gets more efficient as t increases. However, computing
the intermediate hash values wi is a task whose cost is placed on the attacker,
since in a second preimage attack, we assume the attacker is given only the
first preimage and its final hash. Computing the t intermediate hash values
takes time about t.

In total, the complexity of the attack when fixed points are used to find
the expandable message is about 2n/2+1 + 2n−k + 2k, again with 2k ≈ t. If
the expandable message is constructed using a multi-collision, then the total
complexity of the attack is about k2n/2 + 2n−k + 2k. See Table 2.1. We see
that approximately 2n/2 is a lower bound on the attack, regardless of the
length of the first preimage. Also, the length of the first preimage is upper

26 CHAPTER 2. THE MERKLE-DAMGÅRD CONSTRUCTION

Table 2.1: Complexities of the second preimage attack assuming a first preimage
of length about 2k message blocks, using two different methods of constructing the
expandable message.

Expandable message method Complexity

Fixed points 2n/2+1 + 2n−k + 2k

Multi-collision k2n/2 + 2n−k + 2k

bounded by the value of τ in the padding function of Definition 2.2.

The memory requirements are up to about 2n/2 for finding the expandable
message using fixed points, but may be negligible (for the expandable message
construction) if the method using a multi-collision is used. The attacker also
needs to store the t intermediate hash values of the first preimage.

As an example, in SHA-256 the maximum message length is about 255

blocks. Fixed points can be efficiently found in SHA-256. Hence, if one ever
comes across a first preimage of length about 255 message blocks, a second
preimage can be found in time about 2129 + 2256−55 + 255 ≈ 2201. A brute
force second preimage attack takes time 2256.

2.2.5 The “Nostradamus” attack

The Merkle-Damg̊ard construction also allows a non-standard type of attack
sometimes referred to as the Nostradamus attack, or less exotically as a cho-
sen target forced prefix attack (CTFP). The particular technique described
in this section to carry out the Nostradamus attack is called the “herding
attack” [93].

In a Nostradamus attack, the attacker claims to be able to predict future
events. He does this by publishing a hash value T before the event takes place.
After the event, he publishes a message M , containing enough information
to “prove” that the attacker knew about the event before it took place, and
such that H(M) = T .

For an ideal hash function, this “attack” has expected complexity 2n –
assuming that the attacker does not possess the Nostradamus-like ability to
predict future events. The attack resembles a preimage attack. However,
in this case, the attacker is allowed to choose the target image, but must
produce a message whose contents is not under his complete control.

On Merkle-Damg̊ard hash functions, the attack can be carried out as
follows. First, there is a precomputation phase, which produces the hash
value T to be published. After the event has taken place, the online phase
can begin.

2.2. ATTACKS AND WEAKNESSES 27

Precomputation phase

The attacker finds collisions forming a binary tree with nodes labelled with
intermediate hash values, and edges labelled with message block values. The
tree has a structure such that every pair of siblings in the binary tree collides
(under f) to the intermediate hash value nearer to the root. The collision is
of the form (h,m), (h∗,m∗), where h 6= h∗. At the root is the intermediate
hash value T ∗. With d being a padding block containing correct padding
(hence, the length of the final message must be known at this point), we
have f(T ∗, d) = T , where T is the hash value that is published.

The depth of the tree is k, so there are 2k leaves, all having different labels.
From each leaf, there is a path of message blocks leading to the root. A final
message length greater than k blocks must be chosen, and the padding block
d will contain correct padding for a message of this length. See Figure 2.3.

T

Figure 2.3: The tree with a path highlighted.

The tree can be constructed in time about 2n/2+k/2 as follows. For each of
the 2k starting values (values of the leaves) hi, compute yi,j = f(hi,mj) for
2n/2−k/2 arbitrary message blocks mj. Now, for each pair of leaves (hi, hi′),
the probability that there is a message pair (mj,mj′) such that yi,j = yi′,j′ ,
is about (2n/2−k/2)2 · 2−n = 2−k. Hence, we expect that each starting value
collides with one other starting value (on average), forming a pair of siblings.
These figures are rough, but close enough.

The next level in the tree can be produced twice as fast, etc., so the
total complexity is in fact about 2n/2+k/2+1. The leaves can be stored in a
list L, thus containing 2k intermediate hash values. Having constructed the
tree, the hash value T can be published, and the precomputation phase is
completed.

Online phase

When the event has taken place, a (sub-)message M∗ is produced containing
information “proving” prior knowledge of the event. Compute v = F (iv,M∗)

28 CHAPTER 2. THE MERKLE-DAMGÅRD CONSTRUCTION

(we assume for simplicity that the length of M∗ is a multiple of µ). Now,
search for a (random) linking block mL such that f(v, mL) ∈ L. This is
expected to require 2n−k calls to f . From the intermediate hash value in L
there is, as mentioned, a path that leads to the root of the tree constructed
in the precomputation phase. If this path is called MP, then we have that
H(M∗‖mL‖MP) = T (d contains all padding). See Figure 2.4.

M∗

mL

MP

d
Tiv

Figure 2.4: The Nostradamus attack.

Complexity

The complexity of the precomputation phase is about 2n/2+k/2+1. The com-
plexity of the online phase is about 2n−k. Balancing the two phases yields
k ≈ n/3, resulting in a total complexity of 22n/3+1 for the precomputation
phase, and 22n/3 for the online phase. This is below the expected complexity
for an ideal hash function of 2n.

Variants

In some cases, other (more efficient) methods of carrying out the Nostrada-
mus attack can be applied [93]. For instance, one can use the multi-collision
and second preimage attacks described above. The multi-collision attack can
be used in scenarios where the message that is published in the end may con-
sist of a sequence of blocks containing information such as true/false, yes/no,
etc. Combined with a document scripting language such as PostScript, it can
also be used to predict, e.g., stock prices. See also Section 4.1.2.

The second preimage attack can be used instead of the herding attack
described above, and it gives the attacker complete freedom in choosing a
large part of the message, but the final message will become very long. The
attacker simply chooses a very long first preimage, hashes it, and publishes
the hash value. In the online phase, he constructs the desired message prefix,
partially hashes it to obtain the intermediate hash value y, and carries out the
second preimage attack, assuming y is the initial value. The complexity of

2.2. ATTACKS AND WEAKNESSES 29

the attack may be lower than that of the herding attack, if the hash function
accepts very long messages. The final message will contain many message
blocks that are equal to those in the first preimage. Thus, the attacker has
a large amount of freedom which he may be able to apply in producing a
convincing message, despite its being very long.

30 CHAPTER 2. THE MERKLE-DAMGÅRD CONSTRUCTION

Chapter 3

Hash function design

In the beginning of hash function history, hash functions were often based on
a cryptographic primitive called a block cipher. A block cipher is a combined
encryption/decryption primitive. In encryption mode, the block cipher ac-
cepts as input a key K and a plaintext block m, and outputs a ciphertext
block c = E(K, m), often written c = EK(m). The function E is invert-
ible when K is known, and hence the ciphertext can be decrypted such that
m = E−1

K (c). Without knowing the key K, this task is supposed to be dif-
ficult. It is also supposed to be difficult to find K from a number of pairs
(m, c), even if m or c may be chosen by an attacker in all pairs. We note that
it is always the case that |m| = |c|, e.g., |m| = n, but furthermore we often
assume that |K| = n (or |K| = 2n). Hence, a block cipher (in encryption
mode) in a sense compresses the 2n (or 3n) bits constituting the key and the
plaintext block to n bits of ciphertext.

Most hash functions can be described as being based on a block cipher,
but in many cases the block cipher was designed specifically for use in a
hash function, and is not necessarily secure in the above sense. We call
such hash functions dedicated hash functions. This class of hash functions
generally includes all hash functions that are not based on some existing
primitive, but were rather designed “from scratch”. By block cipher-based
hash functions we mean hash functions based on an existing block cipher,
that was designed for encryption/decryption.

Hash functions may also be based on “non-compressing” primitives, for
instance permutations. Since a hash function compresses, it may be clear
that constructing a hash function from a non-compressing primitive poses an
additional challenge compared to the above case.

In this chapter, we discuss all the above mentioned types of hash func-
tions, and we present some specific examples. Three of these were co-designed
by the author. We also discuss some alternatives to the Merkle-Damg̊ard

31

32 CHAPTER 3. HASH FUNCTION DESIGN

construction.

3.1 Hash functions based on block ciphers

Most hash functions in use today are based on a block cipher, but they are
often not considered as such, since the block cipher was designed for the hash
function specifically, and was never intended to be used for encryption. This
section deals with hash functions whose compression function makes intensive
use of an existing block cipher. Typically, the compression function is iterated
in Merkle-Damg̊ard mode. Security can in many cases be proven in the so-
called ideal cipher model, where the underlying block cipher is modelled as
an ideal cipher, i.e., a family of random permutations. It is important to note
that the ideal cipher model has some limitations. For instance, it is possible
to design a hash function construction that is provably collision resistant in
the ideal cipher model, but which completely fails to protect against collisions
once the block cipher is instantiated [21]. Although this construction is
extremely artificial, it gives rise to some doubts about security proofs in the
ideal cipher model. However, proving security in this model seems to be the
best we can do.

For block cipher-based hash function constructions, the rate is defined to
be the number of message blocks that are processed per block cipher call,
where a message block is assumed to have the same size as the block cipher.
More precisely, if n is the size of the block cipher, µ is the size of a message
block, and the construction requires t calls of the encryption function per
message block, then the rate is µ

tn
.

When a block cipher is used for encryption, the key is (usually) first
expanded to a number of round keys in what is called the key schedule.
Once the key schedule has been applied, the encryption can start. Hence,
the key schedule is applied at most once for each plaintext that must be
encrypted. When the block cipher is used in a hash function, however, the
key schedule often has to be applied once for each message block. For many
block ciphers, applying the key schedule is a fairly time-consuming operation,
often requiring about the same amount of time as (or more than) encrypting
a plaintext block. Therefore, block cipher-based hash function constructions
of rate 1 do not in practice provide hash functions with the same speed as
the underlying block cipher. This may be the single most important reason
why most hash functions used in practice were designed from scratch, and
not based on an existing block cipher. Another important reason is that
block ciphers may be covered by export restrictions, whereas dedicated hash
functions usually are not. However, the study of constructions turning a block

3.1. HASH FUNCTIONS BASED ON BLOCK CIPHERS 33

cipher into a secure hash function remains an important and interesting one.
The simplest type of constructions are the so-called single length con-

structions, for which the output size of the hash function equals the size
of the block cipher. Many (provably) secure constructions of this kind are
known [24, 163].

However, single length constructions may not be the most interesting
constructions in practice. This is due to the fact that relevant generic attacks
on n-bit block ciphers have complexity at least 2n, whereas, as mentioned,
for cryptographic hash functions, the generic birthday collision attack has
complexity 2n/2. Hence, most dedicated block ciphers are designed with n
sufficiently large for 2n to be an acceptable security level, but 2n/2 may not
be. Therefore, in order to construct a cryptographic hash function with
sufficiently large output, double length (or larger) constructions are needed.
Perhaps not surprisingly, these have turned out to be much more difficult to
design than single length constructions.

We start off with a brief discussion of some single length constructions
that were shown to be secure in [24, 163], and then we move on to double
length constructions. In the following, we let EK(m) be the function (ob-
tained from some block cipher) that encrypts the plaintext m using the key
K.

3.1.1 Single length constructions

As mentioned, many secure single length constructions are known. The most
famous and flexible of the secure constructions is (apparently due to [166])
called the Davies-Meyer construction.

Construction 3.1 (Davies-Meyer).

f(h,m) = Em(h)⊕ h.

The XOR with h is often called a feed-forward. It is unclear when this
construction was first described, but it was first proven to be one-way in the
ideal cipher model by Winternitz [220], and to be collision resistant (appar-
ently) by Black, Rogaway, and Shrimpton [24]. It has the advantage over
most other secure single length constructions that the block cipher key does
not need to be of the same size as the plaintext block. For this reason, the
construction is often used in dedicated hash function designs, for instance
in the SHA-2 family, where the “key” (message block) is twice as large as
the “plaintext block” (chaining value). Although it is provably collision and
preimage resistant in the ideal cipher model, the construction has a property
which may pose a problem in some applications: by setting h = E−1

m (0) (for

34 CHAPTER 3. HASH FUNCTION DESIGN

any m), one gets a fixed point, i.e., f(h,m) = h. We note, however, that h
is not under the direct control of the attacker.

Another famous and secure single length construction, apparently first
described in [127], is the dual of the Davies-Meyer construction. It is usually
named Matyas-Meyer-Oseas (or MMO) after the authors of [127].

Construction 3.2 (Matyas-Meyer-Oseas).

f(h,m) = Eh(m)⊕m.

This construction requires that |h| = |m|, i.e., that the key size is equal
to the block size. (Alternatively, one may apply a function g to the out-
put before using it as a key in the following iteration, such that the size is
correct. However, the security of the construction depends on the minimum
of the block size and the key size.) Like the Davies-Meyer construction,
this construction is collision resistant if the block cipher is secure. Fixed
points cannot be easily found. The MMO construction forms the basis of
the MDC-2 and MDC-4 double length constructions, which are described in
Section 3.1.2.

A third, secure single length construction is the so-called Miyaguchi-
Preneel construction, independently proposed by Miyaguchi (et al.) [136]
and Preneel [160].

Construction 3.3 (Miyaguchi-Preneel).

f(h,m) = Eh(m)⊕ h⊕m.

The hash functions N-Hash [136] and Whirlpool [6] are based on the
Miyaguchi-Preneel construction.

All these three constructions are provably secure in the ideal cipher model.
To be precise, these constructions provide secure compression functions.
There are constructions that provide completely insecure compression func-
tions, but for which the hash function is provably collision resistant. An
example is the following construction, which was apparently first proposed
by Rabin [167].

Construction 3.4 (Rabin).

f(h,m) = Em(h).

As mentioned, a hash function based on Construction 3.4 is provably
collision resistant, but preimages and second preimages can be found by a
so-called meet-in-the-middle attack (see Section 4.1.4) in time about 2n/2.

3.1. HASH FUNCTIONS BASED ON BLOCK CIPHERS 35

E

?
- - -?

m

h

(a) Construction 3.1

E

?
- - -?

h

m

(b) Construction 3.2

E

?
- - -?

h

m

6

(c) Construction 3.3

E

?
- -m

h

(d) Construction 3.4

Figure 3.1: Some single-length constructions. The “hatch” signifies the key input.

3.1.2 Double length constructions

A double length construction maintains a state of size 2n bits, where n is the
size of the underlying block cipher. Quite a large number of double length
constructions have been proposed in the past, and many of these have also
been shown not to be secure. Only recently, double length constructions with
provable security started to appear.

A large class of rate 1 double length constructions can be described as
follows. View the chaining input as a pair (hi−1, h̃i−1) of n-bit chaining values,
and let mi and m̃i be two n-bit message blocks (we assume that the key size
is equal to the block size). The two new chaining values, hi and h̃i, are
computed as

hi = f1(hi−1, h̃i−1,mi, m̃i) = EA(B)⊕ C

h̃i = f2(hi−1, h̃i−1,mi, m̃i, hi) = EU(V)⊕W,
(3.1)

where A,B,C are all linear combinations of the inputs to f1, and U, V, W
are all linear combinations of the inputs to f2 (note that these include the
output of f1). In [100], all constructions of this type were broken in the sense
of both collision and preimage attacks. Specific constructions that can be
described as (3.1) include Parallel Davies-Meyer [83], PBGV [161], and the
LOKI DBH mode [28].

Hence, it seems that secure double length constructions either have a rate
that is less than 1, or the block cipher must accept keys that are larger than
the block size. Two examples of the former are MDC-2 and MDC-4 [135],
patented by IBM [26] and standardised in ISO/IEC 10118-2 [86]. Let hi−1 and
h̃i−1 be two n-bit chaining inputs, and let mi be an n-bit message block. The

36 CHAPTER 3. HASH FUNCTION DESIGN

MDC-2 construction can then be described as follows (see also Figure 3.2).

Construction 3.5 (MDC-2).

v = Ehi−1
(mi)⊕mi

ṽ = Eh̃i−1
(mi)⊕mi,

followed by the computation of the two new chaining variables

hi = vL‖ṽR

h̃i = ṽL‖vR,

where vL and vR mean the left and right halves of v, respectively.

hi−1 h̃i−1

mi

- ¾
?

¾

E

?

?

?

-

E

?

?

? ???

? ?
hi h̃i

Figure 3.2: The MDC-2 construction.

MDC-2 has rate 1/2. MDC-4 is an up-scaled variant having rate 1/4.
We shall not describe MDC-4 here. MDC-2 has been proven [197] collision
resistant up to at least 23n/5 block cipher calls, where n is the block size of
the block cipher. We note that since the double length construction provides
2n bits of output, the collision resistance of an ideal hash function of the
same size is 2n. A preimage attack on MDC-2 of complexity about 23n/2 was
described in [115]. In Section 4.3, we describe a collision attack and improved
preimage attacks on MDC-2.

Some examples of constructions, which require that the block cipher ac-
cepts keys that are larger than the block size, are given next. Again, hi−1

and h̃i−1 are two n-bit chaining inputs, and mi is a message block.

Construction 3.6 (Tandem Davies-Meyer [115]). First, one computes

v = Ehi−1‖mi
(h̃i−1).

3.1. HASH FUNCTIONS BASED ON BLOCK CIPHERS 37

Then, the two new chaining variables are computed as

hi = Emi‖v(hi−1)⊕ hi−1

h̃i = v ⊕ h̃i−1.

Assuming the key size is twice the block size, the rate of this construction
is 1/2. No attacks are currently known. A second construction of this type
is the following.

Construction 3.7 (Abreast Davies-Meyer [115]).

hi = Emi‖h̃i−1
(hi−1)⊕ hi−1

h̃i = Ehi−1‖mi
(h̃i−1)⊕ h̃i−1,

where h is the bitwise complement of h.

Abreast Davies-Meyer has also not been broken. A more recent construc-
tion of the same type is due to Hirose [82].

Construction 3.8 (Hirose, FSE 2006).

hi = Eh̃i−1‖mi
(hi−1)⊕ hi−1

h̃i = Eh̃i−1‖mi
(hi−1 ⊕ c)⊕ hi−1 ⊕ c,

where c is a non-zero n-bit constant.

This construction is provably collision resistant in the ideal cipher model.
Note that the two block cipher applications use the same key, which means
that the key schedule only has to be applied once for each message block.
Hirose has proposed other double length constructions with provable secu-
rity [81].

Knudsen and Preneel suggested to construct multiple length schemes
based on error-correcting codes [104–106]. Some instances of these construc-
tions were broken in [218].

3.1.3 A generalisation

Double length constructions (or more generally: multiple length construc-
tions) can be used with not only a block cipher, but with any (secure) fixed
input length compression function. An example is to construct a secure 256-
bit external compression function from a number of secure 128-bit internal
compression functions.

38 CHAPTER 3. HASH FUNCTION DESIGN

Peyrin et al. [155] gave lower bounds on the number of internal com-
pression functions needed in a multiple length construction in order to offer
optimal collision and preimage resistance for the external compression func-
tion. The bounds are attack-based, meaning that the authors give general
attacks and state the minimum number of internal compression functions
needed for the attacks to fail. We note that the attacks apply to the external
compression function, but not necessarily to the hash function.

When considering double length constructions based on internal compres-
sion functions mapping from 2n to n bits, thus corresponding above to block
ciphers with equal key and block size, Peyrin et al. showed that at least five
internal compression functions are needed for the external compression func-
tion to be secure. With five internal compression functions, however, one
or two message blocks may be digested per external compression function
call, yielding a maximum rate of 2/5. MDC-2, for instance, is not secure
in the model used in [155], since a collision in the (external) compression
function can be found in time 2n/2, where 2n is required for a double length
construction to be secure. This is an example of a collision attack on the
compression function which does not seem extensible to the hash function,
since the attack assumes a large amount of freedom in the choice of chaining
inputs.

Peyrin et al. also showed that if the internal compression functions map
from 3n bits to n bits, then a secure rate 1/2 scheme may exist. We note
that Constructions 3.6, 3.7, and 3.8, where the latter is provably collision
resistant, are of this kind (assuming n-bit message blocks).

3.2 Permutation-based hash functions

Since hash functions based on block ciphers are somewhat penalised by the
frequent need for applying the key schedule, it is tempting to consider hash
functions based on a block cipher using only a small, fixed set of keys. Since
this means that only a few of the permutations offered by the block cipher will
be used, we shall call these hash functions permutation-based. The permu-
tations may, of course, also be designed from scratch (see, e.g., Section 5.1).
Permutation-based hash functions were first discussed by Preneel, Govaerts,
and Vandewalle [162]. We also mention a related class of hash functions,
namely those based on random non-compressing functions (i.e., they are not
permutations); in some cases, these random functions can be replaced by
permutations with a feed-forward of the input.

A large class of permutation-based hash functions was analysed by Black,
Cochran, and Shrimpton [23]. This class consists of all the constructions

3.2. PERMUTATION-BASED HASH FUNCTIONS 39

where a single permutation call is made for each message block (hence, the
rate as defined in the previous section is 1), and only a small, fixed set of
permutations is used in total. We discuss the results of Black et al. below.

3.2.1 The results of Black, Cochran, and Shrimpton

Let us more precisely define the class of hash functions that Black et al.
considered in [23]. Let EK be an n-bit block cipher using the κ-bit key K, and
letK be a small, fixed-sized, non-empty subset of the 2κ possible keys. Let the
compression function of the hash function be f : {0, 1}n×{0, 1}n → {0, 1}n,
and let g1 : {0, 1}n×{0, 1}n → {0, 1}n and g2 : {0, 1}n×{0, 1}n×{0, 1}n →
{0, 1}n be arbitrary functions. Define f as

f(h,m) = g2(h,m, EK(g1(h,m))),

where K ∈ K may vary for each application of f . In words, g1 takes the two
inputs and produces a single n-bit output, which is fed to the permutation.
The output of this permutation, together with h and m, are then fed to g2,
which produces a single n-bit output, which in turn becomes the output of
the compression function.

Since g2 can perform the same computations as g1, g2 does not need to
be given the output of g1. This description clearly covers all hash functions
in the mentioned class. SMASH [98] is an example of a hash function in this
class.

In practice, g1 and g2 will be simple and efficiently computable functions,
since otherwise we have not gained anything by avoiding invocations of the
key schedule of the block cipher. Black et al. described a query-based (also
called information theoretic) collision attack on f in time about linear in n,
that works for any choice of functions g1 and g2. By a query-based attack,
we mean that the complexity of the attack is stated in terms of block cipher
calls – hence, calls to g1 and g2 are considered to be “free of charge”. The
attack requires up to about 2n calls to g1 and g2, and it also requires the
construction of a tree containing 2n nodes. Therefore, it may not be possible
to carry out the attack in practice, even if its complexity is roughly linear in
terms of block cipher calls.

As an obvious next step, we consider permutation-based hash functions
of rate less than 1.

3.2.2 The results of Rogaway and Steinberger

Rogaway and Steinberger considered permutation-based hash functions of
any rate, also including multiple-length constructions [177]. The model is (in

40 CHAPTER 3. HASH FUNCTION DESIGN

brief) the following.
The compression function f takes d blocks of n bits each as input, and

produces e blocks of n bits as output. It does this by the application of t
n-bit permutations p1, . . . , pt. The ith permutation pi is fed with the output
of an arbitrary function gi, which given the dn bits of input to f , and the
(i− 1)n bits of output from the previous i− 1 permutation calls, produces a
single n-bit output. In the end, an output transformation function G takes
all (d + t)n bits of input to f and outputs from all permutation calls, and
produces en bits, that become the output of f . See Figure 3.3.

- g1

-

- g2

-
-

g3- p2- p1

· · ·
- -

...

pt- G -

-

-
-
-

Figure 3.3: The permutation-based compression function f . A thick line means
the data path has width dn bits (except the rightmost arrow, which has width en
bits), and a thin line means the data path has width n bits.

Rogaway et al. showed [177] that the above construction, which we shall
call a (d, e, t)-construction, admits collisions in around 2n(1−(d−e/2)/t) queries
to one of the permutations pi. In order for f to compress, we must require
that d > e. As an example, a (2, 1, t)-construction (i.e., a single length
construction comparable to those described in Section 3.1.1, but possibly
of a lower rate) needs t ≥ 3 in order to achieve collision resistance at the
birthday bound. With t = 2, one gets a collision resistance of at most 2n/4.

With respect to double length constructions (e = 2), one can never reach
the ideal collision resistance of 2n (the output size being 2n bits) using
permutation-based hashing.

Preimages can be found using about 2n(1−(d−e)/t) queries. This shows
that preimage resistance can never be optimal (since d > e). With a (2, 1, 3)-
construction, one gets an upper bound on the preimage resistance of 22n/3.
A (2, 1, 2)-construction has preimage resistance at most 2n/2.

Again, we stress that the above bounds are query-based. The true com-
plexity of an attack is likely to be much higher. This (in part) depends
on the functions gi and G. Moreover, Stam [196] discovered a paradox in
these complexities: increasing the output size always reduces the collision

3.2. PERMUTATION-BASED HASH FUNCTIONS 41

and preimage resistance. This clearly cannot be true, since one can always
expand the output with a fixed, constant string without affecting collision
and preimage resistance. Stam points out that the results of Rogaway and
Steinberger rely on the assumption that the outputs of the compression func-
tion are uniformly distributed.

3.2.3 Provably secure constructions

Rogaway and Steinberger also (in a different paper [178]) provided a prov-
ably secure (2, 1, 3)-construction. When based on 128-bit permutations (e.g.,
permutations obtained from the AES [145]), the construction uses multipli-
cation with the constant 2 in the finite field F2128 . The compression function
performs the following steps (on input h,m):

y1 = p1(g1(h,m)) = p1(h + 2 ·m)

y2 = p2(g2(h,m, y1)) = p2(y1 + 2 · h + 2 ·m)

y3 = p3(g3(h,m, y1, y2)) = p3(y2 + 2 · h + m)

f(h,m) = G(h,m, y1, y2, y3) = h + y1 + y2 + 2 · y3.

All arithmetic takes place in the field F2128 .

The above construction has collision resistance almost (but not quite)
2n/2. Its preimage resistance is also close to, but not quite, 22n/3, which,
as mentioned, is optimal for a (2, 1, 3)-construction. These are proven lower
bounds, and the (modest) difference between proven bounds and optimal
bounds (according to [177]) may well be an effect of shortcomings in the
analysis.

Shrimpton and Stam [195] described a (2, 1, 3)-construction assuming ran-
dom n-bit to n-bit (“length-preserving”) functions f1, f2, f3 instead of ideal
permutations:

y1 = f1(g1(h,m)) = f1(h)

y2 = f2(g2(h,m, y1)) = f2(m)

y3 = f3(g3(h,m, y1, y2)) = f3(y1 ⊕ y2)

f(h,m) = G(h,m, y1, y2, y3) = y2 ⊕ y3.

This construction has provable collision resistance around 2n/2/n. The anal-
ysis also holds if the two first random functions are instantiated by ideal
permutations with a feed-forward. If all three random functions are replaced
with permutations with a feed-forward, then security has not been proved,

42 CHAPTER 3. HASH FUNCTION DESIGN

but no attack is known. For completeness, this results in the following con-
struction.

y1 = p1(g1(h,m)) = p1(h)

y2 = p2(g2(h,m, y1)) = p2(m)

y3 = p3(g3(h,m, y1, y2)) = p3(y1 ⊕ y2 ⊕ h⊕m)

f(h,m) = G(h, m, y1, y2, y3) = y1 ⊕ y3 ⊕ h.

Stam [196] described a (2, 1, 2)-construction based on random functions
instead of permutations, with almost optimal collision resistance of around
2n/2/n. This significantly breaks the upper bound of 2n/4 given by Rogaway
and Steinberger. The construction is quite unusual; it maintains an n-bit
chaining value, but uses (3n/2)-bit length-preserving random functions. The
chaining value is first expanded to 3n/2 bits by appending n/2 ‘0’ bits, and
the output of the final random function is truncated from 3n/2 bits down to
n bits.

One of the random functions can be replaced by an ideal permutation
with a feed-forward without affecting the security proof. We describe the
construction assuming random functions f1 and f2. The chaining value h is
of size n bits, and the message block m is of size 3n/2 bits. h is padded with
n/2 ‘0’ bits to h+.

y1 = f1(g1(h,m)) = f1(m)

y2 = f2(g2(h,m, y1)) = f2(h
+ ⊕ y1)⊕ h+

f(h,m) = truncn(y2).

By truncn(y2) we mean y2 truncated to n bits by removing all but the last
n bits. Whether or not security is affected if one keeps the n/2 bits that
are discarded in this truncation, instead of appending n/2 ‘0’ bits in the
following application of the compression function, is not clear.

3.3 Alternatives to Merkle-Damg̊ard

Due to the weaknesses found in the Merkle-Damg̊ard construction in recent
years, as well as the large number of shortcut attacks that appeared on many
widely deployed hash functions, many researchers have considered alternative
construction methods to improve security.

In this section we describe some of the proposed alternatives. We start
off with a construction method that defines a collision resistant hash function
based on weaker assumptions on the underlying compression function than

3.3. ALTERNATIVES TO MERKLE-DAMGÅRD 43

the assumptions required for the Merkle-Damg̊ard construction. Then, we
describe a construction assuming a compression function that produces a
larger output than the hash function, thus complicating generic attacks. We
also describe the related checksum-based hash functions, and we mention
construction methods that aim to preserve other properties of the underlying
compression function than merely collision resistance. Finally, we describe a
relatively new hash function construction called the sponge.

3.3.1 Knudsen-Thomsen, Secrypt 2006

Knudsen and this author [109, 110] proposed an alternative to the Merkle-
Damg̊ard construction, that requires access to the compression function. The
goal was to improve resistance to some generic attacks, and also to reduce
the amount of freedom that an attacker has in carrying out shortcut attacks
on the hash function.

The proposal

The construction proposed by Knudsen and Thomsen can, slightly simplified,
be described as follows.

Construction 3.9. A hash function H based on a compression function
f : {0, 1}n × {0, 1}µ → {0, 1}n with µ > n is defined. Let the message to be
hashed be M , padded using the function padµ (note: no length padding, see
Section 2.1) and separated into t message blocks m1, . . . ,mt, each of µ − n
bits. It is required that t < min(2n, 2µ−n). Iterate the compression function
f as follows. With h0 being the initial value of the hash function (e.g., the
all-zero string), do for i from 1 to t

hi = f(〈i〉n,mi‖hi−1).

Here, 〈i〉n means the n-bit representation of i. When ht has been computed,
let H(M) = f(0, 〈t〉µ−n‖ht).

This construction has the following property.

Theorem 3.1. If f is resistant to collisions of the form ((x, y), (x, y∗)), then
Construction 3.9 defines a collision resistant hash function.

Proof. Assume a collision for H, defined as in Construction 3.9, has been
found, i.e., a pair (M, M∗) such that M 6= M∗ and H(M) = H(M∗). Let
t and t∗ denote the number of blocks in M and M∗, respectively, and let
these blocks be called mi and m∗

i . hi and h∗i are the intermediate hash

44 CHAPTER 3. HASH FUNCTION DESIGN

h0 = iv
-

. . .
-

m2

ff
-

?

f

?
- -

〈t〉µ−n

- H(M)f

?
- -

mtm1

?
‖ ‖ ‖ ‖-

1

- -

2

-

t 0

-

Figure 3.4: The Knudsen-Thomsen construction (Construction 3.9).

values of H when processing M and M∗, respectively. If t 6= t∗, then we
have f(0, 〈t〉µ−n‖ht) = f(0, 〈t∗〉µ−n‖h∗t∗), and hence the theorem is proved
in this case. Assume now that t = t∗. If ht 6= h∗t , then the result follows
again. If ht = h∗t then it follows that for some j, 0 < j ≤ t, we have
f(〈j〉n,mj‖hj−1) = f(〈j〉n,m∗

j‖h∗j−1), but (mj, hj−1) 6= (m∗
j , h

∗
j−1), because

M and M∗ are different. Thus, the theorem is proved.

Hence, the collision resistance of Construction 3.9 is guaranteed assuming
a weaker condition on the compression function, than what is required in the
Merkle-Damg̊ard construction.

For hash functions where the underlying compression function is a block
cipher employed in Davies-Meyer mode (Construction 3.1), i.e., f(h,m) =
Em(h)⊕ h, Knudsen and Thomsen proposed the following variant. Let

hi = Emi‖hi−1
(〈i〉n)⊕ hi−1,

and let H(m) = E〈t〉µ−n‖ht(0) ⊕ ht. Hence, the input to the block cipher is
not fed forward, but instead the chaining input is. The motivation for this
change would be that feeding forward a counter does not result in a one-way
compression function if the counter is known. On the other hand, for an ideal
block cipher it is difficult to find h, m, c given y such that Em‖h(c) ⊕ c = y.
Therefore, we shall assume here that Construction 3.9 is used also when f is
a block cipher in Davies-Meyer mode.

Theorem 3.1 means that for H to be collision resistant, f does not have to
be resistant to all types of collisions, only to collisions of the type f(x, y) =
f(x, y∗). The best known collision attacks on hash functions such as MD5 and
SHA-1 are multi-block collision attacks; here, first a pair of message blocks
(m1,m

∗
1) with h1 = f(iv,m1) 6= f(iv,m∗

1) = h∗1 is found, and then a new
pair of message blocks (m2, m

∗
2) such that f(h1,m2) = f(h∗1,m

∗
2) is found.

Hence, the compression functions of MD5 and SHA-1 still resist collision
attacks of the type considered in Theorem 3.1, and therefore, hash functions
iterating these compression functions as in Construction 3.9 are (apparently)
still collision resistant.

3.3. ALTERNATIVES TO MERKLE-DAMGÅRD 45

Another feature of the construction, which protects against shortcut at-
tacks, is the fact that n bits out of the µ bits in the second input are fixed
by the hash computation, and hence n degrees of freedom are lost for the at-
tacker. The large number of degrees of freedom in MD4-style hash functions
seems to have taken a major part in the success of collision attacks on these
hash functions.

Performance

Assuming black-box access to the compression function, performance of the
Knudsen-Thomsen construction compared to the Merkle-Damg̊ard construc-
tion is reduced by a factor of µ/(µ − n), since in the Merkle-Damg̊ard con-
struction, µ bits can be processed per compression function call, whereas in
Construction 3.9, only µ−n bits can be processed for each call. For instance,
if the compression function of SHA-1 (having µ = 512 and n = 160) is em-
ployed in the Knudsen-Thomsen mode, then the speed of the hash function is
expected to be reduced by a factor about 1.45 compared to “native” SHA-1.

Generic attacks

We investigate the effect on generic attacks of switching from the Merkle-
Damg̊ard construction to Construction 3.9. For descriptions of the generic
attacks, see Section 2.2.

Since the last block, the length padding block, is processed in a different
way than the actual message blocks (the first input is 0, whereas for actual
message blocks it is at least 1), Construction 3.9 protects against the length
extension attack. However, given a collision (M, M∗), where this collision
occurs before the length padding block is processed (and |M | = |M∗|), such
a collision may still be extended by appending any suffix y to both messages.

The complexity of finding multi-collisions in an iterated hash function
depends solely on the amount of data passed on from one iteration to the next.
If a collision spanning the whole data can be found, then the multi-collision
attack can be launched. Therefore, Construction 3.9 offers no additional
protection against birthday multi-collision attacks. However, since we claim
that shortcut collision attacks are hindered, multi-collision attacks based on
shortcut attacks are also claimed to be harder to carry out.

An expandable message is useful in the second preimage attack (Sec-
tion 2.2.4) on the Merkle-Damg̊ard construction. However, on Construc-
tion 3.9, substituting a message of length a for a message of length b 6= a does
not seem viable due to the counter. Constructing the expandable message
in the first place is complicated. Therefore we believe that Construction 3.9

46 CHAPTER 3. HASH FUNCTION DESIGN

protects against the second preimage attack of Kelsey and Schneier.

The Nostradamus attack is only affected by the fact that there is less
freedom in the choice of message blocks. Hence, in some cases collisions (and
also the linking block) may have to span several message blocks instead of
just one, as described in Section 2.2.5. Otherwise, the attack has the same
complexity as it has on the Merkle-Damg̊ard construction.

3.3.2 The wide-pipe and the double-pipe constructions

As a method to protect the Merkle-Damg̊ard construction against generic
attacks, as well as to allow “slight failures” in the compression function,
Lucks proposed the wide-pipe and the double-pipe constructions [121]. These
constructions operate with an internal state that is larger than the output.
In this section, we denote by w the size of the internal state. In the wide-pipe
construction, w > n, and in the double-pipe construction, w = 2n.

The wide-pipe construction

The wide-pipe construction is simply an enlarged Merkle-Damg̊ard construc-
tion with a w-bit internal state size, and with the addition of an output
transformation Ω : {0, 1}w → {0, 1}n. As above, we denote by f the compres-
sion function, now mapping as {0, 1}w × {0, 1}µ → {0, 1}w. See Figure 3.5.
Assuming that f and Ω ◦ f are collision resistant, the multi-collision attack

iv f f f- -- . . . f- - Ω

- - - -

mtm3m2m1

- H(M)

Figure 3.5: The wide-pipe construction.

of Joux (Section 2.2.3) now has complexity t2w/2 for a 2t-collision. With
w ≥ 2n, this is no better than a brute force multi-collision attack. The sec-
ond preimage attack (Section 2.2.4) has complexity around 2w/2 + 2w−k, and
hence, again with w ≥ 2n, is no better than the brute force second preimage
attack.

A shortcut collision attack on the compression function of complexity
below 2w/2 may not pose a threat (with respect to collisions) on the full
hash function, since w > n. Hence, this construction allows the underlying
compression function to fail “slightly”.

3.3. ALTERNATIVES TO MERKLE-DAMGÅRD 47

The double-pipe construction

The double-pipe construction uses two n-bit compression functions per mes-
sage block. In effect, two chains are maintained during the processing of a
message, but the chaining value of each chain is fed to the other chain, so
that the compression function f must accept two n-bit chaining values and
a message block. The last message block is only fed to one of the two chains,
and the output of this chain is the output of the hash function. The cost in
terms of efficiency compared to the Merkle-Damg̊ard iteration of f is that
now, f has to be applied twice as often, and in addition, the size of each
message block decreases by n bits, due to the interchange of chaining values
between the two chains. See Figure 3.6. Clearly, the two initial values for the

iv2
f f f- -- f

- - -

m3m2m1

- H(M)
f-

iv1
-

. . . -

. . . -

- f
-

- f
-

f

-

- -

-

-

-

f
-

mt

-
-

-

-

-

mt−1

-

Figure 3.6: The double-pipe construction.

two chains must be different, since otherwise the two chains would contain
identical chaining values.

When f is modelled as a random oracle, then the double-pipe construction
resists collision, multi-collision, preimage and second preimage attacks.

3.3.3 Checksum-based hash functions

A checksum-based hash function is similar to the double-pipe construction,
but there is no interchange of chaining values between the two chains, and
one of the chains, the checksum chain, is often much more efficient than the
other. The final output of the checksum chain is, in effect, processed as a last
message block at the end. In other words, let c : {0, 1}µ × {0, 1}µ → {0, 1}µ
be an efficient function that accepts a checksum state of size µ bits and a
message block of size µ bits, and computes a new checksum state of size µ
bits. c is iterated to form C in the same way that f is iterated to form F
(see Section 2.1). Hence, C accepts inputs that are any multiple of µ bits
in length. An initial checksum value must be defined. We shall generally
denote the intermediate checksum values by vi, and the initial one by v0.

48 CHAPTER 3. HASH FUNCTION DESIGN

The checksum-based construction (as we define it here) is the construction
that is identical to the Merkle-Damg̊ard construction, except that the µ-bit
string C(pad∗µ,τ (M)) is appended to the padded message pad∗µ,τ (M) before

hashing. We call the resulting hash function H̃. See Figure 3.7. An example

h0
f f f- -- f

- - -

m3m2m1

- H̃(M) = f(ht, vt)

-
v0 -

. . . -

. . . -
-
-

-
-

vt

-

mt

-
c c c c

-
f-

Figure 3.7: The Merkle-Damg̊ard construction extended with a checksum.

of such a construction is the MD2 hash function [91] (see also Section 3.4.1),
which has a non-linear, but invertible checksum function. Another example
is 3C [72], which has (roughly) c(v,m) = f(v, m)⊕v and v0 = h0. Hence, the
checksum is the XOR of all intermediate hash states. We describe generic
attacks on checksum-based hash functions in Section 4.4.

Since appending a checksum is often thought of as an inexpensive way
of increasing the security of a hash function, the checksum function must be
efficient – preferably more efficient than the compression function of the hash
function. This means that often the checksum function is simple, it may even
be linear (corresponding to a modular addition or an XOR [72, 180]), or more
generally, invertible (e.g., the checksum function of MD2). As in 3C, using
f(h,m) inside c can be done for free, since f(h, m) is already computed in
the “hash chain”.

An alternative is to compute the hash of the message using two different
hash functions, and then merge the two chains by processing the output of
one hash function by the other. As an example, one may consider SHA-256
strengthened by a checksum computed using MD5. Although the output size
of MD5 is less than the message block size of SHA-256, padding can be used
to fill the final message block. The cost in terms of performance would be by
a factor less than two, since most implementations of MD5 are (much) faster
than comparable implementations of SHA-256.

Generic attacks apply to many checksum-based constructions, see [69],
and Section 4.4 of this thesis. However, the added protection against shortcut
attacks might be significant. Another advantage of checksum-based hash
functions is that it allows the original hash function to be called in black-box
mode, meaning no direct change in the original hash function is required,

3.3. ALTERNATIVES TO MERKLE-DAMGÅRD 49

only a type of message pre-processing (which can be done in parallel with
the hash computation).

3.3.4 Multi-property preserving constructions

As mentioned in Section 2.2, the Merkle-Damg̊ard construction preserves
the collision resistance of the underlying compression function, but it does
not preserve many other properties such as preimage and second preimage
resistance, randomness etc. Hash functions are often used in applications
that require stronger security notions than collision resistance. For instance,
hash functions are widely used as instantiations of random oracles, and in
order to justify this use, the hash construction should, preferably, preserve
notions of pseudo-randomness. Hence, attempts have been made to design
constructions that preserve additional properties of the underlying compres-
sion function.

One of the first discussions along the lines of multi-property preserva-
tion can be found in a Crypto ’05 paper by Coron, Dodis, Malinaud, and
Puniya [37]. Here, the problem of devising a hash function construction that
preserves indifferentiability from a random oracle is considered. If the func-
tion f is indifferentiable from a random oracle R truncated to the same size
as f , then using f instead of R in any protocol results in a protocol that is
at least as secure as it was when using R. Coron et al. show that the Merkle-
Damg̊ard construction does not preserve indifferentiability from a random
oracle (from now on “the pseudorandom oracle property”) of the underlying
compression function, and a number of constructions that do are presented.
One of these is the Merkle-Damg̊ard construction with prefix-free padding.
A padding function pad is prefix-free if for every pair (x, y) such that x 6= y,
pad(x) is not a prefix of pad(y) (this does not hold for the padding functions
introduced in Section 2.1).

Chang, Lee, Nandi, and Yung investigated [32] the pseudorandom oracle
property preservation of a number of hash function constructions, including
the block cipher based constructions from [163] and the MDC-2 construction
(Section 3.1.2). Sixteen of the block cipher based constructions from [163] are
shown to preserve the pseudorandom oracle property if a prefix-free padding
function is applied to the message before hashing. The MDC-2 construction
is shown not to preserve the pseudorandom oracle property.

Bellare and Ristenpart [8] showed that the hash function constructions
proposed by Coron et al. in [37] are not collision resistance preserving. Hence,
in some sense, the constructions are worse than Merkle-Damg̊ard; for in-
stance, cryptographic protocols proven secure in the random oracle model are
provably secure if the compression function of the hash function preserves the

50 CHAPTER 3. HASH FUNCTION DESIGN

pseudorandom oracle property, but cryptographic protocols proven secure in
the standard model are not provably secure if the compression function of
the hash function is only collision resistant. Bellare and Ristenpart devise
the so-called enveloped Merkle-Damg̊ard (EMD) construction, which prov-
ably preserves collision resistance, the pseudorandom oracle property, and
the pseudorandom function property. A pseudorandom function (PRF) is a
function that accepts a key input, such that for every key, the function (com-
putationally) emulates a random oracle with the same output size. We briefly
describe the EMD construction. Given a compression function f , the mes-
sage M is padded as in the Merkle-Damg̊ard construction (Definition 2.2),
except that the number of ‘0’ bits is chosen such that the total length of the
padded message is n bits short of a multiple of µ bits. Denote this padding
function by padEMD; let padEMD(M) = m1‖ · · · ‖mt−1‖mt, where |mi| = µ
for 1 ≤ i ≤ t−1, and |mt| = µ−n. Define two distinct initial values, iv1 and
iv2. Compute ht−1 = F (iv1, m1‖ · · · ‖mt−1), and let the output of the hash
function be H(M) = f(iv2, ht−1‖mt). See Figure 3.8.

f f f- - . . . f- -
- - - -

mt−1m3m2m1

-

H(M)

mt

?

fiv2
-

iv1
- ‖

-

Figure 3.8: The Enveloped Merkle-Damg̊ard (EMD) construction.

The EMD construction does not preserve all seven security notions of [176]
(see also Section 1.1.7). This was shown by Andreeva, Neven, Preneel, and
Shrimpton [5]. They propose the random oracle XOR (ROX) construction,
which provably preserves all seven security notions (however, the pseudo-
random oracle and pseudorandom function properties are not proven to be
preserved). ROX is, to the best of our knowledge, the only hash function
construction that provably preserves all seven security notions – however,
the construction needs to perform a logarithmic number of calls to “small”
random oracles, and therefore it is not as practical as the EMD construction.
On the other hand, the random oracles may be instantiated by reasonably
inefficient primitives due to the infrequent access required.

3.3.5 The sponge construction

Bertoni, Daemen, Peeters, and Van Assche introduced the sponge construc-
tion in [13]. A sponge is an object that digests a message in an iterated

3.3. ALTERNATIVES TO MERKLE-DAMGÅRD 51

fashion (the absorbing phase), and then outputs an infinite string in a sim-
ilar way (the squeezing phase). When used in a practical application, the
output of the sponge will be truncated to n bits.

Here we give a slightly simplified description of the sponge. Let f be a
function accepting inputs of length ` bits, and returning outputs of the same
size. Let S be a state of size ` bits, that is split into two parts; Si and Sp

of sizes µ and ν bits, respectively. We have ` = µ + ν. The message M
is padded and split into µ-bit blocks mi, 0 < i ≤ t. An initial state S0 is
defined. The message M is then processed as follows:

Si ← f(mi ◦ Si,i−1‖Sp,i−1),

where Si = Si,i‖Sp,i, and ‘◦’ is some binary operation on elements of the set
{0, 1}µ. Simple examples are a ◦ b = a ⊕ b (the message block is XORed to
part of the state), and a ◦ b = a (the message block overwrites part of the
state).
Once the message has been digested, the squeezing (output) phase starts.
The output is formed in chunks zi of κ ≤ ` bits each as follows.

zi ← truncκ(St+i−1),

followed by
St+i ← f(St+i−1),

for i ≥ 1. We note that padding of the message may ensure that a few
“blank” applications of f are introduced before the output phase.

The function f may be modelled as a random function or a random
permutation. In the former case, the resulting sponge is called a T-sponge. In
the latter case it is called a P-sponge. The security of the sponge construction
depends on the type of the sponge.

The security of a sponge construction can be expressed in terms of its
capacity c, where c ≤ ν. The capacity is a measure of the strength of the
function f . Here we assume that the output of the sponge is truncated
to n bits. In terms of collisions, T-sponges and P-sponges provide the same
amount of resistance. If the sponge has capacity c, then it is collision resistant
up to a level of min(2c/2, 2n/2). Preimage resistance depends on the type of
sponge; a T-sponge of capacity c has preimage resistance min(2c, 2n), and
a P-sponge of the same capacity has preimage resistance min(2c/2, 2n). A
P-sponge of capacity c has second preimage resistance equal to its preimage
resistance. The second preimage resistance of a T-sponge depends on the
length L of the first preimage. For a T-sponge of capacity c, resistance is at
a level of min(2c/L, 2n).

52 CHAPTER 3. HASH FUNCTION DESIGN

In [14], it is shown that the sponge construction is indifferentiable from
a random oracle assuming that f is a random function or a random permu-
tation, and that c ≥ 2n.

Examples of hash functions that may be seen as sponge functions are
Panama [40], RadioGatún [12], Keccak [15], Grindahl (Section 3.4.3),
and Anaconda (Section 3.4.5). These are all P-sponges, illustrating that it
is generally believed that more is known about building strong permutations
than about building functions behaving randomly.

3.4 Dedicated designs

Dedicated hash functions are designs that were never intended to be used
for other purposes than hashing. A dedicated hash function is often more
efficient than a hash function based on an existing primitive such as a block
cipher or a permutation. In practice, most hash functions in use are dedicated
designs for this reason, but also because dedicated hash functions are not
covered by export restrictions in most countries, whereas block ciphers may
be.

One of the first dedicated hash functions was MD2, designed by Rivest in
1988. MD2 was targeted for 8-bit processors, and hence it was inefficient on
the 32-bit processors that appeared in PCs in the last half of the 80s. MD4
was a dedicated 32-bit design that gained a large amount of popularity. A
number of hash functions have been designed with MD4 as the main source
of inspiration. These hash functions are often collectively termed the MD4
family. They are all based on the Merkle-Damg̊ard construction.

In this section, we describe MD2 and the MD4 family, and we also describe
three hash functions that have very little in common with MD4, and which
are co-designed by the author: Grindahl, Dakota, and Anaconda.

3.4.1 MD2

MD2 is a hash function developed by Ronald L. Rivest in (or no later than)
1988, and published in 1989 [91, 120]. MD2 accepts messages of length any
integral number of bytes, and returns a 128-bit hash. It is an iterated hash
function, but not in Merkle-Damg̊ard mode. The compression function is
designed in a byte-oriented fashion, which makes it less suitable for imple-
mentation on modern processors such as the x86 family. Cryptanalysis of
MD2 is described in Section 4.2.

3.4. DEDICATED DESIGNS 53

Overall design

The input message M is padded so that its length becomes a multiple of 16
bytes. Padding is described below. The message is then split into t blocks
m1,m2, . . . , mt of 16 bytes each, and a 16-byte checksum block c is computed
from the padded message. c is appended to the message as the (t + 1)-th
message block. The t + 1 blocks are then processed sequentially as in the
Merkle-Damg̊ard construction. The initial state h0 is the all zero 16-byte
string.

Padding

If the original message consists of r bytes, then d bytes each having the value
d are appended to the message, where d is the integer between 1 and 16 such
that r+d is a multiple of 16. Hence, all messages are padded, even if r is itself
a multiple of 16. This padding function ensures that there is a one-to-one
relationship between the original message and the padded message.

However, the padding function does not support a security proof as in
the Merkle-Damg̊ard construction, extending collision resistance of the com-
pression function to collision resistance of the hash function. To see why,
let M be a 15-byte message, and let M+ be the padded version of M , i.e.,
the 16-byte message consisting of the 15 bytes of M and a ‘1’-byte. Assume
that f(h0,M

+) = h0, and that the checksums of the two messages M+ and
M+‖M+ are identical. Then M and M+‖M collide in MD2, but no collision
of the compression function f has been found. Of course, no message M with
these properties is guaranteed to exist, but the technique can be generalised
so that M may be several blocks in length, introducing additional degrees of
freedom.

The compression function

In the following, we denote by xb the b-th byte of a string x. The compression
function f : {0, 1}128 × {0, 1}128 → {0, 1}128 works as follows. Given 16-byte
strings h (the chaining input) and m (the message block), let

A0 ← h

B0 ← m

C0 ← h⊕m.

The concatenation Ai‖Bi‖Ci (for arbitrary i) may be viewed as a single 48-
byte entity Xi. To generate the output of the compression function, do the
following (T is a temporary variable of length 1 byte).

54 CHAPTER 3. HASH FUNCTION DESIGN

1: T ← 0
2: for i = 1 to 18 do
3: for j = 0 to 47 do
4: Xj

i ← S(T)⊕Xj
i−1

5: T ← Xj
i

6: end for
7: T ← T + i− 1 mod 256
8: end for
9: return A18 {the first 16 bytes of X18}

Here, S is an 8-bit S-box, the specification of which can be found below. Since
only part of X18 is returned, the computation of the last 32 bytes is omitted
in practice.

The checksum function

The checksum function c takes a 128-bit checksum state v (the initial state
is the all-zero string) and a message block m, and produces a new 128-bit
checksum state. The checksum function is invertible: given y and z, x can
be efficiently found such that c(x, y) = z. Also, y can be efficiently computed
from x and z. By efficient, we mean that it takes the same amount of time
as evaluating c in the forward direction.

Let v denote the input checksum state, and let vi be the ith byte of v.
m is the message block with ith byte mi. The state v is updated by m as
follows (T is again a temporary variable of length 1 byte).

1: T ← v15

2: for i = 0 to 15 do
3: vi ← vi ⊕ S(T ⊕mi)
4: T ← vi

5: end for

Note the similarity between the checksum function and the compression func-
tion of MD2. Evaluating the MD2 checksum function corresponds to about
16/832 ≈ 2−5.7 evaluations of the MD2 compression function (since 16 bytes
are computed in the checksum function, and 832 bytes are computed in the
compression function).

The S-box

The MD2 S-box S is specified in Table 3.1. This S-box is derived from the
digits of the fractional part of π.

3.4. DEDICATED DESIGNS 55

Table 3.1: The MD2 S-box.
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 29 2e 43 c9 a2 d8 7c 01 3d 36 54 a1 ec f0 06 13
10 62 a7 05 f3 c0 c7 73 8c 98 93 2b d9 bc 4c 82 ca
20 1e 9b 57 3c fd d4 e0 16 67 42 6f 18 8a 17 e5 12
30 be 4e c4 d6 da 9e de 49 a0 fb f5 8e bb 2f ee 7a
40 a9 68 79 91 15 b2 07 3f 94 c2 10 89 0b 22 5f 21
50 80 7f 5d 9a 5a 90 32 27 35 3e cc e7 bf f7 97 03
60 ff 19 30 b3 48 a5 b5 d1 d7 5e 92 2a ac 56 aa c6
70 4f b8 38 d2 96 a4 7d b6 76 fc 6b e2 9c 74 04 f1
80 45 9d 70 59 64 71 87 20 86 5b cf 65 e6 2d a8 02
90 1b 60 25 ad ae b0 b9 f6 1c 46 61 69 34 40 7e 0f
a0 55 47 a3 23 dd 51 af 3a c3 5c f9 ce ba c5 ea 26
b0 2c 53 0d 6e 85 28 84 09 d3 df cd f4 41 81 4d 52
c0 6a dc 37 c8 6c c1 ab fa 24 e1 7b 08 0c bd b1 4a
d0 78 88 95 8b e3 63 e8 6d e9 cb d5 fe 3b 00 1d 39
e0 f2 ef b7 0e 66 58 d0 e4 a6 77 72 f8 eb 75 4b 0a
f0 31 44 50 b4 8f ed 1f 1a db 99 8d 33 9f 11 83 14

3.4.2 The MD4 family

The title of this section refers to an ill-defined set of cryptographic hash
functions. MD4, developed by Rivest in 1990, gave name to this “family”
because it was the first hash function of its kind. The other members of the
family were, at least to some extent, inspired by MD4. These include such
hash functions as MD5, SHA-0, HAVAL [227], SHA-1, SHA-2, and others.

It can be difficult to pin-point the exact characteristics of hash functions
in the MD4 family. Here are some suggestions.

• They are built upon (variants of) the Merkle-Damg̊ard construction

• The compression function can often be seen as a block cipher in Davies-
Meyer mode (hence, the message block is the key, and the chaining
input is the plaintext block of the block cipher) – we stress, however,
that this “block cipher” was in all cases designed specifically for the
hash function in question

• The compression function consists of a relatively large number of simple
steps, that each update one or a few registers in a state, that contains
from four to about eight registers

• Each register is a 32-bit or a 64-bit value

56 CHAPTER 3. HASH FUNCTION DESIGN

• There is a relatively simple message expansion, or, when the compres-
sion function is viewed as a block cipher in Davies-Meyer mode, key
schedule.

Since the MD4 family of hash functions has played an extremely impor-
tant role in the world of cryptographic hash functions, we briefly describe
some of the members here.

MD4

MD4 is a 128-bit hash function in Merkle-Damg̊ard mode. The message is
padded according to Definition 2.2, with µ = 512 and τ = 64. The initial
value is (in hexadecimal)

iv = 67452301 efcdab89 98badcfe 10325476.

MD4 assumes a little-endian byte ordering (hence, the sequence 00 01 02 03
of bytes, in hexadecimal, will be read as a single 32-bit word 03020100).

The 128-bit chaining input h to the compression function is copied into
four 32-bit state registers, a, b, c, and d. These registers are updated via
48 steps (separated into three rounds of 16 steps). The 512-bit message
is expanded into 48 words of 32 bits, each word affecting one of the 48
steps. After the 48 steps, the registers are added (modulo 232) to the four
words of the chaining input (this is the feed-forward in the Davies-Meyer
construction), and the sum is returned as the output of the compression
function.

Each step in fact only updates one of the registers via a step update func-
tion. The step update function takes the four registers, a message word, and
a 32-bit constant (which changes in every round) as input, and outputs a
single 32-bit word. The step update function changes slightly for each step.
It consists of modulo 232 additions, a rotation, and a (bitwise) Boolean func-
tion which changes for every round (hence, there are three different Boolean
functions).

The Boolean functions all accept three 32-bit inputs, and produce, in a
balanced way, a single 32-bit output. Denote by `j the Boolean function used
in round j (counting starts from 0). The three Boolean functions are defined
as follows.

`0(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)

`1(X, Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)

`2(X, Y, Z) = X ⊕ Y ⊕ Z.

3.4. DEDICATED DESIGNS 57

Here (and in the following), ‘∧’ means logical AND, ‘∨’ means logical OR,
and ‘¬’ means logical negation.

The 32-bit constants kj used are distinct for each round j. They are
defined as follows (written in hexadecimal).

k0 = 0

k1 = 5a827999

k2 = 6ed9eba1.

The message expansion is simply a repetition of the 16 message words of
32 bits each, where in the second and the third rounds the message words
appear in a different order. Let ui be the ith message word, 0 ≤ i < 16.
Then, in round 0, the message words appear in the order u0, u1, . . . , u15. In
round 1, the message words appear in the order

u0, u4, u8, u12, u1, u5, u9, u13, u2, u6, u10, u14, u3, u7, u11, u15.

In round 2, the message words appear in the order

u0, u8, u4, u12, u2, u10, u6, u14, u1, u9, u5, u13, u3, u11, u7, u15.

We refer to the message word used in step j as wj.
A rotation means a cyclic shift of the bits in a word, and rotating the value

x by s positions to the left is written x≪s. In each step, a left-rotation takes
place. The number of positions rotated left is 3, 7, 11, 19, . . . (recurring) in
round 0, 3, 5, 9, 13, . . . (recurring) in round 1, and 3, 9, 11, 15, . . . (recurring)
in round 2.

The step update function updates the four registers a, b, c, d to a′, b′, c′, d′

as follows (where we omit indices referring to the round or step number, and
additions are to be taken modulo 232):

b′ ← (a + `(b, c, d) + w + k)≪s

c′ ← b

d′ ← c

a′ ← d.

The copying of registers is, in practice, done implicitly.
MD4 is a very fast hash function. Unfortunately, it also turned out to be

rather insecure. Cryptanalysis of MD4 is carried out, improved, described,
or otherwise treated in a number of papers, e.g., [54, 59, 61, 62, 118, 119,
138, 188–190, 192, 211, 214, 223]. The best known collision attack on MD4
finds collisions in a tiny fraction of a second on a standard PC.

58 CHAPTER 3. HASH FUNCTION DESIGN

MD5

Weaknesses of MD4 were found rather quickly after its inception. This lead
to the development of MD5, which is an improved variant of MD4. However,
an early paper [55], containing a collision attack on the compression function
of MD5, doubted the amount of improvement provided by MD5 over MD4.
Still, MD5 uses four rounds instead of three, unique constants for each step,
and a new Boolean function, and it resisted devastating attacks much longer
than MD4.

The initial value, the padding, the byte ordering, and the feed-forward of
the chaining input are all inherited from MD4.

As in MD4, the message expansion is a repetition of the 16 message
words of 32 bits. In round 0, the message words come in the same order as
in the message itself. In rounds 1–3, the ordering is different; in round 1,
the message word used in step j is word no. (5j + 1) mod 16, in round 2 it is
word no. (3j + 5) mod 16, and in round 3 it is word no. 7j mod 16.

The rotation values are also different. In round 0 they are 7, 12, 17, 22, . . .
(recurring), in round 1 they are 5, 9, 14, 20, . . . (recurring), in round 2 they
are 4, 11, 16, 23, . . . (recurring), and in round 3 they are 6, 10, 15, 21, . . . (re-
curring).

The constant used in step j is the absolute value of sin(j + 1) × 232,
rounded down (towards zero). The Boolean functions `j (j representing the
round number) are

`0(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)

`1(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z)

`2(X, Y, Z) = X ⊕ Y ⊕ Z

`3(X, Y, Z) = Y ⊕ (X ∨ ¬Z).

The step update function is also slightly different. In each step, the
following is performed.

b′ ← b + (a + `(b, c, d) + w + k)≪s

c′ ← b

d′ ← c

a′ ← d.

MD5 is about 33% slower than MD4, because one round is added. As
mentioned, a collision was found in the MD5 compression function soon after
it was developed, but it took quite a few years before an attack on the full
hash function appeared. The following papers contain cryptanalytic results

3.4. DEDICATED DESIGNS 59

on MD5: [11, 22, 55, 60, 118, 187–189, 191, 198, 199, 205, 216]. The currently
best collision attack on MD5 finds collisions in a few seconds.

SHA-0

The U.S. standardisation body NIST published the Secure Hash Standard in
May 1993. The hash function underlying the standard was called the Secure
Hash Algorithm (SHA); today it is more commonly referred to as SHA-0.

SHA-0 is also built upon the same principles as MD4. However, SHA-0
is a 160-bit hash function, keeping five registers in the state: a, b, c, d, and
e. The initial value is

iv = 67452301 efcdab89 98badcfe 10325476 c3d2e1f0.

Padding is the same as in MD4, and the chaining input is fed forward in
the same way, but all SHA functions assume a big-endian byte ordering
(hence, the sequence 00 01 02 03 of bytes will be read as a single 32-bit word
00010203).

The message expansion is somewhat more complicated than in MD4 and
MD5, and there are four rounds of 20 steps each. The four Boolean functions
are defined as follows.

`0(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)

`1(X, Y, Z) = X ⊕ Y ⊕ Z

`2(X, Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)

`3(X, Y, Z) = X ⊕ Y ⊕ Z.

Notice that `1 = `3.
There are four constants, one for each round. These are:

k0 = 5a827999

k1 = 6ed9eba1

k2 = 8f1bbcdc

k3 = ca62c1d6.

The message expansion works as follows. Let u0, u1, . . . , u15 be the 16
input words of 32 bits. The 80 words wi, 0 ≤ i < 80, in the expanded
message are defined as follows.

wi =

{
ui for 0 ≤ i < 16
ui−3 ⊕ ui−8 ⊕ ui−14 ⊕ ui−16 for 16 ≤ i < 80

60 CHAPTER 3. HASH FUNCTION DESIGN

A SHA-0 step consists of the following operations.

a′ ← a≪5 + `(b, c, d) + e + w + k

b′ ← a

c′ ← b≪30

d′ ← c

e′ ← d.

SHA-0 was withdrawn by the NSA shortly after publication. No expla-
nations for this withdrawal were given. A hint towards the reasons for the
withdrawal came in 1998 with a paper [31] by Chabaud and Joux, describing
a collision attack on SHA-0. Other cryptanalytic results on SHA-0 appear
in [16, 17, 30, 139, 217]. One of only a few published implementations of
collision attacks on SHA-0 was developed by the author and can be found
at [203]; this implementation is based on the attack described in [217].

SHA-1

SHA-0 was replaced by SHA-1 in 1995. SHA-1 is arguably the most widely
deployed cryptographic hash function. It appears in a huge number of cryp-
tographic standards, protocols, schemes etc.

SHA-1 is a minor modification of SHA-0; the only difference lies in the
message expansion, which, using the same terminology as above, is described
as

wi =

{
ui for 0 ≤ i < 16
(ui−3 ⊕ ui−8 ⊕ ui−14 ⊕ ui−16)

≪1 for 16 ≤ i < 80

This minor modification bought SHA-1 some 7 years in terms of cryptanal-
ysis, compared to SHA-0. The first collision attack (of complexity about
269) on SHA-1 appeared in 2005, together with a series of collision attacks
on other hash functions with Xiaoyun Wang as the dominating character.
Cryptanalytic results and other observations on SHA-1 appear in [17, 30, 51,
52, 80, 129, 158, 159, 169, 201, 215, 221].

SHA-2

With the publication of the Advanced Encryption Standard [145] in 2001, new
hash functions with larger output sizes were needed to suit the key sizes in
the AES. This led to the development of three new hash functions, SHA-256,
SHA-384, and SHA-512, collectively termed SHA-2, published in 2002 [146].
The expected collision resistance of these hash functions matches the three
key lengths of the AES. In 2004, an additional hash function, SHA-224, was

3.4. DEDICATED DESIGNS 61

added to the SHA-2 family [148]. Its expected collision resistance matches
the key length of two-key TDEA [152].

The SHA-2 hash functions are somewhat more involved than the previ-
ously described hash functions. Most importantly, the message expansion is
much more complicated, and two registers are updated in each step. SHA-
224 and SHA-256 are constructed in the same way, but they use different
initial values, and in SHA-224, a 256-bit state is truncated to 224 bits in the
end. Similar differences appear between SHA-384 and SHA-512.

SHA-256 and SHA-512 differ in the word size; SHA-256 uses 32-bit words,
and SHA-512 uses 64-bit words. The number of steps is 64 in SHA-256 and
80 in SHA-512. Apart from this, there are only minor differences. Here, we
shall only describe SHA-256 in detail.

SHA-256 uses the same padding technique as SHA-1, and the compression
function is also a block cipher in Davies-Meyer mode. The initial value of
SHA-256 is

iv = 6a09e667 bb67ae85 3c6ef372 a54ff53a

510e527f 9b05688c 1f83d9ab 5be0cd19.

SHA-256 uses a number of Boolean functions. First, the following two
functions applied on a single 32-bit word are used in the message expansion.

σ
{256}
0 (x) = x≫7 ⊕ x≫18 ⊕ xÀ3

σ
{256}
1 (x) = x≫17 ⊕ x≫19 ⊕ xÀ10.

Here, x≫s means x rotated right by s positions (i.e., in the case of 32-
bit words, x≫s = x≪32−s), and xÀs means x shifted right by s positions
(resulting in the most significant s bits of the result being zeroes).
Two other functions operating on a single 32-bit word are the following.

Σ
{256}
0 (x) = x≫2 ⊕ x≫13 ⊕ x≫22

Σ
{256}
1 (x) = x≫6 ⊕ x≫11 ⊕ x≫25.

Moreover, `0 and `2 as defined in SHA-0 and SHA-1 are used. We use the
same names here.

The SHA-256 compression function takes a 512-bit message (16 words
u0, u1, . . . , u15 of 32 bits each) and expands it into a 2048-bit message (64
words w0, w1, . . . , w63 of 32 bits each) as follows.

wi =

{
ui for 0 ≤ i < 16

σ
{256}
1 (ui−2) + ui−7 + σ

{256}
0 (ui−15) + ui−16 for 16 ≤ i < 64

62 CHAPTER 3. HASH FUNCTION DESIGN

Additions are, again, to be taken modulo 232 (notice the difference compared
to SHA-0 and SHA-1, where XORs are used). It is clear that this message
expansion introduces more diffusion than the ones appearing in SHA-0 and
SHA-1.

SHA-256 maintains a state of eight registers, each being 32 bits in length.
The state is updated through 64 steps. Each step is more complicated than
the steps used in SHA-0 and SHA-1; two registers are updated via a function
of a number of other registers. Each step involves a distinct constant kj. The
constants are the first 32 bits of the fractional parts of the cube roots of the
first 64 prime numbers – from left to right:

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5

d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174

e49b69c1 efbe4786 0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da

983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967

27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85

a2bfe8a1 a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070

19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3

748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2

In each step, the following operations are performed (tmp1 and tmp2 are
temporary variables, and a, b, . . . , h are the eight registers of the state).

tmp1 ← Σ
{256}
0 (a) + `2(a, b, c)

tmp2 ← Σ
{256}
1 (e) + `0(e, f, g) + h + w + k

a′ ← tmp1 + tmp2

b′ ← a

c′ ← b

d′ ← c

e′ ← d + tmp2

f ′ ← e

g′ ← f

h′ ← g.

SHA-256 (and the other SHA-2 hash functions) is still considered secure.
It seems that especially the change in the message modification has made
cryptanalysis on SHA-2 more difficult than on SHA-0 and SHA-1. Generally,
the degree of non-linearity in the SHA-2 hash functions has been improved
compared to the previous standards. Some cryptanalytic results on SHA-2
may be found in [74, 84, 128, 157, 184–186, 222]. Currently, the best collision
attack on a reduced variant of SHA-256 covers 24 out of the 64 steps.

3.4. DEDICATED DESIGNS 63

3.4.3 Grindahl

Grindahl is a hash function designed by Knudsen, Rechberger, and this au-
thor, and published at FSE 2007 [107]. It was broken by Peyrin later the
same year [154] in the form of a collision attack being a factor 216 faster
than the birthday attack. Grindahl is in fact a collection of hash functions
with two concrete instances, Grindahl-256 producing 256 bits of output, and
Grindahl-512 producing 512 bits of output. The collision attack was only
described for the shorter variant.

Grindahl employs an alternative design strategy for hash functions com-
pared to the MD4 family. It is comparable to some of the designs of Daemen
et al., such as SubHash and StepRightUp [39], Panama [40], and the
more recent proposal RadioGatún [12]. All these hash functions can be
described as (variants of) P-sponges (Section 3.3.5).

The Grindahl design

The overall design strategy is called “Concatenate-Permute-Truncate”, but
may also be described as a P-sponge. This design principle was first proposed
by Merkle and used in his hash function Snefru [133], and it requires the exis-
tence of a non-linear permutation. Grindahl employs a highly parametrisable
permutation, hence in effect a collection of non-linear permutations. These
are described below. The general design and the permutations together form
the Grindahl hash functions.

General strategy. Let P be an `-bit permutation, with ` > n. Let µ ≤
`−n be the size of each message block. Define c = `−µ. Let s0 be an initial
state of size c bits.

The “Concatenate-Permute-Truncate” principle is the following: let M
be the message to be hashed, pad it to M+, a multiple of µ bits in length, and
split M+ into t blocks m1,m2, . . . ,mt of µ bits each. Then, for 1 ≤ i ≤ t− 1
do

Si ← mi‖si−1 (Concatenate) (3.2)

S∗i ← P (Si) (Permute) (3.3)

si ← truncc(S
∗
i) (Truncate) (3.4)

Hence, a message block is concatenated with the state to form what we shall
call the extended state, on which some permutation P is applied. Subse-
quently, the extended state is truncated down to the new state. The steps
(3.2)–(3.4) form an input round.

64 CHAPTER 3. HASH FUNCTION DESIGN

The above process digested all but the last message block mt. This mes-
sage block is processed as

S∗t ← P (mt‖st−1).

Hence, the state is not truncated after processing the last message block.
We define an output transformation consisting of a number ν of blank

rounds and a truncation step at the end. Blank rounds are defined as follows.
For t < i ≤ t + ν do

S∗i ← P (S∗i−1) .

Finally, the output of the hash function is truncn(S∗t+ν).

Invertibility. Assuming that the permutation P is efficiently invertible,
the hash function is not one-way in the sense that for a given output, some
initial state and a message producing that output can easily be found. How-
ever, this does not directly give rise to proper preimage and second preimage
attacks. If P is sufficiently “strong”, then an attacker will have no control
over the initial state obtained.

The success probability of meet-in-the-middle attacks (see Section 4.1.4)
is affected by the value of c above. If no weaknesses of P are exploited, then
internal collision attacks (collisions before the blank rounds) and meet-in-
the-middle attacks have complexity 2c/2. If one requires that no preimage
and second preimage attacks better than a brute force search exist, then one
has to choose c ≥ 2n.

Design approach for the permutation. A well-known family of permu-
tations is the block cipher algorithm Rijndael [42], a subset of which was
adopted as the Advanced Encryption Standard (AES) by the U.S. govern-
ment in 2001 [145]. What follows is a design approach for the permutation
P that closely follows the principles underlying Rijndael. The approach
bears some resemblance to the leak-extraction method of the stream cipher
LEX [20], and to the MAC construction Alred [45].

Consider an extended state as a matrix of bytes. The matrix contains
u rows and v columns (so that ` = 8uv). In the following we assume that
v ≥ u. If the matrix is denoted A, then each element in the matrix can be
indexed as ai,j, meaning the element in row i, column j. Row indices are
always assumed to be reduced modulo u, and column indices are assumed to
be reduced modulo v. In the AES, u = v = 4.

We assume that µ is a multiple of 8, and we define λ = µ/8 as the
number of bytes in a message block. Hence, according to (3.4) and (3.2),

3.4. DEDICATED DESIGNS 65

in the process of truncation followed by concatenation (with the following
message block), λ extended state bytes are overwritten by a message block.
Therefore, they do not have to be computed in all except the last input
round.

We briefly describe three of the four transformations defined in the AES.
More details can be found in the standard [145]. The four transformations
are called SubBytes, ShiftRows, MixColumns, and AddRoundKey. We do not
use AddRoundKey directly in this design. Instead, we introduce a related
transformation, AddConstant.

SubBytes is a non-linear byte-wise substitution function. Hence, SubBytes
substitutes each byte ai,j in the matrix by another byte S(ai,j), where S
is an S-box. The same S-box is used regardless of the values of u and v.
The specification of this S-box can be found in [42, 145], or in Table 5.1
(page 136).

ShiftRows cyclically shifts bytes a number of positions to the right along each
row in the matrix. To be more precise, let σ = [σ0, σ1, . . . , σu−1] be a list of
distinct integers in the range from 0 to v−1. These are called the shift values.
Then ShiftRows is defined as the transformation that maps the matrix A to
A∗ such that

a∗i,j ← ai,j−σi
for 0 ≤ i < u and 0 ≤ j < v.

In the AES, σ = [0, 3, 2, 1].

MixColumns mixes bytes within each column of the matrix. The transforma-
tion can be described as the matrix multiplication

A← C × A,

where C is a circulant matrix (meaning that each row is equal to the row
above cyclically shifted by one position). The matrix multiplication takes
place in the finite field F256 defined by the polynomial x8 ⊕ x4 ⊕ x3 ⊕ x⊕ 1
over F2. There is a direct mapping from elements of this field to bytes, and
back. The matrix C is defined as follows in the AES:

C =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ,

where bytes are written in hexadecimal. When u 6= 4, the matrix C needs to
be redefined. It is important that the error-correcting code with generator

66 CHAPTER 3. HASH FUNCTION DESIGN

matrix [I CT], where I is the identity matrix and CT means C transposed, is
maximum distance separable (MDS, [123]), meaning that if two states differ
in a column in d > 0 positions before MixColumns, then after MixColumns
they differ in at least u− d + 1 positions.

AddConstant simply XORs a constant matrix onto the state matrix.

The four transformations operate on a matrix of bytes. Mapping a byte
string to a matrix and back is done as follows. Let the byte string be x,
where xi denotes the ith byte, and counting starts from 0. Map x to the
matrix A such that

A =

x0 xu · · · xu(v−1)

x1 xu+1 · · · xu(v−1)+1
...

...
. . .

...
xu−1 x2u−1 · · · xuv−1

 .

This mapping has a natural inverse. From now on, we shall not distinguish
between byte strings (of the appropriate length) and matrices.

The names of the three transformations that we “borrow” from the AES
refer to the definitions given in [145]. We shall denote variants tailored for
Grindahl by adding a star ‘?’ next to the name. Given their appropriate
definitions we define the permutation P as

P (x) = MixColumns? ◦ ShiftRows? ◦ SubBytes ◦ AddConstant(x).

Birthday attacks. If P were an ideal permutation, then internal collisions,
preimages and second preimages would have complexity 2c/2. However, P is
obviously not ideal. In fact, it is easy to see that the complexity of, e.g., an
internal collision attack for this choice of P is at most 2(c−µ)/2: assume that
the first column of the matrix is overwritten by the message input. Compute
the extended state before the blank rounds of a number of different mes-
sages. Now append two constant blocks to all messages. The first constant
message block overwrites the first column of the extended state. Then the
permutation is applied, where ShiftRows? moves u bytes into the first column
of the extended state, and subsequently MixColumns? mixes the bytes in the
column. The second constant message block overwrites this column. This
means that if two extended states agree on all bytes except the first column
and the bytes that are moved into the first column by ShiftRows?, then the
two extended states will agree on all bytes after the second constant message
block. The expected number of messages needed for this attack to succeed is
2(c−µ)/2. In fact, this approach can be generalised to every way of mapping
an input message to the extended state.

3.4. DEDICATED DESIGNS 67

Since the permutation is invertible, the entire hash function is invert-
ible, and hence meet-in-the-middle attacks in time 2(c−µ)/2 can be applied
(exploiting the same property as the collision attack described above).

Design parameters for the permutation

We now present some considerations with respect to the design parameters
introduced above.

Shift values. The shift values used in ShiftRows? should be chosen care-
fully. Most importantly, they should ensure that the entire state depends
on the message input as quickly as possible when considering that the first
µ bytes of the state are overwritten by message input in every round. This
means, for instance, that no shift value can be zero, and that all shift values
should be distinct.

Several tuples of shift values ensure full diffusion after the same (mini-
mum) number of rounds r. However, of these, some are better than others
in the sense that a larger part of the state depends on every message byte
after 1, 2, . . . , r − 1 rounds.

State geometry. Choices for u and v are a trade-off between two distinct
properties. If the two numbers are about the same, diffusion happens faster
than if v À u. On the other hand, with a wider state and only a single
column being used for message input, the birthday attack as described above
has a higher complexity, and hence the extended state may only need to be
slightly larger than the output. For implementation reasons, it makes sense
to choose u to be a multiple of 4, since then, on a 32-bit machine, SubBytes
and MixColumns? can be performed in one by table look-ups.

Design parameters for the output transformation

The number ν of blank rounds in the output transformation should be chosen
such that the last message block affects all output bytes.

We note that with ν blank rounds, the actual number of invocations of P
after the last message block is concatenated with the state is ν + 1. During
these rounds, no extended state bytes are overwritten by message input.
Hence, if the entire extended state is affected by all bytes in the last message
block after r rounds, then one should choose ν ≥ r − 1.

68 CHAPTER 3. HASH FUNCTION DESIGN

Grindahl-256

Grindahl-256 is defined as follows. The extended state matrix consists of
u = 4 rows and v = 13 columns. Each message block is µ = 32 bits (i.e., λ = 4
bytes) in length. The number of blank rounds in the output transformation
is ν = 8.

The shift values used in the ShiftRows? transformation are [1, 2, 4, 10].
For these shift values, every message byte affects the entire extended state
after four rounds. SubBytes and MixColumns? are defined as in the AES, and
AddConstant simply flips the least significant bit of the state.

Grindahl-512

Grindahl-512 maintains a state of u = 8 rows and v = 13 columns. Each
message block is λ = 8 bytes long (i.e., µ = 64). There are ν = 8 blank
rounds in the output transformation.

The shift values for ShiftRows? are [1, 2, 3, 4, 5, 6, 7, 8], which cause full
diffusion after three rounds. MixColumns? defines

C =

02 0c 06 08 01 04 01 01
01 02 0c 06 08 01 04 01
01 01 02 0c 06 08 01 04
04 01 01 02 0c 06 08 01
01 04 01 01 02 0c 06 08
08 01 04 01 01 02 0c 06
06 08 01 04 01 01 02 0c
0c 06 08 01 04 01 01 02

.

This matrix ensures that MixColumns? has the MDS property mentioned
previously. SubBytes is the same as in Rijndael, and AddConstant again flips
the least significant bit of the state.

Padding

Padding for both Grindahl-256 and Grindahl-512 is performed as follows.
Append a ‘1’ bit to the message, and then enough ‘0’ bits to fill the last
message block. Finally, append a 64-bit representation of the number of
message blocks in the padded message. This means that both hash functions
can digest messages of size at most 264 − 1 message blocks including the
padding itself. (Note the difference between this padding function and those
of Definitions 2.1 and 2.2.)

3.4. DEDICATED DESIGNS 69

Compression function mode

A compression function mode of Grindahl is proposed. The compression func-
tion is defined as the function that calls Grindahl-256/Grindahl-512 without
padding, using a single 40-block message (i.e., a message of size 1280, re-
spectively 2560 bits). The chaining input is part of this message, meaning
that for Grindahl-256, the corresponding compression function f256 maps as
{0, 1}256 × {0, 1}1024 → {0, 1}256. For Grindahl-512, the corresponding com-
pression function f512 maps as {0, 1}512 × {0, 1}2048 → {0, 1}512. In both
cases, the compression function requires 48 calls of the permutation P . An
additional salt, key, counter, or randomisation input may be added, and this
is proposed to simply be prepended the 40-block message.

Implementation aspects

Grindahl implementations may benefit from the large amount of implemen-
tation research already done on the AES.

We may compare the speed of Grindahl with the speed of the AES.
Grindahl-256 computes 12 columns per message block of 32 bits (since the
first column does not have to be computed for most message blocks). AES
using 128-bit keys, in comparison, computes 40 columns per block of 128
bits, equivalent to 10 columns per 32 bits. There is also a difference between
using AddRoundKey and AddConstant, since the constant used in Grindahl-
256 contains zeroes in most positions. In summary, Grindahl-256 is expected
to have similar running time as the AES, or to be up to about 20% slower.
Grindahl-512 is intended for 64-bit processors, where its speed is expected to
be similar to Grindahl-256. On 32-bit processors, Grindahl-512 is expected
to be at least twice slower than Grindahl-256.

An implementation of Grindahl-256 in C, available from [77], reaches a
speed of about 24 clock cycles per byte of data (“cycles/byte”) on an In-
tel Core2 Duo (E4600). A preliminary implementation with some inline
assembly goes below 20 cycles/byte. Comparing with the best AES imple-
mentations in CTR mode (e.g., those of the eSTREAM project [65]) reaching
speeds of about 12 cycles/byte on the same processor, it seems that some
improvements may be possible. However, in CTR mode, the first one or two
rounds can be simplified since the “plaintext” only changes slightly. There-
fore, comparisons are not trivial.

In hardware, implementations seem to benefit from the low memory re-
quirements. Only ` ∈ {416, 832} bits of memory are required, whereas in,
e.g., SHA-256, memory requirements are 1024 bits.

70 CHAPTER 3. HASH FUNCTION DESIGN

A collision attack on Grindahl-256

Although this chapter is a design chapter, and not a cryptanalysis chapter, we
would like to briefly describe here some properties of Grindahl-256, together
with a collision attack by Peyrin [154].

A differential attack [18, 19] considers differences between state values
when processing two different messages with a given difference. An active
byte is a byte containing a difference (a byte that is not active may be called
passive). When an active byte goes through the S-box, it becomes difficult to
predict the output difference. The best probability of a given input/output
difference pair for the S-box used in the AES and Grindahl is 2−6 [42, 145].

An exhaustive search through all possible input difference and difference
propagation patterns shows that Grindahl-256 has the following property:
an internal collision for Grindahl-256 requires at least six input rounds, and
moreover, any characteristic starting or ending in the extended state with no
difference contains at least one round where at least half the state bytes are
active.

The large number of active bytes for an internal collision to occur is
expected to rule out classical differential attacks. However, an anonymous
reviewer of the paper submitted to FSE 2007 described a potential attack
method. Here, one does not take actual differences into account, but only
considers bytes as either passive or active.

When considering only passive/active bytes, the S-box can be ignored in
the analysis because a passive byte is always mapped to a passive byte, and
an active byte is always mapped to an active byte. Instead, the MixColumns?
transformation becomes “probabilistic”, meaning that its effect is to some
extent unpredictable. The MDS property of the transformation ensures that
transitions from α active input bytes to β active output bytes in a column
happen with the approximate probabilities found in Table 3.2. An attacker

Table 3.2: Approximate transition probabilities through MixColumns (as defined
in the AES) for α active input bytes to β active output bytes.

β
0 1 2 3 4

α

0 1 0 0 0 0
1 0 0 0 0 1
2 0 0 0 2−8 1
3 0 0 2−16 2−8 1
4 0 2−24 2−16 2−8 1

may search for a sequence of these “Boolean differentials” (related to trun-

3.4. DEDICATED DESIGNS 71

cated differentials [97, 99]) such that the MixColumns? transitions happen
with a large probability. In every input round, the attacker obtains some
degrees of freedom from the message input. A message input of all passive
bytes gives the attacker 2µ possibilities to choose the input. If there are d
active bytes in the input, then the attacker has almost 28d+µ degrees of free-
dom. Since the message does not affect the entire state after one round, the
attacker can exercise some control using the message input for up to three
rounds. For instance, he can choose an active byte in (almost) 216 different
ways until two particular bytes three rounds later have the desired differ-
ences. Other bytes are also affected by this variation of the active message
byte, but not all bytes in the state are affected. Note that if the number
of active bytes in the state is reduced slowly in order to form a collision,
then (1) the MixColumns? transition cost may be relatively low, and (2) the
degrees of freedom from the message input is relatively high (because the
attack spans several rounds, and hence in total, many degrees of freedom are
introduced via the message blocks).

If there exists a sequence of Boolean differentials such that the cost in
terms of MixColumns? transitions can be handled by the degrees of freedom
from the message input, and this characteristic leads to a zero-difference
state, then an attack can be launched.

This is exactly what Peyrin did in his attack [154] on Grindahl-256. He
found a sequence of Boolean differentials starting from a state where all bytes
are active, ending in a colliding state, such that the total cost of the attack
is about 2112. A birthday collision attack on Grindahl-256 has complexity
about 2128. Hence, Grindahl-256 was broken.

Summary

Grindahl turned out not to have the collision resistance expected by the
designers. The reason seems to have been a combination of the state being
too small, and diffusion happening too slowly. Hence, it may be that variants
of Grindahl with, say, 8 rows and 9 columns are secure. Alternatively, it
seems that with four rows the number of columns needs to be at least 19.
A third alternative is to apply the permutation P more than once for each
message block. A speed/security trade-off is possible with a larger message
block of, say, d columns, and calling the permutation r times for each.

3.4.4 Dakota

Dakota is a hash function with a security proof. It was designed by
Damg̊ard, Knudsen, and this author and presented at ACNS 2008 [49]. It was

72 CHAPTER 3. HASH FUNCTION DESIGN

inspired by a digital signature scheme of Goldwasser, Micali, and Rivest [76].
Security proofs for hash functions usually come in the form of an efficient

reduction from an algorithm that finds a collision, to an algorithm that solves
some problem which is generally believed to be difficult. Hence, the hash
function is collision resistant based on the assumption of the intractability of
the underlying problem. Most often, nothing is said about other properties of
the hash function such as preimage resistance and randomness. In fact, it is
often easy to show non-random behaviour of a hash function that is provably
collision resistant (e.g., [183]). The security proof of Dakota concerns itself
only with collision resistance, and hence it may have undesirable non-random
properties. We propose to apply an output transformation in order to fix
these issues.

Cryptographic hash functions with a security proof are often very inef-
ficient compared to, e.g., the MD4 family (Section 3.4.2). The reason is
that the underlying hard problem consists in doing some operation in a large
group, finite field, or other mathematical structure, and doing arithmetic
in such a large mathematical structure is inherently inefficient compared to
logical operations such as XORs etc. Dakota is the result of an attempt to
combine the world of large integer arithmetic with the world of symmetric
cryptography, where logical and other simple operations are used. This way,
we achieved a hash function which comes with a security proof, that does
not quite cover the whole hash function, but on the other hand the hash
function is much more efficient than existing hash functions based on large
integer arithmetic.

Introducing Dakota

The Goldwasser-Micali-Rivest (GMR) signature scheme can be seen as a
hash function that operates as follows. Denote by QR(N) the set of squares
(quadratic residues) modulo N , where N is a secure RSA modulus, in other
words the product of two distinct, large secret primes p and q. Here, we
furthermore require that p ≡ q ≡ 3 mod 4, which means that N is a Blum
integer [131, Definition 2.156], and −1 6∈ QR(N). Split the message M into
its individual bits bi. Define two random squares a0, a1 modulo N . Define
the compression function f : QR(N)× {0, 1} → QR(N) as

f(h, b) = abh
2 mod N

(the initial value of the hash function is a random square). A collision for f
consists of two pairs (h, b) and (h̃, b̃), such that

abh
2 ≡ ab̃h̃

2 (mod N) ⇐⇒ ab/ab̃ ≡ (h̃/h)2 (mod N).

3.4. DEDICATED DESIGNS 73

Hence, h̃/h is a square root of ab/ab̃. We distinguish the two cases b = b̃ and
b 6= b̃.
If b = b̃, then h̃/h is a square root of 1. There are four square roots of 1
modulo N : −1, 1,−d, d. Since h and h̃ are squares, the quotient h̃/h, which
is itself a square, cannot be −1. If it is 1, then h = h̃, and there is no
collision. Hence, if b = b̃ then a non-trivial square root d or −d of 1 has been
found, which leads to the ability to factor N [131, Fact 3.46] by computing
the greatest common divisor (gcd) of d + 1 and N .
If b 6= b̃, then a square root of ab/ab̃ has been found. This is as difficult as
factoring N , since a0 and a1 were randomly chosen.

Hence, finding a collision for this hash function is as difficult as factor-
ing N . However, the hash function is extremely inefficient, since it takes
a modular multiplication and a modular squaring to digest each bit of the
message.

By choosing 2µ random squares a0, . . . , a2µ−1 instead of only two, effi-
ciency is improved by a factor µ, and the security proof still holds. However,
maintaining 2µ random squares becomes impractical even for small values
of µ such as 16 (216 = 65536). Therefore, it would be convenient to have
a function g : {0, 1}µ → QR(N) that outputs a square given a µ-bit input
string. However, it seems that such a function would have to square a known
value, meaning that the security proof would break down.

If, on the other hand, one would apply a one-way function e to the µ-bit
input before squaring it, yielding the compression function

f(h,m) = (e(m))2h2 mod N = (e(m)h)2 mod N, (3.5)

then the security proof might still hold, since there would be no way of
obtaining m from e(m). Like f , e has to be one-way, and also collision
resistant, so are we not just trapped in a vicious circle? No, not necessarily,
since e does not need to compress, and therefore it may be injective meaning
no collision exists in e.

We need to give a formal proof of security for this construction. For the
proof, we need the to make the following assumption.

Assumption 3.1. It is computationally infeasible to find x, x̃, z, with x 6= x̃,
such that

e(x)

e(x̃)
= ±z2 mod N.

Moreover, we assume that the initial value h0 of the hash function is a
square, for which no square root is publicly known. The hash function, which
we denote by H, iterates f as defined in (3.5) in Merkle-Damg̊ard mode.
With these assumptions in place, the following theorem can be proved.

74 CHAPTER 3. HASH FUNCTION DESIGN

Theorem 3.2. The hash function H as defined above is collision resistant
under Assumption 3.1.

Proof. Let A be an algorithm that finds collisions for H given an arbitrary
initial value h0, and an arbitrary modulus N , with probability ε in time
T . We shall describe how A can be used to break Assumption 3.1 with
probability at least ε/2, in time equivalent to just a few computations more
than T .

We are given a secure RSA modulus N . We choose an element s of ZN

at random, and set h0 = s2 mod N . We give h0 and N to A, and get the
message pair M, M̃ such that M 6= M̃ and H(M) = H(M̃) in return.

Let M = m1‖ · · · ‖mt and M̃ = m̃1‖ · · · m̃t̃, where each block is µ bits
in length (padding is ignored here for simplicity, but makes no difference to
the validity of the proof). Let hi and h̃i be the intermediate hash values
when processing M and M̃ , respectively. We have ht = h̃t̃, and therefore
(e(mt)ht−1)

2 ≡ (e(m̃t̃)h̃t̃−1)
2 (mod N). If e(mt)ht−1 6= ±e(m̃t̃)h̃t̃−1, then a

factor of N can be found by computing, e.g., gcd(e(mt)ht−1 − e(m̃t̃)h̃t̃−1, N)
[131, Fact 3.18], and by knowing the factorisation of N we can break As-
sumption 3.1. Hence, we may assume that e(mt)ht−1 = ±e(m̃t̃)h̃t̃−1. This

means that e(mt)/e(m̃t̃) = ±h̃t̃−1/ht−1, where the quotient on the right hand
side is a square. Assume first that t = t̃. Then we know a square root of
h̃t̃−1/ht−1, and hence, we have either broken Assumption 3.1, or mt = m̃t̃

and ht−1 = h̃t̃−1 (since −1 is not a square modulo N , it cannot be that

ht−1 = −h̃t̃−1). In the latter case, the argument can be repeated. Note that
this reasoning also applies when t = t̃ = 1, in which case one has found a
pair (m, m̃) such that e(m) = ±e(m̃), leading to a contradiction with As-
sumption 3.1 with z = 1.

Assume now that t 6= t̃, or more specifically and without loss of generality,

that t < t̃. If t > 1, then the same argument as above for t = t̃ applies. If
t = 1, then we have e(m1)/e(m̃t̃) = ±h̃t̃−1/h0. We may assume that m1 = m̃t̃,

since otherwise we have broken Assumption 3.1. Hence, we have h0 = h̃t̃−1,
which means we can find a square root of h0. With probability 1/2, this
square root is not equal to ±s, which means that it can be used to factor
N , and thereby break Assumption 3.1. Hence, given a collision from A we
can break Assumption 3.1 with probability 1/2, using just a few compression
function evaluations and (possibly) a gcd computation.

We remark that the factorisation of N must be unknown to the whole
world for this hash function to be useful in practice. This may not seem pos-
sible, but there are in fact efficient and secure techniques [25] for constructing
an RSA modulus in a distributed fashion in such a way that even the parties

3.4. DEDICATED DESIGNS 75

taking part in the construction do not subsequently know the factorisation
of N .

What requirements do Assumption 3.1 induce on e?

Requirements on e

It is clear that finding a collision for e leads to the ability to break Assump-
tion 3.1 with z = 1.

Also, being able to invert e leads to the ability to break the assumption:
choose x̃, z arbitrarily, and compute x = e−1(e(x̃)z2). This, however, assumes
that e is surjective. We may design e to expand by a large factor (i.e., choose
µ¿ log2 N), such that even finding x̃, z such that ±e(x̃)z2 is in the image of
e is infeasible. The more that e expands, however, the less we gain in terms
of efficiency compared to the GMR hash function.

Being collision resistant and one-way are not sufficient conditions, how-
ever. As an example, consider e(x) = x2 mod N , which is assumed to be
collision resistant and one-way when the input is restricted to values below
N/2. Even ignoring the fact that a zero of this function is trivially found
(which leads to a contradiction of the assumption with z = 0), this definition
of e is bad because it has a simple description in terms of arithmetic modulo
N . The equation that must be solved to break the assumption now becomes

x2

x̃2
= ±z2 mod N,

which is satisfied with, e.g., x = x̃z for almost any x̃, z (z 6= 1).
Instead it may be better to define e based on principles from symmetric

cryptography. We now give some proposals.

Proposals for e

The first proposal for e tries to exploit the good properties of squaring modulo
a secure RSA modulus, while avoiding the negative side effect of the function
having a simple description in terms of arithmetic modulo N . It applies a
squaring modulo a modulus that is a few bits shorter than N , followed by the
application of a permutation based on the AES encryption function [145].

To be precise, e is defined as follows. Let the input x have length µ bits.
Let N ′ be a secure RSA modulus such that 2µ < N ′/2, and such that the
number of bits in N ′ is a multiple of 128. N should be a few bits longer than
N ′. Let e do the following, where EK is the AES encryption function with
128-bit key K, and κ1 and κ2 are two fixed, distinct 128-bit keys.

1: Compute u← x2 mod N ′ and let u = u1‖ · · · ‖u` (|ui| = 128)

76 CHAPTER 3. HASH FUNCTION DESIGN

2: v0 ← 0
3: for i = 1 to ` do
4: vi ← Eκ1(vi−1 ⊕ ui)
5: end for
6: w0 ← 0
7: for i = 1 to ` do
8: wi ← Eκ2(wi−1 ⊕ v`−i+1)
9: end for

10: return w = w1‖ · · · ‖w`

The order of the blocks vi is reversed for the second series of encryptions
(line 8) in order to make every output bit depend on every input bit.

We claim that this definition of e provides a one-way and collision resistant
function, since x < N ′/2. Moreover, we believe that encrypting the output
of the squaring twice will make it difficult to retain simple relations modulo
N . The relative sizes of µ, N ′ and N can be different than stated here, but it
is convenient if the size of N ′ matches a multiple of 128 bits. Moreover, the
output of e should be less than N , but for efficiency reasons, not too much
less.

The second proposal is the application of an AES-based permutation
P in a mode that can be seen as Matyas-Meyer-Oseas (Construction 3.2),
namely e(x) = P (x)⊕ x. In the following description, we assume a 1025-bit
modulus, and µ = 1024. The invertible function T maps 1024-bit strings to
8× 8 matrices of 16-bit values.

1: A← T (x)
2: for i = 1 to 4 do
3: Encrypt (using the AES) each row in A with its own key
4: Transpose A (i.e., A← AT)
5: end for
6: return x⊕ T−1(A)

The security proof [24] of the Matyas-Meyer-Oseas construction can be ex-
tended to this construction, assuming the permutation applied is ideal. This
means that the construction can be considered one-way and collision resis-
tant. Of course, we cannot prove ideality of the permutation, but we claim
that the permutation provides sufficient mixing for the resulting function to
be one-way, collision resistant, and to make it very difficult to break Assump-
tion 3.1.

If a larger modulus, say a 2049-bit modulus, is required, then T may map
2048-bit strings to 16× 16 matrices of bytes instead.

3.4. DEDICATED DESIGNS 77

Output transformation

In most applications, it is recommended that the output of H is not used
as the final hash, but is instead fed to an output transformation function
Ω : QR(N) → {0, 1}n, where n is chosen such that the complexity of fac-
toring N is expected to be no less than 2n/2. The intention is to obtain
an output size corresponding to the security level of the hash function. In
addition, Ω should obfuscate the algebraic structure of the output. Any alge-
braic structure could compromise the security of schemes in which the hash
function is used, particularly schemes that are based on modular arithmetic
such as signature schemes based on RSA [174, 181]. A third purpose of an
output transformation may be to improve the preimage resistance of the hash
function.

In order to provably extend the collision resistance of H to Ω ◦ H, Ω
would itself have to be collision intractable. But in practice, this may not be
necessary: even if it is easy to find collisions for Ω, these do not necessarily
lead to collisions for Ω◦H. In fact, it may be sufficient that Ω mixes the bits
of its input well such that all output bits depend on all input bits, and that
it is balanced. Unless the hash function is primarily used for short messages,
Ω does not have to be terribly fast, since it is only used once.

A concrete example of how the output transformation could work is as
follows: Let G be a finite group of prime order and let g1, ..., gu be chosen
randomly in G. We choose the two integers t and u such that t < log2 |G|
and tu ≥ log2(N). Let b = H(x) = b1‖ · · · ‖bu be the output from the main
hash function, where the length of each bi is t. Since tu ≥ log2(N), this
may require that bu be padded with zeros – a simple padding scheme is fine
here, since all inputs to the output transformation will have the same length.
We then define the intermediate output ω(b) as gb1

1 · · · gbu
u , that is, a single

element from G.

It is well known [33] (and straightforward to show) that finding collisions
for this mapping is as hard as solving the discrete logarithm problem (DLP)
in G. There are well known constructions of such groups based on elliptic
curves, where the DLP can be reasonably assumed to be hard, and where
the representation of a group element is 200-400 bits long. Note also that by
choosing t small, for instance ≤ 8, we may perform the exponentiations gbi

i

by table look-ups.

We recommend that a final bijective function based on symmetric crypto-
graphy is used on ω(b) to produce the final output Ω(b), in order to prevent
the adversary from exploiting the algebraic properties of exponentiation in
G. This function could be designed in a similar way as in the first proposal
for e above.

78 CHAPTER 3. HASH FUNCTION DESIGN

Related hash functions

A number of hash functions claiming to obtain provable security have been
proposed in the past. We already described the GMR hash function. Some
other examples are now mentioned.

Discrete log hash. The discrete log hash , or the Chaum-van Heijst-
Pfitzmann hash function [33] is defined as follows. Let p and q = p−1

2
be

large, odd primes. Let α and β be randomly chosen primitive elements
of Zp, such that logα(β) is hard to find. Define the compression function
f : Zq × Zq → Z∗p by

f(h,m) = αhβm mod p.

It can be shown that a collision for f enables one to compute logα(β).

MASH. The MASH (for Modular Arithmetic Secure Hash) functions [87]
are standardised in ISO/IEC 10118-4. The compression function of MASH-1
is defined as follows. Let N be an RSA modulus, and let the message block
be expanded to m, where the 4 most significant bits of every byte are set to
1111 (except in the final (padding) block, where the bits 1010 are inserted).
Let a = f00 . . . 00 (in hexadecimal), and let

f(h,m) =
(
((h⊕m) ∨ a)2 mod N

)⊕ h.

In MASH-2, the exponent 2 is replaced by 28 + 1. (See also [131, Algorithm
9.56]).

The MASH functions fall somewhat outside the category of provably se-
cure hash functions, since no security proof exists. The claimed security of
both these hash functions is N1/2 for preimages, and N1/4 for collisions.

VSH. A recent example of a provably collision resistant hash function is
VSH [34], which is roughly defined as follows. Let N be a public RSA
modulus. Let p1, . . . , pk be public primes such that

∏k
i=1 pi < N . Define the

compression function f : Z∗N × {0, 1}k → Z∗N by

f(h,m) = h2

k∏
i=1

pmi
i mod N,

where mi is the ith bit of m. The security of this construction relies on
the so-called Very Smooth Square Root Problem, which is connected to the
difficulty of factoring. There is also a variant of VSH whose security is based
on the discrete logarithm problem [117]. VSH is generally considered to be
one of the most efficient hash functions with provable security.

3.4. DEDICATED DESIGNS 79

Performance

Dakota may be compared to the basic version of VSH [34] as follows: in
both hash functions, a multiplication and a squaring modulo N must be
performed for each message block, plus an overhead which in the case of
VSH is due to the computation of the product of small primes, and in our
case is due to the evaluation of e. Dakota is likely to perform better for one
important reason: the size of a message block in our case is up to log2(N)
bits, whereas in the case of (basic) VSH it is the largest number t such that
the product of the first t primes is less than N (in [34], t is estimated to be
approximately log N

log log N
). As an example, with N a 1024-bit modulus, the size

of a message block in Dakota may be up to 1024 bits, and in VSH it would
be 131 bits.

There may also be an important difference in efficiency between evaluat-
ing e and computing the product of up to t primes.

There are faster versions of VSH that use larger message blocks and pre-
compute some products of the small primes. These versions require a larger
modulus to be used, and reliably comparing fast VSH with Dakota requires
implementations using similar optimisations, compilers, processors etc. Ac-
cording to measurements presented in [34], fast VSH with claimed security
equivalent to factoring a 1024-bit modulus reaches speeds of around 840 cy-
cles/byte.

Dakota has been implemented with both proposed definitions of e and
random choices of the moduli N (1025 bits) and N ′ (1024 bits), initial value
h0, and AES keys κ1 and κ2. For the AES, we used our own implementation
in C. For large integer arithmetic, the GMP (GNU Multiple Precision) arith-
metic library [75] has been used (version 4.2.1). The implementation was
compiled and run on two different platforms, see Table 3.3 for benchmarks
(also included are benchmarks for SHA-256 [146], obtained from [46]). The
32-bit benchmarks refer to a test on a 2GHz Pentium M processor. The
64-bit benchmarks were obtained on an Intel Core 2 processor and are due
to [10]. Further optimisations of the implementation are almost certainly
possible.

We have not performed tests using larger modulus sizes, although in order
to achieve collision resistance comparable to, e.g., SHA-256, a modulus size
of about 3072 bits would be needed, according to estimates by NIST [150].

Summary

Dakota is a cryptographic hash function with a security proof based on
a non-standard assumption, that involves a function e which is required to

80 CHAPTER 3. HASH FUNCTION DESIGN

Table 3.3: Speed comparison of Dakota with SHA-256 (see text for details).

Hash function
Approximate speed (cycles/byte)

32-bit 64-bit
SHA-256 21.5 21.5
Dakota (first proposal for e) 400 160
Dakota (second proposal for e) 345 160

have certain properties. Among these are that e should be collision resistant
and one-way, but since e does not compress, there is no circular argument
such as “in order to build a secure compression function we just need a secure
compression function”. On the other hand, it may be argued that if e satisfies
the requirements induced by the assumption, then e might itself be useful
as a compression function if its output is truncated. We cannot prove this
claim to be right or wrong. Clearly, if e is modelled as a random oracle, then
the assumption is satisfied, but then e would already be a good compression
function (upon truncation). However, we argue that the requirements on e
are strictly weaker than the usual requirements on a compression function.

3.4.5 Anaconda

In this section, we describe the Anaconda hash function. Anaconda is an
attempt at designing a hash function achieving the good diffusion properties
of the 4 × 4 matrix structure used in the block ciphers Square [41] and
Rijndael/AES [42, 145]. The challenge in this respect is to arrive at a larger
state size, since the 128-bit state of these block ciphers is not large enough
for hashing. There are, of course, several methods to increase the state size;
one method is to increase the size of the matrix (this method was used in the
Grøstl hash function, see Section 5.1), and another method is to increase
the word size from 8 bits to, e.g., 64 bits. The latter method was followed in
the design of Anaconda.

Unfortunately, 64-bit (and also 32-bit) S-boxes are infeasible to use in
practice. Therefore, increasing the word size necessitates other changes as
well. The non-linear transformation was therefore changed from operating
on a word, to operating on a column, but in a bitslice fashion (as in Ser-
pent [3]). Apart from introducing non-linearity, this also introduces diffusion
within each column, and offers better protection against some side-channel
attacks [111] than a table-based S-box.

On the other hand, a bitslice S-box does not introduce diffusion within a
word. Hence, this must be taken care of by other means. The MixColumns

3.4. DEDICATED DESIGNS 81

transformation known from Rijndael ensures maximal diffusion among words,
but it, too, does not introduce much diffusion within a word. Therefore, it
was decided to abolish the principles underlying the MixColumns transforma-
tion, and instead focus on an efficient linear transformation, that provides a
large amount of diffusion within words, and also provides (sub-optimal) dif-
fusion among the words in each row. The diffusion within words is obtained
via a primitive known from the SHA-2 hash functions [146].

The end result is a hash function that bears resemblance with both Ri-
jndael and Serpent at the same time. It is simple and (in the author’s view)
elegant.

The name Anaconda refers to a class of hash functions returning outputs
of any size between 1 and 512 bits. The variants returning outputs of sizes
between 1 and 256 bits all use the same method, only the initial value and the
amount of truncation taking place in the end are different. This method is
described in detail in the following. For the larger variants, another method
is used; this method is described at the end of this section.

Anaconda was never submitted to a conference or a journal, but was
published as a technical report [206]. The reason for including the design in
this thesis is, that we believe it has some interesting properties, and the pro-
cess of designing Anaconda brought with it some interesting observations.
Among these are the observations on the Σ functions, described below, and
the attacks described after the hash function specification. We believe it is
also interesting to compare Anaconda with Grøstl, since both are, in a
sense, methods of “enlarging” Rijndael (with very different outcomes).

Specification of Anaconda

The Anaconda hash function H takes messages of length up to about 264

bits and returns a hash result of n bits, where n is any number between 1
and 512. We now describe how to produce hash results up to 256 bits.

Anaconda assumes a big-endian byte ordering. It applies a compression
function f : {0, 1}512 × {0, 1}512 → {0, 1}512 in standard Merkle-Damg̊ard
mode. The output of the final application of the compression function is
truncated to an n-bit value.

The compression function f operates with a 16-word state, that is seen
as a 4× 4 matrix of words (as in Rijndael). A state A = a0‖ · · · ‖a15 is seen
as the matrix

A =

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

 .

82 CHAPTER 3. HASH FUNCTION DESIGN

Each word is 64 bits in size. Let W = {0, 1}64. The compression function
takes a 512-bit message block and a 512-bit chaining value, forms a 1024-bit
state viewed as the matrix above, and applies a number of rounds to the
state. The final state is then truncated to 512 bits. The round function is
now described.

Round function. The round function p : W16 → W16 is a permutation.
It applies two different transformations: the linear transformation lt :W4 →
W4, and the non-linear transformation nt : W4 → W4. We shall come back
to how these transformations are defined in a moment. The round function
operates on a state A = a0‖ · · · ‖a15 as follows.

a15 ← a15 ⊕ 1

(a0, a1, a2, a3) ← lt(a0, a1, a2, a3)

(a7, a4, a5, a6) ← lt(a7, a4, a5, a6)

(a10, a11, a8, a9) ← lt(a10, a11, a8, a9)

(a13, a14, a15, a12) ← lt(a13, a14, a15, a12)

(a0, a4, a8, a12) ← nt(a0, a4, a8, a12)

(a1, a5, a9, a13) ← nt(a1, a5, a9, a13)

(a2, a6, a10, a14) ← nt(a2, a6, a10, a14)

(a3, a7, a11, a15) ← nt(a3, a7, a11, a15)

See also Figure 3.9. In words, first a linear layer is applied to each row, and
then a non-linear layer is applied to each column. The linear layer provides
diffusion both on the bit-level and on the word-level (row-wise). The non-
linear layer is a 4-bit S-box in bitslice mode, which provides diffusion on
the word-level (column-wise). Notice that the order of the input words to
the lt function is shifted for each row, and that the least significant bit of
a15 is flipped in the beginning. These measures are in order to introduce
asymmetry.

lt nt

Figure 3.9: The effects of the transformations lt and nt.

3.4. DEDICATED DESIGNS 83

Compression function. The input to the compression function f is the
message block m and the chaining value h. From these, f forms the state
A = m‖h. It then applies the round function p a number ` of times. ` is
a security parameter, and hence its value may be chosen depending on the
desired security level. We suggest ` = 16. Since p is a permutation, no
collisions are formed (yet).

After the ` applications of p, the compression function returns trunc512(A).
Hence, this final truncation is the only operation that introduces collisions.
To be more precise, the compression function f is defined as follows:

f(h,m) = trunc512(p
`(m‖h)).

Linear transformation lt. In the definition of lt, four transformations
operating on a single word each are applied. Let these be Σi, 0 ≤ i < 4.
They are defined as follows.

Σ0(a) ← a≪1 ⊕a≪20⊕a≪24

Σ1(a) ← a≪13⊕a≪22⊕a≪60

Σ2(a) ← a≪30⊕a≪50⊕a≪63

Σ3(a) ← a≪24⊕a≪51⊕a≪54

Given the four input words (a, b, c, d), lt is defined as follows.

a ← Σ0(a)

b ← Σ1(b)

c ← a⊕ b⊕ c

d ← a⊕ (bÀ1)⊕ d

c ← Σ2(c)

d ← Σ3(d)

a ← a⊕ c⊕ d

b ← b⊕ (cÀ3)⊕ d

See Figure 3.10.

Non-linear transformation nt. As mentioned, the non-linear transfor-
mation is a 4-bit S-box in bitslice mode. The S-box S used for nt is defined
as follows.

x : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) : 2 9 8 3 11 5 7 14 12 15 1 4 6 0 10 13

84 CHAPTER 3. HASH FUNCTION DESIGN

a b c d

a b c d

Σ1Σ0

Σ2 Σ3

? ?

-

?

?

- -

?

?

?

? ?

-

-

?

¾

¾

¾

¾
?

?

? ? ? ?

¾À3

À1

Figure 3.10: The linear transformation lt.

This S-box is, conceptually, applied as follows. Place the jth bit of the ith
input word (counting from 0) in position (i, j) in a 4 × 64 matrix of bits.
Apply the S-box to each of the 64 4-bit words defined by the columns of this
matrix, where the bits in the top row are the most significant bits. Then,
map the matrix back to four 64-bit words. In practice, the S-box application
can be done via logical operations on the four 64-bit words. A method to do
this is described later.

Padding. The padding function used is pad∗512,64, see Definition 2.2 (page
19). This induces a maximum length of messages that can be hashed to
264 − 1 bits (approximately 255 message blocks).

The hash construction. The hash function applies the compression func-
tion f in Merkle-Damg̊ard mode, with the addition that the final output is
truncated to n bits. The initial value is the 512-bit representation of the
output size n. To be more precise, the message M is padded to M+ =

3.4. DEDICATED DESIGNS 85

m1‖m2‖ · · · ‖mt, and we set h0 = 〈n〉512. Let

hi ← f(hi−1,mi) for i = 1, . . . , t.

Finally, let H(M) = truncn(ht).

Some observations

An alternative representation of the compression function f , assuming a sin-
gle 1024-bit input x and P = p`, is

f(x) = P (x) mod 2512.

(Here, P (x) is seen as a 1024-bit integer). Collisions can easily be found for
the compression function: choose y1 and y2 to be distinct 1024-bit values such
that y1 ≡ y2 (mod 2512), and compute x1 = P−1(y1) and x2 = P−1(y2). Then
the pair (x1, x2) forms a collision for the compression function. However, if
P is a good permutation, then an attacker will have no direct control over
x1 and x2.

A meet-in-the-middle preimage attack (see Section 4.1.4) can be launched
in time 2256 as follows. Let y = H(M) be a target image. Compute vi =
f(h0‖ai) for 2256 arbitrary 512-bit values of ai, 0 < i ≤ 2256. Compute
bi‖wi = P−1(zi‖y) for arbitrary (1024 − n)-bit values of zi, 0 < i ≤ 2256.
Find a match (i, j) between vi and wj. Then H(ai‖bj) = y. We note that
the complexity is at least as high as the complexity of a brute force preimage
attack, since n ≤ 256. The memory requirements are 2256.

The invertibility of the compression function also leads to almost trivial
pseudo-attacks. For instance, a pseudo-preimage attack: given target image
y = H(M), choose arbitrary z, and compute m‖h∗0 = P−1(z‖y). Then m
is a preimage of y when h∗0 is used as the initial value of the hash function.
We argue that h∗0 cannot be controlled (except by the method of the above
preimage attack), and therefore we do not consider these pseudo-attacks a
threat.

Design properties and considerations

This section describes some properties of the Anaconda design, and some
considerations that were made in the development process.

The linear transformation. The linear transformation was to some ex-
tent inspired by the block cipher Serpent. The Σ transformations do not
appear in Serpent, but are used in the SHA-2 hash functions.

86 CHAPTER 3. HASH FUNCTION DESIGN

The linear transformation has the following effect on the four input words
a, b, c, d, where primed values are the new values of the input words:

a′ ← Σ0(a)⊕ Σ2(c⊕ Σ0(a)⊕ Σ1(b))⊕ Σ3(d⊕ Σ0(a)⊕ (Σ1(b))
À1)

b′ ← Σ1(b)⊕ (Σ2(c⊕ Σ0(a)⊕ Σ1(b)))
À3 ⊕ Σ3(d⊕ Σ0(a)⊕ (Σ1(b))

À1)

c′ ← Σ2(c⊕ Σ0(a)⊕ Σ1(b))

d′ ← Σ3(d⊕ Σ0(a)⊕ (Σ1(b))
À1).

We discuss the Σ functions below. Some figures describing the diffusion
taking place in lt follow.

Every bit in a affects at least 50 output bits; every bit in b affects at
least 42 output bits; every bit in c affects at least 8 output bits; and every
bit in d affects at least 9 output bits. Hence, diffusion is more effective in a
and b than in c and d. Since the input ordering is changed in each row, the
effectiveness of the diffusion is spread evenly among all columns.

Looking at the outputs, every output bit of a is affected by at least 34
input bits; every output bit of b is affected by at least 24 input bits; every
output bit of c is affected by at least 21 input bits; and every output bit of
d is affected by at least 18 input bits.

One many also look at the inverse of the linear transformation, lt−1.
This can be used to say something about how a low-weight state can be
reached. To compute the inverse, one simply performs the steps described in
the specification in the reverse order, applying the inverse Σ functions (see
below). To reach a weight 1 output in a, the input must have weight 39.
The same is the case for b, except in a single bit position where a weight 38
input suffices. In c, a weight 1 output can be reached by an input of weight
at least 74 (60 out of 64 output bits require a weight 111 input), and in d, a
weight 1 output can be reached by an input of weight at least 112.

The Σ functions. The purpose of the Σ functions is to cause diffusion
within words. Σ functions are also used in the SHA-2 hash functions (see
Section 3.4.2). We define the class of Σ functions as the functions

Σ(a)← a≪r1 ⊕ a≪r2 ⊕ a≪r3 ,

where a is a 64-bit value, and 0 ≤ r1, r2, r3 < 64. Each choice of rotation
values (r1, r2, r3) defines a member of the class. We now state and prove two
theorems regarding Σ functions.

Theorem 3.3. For any set of rotation values, Σ is a bijection, and Σ64(x) =
x.

3.4. DEDICATED DESIGNS 87

Proof. We first prove that Σ64(x) = x. We have:

Σ2(x) = x≪2r1 ⊕ x≪r1+r2 ⊕ x≪r1+r3 ⊕ x≪r1+r2 ⊕ x≪2r2 ⊕ x≪r2+r3 ⊕
x≪r1+r3 ⊕ x≪r2+r3 ⊕ x≪2r3

= x≪2r1 ⊕ x≪2r2 ⊕ x≪2r3 .

Repeating this reasoning, we have Σ2k
(x) = x≪2kr1⊕x≪2kr2⊕x≪2kr3 . Since

x≪64d = x for all integers d, we get Σ64(x) = x⊕ x⊕ x = x. This also shows
that Σ64(x) = Σ(Σ63(x)) = x ⇐⇒ Σ63(x) = Σ−1(x), and therefore, Σ is
a bijection. We note that the proof extends to the general case of 2k-bit
words.

Theorem 3.4. Exactly one or three of the rotation values r1, r2, r3 are odd
⇐⇒ Σi(x) 6= x for all x and all i, 1 ≤ i < 64.

Proof. Since Σ64(x) = x, we have that if Σ32(x) 6= x, then Σi(x) 6= x for all x
and all i < 64 (since the only divisor of 64 that is not a divisor of 32, is 64).
From the proof of Theorem 3.3, we know that Σ32(x) = x≪32r1 ⊕ x≪32r2 ⊕
x≪32r3 . If ri is even, then x≪32ri = x, and otherwise, x≪32ri = x≪32. Hence,
if one or all three of the ri are odd, then Σ32(x) = x≪32, and otherwise,
Σ32(x) = x. Again, the proof extends to the general case of 2k-bit words.

Obviously, r1, r2, r3 should be distinct – otherwise, Σ is only a rotation
and does not provide any diffusion. We consider a Σ function with distinct
rotation values “good” if

• Σi(x) 6= x for all x and all i, 1 ≤ i < 64.

• The inverse function Σ−1 causes good diffusion.

Let us investigate some requirements for the inverse function Σ−1 to cause
good diffusion. From the proof of Theorem 3.3, we have that Σ−1(x) =
Σ63(x), and hence we see that the inverse is the sum (XOR) of all terms of
the form x≪a, where a = ri0 + 2ri1 + 4ri2 + 8ri3 + 16ri4 + 32ri5 mod 64, and
ij ∈ {1, 2, 3}. Intuitively, the inverse causing good diffusion corresponds to
this sum having many terms that don’t cancel out: for inputs of Hamming
weight 1, the output Hamming weight is equal to the number of terms in the
sum that haven’t been cancelled out by other terms. For inputs of Hamming
weight 2 to have high output Hamming weight, we need that x≪a ⊕ x≪a+i

contains many terms for all i, 1 ≤ i < 64. There always exist inputs to
Σ−1 of Hamming weight 3 with output Hamming weight 1, because if x has
Hamming weight 1, then Σ(x) has Hamming weight 3.

88 CHAPTER 3. HASH FUNCTION DESIGN

If r1, r2, r3 are all odd, then a is always odd, and hence the inverse is the
sum of at most 32 terms. We may obtain better results by requiring that r1

is odd and r2 and r3 are even.

In order to find optimal rotation values, we performed a search. We fixed
r1 = 1 and searched for distinct, even values of r2 and r3 that would yield
high output Hamming weights for inputs to Σ−1 with Hamming weights 1
and 2. Of course, this search could have been done without the theory
described above, since the search space has size at most 218. It turned out
that 60 pairs (r2, r3) produced equally good results: a weight 1 input to Σ−1

causes at least a weight 37 output, and a weight 2 input causes at least a
weight 26 output. Note that translating the rotation values does not change
the mentioned properties. By translating a set of rotation values, we mean
adding the same even constant to all three rotation values.

In terms of the properties that we tried to optimise for Anaconda, the
Σ functions used in SHA-2 are not optimal. For instance, Σ

{512}
0 (see [146])

has (35, 18) in place of (37, 26) (recall that these are the minimum output
Hamming weights of Σ−1 given input Hamming weights (1, 2)). We assume
there are other good reasons why the Σ functions used in SHA-2 were chosen
as they were.

After having found the 60 equally good pairs, we chose four of them more
or less at random, but such that the two even rotation values were quite
different. We then searched for translations of these four sets of rotation
values such that when used inside lt, a weight 1 input to lt ◦ lt yielded an
output with a large Hamming weight. The first solution, for which the output
Hamming weight was maximal, was chosen.

The reason why we chose to measure the diffusion of lt by using two
applications of the linear transformation is that for only a single application,
all translations have the same effect: a weight 1 input yields at least a weight
8 output. For lt ◦ lt, with the Σ functions chosen for Anaconda, a weight 1
input yields at least a weight 120 output.

The inverse Σ functions have the following descriptions, where we list
each of the 37 rotation values.

Σ−1
0 : 3 4 5 6 11 14 16 17 18 19 20 23 24 25 26 27 28 29 30 33 34 35 36

38 40 41 44 45 50 51 54 55 56 58 60 61 63

Σ−1
1 : 0 1 3 4 6 11 14 16 17 18 20 21 22 24 26 27 28 29 30 31 32 33 34 35

38 39 40 41 42 45 49 51 53 54 60 61 62

Σ−1
2 : 0 1 3 4 5 8 12 13 14 18 19 20 21 22 23 25 26 27 28 30 31 32 34 36

37 39 40 42 43 48 50 53 55 57 58 61 62

Σ−1
3 : 2 3 4 5 6 7 9 10 11 13 14 16 21 22 23 24 26 27 28 29 30 31 35 38 39

40 44 46 48 49 50 52 55 59 60 61 62

3.4. DEDICATED DESIGNS 89

The non-linear transformation. The S-box used in Anaconda is a
variant of the Serpent S-box numbered 0. The change as compared to the
original Serpent S-box is based on the Serpent implementation by Osvik [153]:
here, each output bit is not in its right place after the S-box application, and
subsequent word moves are done implicitly. We would like to avoid this,
and hence we have just taken the output bits in the order they come out of
the S-box application. Furthermore, a logical negation was omitted in order
to speed up the implementation. This change only corresponds to an affine
transformation, and hence does not change the important properties of the
S-box.

The properties of the S-box are described in [3]. As an example, flipping
one input bit causes at least two output bits to flip.

We might add that an S-box in bitslice mode offers better protection
against side-channel attacks such as timing analysis [111], than an S-box
implemented via table look-ups.

Global diffusion. The good diffusion properties of both the linear trans-
formation and the non-linear transformation cause global diffusion to be very
effective. Full diffusion occurs after just three rounds, which means that ev-
ery state bit affects every other state bit after at most three rounds.

After just two rounds, half the state bits affect all other state bits, and
every state bit affects at least 956 out of the 1024 state bits. On average,
every state bit affects 1003 state bits after two rounds. Hence, diffusion is
almost complete after just two rounds.

State size. Since the chaining value is at least twice as large as the output,
Anaconda is a wide pipe construction, see [121] and Section 3.3.2. An
important advantage of this construction is that it allows “slight failures” in
the compression function. Consider, for instance, a collision attack on the
compression function, which works for any given chaining input. Assume
this attack has complexity 2c/4, where c is the size of the chaining value.
Although being an indication that the compression function does not provide
ideal security, this attack would not constitute a collision attack on the hash
function, since c ≥ 2n and therefore 2c/4 ≥ 2n/2.

Implementation issues

As mentioned, the S-box was chosen from the set of Serpent S-boxes. These
were implemented by Osvik [153], who focused on their performance on Pen-
tium processors. A C implementation of the S-box used in Anaconda (based
on Osvik’s implementations) follows (t is a temporary variable).

90 CHAPTER 3. HASH FUNCTION DESIGN

#define S(x0,x1,x2,x3,t) do { \

t = x3; \

x3 |= x0; \

x0 ^= t; \

t ^= x2; \

t =~ t; \

x3 ^= x1; \

x1 &= x0; \

x1 ^= t; \

x2 ^= x0; \

x0 ^= x3; \

t |= x0; \

x0 ^= x2; \

x2 &= x1; \

x3 ^= x2; \

x2 ^= t; \

x1 ^= x2; \

} while (0)

More efficient implementations are likely to exist, particularly on other pro-
cessors than the Pentium. It is generally difficult to find optimal implemen-
tations of bitslice S-boxes.

Since no words are copied from one position in the state matrix to another,
all computations can be done “in place”, and therefore an implementation
using 1024 bits of memory is possible.

An implementation of Anaconda in C has been developed [204] and
run on an Intel Core2 Duo (E4600) 64-bit processor. With 16 rounds, the
implementation reaches a speed of around 23 cycles/byte. The compiler
used was Intel’s C compiler version 10.1 (build 20080112) for Linux. The
gcc compiler does not achieve the same speed for reasons that are unclear
at this point. We note that improvements to the implementation are almost
certainly possible.

Security claims

We claim that the best collision attack on Anaconda variants returning up
to 256 bits has complexity around 2n/2, and the best preimage and second
preimage attacks have complexity around 2n. See also the discussion at the
end of this section.

3.4. DEDICATED DESIGNS 91

Cryptanalysis

Further work on Anaconda was postponed due to the SHA-3 competition.
The author decided to take part in another design, Grøstl, and hence, an
investigation of the feasibility of known attacks on Anaconda has yet to
be made. However, we note here that in each round, the 4-bit S-box is
applied 256 times, totalling 4096 S-box applications over the 16 rounds. This
number is huge compared to, e.g., the number of S-box applications in the
10 rounds of Rijndael, which is 160, or the number of S-box applications in
the 32 rounds of Serpent, which is 1024. Of course, 4-bit and 8-bit S-boxes
cannot be compared directly, and the number of degrees of freedom that an
attacker has in the input to Anaconda is higher than in the block ciphers.
However, considering the large number of S-box applications combined with
the good diffusion taking place in Anaconda, we believe that established
attack methods such as differential attacks will not work on Anaconda.

Larger variants

One possible method of building a 512-bit hash function on the basis of
the method described above is to use 128-bit words instead of 64-bit words.
Although many processors provide SSE instructions on 128-bit vectors, these
are not capable of performing rotations, and hence we estimate that there
would be a rather large penalty in terms of efficiency. Instead, we chose to
change the definition of the compression function to the following.

f(h,m) = trunc512(p
2`(m‖h))⊕ h,

or, in the alternative representation,

f(x) = P 2(x)⊕ x mod 2512.

The chaining input is fed forward to protect against the meet-in-the-middle
preimage attack mentioned above, which would have complexity below 2n if
n > 256.

The security claims for the larger variants of Anaconda are the same
as for the shorter variants, except for second preimage resistance, which we
claim to be at a level of 2n−k compression function evaluations for a first
preimage of 2k blocks.

With 32 rounds, the larger variants perform at around 45 cycles/byte in
the environment described above.

92 CHAPTER 3. HASH FUNCTION DESIGN

Summary

Anaconda is a hash function built on some of the design principles underly-
ing Rijndael, and also on some of those underlying Serpent. The compression
function (for variants returning up to 256 bits) is a permutation followed by
a truncation. The internal state size is at least twice the output size. Col-
lisions can easily be found in the compression function (even assuming the
permutation is ideal), and therefore the security proof of the Merkle-Dam-
g̊ard construction does not apply to Anaconda. However, it does not seem
possible to extend the collision attack on the compression function to the full
hash function, assuming that the permutation contains no weaknesses.

For the larger variants returning more than 256 bits, it seems harder to
find collisions for the compression function. The compression function is not
invertible, due to a feed-forward of the chaining input. This feed-forward is
omitted in the shorter variants in order to avoid having to store a copy of
the 512-bit chaining input.

Like RadioGatún and Grindahl, the Anaconda hash functions can
be seen as instances of the sponge construction (Section 3.3.5). However,
Anaconda takes larger messages blocks, but applies a stronger permutation
than RadioGatún and Grindahl.

Anaconda variants returning at most 256 bits can be seen as random
P-sponges, for which we claim that the capacity is 512 bits. This would
mean that the hash functions have optimal collision, preimage, and second
preimage resistance.

Variants returning more than 256 bits can be seen as random T-sponges,
with claimed capacity 512 bits. This means that collision and preimage re-
sistance are claimed to be optimal, but second preimage resistance degrades
with the length of the first preimage; if the length of the first preimage is L
message blocks, then second preimage resistance is at most 2512/L. Hence,
for the longest variants, finding a second preimage has sub-optimal complex-
ity (note that the maximum value of L is 255). However, we argue that a
second preimage resistance of 2512−55 = 2457 is sufficient for a 512-bit hash
function, in particular when considering that this complexity requires the
first preimage to have a length of 255 message blocks (equivalent to about 2.3
million terabytes).

Chapter 4

Hash function cryptanalysis

Hash function cryptanalysis has evolved rapidly in the last few years. Most
attacks have been collision attacks, but more recently, also a number of preim-
age attacks have appeared. In this chapter, we describe collision and preim-
age attacks on MD2 and on the MDC-2 construction. We describe how some
of the generic attacks from Section 2.2 can be applied to checksum-based hash
functions. Finally, we show how to find collisions in many permutation-based
hash functions of rate 1/2. We start off with a description of some general
techniques and notions that are often used in hash function cryptanalysis.

4.1 Introduction

Some techniques are used often in cryptanalysis, and in particular in this
chapter. We give an introduction to some of these here.

4.1.1 Searching and sorting

In many attacks, a list or a table is filled with data, that later must be sorted
and/or searched. Therefore we would like to give a brief introduction to
searching and sorting (more details can be found in [36], and the information
in this section is to a large extent taken from there).

Sorting a number N of elements takes time about N log(N) using, for
instance, QuickSort. When the N elements are sorted, a particular element
can be found in time log(N). This type of sorting is called comparison sorting.

If the nature of the elements to be sorted is known beforehand, then in
most cases sorting can be done more efficiently without comparisons. For
instance, assume that we have a list of N distinct elements, such that we
know that each element ai is in the range 0 ≤ ai < 2N . Assume also that

93

94 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

each element ai has some auxiliary data bi associated with it (for instance,
this may be a message block and its corresponding hash value). We may sort
these elements by using a direct address table: Prepare a table T of size 2N ,
and place bi in T at the position ai (we write T [ai] ← bi). This takes linear
time. Looking up an element ai and its auxiliary data bi takes constant time.

If the elements ai come from a set of size much greater than N , then it
is more economic in terms of memory usage to use a hash table; here, an
element is not inserted directly into the address ai, but instead a function
h is applied to ai first. This function is, somewhat unfortunately, called a
hash function. It has some of the same properties as a cryptographic hash
function: it maps elements from a large set to a smaller set, and collisions
are bad. But a hash function of this type is by no means cryptographically
secure; collisions can, in general, easily be found, but they should not occur
too often in practice. h may have a range of size about N , and if a collision on
the index to the hash table T occurs, then it can be resolved by using, e.g., a
linked list. To recap, the pair (ai, bi) is inserted into T as T [h(ai)]← bi. We
shall sometimes, for simplicity, write this in the same way as for the direct
address table above, i.e., ignoring the hash function h. The complexity of
sorting and searching is the same for a hash table as for a direct address
table (h is assumed to be extremely efficient). In some of the attacks in this
chapter we shall use tables, and we shall not always be exact about which
kind of tables we are using.

4.1.2 Meaningful messages

When carrying out a brute force attack, a birthday attack, or some other
type of attack, one often tries a large number of arbitrary messages until the
attack succeeds. In practice, it might be required that the final message (or
message pair) somehow contains “meaningful” information, such that it can
be used to forge or otherwise practically compromise a cryptographic system.

A method suggested by Yuval [224] accomplishes this. We assume that
the attack is of a nature such that in the end, a single message block is found
with some desired property. A large number, say 2k, of message blocks must
be tried before one expects to find one with the desired property. One may
start off by generating a single variant m of the message block, containing
some desired piece of information. Then, one can make many variants mi by
substituting a word by a synonym, replacing a comma by a full stop, adding
whitespace, replacing, e.g., “$100,000” by “$110,000”, etc. If two equivalent
wordings (or the like) can be used in k different positions in the message,
then 2k more or less equivalent messages can be generated.

In cases where the attack imposes many restrictions on the final message

4.1. INTRODUCTION 95

or message pair, it is often still possible to end up with a message that is
somehow meaningful. For instance, the message may be a document written
in some language such as PostScript, PDF, Microsoft Word, HTML, etc.
These languages provide the ability to hide part of the information that is
contained in a document, e.g, as a comment, as characters having the same
colour as the background, etc. The “random” part of the final message may
even be used constructively, for instance as part of a random number written
in the document. Many examples where this or a similar technique is used
have been seen recently [73, 116, 118, 122, 198]. These examples show that
the utility of a particular attack in practice may be greater than expected.

4.1.3 Memoryless collision search

The standard birthday collision attack on the n-bit hash function H is carried
out as follows. Choose 2n/2 messages Mi, 1 ≤ i ≤ 2n/2, and compute yi =
H(Mi) for each i. A pair (i, j), i 6= j, is expected to exist such that yi = yj.
To find this pair, one has to go through all (or most) of the hash values yi.
As mentioned above, the list of hash values yi can be sorted in linear time,
and once sorted, it is easy to check for a collision (also in linear time).

The above approach requires storing 2n/2 messages and their hashes.
However, this large memory requirement can be eliminated, or at the very
least reduced significantly, by the use of a cycle-finding technique similar to
that of Floyd [67], or Brent [27].

The idea of a cycle-finding method is to initiate a sequence where each
value depends on the previous value. Since the values are of a finite length,
at some point the sequence will start to cycle. If P is the first point in the
sequence that is computed twice, then the part of the sequence before P is
called the tail, and the part after P (including P itself) is called the cycle.
See Figure 4.1. Some method of detecting when a sequence enters the cycle
is needed, and some method of finding the value before P , both on the tail
and on the cycle, is also needed. In the case of collision search, the sequence
will be determined by the hash function H.

P

¸

Figure 4.1: The cycle-finding method.

A cycle-finding algorithm was also used in Pollard’s rho method for fac-

96 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

torisation [156], where two sequences of “random” values modulo the product
are computed. In the context of collision search on a hash function, a tech-
nique using a single sequence, but requiring a small amount of storage, may
be used (see also [131, Section 9.7.1]). (Hence, the term “memoryless” is a
little misleading.)

We describe the memoryless collision search on the hash function H here.
Choose an arbitrary message M of length at least n bits. Define a function
R : {0, 1}n → {0, 1}n as

R(x) = H(M ⊕ x).

R could be defined in a number of ways, but we chose a simple definition.
A point x ∈ {0, 1}n is a distinguished point if it satisfies some condition.
We require here that a randomly chosen x is a distinguished point with
probability about 2−d. For instance, a distinguished point may be defined as
a point that has ‘0’ bits in all the last d positions.

The memoryless collision search proceeds as follows, where L is a list
that is initially empty, and ip is some initial point. We note that this is a
high-level description, ignoring some details.

1: x0 ← R(ip) (add x0 to L)
2: i← 0
3: repeat
4: repeat
5: i← i + 1
6: Compute xi ← R(xi−1)
7: until xi is a distinguished point
8: Add xi to L
9: until L[j] = L[j∗] for some (j, j∗), j 6= j∗, and j, j∗ > 0

10: y0 ← L[j − 1] and y∗0 ← L[j∗ − 1]
11: Compute (as above) the two sequences y0, y1, . . . and y∗0, y

∗
1, . . . until yu =

y∗v for some (u, v)
12: Since yu = y∗v , R(yu−1) = R(y∗v−1) ⇐⇒ H(M ⊕ yu−1) = H(M ⊕ y∗v−1)
13: return (M ⊕ yu−1,M ⊕ y∗v−1)

A few things can go wrong in this algorithm, such as the algorithm entering
a cycle containing no distinguished points. In this case, the algorithm as
described here will go into an infinite loop, but this can be avoided by a few
additional steps.

Since the probability that a randomly chosen point is a distinguished
one is about 2−d, the length of the inner loop (lines 4–7) is expected to
be about 2d. The length of the outer loop (lines 3–9), and thereby the
expected number of distinguished points that need to be stored, is about
2n/2−d, since we expect the sequence to start cycling after about 2n/2 hash

4.1. INTRODUCTION 97

values have been computed. Hence, d determines the memory requirements.
On the other hand, line 11 also depends on d, and about 2d points yi and y∗i
must be computed and stored. However, distinguished points (with relaxed
requirements) may be used again for this part, for instance with probability
2−d/2. This method can be repeated, so that the memory requirements are
always about 2n/2−d. The expected time required is greater than for the
usual memory-expensive variant described in the beginning of this section,
but only by a small factor.

As an example, if d = n/4, memory requirements can be as low as 2n/4,
and the expected time required is around 2n/2 + 2n/4. Another trade-off
is d = 3n/8, with memory requirements around 2n/8 and expected time
complexity around 2n/2 + 23n/8.

This collision search can be parallelised as shown by van Oorschot and
Wiener [208, 209]. It can also be generalised to r-collisions; when a distin-
guished point P is reached, it is stored, and if P has been seen before, a new
sequence is initiated with a new initial point. Once a distinguished point has
been seen in r different sequences, there is a chance that we have found an
r-collision – but only a slight chance, since it is more likely that, say, three
sequences meet at two different points before the distinguished point. We
call this a false alarm. It must be checked whether a possible multi-collision
is a false alarm, and if so, the search continues. The trade-off between time
and memory using this multi-collision search method is not quite as good as
above due to false alarms, but the first time a true r-collision occurs, it is
found by this method.

4.1.4 Meet-in-the-middle attack

If the compression function f of a Merkle-Damg̊ard hash function H is in-
vertible, then a so-called meet-in-the-middle attack can be applied on H to
produce a preimage. The method is the following, where we produce a preim-
age of y (we ignore padding of the message, but this can easily be accounted
for).

1: for i = 1 to 2n/2 do
2: Choose an arbitrary message block mi

2, and compute hi
1 such that

f(hi
1,m

i
2) = y.

3: Store mi
2 in the table T , indexed by hi

1 – in other words, let T [hi
1]← mi

2.
4: end for
5: repeat
6: Choose an arbitrary message block m1.
7: Compute h1 = f(h0,m1).

98 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

8: until h1 ∈ T
9: return m1‖T [h1]

µ
µ3
*
1-
-
z
j
s
~
R ª

ª
=
¼
)
9
¾
y
i
Y
}
I

?
=

y
h0

Figure 4.2: The meet-in-the-middle attack.

Since f(h0,m1) = h1 and f(h1, T [h1]) = y, the message m1‖T [h1] is a
preimage of y. The time required is about 2n/2+1: the first loop (lines 1–4)
is executed 2n/2 times, and we assume that inverting f can be done in the
same amount of time as computing it in the usual, forward direction. The
second loop (lines 5–8) is also expected to take time 2n/2, since we are trying
to match an n-bit value with any one of 2n/2 n-bit values.

The attack can be generalised: if it takes time T = 2τ to invert f , then
we may perform the first loop 2(n−τ)/2 times, which would take time 2(n+τ)/2.
This is also the expected time required for the second loop. Note that τ is
always between 0 and n.

4.1.5 Wagner’s generalised birthday attack

Wagner’s generalised birthday attack [213] is a method of finding collisions
in functions that can be written as the XOR of a number of sub-functions,
that each depend on its own input. For instance, a function f of two inputs
x and y may be defined as f(x, y) = f1(x) ⊕ f2(y), where f1 and f2 are
arbitrary functions. Functions f of this type allow a particularly efficient
collision attack.

Assume that f , f1, and f2 are n-bit functions. Compute f1(x) for 2n/3

different values of x, and place the outputs in the list L1. Construct in the
same way the list L2, but using different inputs. Construct the two lists L3

and L4 also in the same way, but using the function f2 instead of f1. Find
all pairs of elements from L1 and L2, that agree on the last n/3 bits (this
can be done in linear time). With 22n/3 pairs in total, we expect 2n/3 pairs
to match on n/3 bits. Store the XOR of these in the list U1. Note that the
last n/3 bits of all elements in U1 will be zeros. Likewise, find matching pairs
in the two lists L3 and L4, and store the XOR of these pairs in the list U2.

4.2. CRYPTANALYSIS OF MD2 99

With 2n/3 elements in U1 and U2, 22n/3 pairs can be formed; one of these is
expected to match on the remaining 2n/3 bits.

When there is a match, we have found a quadruple with the property
that f1(x) ⊕ f1(x

∗) = f2(y) ⊕ f2(y
∗), meaning that f(x, y) = f(x∗, y∗). An

algorithmic version of the attack follows.

1: for i = 1 to 2n/3 do
2: Choose arbitrary xi, compute yi = f1(xi), and do L1[yi]← xi

3: Choose arbitrary x∗i , compute y∗i = f1(x
∗
i), and do L2[y

∗
i]← x∗i

4: Choose arbitrary x+
i , compute y+

i = f2(x
+
i), and do L3[y

+
i]← x+

i

5: Choose arbitrary x#
i , compute y#

i = f2(x
#
i), and do L4[y

#
i]← x#

i

6: end for
7: Find all pairs in L1 and L2 that match in the last n/3 bits of the output

of f1. For each pair ((x, y), (x∗, y∗)), do U1[y ⊕ y∗]← (x, x∗).
8: Find all pairs in L3 and L4 that match in the last n/3 bits of the output

of f2. For each pair ((x, y), (x∗, y∗)), do U2[y ⊕ y∗]← (x, x∗).
9: Find a collision (y, y∗) on the index to U1 and U2, i.e., an index for which

there is an entry in both tables.
10: return U1[y], U2[y

∗].
Since f1 and f2 are evaluated 2n/3+1 times each, and some 2n/3+1 compar-

isons are needed, the total running time of the algorithm is about 2n/3+1 in
terms of compression function equivalents. In the following, we shall simplify
this complexity estimate to 2n/3. The memory requirements are the same.

The algorithm can be generalised to functions that can be written as the
XOR of a number any power of two of sub-functions with distinct inputs.
If there are 2k sub-functions, then the complexity of the attack is about
k2n/(k+2). The method also generalises to other operations than XOR, such
as addition modulo 2n.

4.2 Cryptanalysis of MD2

In this section we describe a number of attacks on the hash function MD2.
See Section 3.4.1 for a description of the hash function.

Although, as we describe in the following, there is a number of successful
cryptanalytic results on MD2, it is still used in practice and is part of several
(de facto) standards, see e.g., [137]. The first cryptanalytic result on MD2
was a collision attack [179] (published in 1997 by Rogier and Chauvaud)
on a reduced version of MD2 where the checksum block was omitted. The
first attack against the full MD2 hash function was a preimage attack (of
complexity around 2104) published by Muller [137] in 2004. This attack was
improved (to a complexity of about 297) by Knudsen and Mathiassen in [101],

100 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

where they also generalised and found further use of the collision attack by
Rogier and Chauvaud.

In this section we describe some improvements and extensions of the men-
tioned attacks. Specifically, we describe the first collision attack on the MD2
hash function having complexity below the birthday level, namely around
261.4. We also describe a major improvement to preimage attacks on MD2,
having complexity around 272.6. This preimage attack is, at the same time,
a second preimage attack. Note that a birthday collision attack on MD2 has
complexity around 264, and a brute force (second) preimage attack has com-
plexity around 2128. The results presented in this section are joint work with
Lars R. Knudsen, John Erik Mathiassen, and Frédéric Muller [102]. First,
we note some observations on the MD2 compression function.

4.2.1 Observations on the compression function

First, we note that the MD2 compression function can be expressed as in Fig-
ure 4.3. This view of the compression function is instructive when studying
the attacks presented in this section. We shall often refer to the three rectan-
gular structures as rectangles A, B, and C, since row i of, e.g., A is exactly Ai

(as introduced in Section 3.4.1). Note that since there are 832 bytes in total

0- -- -- ---

-

...
...

...

C15
1 +0

C15
17+16

(C15
1)

(C15
2)

...

m h⊕mh

f(h,m)

Figure 4.3: The MD2 compression function

in the three rectangles A, B, and C, in our complexity estimates we shall
assume that computing one byte corresponds to 1/832 compression function
evaluations. This will also be used as an estimate for a simple operation such
as an XOR.

Since Xj
i is computed as the XOR of Xj

i−1 and a bijective function of

Xj−1
i (for i > 0 and j > 0), a cryptanalyst may instead compute either of

4.2. CRYPTANALYSIS OF MD2 101

the three values from the two others in one of the following ways:

Xj
i = Xj

i−1 ⊕ S(Xj−1
i) (“folding right”)

Xj
i−1 = Xj

i ⊕ S(Xj−1
i) (“folding up”)

Xj−1
i = S−1(Xj

i ⊕Xj
i−1) (“folding left”)

(4.1)

For i = 0, Xj
i is not computed but is rather part of the input. X0

1 = A0
1 is

computed from X0
0 = A0

0 = h0 only.
For j = 0 a similar relationship exists, i.e., X0

i (= A0
i) is computed from X0

i−1

and X47
i−1 (= C15

i−1).

Comparing with Figure 4.3, this means that any “triangle” of the form

is completely determined by two of the squares. As an example, if the out-
put of the compression function, which corresponds to the last row of A, is
known, then by “folding up” (see (4.1)) one may compute the entire lower
right triangle as indicated in Figure 4.4. In the following, we shall generally

Figure 4.4: The shaded values are the values of the rectangle A that may be
computed if the output of the compression function, corresponding to the last row
of A, is known.

indicate known values as shaded squares of the rectangles A, B, and C.

4.2.2 The collision attack

Here we describe a collision attack on the MD2 hash function. The attack is
based on a collision attack on the compression function, where the chaining
input is arbitrary.

102 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

A collision attack on the compression function

The collision attack on the MD2 compression function described here allows
the attacker to choose the chaining input h freely. The attack is largely
inspired by the Scenario 1 preimage attack described in [137].

Assume we have chosen (or, are given) a chaining input h. We then choose
arbitrary values of the first k bytes of the last column of C (excluding the
input row containing h ⊕m), i.e., the bytes C15

i for i = 1, . . . , k. The value
of k will be fixed later (but 1 ≤ k ≤ 17).

Having fixed these k bytes of C, we are able to compute the first k+1 rows
of A, because h is known. We also choose the first k bytes of the last column
of B arbitrarily (again, excluding the input row containing m). These are
the bytes B15

i , i = 1, . . . , k. Now the values seen in Figure 4.5 are known (for
the example value 4 of k)

Figure 4.5: Known values in the beginning of the collision attack.

We proceed by performing a meet-in-the-middle attack (see Section 4.1.4)
on the first k bytes of column 7 (the middle column) in B and C. Below, `
is a number between 0 and 64 which (like k) will be fixed later. TL and TR

are hash tables.

1: for i = 0 to 2` − 1 do
2: Choose an arbitrary 8-byte message M i

L, and let this message be the
first half of some message block.

3: Given M i
L, fold right in rectangles B and C as far as possible, i.e., to

column 7 of B and C (see Figure 4.6a).
4: Store M i

L in table TL, indexed by the 2k bytes of column 7 of B and C,
that we just computed. I.e., if these 2k bytes are collectively denoted
Y i, do TL[Y i]←M i

L.
5: Similarly, choose an arbitrary 8-byte message M i

R, and let this message
be the last half of some message block.

6: Given M i
R, fold left in rectangles B and C as far as possible, i.e., (again)

to column 7 of B and C (see Figure 4.6b).

4.2. CRYPTANALYSIS OF MD2 103

7: Denote by Zi collectively the 2k bytes of column 7 of B and C, and
do TR[Zi]←M i

R.
8: end for
9: Find (in linear time) all indices for which there is an entry in both TL and

TR. If the entries are denoted M i
L and M j

R, store the message M i
L‖M j

R

in table T . The expected number of messages in T is 22`−16k, since 22`

pairs (M i
L,M j

R) can be formed, and each pair constitutes a match on the
2k bytes with probability about 2−8·2k.

10: Find all collisions f(h,m) = f(h,m∗), where m,m∗ ∈ T .

(a) Line 3 of the attack.

¾¾¾¾

¾¾¾¾

(b) Line 6 of the attack.

Figure 4.6: The meet-in-the-middle part of the collision attack.

We may choose k and ` so as to optimise the efficiency of the attack. The
22`−16k messages in T can be paired up in about 24(`−8k)−1 ways. Each pair
collides with probability about 2−8·(17−k), since there are 17 − k remaining
bytes (e.g., the last 17 − k bytes of the first column in A) on which the
messages must agree. Hence, if 24(`−8k)−1 > 28(17−k), then we would expect a
collision. Thus, we should choose k and ` such that

4(`− 8k)− 1 = 8(17− k) ⇐⇒ 4`− 24k = 137 (4.2)

(with equality in order to find just one collision).
The complexity of the attack is dominated by the loop, i.e., the construc-

tion of TL and TR, and the subsequent construction of and search through T
(lines 9–10). TL and TR are constructed using 2 · 2` computations of the 2k
bytes in column 7 of B and C. Each computation (on average) corresponds
to about 2k 8-bit XORs, since given, e.g., m0, . . . , m6, one may pre-compute
part of column 6 and loop through all values of m7. Then, only a single XOR
is required to compute each byte in column 7. On a 32-bit machine, 4 XORs
can be done in one operation. Hence, each computation may be estimated to
be equivalent to about 2/832 < 2−8 compression function evaluations. The

104 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

exact complexity depends on k, but for values up to k = 6, this estimate
seems reasonable. Hence, the construction of TL and TR takes time equiva-
lent to about 2`−7 compression function evaluations. The subsequent search
through the two lists (line 9) takes a similar amount of time, so the total
complexity of lines 1–9 is about 2`−6.

Figure 4.7: Colliding messages will agree on the shaded values (given that they
agree on C15

1 , and that the chaining input is fixed).

To find collisions in f using messages from T (line 10) one might do as
follows. First, notice that a colliding pair will agree on the shaded bytes in
Figure 4.7. Using this fact, we may compute for each message in T the byte
C

16−(k+1)
k+1 ; this requires the computation of one row of B, and part of a row of

C. We may then place messages in 256 different bins depending on the value
of the byte C

16−(k+1)
k+1 . In each bin, all messages agree on row k+2 of A, so we

only have to compute this row once for each bin. We continue, treating each
bin separately, and find matches on the byte C

16−(k+2)
k+2 . We split each bin

into 256 smaller bins based on the value of this byte. Continuing like this,
there will be more and more bins, but eventually many of them will contain at
most one message; these bins can be discarded. On average, we expect that at
most half the state must be computed per message, before the message can be
discarded. Hence, the complexity of finding collisions in T may be estimated
to about |T |/2 = 22`−16k−1 compression function evaluations. Optimally, this
should be equal to 2`−6, the approximate complexity of constructing TL and
TR. Hence, we look for k and ` such that

`− 6 = 2`− 16k − 1 ⇐⇒ `− 16k = −5.

Combining this with (4.2) we get

40k = 157 ⇐⇒ k = 3.925.

Since k must be an integer, we may choose k = 4 and get ` ≥ 58.25 from (4.2).
With ` = 58.25, the complexity of the attack is about 253, dominated by the

4.2. CRYPTANALYSIS OF MD2 105

search through T and with probability of a collision about 1 − 1/e = 0.63.
This complexity is well below the complexity of a standard birthday attack.
Increasing ` slightly improves the probability of success, but also adds to the
complexity (for instance, with ` = 59, the complexity is about 254, and the
probability of success very close to 1). With k = 4, the memory requirements
are about 2` message blocks.

Extending to the full hash function

The collision attack just described can be extended into an attack on the full
MD2 hash function. There are, however, two complications: (1) padding for
the message must be correct, and (2) the checksum block must be correct.
Condition (1) is easily fulfilled; simply append to every message an additional
message block of 16 bytes each having the value ‘16’. Condition (2) on the
other hand is not as easily dealt with.

By Joux’s method (see Section 2.2.3), using 65 collisions with chosen
chaining input we can construct a 265-collision of messages of 65 blocks each.
With probability about p1 = 1 − 1/e2 ≈ 0.86, one of the pairs also collides
on the checksum block. To find this pair, we need to compute the 265 check-
sums. Since updating the checksum with one message block takes about
16/832 ≈ 2−5.7 times the time of one compression function evaluation, com-
puting the 265 checksums takes time about (265 + 264 + . . . + 2) · 2−5.7 ≈ 260.3

in terms of compression function evaluations. The memory requirements are
265 checksums (along with some bits identifying the combination of message
blocks). Finding the 65 ≈ 26 collisions takes time about 26+54 = 260 using
the collision attack just described. Hence, the total complexity of the attack
is about p−1

1 (260.3 + 260) ≈ 261.4.
To reduce memory requirements, a collision in the checksum can be found

by using, e.g., Floyd’s cycle-finding algorithm [67]. (Note, however, that the
memory requirements for finding the collisions in the compression function
are about 259 hash values.) Pre-compute all checksums of the, e.g., 233 com-
binations of the first 33 message blocks. Use the cycle-finding algorithm to
iterate through the full checksums, requiring the computation of 32 = 25

“atomic” checksums for each, hence requiring the time of about 2−0.7 com-
pression function evaluations. Assuming 265 checksums are needed before
the algorithm starts repeating, this method takes time about 264.4, which is
slightly faster than the generic birthday attack. Other time/memory trade-
offs provide faster methods that require more memory, e.g., about 261 memory
and 261.5 time. These estimates are to be compared to the standard birthday
attack requiring about 264 memory and 265 time (because a message is at
least two message blocks including checksum), or the cycle-finding method

106 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

applied on the compression function requiring almost negligible memory and
time somewhat more than 265 (in the attack above we have assumed that
the cycle-finding algorithm requires a factor

√
2 more time than the simple

method of storing everything, and with this assumption the cycle-finding
algorithm on the full MD2 hash function would take time about 265.5).

4.2.3 The preimage attack

We observed that one of the preimage attacks on the MD2 compression func-
tion described by Muller [137] in fact allows the attacker more freedom than
expected, and therefore it can be used in a preimage attack on the full MD2
hash function.

First, we describe the preimage attack on the compression function.

A preimage attack on the compression function

The preimage attack on the compression function allows the attacker to
choose both h and m. We assume the target image, i.e., the required output
of the compression function, is hT.

Given hT we can compute the lower right triangle of A by folding up as
indicated in Figure 4.8. By arbitrarily fixing A15

1 and A15
2 , we may complete

A15
1

A15
2

y
9

Figure 4.8: The part of A that can be computed given the target image hT.

a further two “diagonals” in A by folding left, see Figure 4.9. We note that
fixing A15

1 and A15
2 introduces a condition on h: one byte-degree of freedom

is lost because A15
1 depends only on h. A15

2 , on the other hand, depends also
on the message block, so fixing this byte introduces no condition on h. When
hT, A15

1 and A15
2 are fixed, the rectangle B does not depend on h, but only

depends on the message block m.
On the other hand, using just the chaining input h, we can compute all

of A by folding left. By fixing the last k bytes of every message block, we can
furthermore, independently of the remaining bytes in the message blocks,

4.2. CRYPTANALYSIS OF MD2 107

Figure 4.9: The part of A that may be computed given hT, after choosing A15
1 and

A15
2 .

compute a large part of C and part of the last column of B by folding left.
See Figure 4.10, which shows how much of B and C can be computed when
k = 6 is assumed. The blackened bytes play a certain role in the attack.
With any given k, we can compute k + 1 bytes of the last column of B.

Figure 4.10: The shaded and blackened values of B and C can be computed once
the chaining input h and the last 6 bytes of the message block m are fixed.

The idea of the attack is now to compute B by folding right for many
different values of the message block m, but where the last k bytes of m are
fixed to some constants. Similarly, we compute A and the part of B and C
seen in Figure 4.10 for many different chaining inputs h, using the fact that
we know the last k bytes of the message block. We then look for a collision
on the blackened bytes of B in Figure 4.10. For each collision, we check
if the message block and the chaining input also match on the remaining
blackened bytes (those in C) in Figure 4.10. If they match, then we have
found a chaining input h and a message block m such that f(h,m) = hT.

An algorithmic version of the attack, with any value of k from 0 to 16,
follows. Assume that we are given the target chaining output hT.

1: Choose A15
1 and A15

2 arbitrarily, and compute the part of A that is shaded
in Figure 4.9.

108 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

2: for i = 1 to 28(16−k) do
3: Choose an arbitrary message block mi such that the last k bytes are

fixed to, say, zeroes.
4: Given mi, compute B by folding right. Let Y i denote the last column

of B, and do T1[Y
i]← mi.

5: end for{See Figure 4.11}
6: for i = 1 to 28(k+1) do
7: Choose an arbitrary chaining input hi such that A15

1 as chosen in line
1 is correct (note that this byte depends only on the chaining input).

8: Given hi, compute all of A, and the parts of B and C that are shaded
in Figure 4.10 (all by folding left). Denote by Zi collectively the bytes
that are blackened in Figure 4.10, and do T2[Z

i]← hi.
9: end for

10: Find collisions (h,m) in indices of T1 and T2, restricted to the last k + 1
bytes of the last column of B, i.e., the blackened bytes of B in Fig-
ure 4.10. Since T1 contains 28(16−k) values, and T2 contains 28(k+1) values,
and the collision must occur in k + 1 bytes, we expect to find about
28(16−k)+8(k+1)−8(k+1) = 28(16−k) collisions.

11: for each collision (h,m) do
12: Check if the pair (h, m) also agrees in the remaining 16− k blackened

bytes in Figure 4.10. This happens with probability about 2−8(16−k).
13: end for

Figure 4.11: Lines 2–5 of the attack.

Since we find an expected 28(16−k) collisions in line 10, we expect to find one
preimage with this method.

Let us find the optimal value of k. In the first loop (lines 2–5), we compute
B 28(16−k) times. Since computing B corresponds to evaluating about one
third of the compression function, the first loops takes time below 28(16−k)−1.
The second loop (lines 6–9) requires that half of A, most of C and k + 1
bytes of B be computed, 28(k+1) times. The complexity is equivalent to about

4.2. CRYPTANALYSIS OF MD2 109

28(k+1)−1 evaluations of the compression function. In line 10 we find collisions
between T1 and T2. Since the tables are sorted, the expected complexity
of finding the collisions is about max(28(16−k), 28(k+1))/832, assuming that a
comparison on the k +1 bytes on average requires an amount of work similar
to computing one byte in the compression function (recall that 832 bytes
need to be computed in the compression function). In the last loop (lines
11–13) we need to check each collision to see if the collision extends to the
remaining blackened bytes. There are about 28(16−k) collisions, and we need
to compute on average about 16 − k bytes to check if there is a match (in
most cases, there will be no match already on the byte C15−k

1 , i.e., the top
blackened byte in Figure 4.10). Hence, the expected complexity of the last
loop is about 28(16−k) · (16− k)/832.
To sum up, the three loops are expected to dominate the total complexity,
so we try to minimise these complexities. Having 16− k = k + 1 would give
the first two loops the same complexity. This would result in k being a non-
integer, which complicates the attack. With k = 7 we get a total complexity
of about 271 + 263 + 272 · 9/832 ≈ 271. With k = 8 the complexity is about
263 + 271 + 264 · 8/832 ≈ 271.

We would like to point out that there are two important differences be-
tween the description of the attack given here, and that of [137]:

• In [137], k is chosen to be 6, but the work done in the first two loops is
scaled differently. One does not really need to choose 28(16−k) message
blocks and 28(k+1) chaining inputs, as described above, but one cannot
choose more message blocks than this number, and the product of the
two numbers must be at least 2136 to get a preimage with good proba-
bility. The resulting complexity in [137] is dominated by the last loop,
and is therefore about 280 · 10/832 ≈ 273.6.

• In [137], the last k = 6 bytes of h are also fixed. This is not necessary,
since C can be (and needs to be) computed from scratch for every value
of h. The reason is that the first column of A depends on all bytes of
h, and therefore C does as well because we compute C by folding left.
The fact that only a single byte of h is fixed (by A15

1) leads to an
improvement of the preimage attack on the full MD2 hash function, as
we shall see in the following.

Extending to the full hash function

In the previous papers [101, 137] containing preimage attacks on MD2, a
different type of preimage attack on the compression function than the one
described above was used. This was because the attack described above

110 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

placed strong restrictions on the chaining input h. However, given the ad-
ditional freedom in the choice of h provided by the attack described above,
it can be used much more efficiently to construct preimages for the full hash
function.

The idea is to compute the 28(k+1) chaining inputs from a given initial
value, instead of choosing them directly. Say we are given the initial value
h. We deliberately do not denote the initial value by h0, for reasons which
will become clear later. Then we may choose 28(k+2) message blocks m1 and
compute h1 = f(h,m1) for each value of m1. Since only about 1/256 of
these will produce the right value of A15

1 (which we choose in the beginning,
according to the attack on the compression function), there will be about
28(k+1) valid chaining inputs h1, which can be used in the attack described
above (note that the number of chaining inputs matches the number required
in the attack).

We still have not taken the checksum into account. We shall postpone this
a little longer, and determine the complexity of the attack when the chaining
inputs are computed rather than chosen directly. The only difference is in the
second loop (lines 6–9), where the complexity now is about 28(k+2) instead of
28(k+1)−1. With k = 7 the total complexity (still ignoring the checksum) is
about 271 + 272 + 272 · 9/832 ≈ 272.6.

The attack described provides two messages blocks, say m1 and m2, such
that h1 = f(h, m1) and hT = f(h1,m2) for some given target image hT, and
a given initial chaining value h. The probability that m2 is the checksum
of m1, as required, is only about 2−128. However, we do not have to carry
out the attack 2128 times. Instead, we do the following (assume we are given
target hash value hT).

1: Starting from the initial value of MD2, produce a 2128-collision by the
method of Joux (see Section 2.2.3). Let the common chaining output of
all these 2128 messages be h128.

2: With h = h128, carry out the preimage attack described above. This
preimage attack produces two message blocks m1 and m2 such that
f(h,m1) = h129 and f(h129,m2) = hT.

3: Compute the checksum state v∗ such that c(v∗,m1) = m2, where c is the
checksum function of MD2.

4: Perform a meet-in-the-middle search through the 2128-collision to find
a message M in this multi-collision which has checksum v∗ (recall that
every message in the multi-collision produces the same intermediate hash
value h128).

5: return m∗ = M‖m1 {m2 is the checksum of m∗}
We note that the idea of using a 2128-collision as a prefix to the mes-

4.2. CRYPTANALYSIS OF MD2 111

sage block m1 came from a series of generic attacks on checksum-based hash
functions (see [69] and Section 4.4).

In line 1 we need to find 128 collisions in the MD2 compression function.
By the birthday method, this has complexity about 264+7 = 271. By using
the collision attack described previously, the complexity is only about 261.
Line 2 has complexity about 272.6, as found above. Line 3 has negligible com-
plexity, and line 4 requires about 266 evaluations of the checksum function,
when the tree structure of the multi-collisions is taken into account. Hence,
the complexity is about 260.3 in terms of compression function evaluations.
We note that the message block m1 must contain proper padding, but this
can easily be ensured in line 2. Altogether, line 2 dominates the attack with
respect to complexity, and hence the total complexity is about 272.6. If col-
lisions are found by a birthday attack in line 1, then the total complexity is
about 273.

The preimage is of length 129 message blocks. If we can find a shorter
2128-collision, then we can find a shorter preimage. We now describe how the
preimage attack on the compression function can be used to produce short
multi-collisions faster than by brute force. Then we explain how to use these
multi-collisions to produce shorter preimages for the full hash function.

Multi-collisions

By using more chaining inputs in the preimage attack on the compression
function, we can find several preimages. For instance, we may choose 280

message blocks m1, used to produce chaining inputs h1 for the attack. This
would result in about 272 valid chaining inputs. With k = 7 we get an
expected 28 preimages. The complexity is about 280 in terms of compression
function evaluations. Notice that this attack can be carried out using any
initial chaining value h, and any target chaining value hT. The result is a
set of 28 two-block messages all mapping h to hT, and hence we have a 28-
collision. This method can be generalised; a 2t-collision can be constructed
in time about 272+t for t from 0 to 56.

Shorter preimages

Let h32 = hT be the target hash, and choose h30 arbitrarily. Then find a
28-collision mapping h30 to h32. Repeat this procedure, finding 28-collisions
mapping h2i to h2(i+1) for decreasing i from 14 down to 0. h2i may be chosen
arbitrarily in each step, except when i = 0: h0 must be chosen as the initial
value of MD2.

By this procedure we obtain (28)16 = 2128 preimages of hT, and we expect

112 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

one of them to have the right checksum. The complexity is about 16× 280 =
284, and the preimages are of length 2·16−1 = 31 blocks (the last block being
the checksum). Other combinations of preimage lengths and complexities are
possible; see Table 4.1 for examples.

Table 4.1: Complexity of the preimage attack with different preimage lengths.

Preimage length (blocks) Complexity

129 272.6

63 281

31 284

15 291

7 2106

4.2.4 Second preimages

The preimage attack described above is also a second preimage attack, since
it is trivial to ensure that the preimage obtained is different from some given
first preimage. Hence, second preimages of length 129 blocks can be found
in time about 272.6 (the length of the first preimage is arbitrary).

4.2.5 Summary

In this section, we described a collision attack on MD2 of complexity about
261.4, which is to be compared to the complexity of a birthday attack of
about 265 (since the compression function is evaluated at least twice for
every message, due to the checksum block). We also described a preimage
attack of complexity about 272.6, which is far below the complexity of the
brute force preimage attack (2129), and also well below the complexity of the
previous best known preimage attack [101] of about 297.

4.3 Cryptanalysis of MDC-2

As described in Section 3.1, MDC-2 is a method of constructing hash func-
tions from block ciphers, where the output size of the hash function is twice
the size of the block cipher. MDC-2 was developed at IBM in the late 80s.
A conference paper by IBM researchers Meyer and Schilling from 1988 de-
scribes the construction [135]. A patent was filed in August 1987, and the
patent was issued in March 1990 [26]. The construction was standardised in

4.3. CRYPTANALYSIS OF MDC-2 113

ISO/IEC 10118-2 in 1994 [86]. It is mentioned in great detail in both the
Handbook of Applied Cryptography [131, Alg. 9.46] and in the Encyclope-
dia of Cryptography and Security [210, pp. 379–380]. Furthermore, it is in
practical use (see e.g., [88, 112, 200]).

Since publication, there seems to have been a wide belief in the cryp-
tographic community that given an ideal block cipher, MDC-2 provides a
collision resistant hash function. By this we mean that given an n-bit block
cipher (thus yielding a 2n-bit hash function), the required effort to find a
collision in the hash function is expected to be 2n. However, there is no
proof of this property. The only proof that collision resistance is better
than 2n/2, as offered by many simpler (single-length) constructions, is due
to Steinberger [197], who showed that for MDC-2 based on an ideal cipher,
an adversary asking less than 23n/5 queries has only a negligible chance of
finding a collision.

This section describes unpublished cryptanalytic results on MDC-2 [103].
We provide the first collision attack on MDC-2 which breaks the birthday
bound. The attack makes no non-standard assumptions on the underlying
block cipher. When applied to an instantiation of MDC-2 with e.g., a 128-bit
block cipher (see e.g., [212]), the attack has complexity about 2124.5, which
is better than the expected 2128 collision resistance for an ideal 256-bit hash
function.

We also present improved preimage attacks on MDC-2. The previous
best known preimage attack, first described by Lai and Massey [115], has
time complexity about 23n/2 and requires around 2n/2 memory. In this sec-
tion, we provide a range of time/memory trade-offs, the fastest of which is
significantly faster than the Lai/Massey attack. We describe attacks of any
time complexity from 2n to 22n. The memory requirements are such that the
product of the time and space complexities is always around 22n. Hence, our
most efficient preimage attack has time and space complexity about 2n.

4.3.1 Preliminaries

Recall Definition 2.3 of multi-collisions, and the expected complexity of find-
ing such multi-collisions (see Section 2.2.3). Multi-collisions are used in the
collision attack on MDC-2.

MDC-2 was originally defined using DES [140] as the underlying block
cipher. Here, we think of MDC-2 as a general double-length construction
method for hash functions based on block ciphers. For ease of presentation,
we shall assume that keys and message blocks are of the same size, even if
this is in fact not the case for DES.

For a description of MDC-2, we refer to Section 3.1 (Construction 3.5).

114 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

We should add that in the original description of MDC-2 [135], two bits of
each of the two keys hi−1 and h̃i−1 were fixed. This had two implications.
First of all, all known weak and semi-weak keys of DES were ruled out, and
secondly, this measure ensured that the two keys were always different. There
seems to be no strong consensus that fixing key bits is a necessary security
measure when MDC-2 is based on some other block cipher for which weak
keys are not believed to exist. However, one might argue that ensuring that
the two keys are different increases security – although this practice also has
a cost in terms of security: the amount of state passed on from one iteration
to the next is less than 2n bits. The attacks presented here can be applied
regardless of whether or not some key bits are fixed.

A generalisation.

We may generalise the MDC-2 construction. Let f : {0, 1}n × {0, 1}n →
{0, 1}n be an arbitrary function, and let g be any (efficiently invertible)
bijection from 2n bits to 2n bits. Then, a generalised construction is the
following.

W = f(hi−1,mi)‖f(h̃i−1,mi)

hi‖h̃i = g(W).
(4.3)

See Figure 4.12. The attacks presented here apply to any instance of this

hi−1 h̃i−1

mi
??
f

?

??
f

?
g

? ?
hi h̃i

Figure 4.12: The generalised MDC-2 construction.

construction. Notice that MDC-2 has f(x, y) = Ex(y)⊕ y and g(a‖b‖c‖d) =
a‖d‖c‖b. In the following, we shall use the notation of the generalised con-
struction. We assume that evaluating g (both forwards and backwards) costs
much less than evaluating f . Our complexity estimates will be in terms of
compression function evaluations. For example, if an attack requires T calls
of f , we shall count this as having time complexity T/2.

4.3. CRYPTANALYSIS OF MDC-2 115

4.3.2 The collision attack

The collision attack applies to any construction of the type (4.3), where the
outputs of f are (roughly) Poisson distributed. This is indeed expected to
be the case when f is instantiated by EK(m)⊕m, where E is the encryption
function of an ideal block cipher.

In the attack, one first finds by the brute force method, starting from the
initial value of the hash function, an r-collision in the left chain of Figure 4.12,
after the application of the function g (i.e., an r-collision in h1). Then, one
searches for a message block such that two different inputs out of the r
possibilities in the right chain of the next iteration collide. Since the left
chain already contains a collision, the collision now spans both chains. An
algorithmic version of the attack follows.

1: repeat
2: Choose a random message block m1

3: h1‖h̃1 ← g(f(h0,m1)‖f(h̃0,m1))
4: until an r-collision (m1

1, . . . , m
r
1) in h1 has been found

5: Denote the corresponding r values of h̃1 by h̃1
1, . . . , h̃

r
1.

6: loop
7: Choose a random message block m2

8: for j = 1 to r do
9: Uj ← f(h̃j

1,m2)
10: end for
11: if Ui = Uj for some (i, j), i 6= j then
12: return (mi

1‖m2,m
j
1‖m2)

13: end if
14: end loop

See Figure 4.13. The first loop (lines 1–4) is expected to take time q1 =
(r!2n(r−1))1/r (cf. Section 2.2.3). The probability that the condition in line
11 is fulfilled is about

(
r
2

)
2−n, since there are

(
r
2

)
pairs of n-bit values, which

must be compared. Hence, we expect to go 2n/
(

r
2

)
times around the final

loop (lines 6–14). In each iteration of the loop, f is evaluated r times. In the
construction (4.3), f is evaluated twice per message block, and hence the r
evaluations of f are equivalent to r/2 compression function evaluations. The
total work required in the final loop is therefore expected to be

q2 = (r/2) · 2n/

(
r

2

)
= 2n/(r − 1).

The total work required by the attack is q1 + q2 = (r!2n(r−1))1/r + 2n/(r− 1).
Hence, we may choose r as the integer ≥ 2 that minimises this expression.
Notice that q1 is an increasing function of r, and q2 is decreasing. By setting

116 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

h0 h̃0

mi
1? ?

f f

?

? ?

?
g

m2
??
f

?

??
f

?
g

? ?
h2 h̃2

Figure 4.13: The collision attack on MDC-2. Thick lines mean that there are r
different values of this variable. Thin lines mean that there is only one.

q1 = q2 one gets, very roughly, a time complexity around (log2(n)/n)2n.
However, it turns out that the best choice of r is not exactly the one where
q1 = q2, as one might expect. The easiest way to find the optimal value
of r for a given n seems to be to simply try increasing values from r = 2
until the complexity starts to increase. The results of this method can be
found in Table 4.2, that shows the best choices of r and the corresponding
complexities for different sizes n of the block cipher.

Table 4.2: Time complexity of the collision attack on MDC-2 with an n-bit block
cipher, compared to birthday complexity.

n r
Collision attack complexity

Section 4.3.2 Birthday

64 9 261.3 264

128 14 2124.5 2128

256 24 2251.7 2256

The probability of success of our attack with these complexities is about
1−1/e for Step 1, and the same probability for Step 3 when repeated 2n/

(
r
2

)
times, in total (1− 1/e)2 ≈ 0.40. The probability of success for the birthday
attack with 2n queries is about 1 − e−1/2 ≈ 0.39. Hence, we consider the

4.3. CRYPTANALYSIS OF MDC-2 117

comparisons fair.

4.3.3 Preimage attacks

A brute force preimage attack on MDC-2 (or on (4.3) in general) has time
complexity O(22n) and space complexity O(1). The previous best known
preimage attack is due to Lai and Massey [115], and has time complexity
O(23n/2) and space complexity O(2n/2). Hence, for both attacks the product
of the time complexity and the space complexity is O(22n). In the following
subsection, we describe a generalised attack for which the product of the time
and the space complexities is at most n22n, but where time complexity can
be anything between O(n2n) and O(22n). We then describe how to reach a
time and space complexity of O(2n).

An attack allowing for time/memory trade-offs.

The outline of the attack is as follows.

1: Build a binary tree of pseudo-preimages with the target image hT‖h̃T

as root: the nodes are labelled with intermediate hash values, and each
edge is labelled with a message block value meaning that this message
block maps from the intermediate hash value at the child node to the
intermediate hash value at the parent. The tree has (on average) two
children for each node, and it has depth d, which means that there are
2d leaves.

2: From the initial value h0‖h̃0 of the hash function, find a message block
that produces an intermediate hash value equal to one of the leaves in
the tree from Step 1.

See Figure 4.14. This technique clearly leads to a preimage consisting of a

hT‖h̃Th0‖h̃0

1

Figure 4.14: A binary tree of pseudo-preimages of depth d = 3.

message block that maps to a leaf ` in the tree, and a sequence of d message

118 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

blocks corresponding to the path in the tree that leads from the leaf ` to the
root. Hence, the total length of the message is d + 1 blocks.

The value of d determines the time/memory trade-off. We shall discuss
concrete values of d later. The cost of Step 1 will be evaluated in the following.
Since the tree has 2d leaves, Step 2 is expected to take time 22n−d. In effect,
by constructing the tree we produce 2d new target images, which improves
the efficiency of the final brute force search by a factor of 2d. The memory
requirements are 2d + 2d−1 + . . . + 1 ≈ 2d+1 intermediate hash values.

We note that the last message block, the one that maps to the target
image, must contain proper padding for a message of d + 1 blocks. If there
are not enough degrees of freedom in the last block to both ensure proper
padding and to find two pseudo-preimages, then a few initial steps are needed
to ensure proper padding. It will become clear in the following that this only
has a small effect on the total time complexity.

Constructing the tree (Step 1 above) is a time-expensive task for an ideal
hash function. However, for the MDC-2 construction, it can be done effi-
ciently.

Theorem 4.1. Given a target hash value hT‖h̃T, a pseudo-preimage can be
found in time at most 2n−1 (in terms of compression function evaluations)
with probability about (1 − 1/e)2. By a pseudo-preimage we mean a pair
(hp, h̃p) and a message block m such that g(f(hp,m)‖f(h̃p,m)) = hT‖h̃T.

Proof. The method is the following. Let U‖Ũ = g−1(hT‖h̃T). Choose m
arbitrarily, define fm(x) = f(x,m), and find by brute force preimages hp and
h̃p of U and Ũ , respectively, under fm. This means that g(fm(hp)‖fm(h̃p)) =
hT‖h̃T.
Assuming that the outputs of fm are Poisson distributed, the probability that
a given image has at least one preimage is 1 − 1/e. Hence, the probability
of finding a preimage of both U and Ũ is (1 − 1/e)2. A brute force search
for preimages on an n-bit function has complexity at most 2n, which in this
case corresponds to 2n−1 compression function evaluations.

We note that for an ideal 2n-bit compression function, the above task
has complexity about 22n. The story does not finish with Theorem 4.1,
however. Clearly, by evaluating a random n-bit function f 2n times, one
finds on average one preimage for all elements of {0, 1}n. Thus, we obtain
the following corollary.

Corollary 4.1. Given t target hash values, in time 2n−1 one pseudo-preimage
(on average) can be found for each target hash value. Here, t can be any
number from 1 to 2n.

4.3. CRYPTANALYSIS OF MDC-2 119

Proof. The technique is the same as above (we note that inverting g, which
must be done 2t times, is assumed to be a much simpler task than evaluating
f). Since fm is evaluated on all 2n possible inputs, on average one preimage
is found for each element of {0, 1}n. Therefore, we also expect one preimage
on average of each of the t target hash values.

We note that in the case of MDC-2, where g has a special form that
allows to compute n bits of the output given only n bits of the input (and
vice versa), t above can actually be 22n without affecting the complexity. The
reason is that g (in this case) never has to be inverted more than 2n times.

Due to Theorem 4.1 and Corollary 4.1, the tree described above can be
efficiently constructed as follows:

1: The tree initially contains only the root, labelled hT‖h̃T

2: Using the method of Theorem 4.1 twice, find two pseudo-preimages of
the root, and add these to the tree as children of the root

3: for i = 2 to d do
4: Using the method of Corollary 4.1 (twice), find two pseudo-preimages

of each leaf in the tree, and add these to the tree
5: end for{The tree now has depth d and 2d leaves}

The expected time required in line 2 is 2n. The expected time required in
each iteration of the loop (lines 3–5) is 2n. Hence, the total time complexity
is d2n.

As mentioned, with 2d leaves, meaning 2d new target images, finding by
brute force a true preimage has complexity 22n−d. Hence, the total time
complexity is about d2n +22n−d. As mentioned above, memory requirements
are about 2d+1.

Observe that with d = 0 one gets time complexity 22n and space com-
plexity 1, which is not surprising since we do not build a tree at all, so we
have a standard brute force preimage attack. With d = n/2 one gets time
complexity about 23n/2 and space complexity about 2n/2, equivalent to the
attack of Lai and Massey. The most efficient attack appears when d = n, in
which case the time complexity is about (n+1)2n, and the space complexity
is 2n+1. We improve the efficiency of this particular time/memory trade-off
below.

We note that this attack provides practically any time/memory trade-off
for which the product of the time and the space complexities is about 22n.
Figure 4.15 shows some example trade-offs.

120 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

2n

22n

1 2n

d = 0

d = n/2

d = 2n/3
d = 3n/4

d = n

Space
T

im
e

Figure 4.15: A visualisation of the time/memory trade-off. Both axes are loga-
rithmic. The case d = 0 corresponds to the brute force attack, and d = n/2 cor-
responds to the previous best known preimage attack of Lai and Massey. Larger
values of d constitute improvements with respect to attack efficiency.

Alternative methods.

The tree above does, in fact, not have to be binary. If every node has on
average 2b children, then when the tree has depth d, there are 2bd leaves. The
time required to construct the tree is d2b+n−1. The time required for Step 2
above is 22n−bd. The memory requirements are about 2bd for reasonably large
b. With b = n/(d + 1), which approximately balances the time spent in
Steps 1 and 2, the total time complexity is about (d/2 + 1)2n(d+2)/(d+1) and
the memory requirements are 2nd/(d+1). With d ≈ n, the attack is roughly
the same as above, but with smaller values of d, the number of children of
each node grows.

An alternative way of constructing the tree is the following. First, find
a pseudo-preimage of the root. Then, find a pseudo-preimage of the root
and its child. Continue applying Corollary 4.1 this way, finding in each step
a pseudo-preimage for each node in the tree, thus doubling the tree size in
every step. After d steps, the tree contains 2d nodes. The time complexity
is d2n−1. See Figure 4.16.

hT‖h̃T

-
-U

K

-

=º

®-^

K

Figure 4.16: Constructing a tree of pseudo-preimages by finding one child of every
node in each step.

4.3. CRYPTANALYSIS OF MDC-2 121

Now, if there is no length padding, then we may perform a brute force
search that links the initial value to any of the 2d nodes in the tree. This
brute force search has complexity 22n−d. Compared to the variant of the
previous section, both time and space requirements are roughly halved. We
note that this attack resembles a method described by Leurent [119] of finding
preimages of MD4.

Length padding can be circumvented in the same way as it is circumvented
in Kelsey and Schneier’s second preimage attack on the Merkle-Damg̊ard
construction (Section 2.2.4), but the resulting attack is slightly slower than
the variant above, since there is (apparently) no efficient method of finding
fixed points of the compression function.

Pushing the time complexity down to 2n.

The attack above can be modified such that it has time complexity very close
to 2n. This attack is similar to a preimage attack by Mendel and Rijmen on
the HAS-V hash function [130], and also bears resemblance with the P3graph
method introduced by De Cannière and Rechberger [30].

In the attack, two message blocks m0 and m1 are first chosen, such that
they have correct padding for a message of length n + 1 blocks. Here, we
assume that padding does not fill an entire message block. Before the attack
starts, two (initially empty) hash tables U0 and U1 with a capacity of 2n each
must be prepared (recall that collisions in the hash tables can be handled
with a linked list, but here we ignore this possibility). The attack proceeds
by computing yi = f(i,m0) for all i from 0 to 2n−1, and placing the outputs
in U0, indexed by yi. Similarly with m1, where the outputs are placed in
U1. Then, one constructs a binary tree with the target image at the root,
and such that every node has (on average) two children, that can be looked
up in U0 and U1. When the tree has 2n leaves, one searches for a message
block mapping the initial value to a leaf in the tree. The total expected time
is about 2n+1, and the memory requirements are also 2n+1. In algorithmic
form, the attack can be described as follows.

1: for i = 1 to 2n − 1 do
2: Compute f(i, m0), and do U0[f(i, m0)]← i
3: Compute f(i, m1), and do U1[f(i, m1)]← i
4: end for
5: Place the target image hT‖h̃T at the root of a binary tree.
6: for i = n + 1 down to 2 do
7: for each leaf hi‖h̃i in the tree do
8: Gi‖G̃i ← g−1(hi‖h̃i)
9: Add U0[Gi]‖U0[G̃i] to the tree as a child of hi‖h̃i

122 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

10: Add U1[Gi]‖U1[G̃i] to the tree as a child of hi‖h̃i

11: end for
12: end for
13: Sort the 2n leaves h1‖h̃1 of the tree by placing them in the table T
14: loop
15: Choose a random message block d
16: h1‖h̃1 ← g(f(h0, d)‖f(h̃0, d))
17: if h1‖h̃1 ∈ T then
18: return d and the path in the tree from h1‖h̃1 to the root
19: end if
20: end loop

We note that if padding spans several message blocks, a few initial steps
are required to invert through the padding blocks. This may add a small
factor of 2n to the complexity.

Table 4.3 shows some example complexities of this attack for different
sizes of n, compared to the previous best known preimage attack and the
brute force attack.

Table 4.3: Time complexities of the preimage attack of Section 4.3.3 compared to
the previous best known preimage attack of Lai and Massey, and to a brute force
attack.

n
Preimage attack complexity

Section 4.3.3 Lai-Massey Brute force

54 255 281 2108

64 265 296 2128

128 2129 2192 2256

256 2257 2384 2512

4.3.4 Other non-random properties

Let M be a message of t blocks, and let H(M) = ht‖h̃t be the MDC-2 hash
of M . The probability that ht 6= h̃t is (1−2−n)t, because the two halves must
be different after the processing of every block out of the t blocks, in order
for them to be different at the end. For an ideal 2n-bit hash function, this
probability is 1− 2−n, irrespective of the value of t. Hence, when tÀ 1, the
probability of the two output halves being equal is much higher in MDC-2
than in an ideal hash function. In fact, if t = 2n, then the probability is
around 1− 1/e ≈ 0.63, since (1− 2−n)2n ≈ 1/e for plausible values of n. The

4.3. CRYPTANALYSIS OF MDC-2 123

property does not hold for the construction (4.3) in general (nor does it hold
if some key bits are fixed to ensure that the two keys in each iteration are
different). What is required is that some n-bit value b exists for every n-bit
value a such that g(a‖a) = b‖b.

If, during the processing of a message, one has obtained two equal halves,
then a standard birthday collision attack can be applied in time 2n/2. Hence,
a new type of birthday attack on MDC-2 is as follows. Search for a message
block m0 such that f(h0,m0) = f(h̃0,m0) = h1. Then, find a pair (m1,m

∗
1)

of message blocks such that f(h1,m1) = f(h1,m
∗
1). This attack takes the

same amount of time as a standard birthday attack (it is in fact faster by
a factor of two, since f only has to be called about 2n times), but a naive
implementation uses only 2n/2 memory compared to 2n for a (naive) standard
birthday attack. By using cycle-finding methods, memory requirements can
be made negligible in both cases.

4.3.5 Application to other constructions

The construction (4.3) can be generalised even further. For example, we may
define the following general construction, where f and f̃ are two distinct
functions both mapping as {0, 1}n × {0, 1}n → {0, 1}n, and g : {0, 1}2n →
{0, 1}2n is (again) an invertible mapping:

W = f(hi−1, mi)‖f̃(h̃i−1,mi)

hi‖h̃i = g(W).
(4.4)

Our attacks also apply to this construction, except that in some cases the
complexity is up to twice as high. For instance, the attack of Theorem 4.1 now
requires 2n evaluations of both f and f̃ , and hence the total time complexity
is comparable to 2n compression function evaluations, and not 2n−1 as is the
case when f = f̃ .

Vortex [79] is a candidate for the SHA-3 hash function competition, which
uses the generalised MDC-2 construction (4.3). The function g is based on
carry-less multiplications, additions, and XORs. It is not a permutation, and
is not efficiently invertible; inversion seems to take time about 2n, assuming
that the size of the image is not much below 22n, which is a fact that is hard
to prove, but looking at small variants of the function, it seems reasonable.
This means that the collision attack described in Section 4.3.2 applies to
Vortex, and may have lower complexity since collisions are generated not
only in f , but also in g.

The preimage attacks described in Section 4.3.3 cannot all be applied
directly to Vortex due to g not being efficiently invertible, and due to the

124 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

fact that Vortex employs the EMD construction (see Section 3.3.4); however,
the preimage attack of Lai and Massey [115] applies to Vortex, and several
time/memory trade-offs are possible: preimages can be found in time about
22n−k using about 2k memory, where k ranges from 0 to n/2.

4.4 Generic attacks on checksum-based hash

functions

Checksum-based hash functions in general, described in Section 3.3.3, were
first analysed in [69], where linear checksums were shown not to offer much
protection against multi-collision attacks, second preimage attacks and the
Nostradamus attack (see Section 2.2). Here, we investigate the effect of non-
linear checksums. The work presented is published as a technical report [70].

A generic method of circumventing the checksum function is to first con-
struct a multi-collision (see Definition 2.3) of size 2µ, where the checksum
chain is ignored. Then, starting from the output of the multi-collision, one
carries out the attack in question – this might be the multi-collision attack,
the second preimage attack, the Nostradamus attack (Section 2.2), or any
other attack on the standard Merkle-Damg̊ard hash function. At the end,
the checksum block will be fixed by the attack – e.g., in the second preimage
attack, the checksum block is fixed by the first preimage. From the multi-
collision generated in the beginning, a message having the correct checksum
can be found; since there are 2µ messages in the multi-collision, one of them is
expected to have the right checksum. The time required to find this message
depends on the details of the checksum function.

4.4.1 Invertible checksum function

Assume first that the checksum function c can be inverted in time about the
same as the time required to evaluate c. By inverting we mean given y, z
to find x such that c(x, y) = z. We also introduce the term bridging, which
means to find y given x and z. For now, we assume that both operations can
be done as efficiently as computing c in the forward direction.

To carry out the attack, one first constructs a multi-collision S of size 2µ,
meaning a sequence of length µ blocks of one-block collisions mb

i , b ∈ {0, 1}
and 1 ≤ i ≤ µ, such that hi = f(hi−1,m

0
i) = f(hi−1,m

1
i), where h0 is the

initial value of the hash function. This multi-collision structure is called a
checksum control sequence in [69]. It takes time about µ2n/2 to construct it
using the technique described in Section 2.2.3. Recall that we ignore its effect

4.4. GENERIC ATTACKS ON CHECKSUM-BASED HASH FUNC. . . 125

on the checksum chain for now. The multi-collision produces the (common)
intermediate hash value hS = hµ.

Once the multi-collision is constructed, we carry out the generic attack in
question, starting from hS, i.e., as if hS was the initial value of the hash func-
tion. When the generic attack is carried out, a checksum or an intermediate
checksum value is fixed by the attack. From this (intermediate) checksum,
the corresponding checksum output vS = vµ required from the multi-collision
can be found. This may require a relatively small number of inversions or
bridgings of the checksum function.

A message from the multi-collision producing the intermediate checksum
vS must now be found. This is done by a meet-in-the-middle attack (see Sec-
tion 4.1.4). We note that this meet-in-the-middle attack requires computing
the intermediate checksums of all the messages that may be produced from
the first µ/2 blocks in the multi-collision, and similarly, the checksum func-
tion must be inverted through all the messages that can be produced from
the last µ/2 blocks in the multi-collision. This would seem to have complex-
ity µ2µ/2+1, but by exploiting the binary tree structure of the messages in
the multi-collision, the complexity may be reduced to 2µ/2+2.

The total complexity added by the checksum construction compared to
the plain Merkle-Damg̊ard construction is therefore about µ2n/2 + 2µ/2+2.
If this complexity is below the complexity of the generic attack, then the
generic attack is hardly affected by the addition of the invertible checksum.
On the other hand, it may be that µ ≥ 2n, in which case the brute force
generic attack is more efficient. We note that for most hash functions in the
MD4 family, µ ≥ 2n, and hence the addition of a checksum might protect
these. However, many hash functions (e.g., MD2) have, for instance, µ = n,
and in this case the checksum only adds a complexity corresponding to a
collision attack.

For multi-collision attacks, a much faster technique than the one described
above may be applied. The following collision attack shows why.

1: Choose an arbitrary checksum value vT

2: for i = 1 to 2n/2 do
3: Choose a random message block mi

1

4: Compute vi ← c(v0,m
i
1)

5: Compute mi
2 such that c(vi, mi

2) = vT (by bridging)
6: end for{We now have 2n/2 message mi

1‖mi
2 such that C(v0,m

i
1‖mi

2) =
vT}

7: Find i and j such that F (iv,mi
1‖mi

2) = F (iv,mj
1‖mj

2)
8: return (mi

1‖mi
2,m

j
1‖mj

2)

The above attack produces a message pair (mi
1‖mi

2,m
j
1‖mj

2) such that

126 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

C(v0,m
i
1‖mi

2) = C(v0,m
j
1‖mj

2) and H(mi
1‖mi

2) = H(mj
1‖mj

2). It requires
time about 2n/2+2, assuming that c can be evaluated (and bridged) in time
equivalent to evaluating f . Note that the complexity of the attack is indepen-
dent of µ, and therefore it applies to, e.g., the MD4 family of hash functions
(having µ ≥ 512) when extended with an invertible checksum function. A
multi-collision attack may (by a simple extension) be based on this collision
attack, allowing a 2t-collision to be constructed in time about t2n/2+2.

We note the attack does not constitute an efficient collision attack on the
entire hash function, since the birthday attack has complexity 2n/2.

4.4.2 One-way checksum function

We now assume that the checksum function is one-way, or, more generally,
that inverting (or bridging) the checksum function takes time T = 2u.

In this case, the initial multi-collision (the checksum control sequence)
may be constructed as above, but searching for the right message in the
end takes more time. The middle in the meet-in-the-middle attack is now
placed at the (µ + u)/2-th block, meaning that the checksum function must
be evaluated 2(µ+u)/2+1 times, and inverted 2(µ−u)/2+1 times. The complexity
is therefore about 2(µ+u)/2+2.

Note that u can never be greater than µ, since inverting (or bridging) c
by brute force takes time 2µ. If (µ + u) < 2n, then the generic attack may
still be faster than a brute force attack.

As an example, consider SHA-256 “strengthened” with a 128-bit check-
sum computed by the MD5 hash function. The output of MD5 is padded
to 512 bits, and used as a final message block in SHA-256. This checksum
function can be inverted in time 2128, and hence, for example, the second
preimage attack of Section 2.2.4, assuming a 255-block first preimage, can
be carried out in time about 2201. Although being one-way, the checksum
function adds no protection in this case, because it is (much) shorter than
the values in the hash chain.

As above for the invertible checksum function, multi-collisions can be
carried out more efficiently. Since a checksum-based hash function may be
viewed as a cascaded construction [160] followed by a “merging” of the two
chains, Joux’s collision attack [90] on the cascaded construction applies to
checksum-based hash functions. Such a collision can, again, be used to con-
struct multi-collisions. The method to find a collision is the following.

1: Construct a 2n/2-collision on the checksum chain.
2: Among the 2n/2 messages in the multi-collision, find two messages that

collide in the hash chain.

4.4. GENERIC ATTACKS ON CHECKSUM-BASED HASH FUNC. . . 127

The first step takes time about (n/2)2µ/2. The second step requires com-
puting 2n/2 intermediate hash values of (n/2)-block messages, but these form
a tree structure, meaning they can be computed in time 2n/2+1. The total
time complexity is therefore (n/2)2µ/2 + 2n/2+1. Note that we made no as-
sumptions on the checksum function, except that it is assumed to require
about the same time as f to evaluate.

As above, a 2t-collision may be constructed from the above collision attack
in time t((n/2)2µ/2 + 2n/2+1).

The roles of the checksum function and the compression function may be
swapped. For instance, if µ > n, then a slightly faster attack is obtained by
first finding a 2µ/2-collision on the hash chain, and then finding a collision in
the checksum chain. The complexity is then t(2µ/2+1 + (µ/2)2n/2).

Returning to our example of SHA-256 extended with a checksum com-
puted via MD5, a 2t-collision can be found in time about t2129, compared
to about t2128 for SHA-256 without a checksum. For a one-way checksum
function to offer significant protection against the multi-collision attack, the
checksum must be at least twice as large as the chaining values.

4.4.3 Application to MD2

MD2 operates with n-bit message blocks (n = 128), and maintains an n-
bit checksum state as well (see also Section 3.4.1). Hence, µ = n = 128.
The checksum function is non-linear, but it can be evaluated, inverted and
bridged in time about 1/52 of the time required to compute f .

This means that the attacks described in Section 4.4.1 above apply to
MD2. Constructing the initial multi-collision takes time about 128·264 = 271.
Searching the multi-collision at the end takes time about 265.

Hence, the second preimage attack of Kelsey and Schneier (see Sec-
tion 2.2.4), given a k-block first preimage, takes time about 271+2128−k. Note
that this is no faster than the shortcut preimage attack of Section 4.2.3.

The Nostradamus attack (Section 2.2.5) may be carried out with the
extension described here in time about 285.3 (in this case, the checksum does
not add to the complexity of the attack). Again, this is less efficient than
the shortcut preimage attack of Section 4.2.3.

Multi-collisions can be constructed by the method described above when
the checksum function is invertible. Hence, a 2t-collision can be constructed
in time about t265 (recall that the checksum function can be inverted much
faster than the time required to evaluate f). Again, we see that the checksum
adds almost no protection.

128 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

4.4.4 Summary

The discussion above means that if one wants to protect the Merkle-Damg̊ard
construction against multi-collisions, then adding a checksum is probably not
the best way to do this; it would require a checksum that is at least twice
as large as the hash itself, and it would need the checksum function to be
one-way. It seems better to introduce some mixing between “checksum bits”
and “hash bits”. This solution resembles the double-pipe scheme of Lucks,
see [121] and Section 3.3.2, and it can hardly be called a checksum.

For protection against shortcut attacks, a checksum may still be a good,
quick solution. Recall, for instance, that the shortcut collision attack de-
scribed on MD2 in Section 4.2.2 is only slightly faster than a birthday at-
tack, whereas an efficient collision attack on MD2 without a checksum was
described already in 1997 [179]. However, a simple linear checksum of mes-
sage blocks or intermediate hash values is by no means guaranteed to protect,
say, SHA-1 against shortcut collision attacks; what is needed to construct a
collision if the checksum is, e.g., the XOR of all intermediate hash states, is
simply a three-block collision attack such that the intermediate hash states
after the first and the second block contain the same difference. In the cur-
rently best known collision attacks on SHA-1 [51, 52, 215], collisions of this
or a similar kind may be produced.

4.5 A concrete collision attack on some rate

1/2 permutation-based hash functions

Permutation-based hash functions were introduced in Section 3.2. In this sec-
tion, we describe a collision attack on a large class of (2, 1, 2)-constructions.
The attack finds collisions in the compression function, which can sometimes
be extended to the full hash function. We use the terminology of Section 3.2
in the following.

Consider a (2, 1, 2)-construction with g1, g2, and G being linear over F2n

(the attack below also applies, with minor changes, if the three functions are
affine):

y1 ← p1(g1(h,m)) = p1(a · h + b ·m)

y2 ← p2(g2(h,m, y1)) = p2(c · h + d ·m + e · y1)

f(h,m) ← G(h,m, y1, y2) = f · h + g ·m + h · y1 + i · y2.

(4.5)

Symbols in bold face are constants in F2n . See also Figure 4.17.
This construction, according to [177], can obtain collision resistance of

no more than 2n/4. Here, we provide a collision attack on the compression

4.5. A CONCRETE COLLISION ATTACK ON SOME RATE 1/2. . . 129

- g1

-

- g2

-

- p2- p1 -(h,m)
G - f(h,m)

-

Figure 4.17: The compression function f based on two permutation calls.

function of complexity 2n/3. The attack is not query-based, but based on
Wagner’s generalised birthday attack (see Section 4.1.5).

If a compression function can be written as f(h, m) = f1(h) ⊕ f2(m),
then Wagner’s generalised birthday attack can be used to find collisions for
the compression function in time 2n/3. The attack can also be applied if
f(h,m) = f1(α) ⊕ f2(β), where α and β are computed from h and m in an
invertible fashion. Here, we show that this is the case for the construction
(4.5). We note that the additions in the construction are in fact XORs,
because they take place in F2n .

First, we expand f(h,m):

f(h,m) = f ·h+g ·m+h·p1(a·h+b·m)+i·p2(c·h+d·m+e·p1(a·h+b·m)).

Let α = a · h + b ·m and let β = c · h + d ·m + e · p1(α). Then we have

f(h,m) = f · h + g ·m + h · p1(α) + i · p2(β).

Consider the sum (x · α + y · p1(α)) + (z · β + i · p2(β)). This sum expands
into

(ax · h + bx ·m + y · p1(α)) + (cz · h + dz ·m + ez · p1(α) + i · p2(β)) .

Collecting terms, one obtains

(ax + cz) · h + (bx + dz) ·m + (y + ez) · p1(α) + i · p2(β).

In order to equate this expression with f(h,m) we need to solve (for x, y,
and z) the following three simultaneous equations:

ax + cz = f

bx + dz = g

y + ez = h,

which can be written as

a 0 c

b 0 d

0 1 e

 ·

x

y

z

 =

f

g

h

 .

130 CHAPTER 4. HASH FUNCTION CRYPTANALYSIS

This system of equations has a solution whenever ad 6= bc. Once x, y, and
z have been found, the compression function f can be written as

f(h,m) = (x · α + y · p1(α)) + (z · β + i · p2(β)) ,

where α = a · h + b · m and β = c · h + d · m + e · p1(α). This means
that Wagner’s generalised birthday attack can be used to find the quadruple
(α, α∗, β, β∗) forming a collision. From α and β one obtains h and m by
solving (

a b

c d

)
·
(

h

m

)
=

(
α

β − e · p1(α)

)
.

As above, this system has a solution if ad 6= bc.
If ad = bc, then collisions can be found in constant time via preimages

for f . Let (c,d) = k · (a,b) (such a k exists when ad = bc). Choose
arbitrary α and α∗, and compute y1 = p1(α) and y2 = p2(k · α + e · y1), and
likewise for α∗. Choose arbitrary γ, and solve the system of equations

(
a b

f g

)
·
(

h

m

)
=

(
α

γ − h · y1 − i · y2

)
.

The solution gives f(h,m) = γ. A similar system of equations can be set up
for α∗: (

a b

f g

)
·
(

h∗

m∗

)
=

(
α∗

γ − h · y∗1 − i · y∗2

)
.

Again, the solution gives (h∗,m∗) such that f(h∗,m∗) = γ. Hence, a collision
has been found. Both systems of equations can be solved if ag 6= bf . If
ag = bf , then any (h, h∗,m, m∗) with a · h + b ·m = a · h∗ + b ·m∗ forms a
collision.

We remind the reader that a collision in the compression function does not
necessarily extend to a collision in the hash function. For this construction,
if b = 0, or if (d, e) = (0,0), then h = α or h = β, respectively, and in
both cases, h goes into Wagner’s generalised birthday attack directly. This
means that the 2n/3 values of α or β (= h) can instead be computed from,
say, the initial value iv of the hash function as f(iv,m1) by using 2n/3 first
message blocks m1. This only increases the complexity of the attack on the
compression function by a factor about two.

As an example, the compression function f(h,m) = p1(h + m) + p2(h) +
m yields a hash function which succumbs to Wagner’s generalised birthday
attack, but f ∗(h,m) = p1(h+m)+p2(m)+h, which is the construction used
in Grøstl, see Section 5.1, apparently does not.

Chapter 5

The SHA-3 competition

The surge of collision attacks on widely used and standardised hash functions,
particularly in the year 2005, naturally led to a decrease in confidence also
in hash functions that were not yet broken, but whose designs somewhat
resembled the designs of broken hash functions. The National Institute of
Standards and Technology (NIST) hosted two workshops on cryptographic
hash functions in 2005 and 2006 in order to assess the current status of
cryptographic hash functions, and to develop some ideas of how to react to
the new attacks.

It was suggested that a competition similar to the one held in the context
of block ciphers at the end of the 90s (the AES competition) be initiated.
Some concern was raised that the community was not ready for a competition,
as the theoretical background on hash functions was deemed to be too weak.
On the other hand, the AES competition proved very fruitful in terms of
research on block ciphers, and it was argued that similar improvements of
the state of the art might be obtained from a hash function competition. In
any case, the competition (called the SHA-3 competition) was initiated in
November 2007, and the deadline for submission was set to be October 31,
2008. The winner is to be selected in 2012 after an elimination round and a
final. A new standard, called SHA-3, is to be published shortly thereafter.

The author was part of a team submitting a candidate for the SHA-3
competition. This candidate, named Grøstl, will now be described.

5.1 SHA-3 candidate: Grøstl

The Grøstl hash function [71] is a permutation based hash function (see
Section 3.2), for which the compression function has a security proof. As
mentioned in Section 3.2, a permutation based hash function cannot obtain

131

132 CHAPTER 5. THE SHA-3 COMPETITION

ideal collision and preimage resistance with fewer than three permutation
calls per compression function call. However, with two permutation calls
per compression function call, a construction with a reasonable lower bound
on the complexity of collision and preimage attacks is possible; this lower
bound is below the ideal complexities, but with an increased size of the per-
mutations, the resulting hash function may still be optimally collision and
preimage resistant. The validity of the bounds requires that the permuta-
tions are modelled as ideal permutations, informally meaning that nothing
(except for consistency with a permutation) is known about the output of
the permutation call or a call to its inverse, before the call is actually made.

5.1.1 The hash function construction

Grøstl is a permutation based hash function whose compression function
requires two permutation calls. The permutations are at least twice as large
as the final output size n of the hash function, and the compression function
is iterated in the Merkle-Damg̊ard mode, with the addition of an output
transformation at the end.

Let the compression function be f , and define an initial `-bit value h0 = iv
to be specified below. Pad the message M , and split it into blocks m1, . . . , mt

of ` bits each. Then compute

hi ← f(hi−1, mi) for i = 1, . . . , t.

The final chaining value ht is processed by an output transformation Ω map-
ping `-bit inputs to n-bit outputs, and the output of the hash function is
H(M) = Ω(ht).

5.1.2 The compression function construction

As mentioned, the compression function calls two permutations, which we
shall call P and Q. They are of size ` bits each. The compression function f
is defined as

f(h,m) = P (h⊕m)⊕Q(m)⊕ h.

We note that this construction was (apparently) first proposed and investi-
gated in the author’s master’s thesis [205, Section 8.4.4] as an attempt to
strengthen SMASH [98]. The security of the construction was (more for-
mally) investigated by Fouque, Stern, and Zimmer [68]. It was proved that a
hash function iterating f in the Merkle-Damg̊ard mode is collision resistant
up to 2`/4 permutation calls, and preimage resistant up to 2`/2 permutation
calls. Hence, with ` ≥ 2n, one has optimal collision and preimage resistance,

5.1. SHA-3 CANDIDATE: GRØSTL 133

assuming that the permutations are ideal, and that the output transforma-
tion is secure.

5.1.3 The output transformation

An output transformation Ω is applied to reduce the size of the output from
` to n bits. The output transformation is defined as

Ω(x) = truncn(P (x)⊕ x).

The construction P (x) ⊕ x is often seen in cryptography, and it is gener-
ally believed to be one-way and collision resistant. Given these properties,
together with the fact that the input to the output transformation is not un-
der the direct control of the attacker, assuming P is ideal, it does not seem
possible to attack Grøstl via the output transformation.

5.1.4 Grøstl instances

Grøstl is a collection of hash functions returning from 1 up to 64 bytes,
or in other words, from 8 bits up to 512 bits in 8-bit steps. The variant
returning n bits is called Grøstl-n. All members of the collection returning
up to 256 bits are constructed in the same way; only the initial values and
the truncation in the end differ. Similarly, all longer variants are constructed
in the same way, but differently from the shorter variants. For the shorter
variants, ` has the value 512; for the longer variants, it has the value 1024.
Hence, P and Q come in two forms each, one is a 512-bit permutation, and
one is a 1024-bit permutation, and it is always the case that ` ≥ 2n. When it
is necessary to distinguish the permutations of different sizes, we shall denote
by P` and Q` the `-bit variants. We now describe the permutations P and
Q.

5.1.5 The permutations P and Q

The permutations are inspired by the Rijndael block cipher [42]. However,
Rijndael operates with a state of only 128 bits, and P and Q are of size at
least 512 bits.

The state of P and Q is seen as a matrix of bytes. For both permutation
sizes, this matrix has 8 rows. For the 512-bit permutations, the number of
columns is 8, and for the 1024-bit permutations, the number of columns is
16. P and Q are constructed from a number of rounds, where each round
applies the following state transformations (in order):

134 CHAPTER 5. THE SHA-3 COMPETITION

• AddRoundConstant

• SubBytes

• ShiftBytes

• MixBytes.

The transformation AddRoundConstant replaces the Rijndael transformation
called AddRoundKey. The SubBytes transformation is defined in the same way
as in Rijndael. The transformations ShiftBytes and MixBytes are variants of
the Rijndael transformations ShiftRows and MixColumns, respectively. Since
the state (and hence matrix) size is not the same in P and Q as in Rijndael,
these transformations had to be redefined. However, the purpose of the
transformations is the same as their Rijndael counterparts. The ShiftBytes
transformation is different for the two different permutation sizes; when we
need to distinguish between them, we denote the variant used in the larger
permutations by ShiftBytesWide. To summarise, a round R is defined as

R = MixBytes ◦ ShiftBytes ◦ SubBytes ◦ AddRoundConstant.

We state the recommended number of rounds in P and Q later.
To be able to describe the four state transformations for the two different

permutation sizes in general, we denote by v the number of columns in the
state matrix. We denote the matrix by A, and its elements as ai,j, meaning
the element in row i, column j. Mapping a 64-byte, respectively 128-byte
string to an 8×8, respectively 8×16 state matrix is done by placing byte no.
i in column bi/8c and row i mod 8. In the following, this mapping back and
forth between byte strings and state matrices is not mentioned explicitly.

AddRoundConstant

The AddRoundConstant transformation XORs a round-dependent constant
onto the state matrix A. P and Q have different round constants, which is
the only difference between the two permutations.

The round constants can be seen as matrices of the same size as the state
matrix. All round constant bytes are zero except in a single position. The
round constants used for P512 and P1024 are basically the same: The first
8 columns do not differ for both permutations and the last 8 columns of
the round constants used in P1024 contain only bytes having the value 00.
Likewise for Q512 and Q1024.

The byte in the top leftmost corner of the round constant in round i of
P has the value i; all other positions in the round constant matrix have the

5.1. SHA-3 CANDIDATE: GRØSTL 135

-

S-

W

Figure 5.1: The SubBytes transformation.

value 00. In Q, the byte in the bottom leftmost corner has the value i ⊕ ff,
and all other bytes have the value 00. The round number is reduced modulo
256, if necessary.

To be precise, the AddRoundConstant transformation in round i updates
the state A as

A← A⊕ C[i],

where C[i] is the round constant used in round i. The round constants CP [i]
and CQ[i] used in round i of P and Q, respectively, are

CP [i] =

i 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

and CQ[i] =

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

i⊕ ff 00 · · · 00

.

SubBytes

The SubBytes transformation substitutes each byte in the state matrix by
another value, taken from the S-box S. This S-box is the same as the one
used in Rijndael and its specification can be found in Table 5.1. Hence,
SubBytes performs the following transformation:

ai,j ← S(ai,j), 0 ≤ i < 8, 0 ≤ j < v.

See also Figure 5.1.

136 CHAPTER 5. THE SHA-3 COMPETITION

Table 5.1: The Grøstl S-box (identical to the Rijndael/AES S-box).

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

ShiftBytes and ShiftBytesWide

ShiftBytes and ShiftBytesWide cyclically shift the bytes within a row to the
left by a number of positions. Let σ = [σ0, σ1, . . . , σ7] be a list of distinct
integers in the range from 0 to v − 1. Then, ShiftBytes moves all bytes
in row i of the state matrix σi positions to the left, wrapping around as
necessary. The vector σ is defined as σ = [0, 1, 2, 3, 4, 5, 6, 7] in ShiftBytes,
and σ = [0, 1, 2, 3, 4, 5, 6, 11] in ShiftBytesWide. See Figure 5.2.

MixBytes

In the MixBytes transformation, each column in the matrix is transformed
independently. To describe this transformation we first need to introduce the
finite field F256. This finite field is defined in the same way as in Rijndael,
i.e., via the irreducible polynomial x8 ⊕ x4 ⊕ x3 ⊕ x ⊕ 1 over F2. The bytes
of the state matrix A can be seen as elements of F256, i.e., as polynomials
of degree at most 7 with coefficients in {0, 1}. The least significant bit of a
byte determines the coefficient to x0, etc.

5.1. SHA-3 CANDIDATE: GRØSTL 137

-

(a) ShiftBytes

-

(b) ShiftBytesWide

Figure 5.2: The ShiftBytes transformations.

MixBytes multiplies each column of A by a constant 8 × 8 matrix B in
F256. Hence, the transformation on the whole matrix A can be written as
the matrix multiplication

A← B × A.

The matrix B is specified as

B =

02 02 03 04 05 03 05 07

07 02 02 03 04 05 03 05

05 07 02 02 03 04 05 03

03 05 07 02 02 03 04 05

05 03 05 07 02 02 03 04

04 05 03 05 07 02 02 03

03 04 05 03 05 07 02 02

02 03 04 05 03 05 07 02

.

This matrix is circulant, which means that each row is equal to the row above
rotated right by one position. In short, we may write

B = circ(02, 02, 03, 04, 05, 03, 05, 07)

instead. See also Figure 5.3.

138 CHAPTER 5. THE SHA-3 COMPETITION

-

-

W

w B × w

Figure 5.3: The MixBytes transformation.

Number of rounds

The number r of rounds is a tunable security parameter. We recommend the
following values of r for the four permutations.

Permutations Digest sizes Recommended value of r

P512 and Q512 8–256 10

P1024 and Q1024 264–512 14

5.1.6 Padding

The input message M is padded as follows. Append a ‘1’ bit to the message,
and then append w = −|M | − 65 mod ` ‘0’ bits. Finally, append a 64-bit
representation of the value (|M |+ w + 65)/`, which, due to the choice of w,
is always an integer. This number represents the number of message blocks
in the padded message.

The maximum message length is restricted by the padding method as
follows. Since it must be possible to encode the number of message blocks
in the padded message within 64 bits, there can be at most 264 − 1 message
blocks in the padded message. Padding always appends at least 65 bits, and
hence the maximum message length is (264−1)`−65 bits. With ` = 512, i.e.,
for Grøstl variants returning up to 256 bits, the maximum message length
(in bits) is therefore 512·(264−1)−65 = 273−577, and for the longer variants
it is 1024 · (264 − 1)− 65 = 274 − 1089.

5.1.7 Initial values

The initial value ivn of Grøstl-n is the `-bit representation of n. The table
below shows the initial values of the output sizes of 224, 256, 384, and 512
bits.

5.1. SHA-3 CANDIDATE: GRØSTL 139

n ivn

224 00 ... 00 00 e0

256 00 ... 00 01 00

384 00 ... 00 01 80

512 00 ... 00 02 00

5.1.8 Grøstl features

As mentioned, the construction underlying the Grøstl compression function
has been proved to be secure, assuming ideal permutations. No permutation
occurring in practice can be ideal; merely the fact that there is an algo-
rithm that describes what takes place inside the permutation disqualifies the
permutation from being ideal. On the other hand, an indication that the
permutation does not behave ideally does not necessarily lead to an attack
on the hash function.

The compression function

Wagner’s generalised birthday attack, see [213] and Section 4.1.5, applies to
the Grøstl compression function: let fP (x) = P (x) ⊕ x, and let fQ(x) =
Q(x)⊕x. Then, f can be described as fP (h⊕m)⊕fQ(m), and therefore, the
attack applies. However, the attack does not allow the attacker to choose h,
and therefore it does not seem possible to extend the attack on the compres-
sion function to the full hash function. Moreover, the attack has complexity
2`/3, which is above the proven bound of 2`/4, and also, since ` ≥ 2n, above
the complexity of the birthday attack on the full hash function.

Intuitively, if fP and fQ are modelled as random functions, then the best
method to find a collision for f is to compute 2`/4 output values of each of fP

and fQ, and combine them in 2`/2 different ways, yielding a good probability
of a collision. Hence, this informally shows that the compression function f
is collision resistant up to 2`/4 permutation calls, assuming that P and Q are
ideal permutations. If there was no output transformation, then the collision
resistance of the compression function would extend to the full hash function
via the same proof as the security proof of the Merkle-Damg̊ard construction.
Hence, finding a collision in the hash function requires finding a collision in
the compression function or in the output transformation.

Wagner’s generalised birthday attack is the best known collision attack
on the Grøstl compression function. The best known collision attack on
the Grøstl hash function is the birthday attack. Similarly, the best known
collision attack on the compression function with a given, fixed chaining input

140 CHAPTER 5. THE SHA-3 COMPETITION

is the birthday attack.

AddRoundConstant

The purpose of adding round constants is to make each round different, and
at the same time this provides a natural opportunity to differentiate P and
Q. If the rounds are all the same, then fixed points x such that R(x) = x
for the round function R extend to the entire permutation. For example, if
P = R10, then fixed points for R2 and R5 would also extend to P . Therefore,
one can expect several fixed points for P , whereas for an ideal permutation,
only a single fixed point is expected. By choosing round-dependent constants
for AddRoundConstant, the number of fixed points of P and Q is expected to
be 1.

Simple round constants with zeroes in most positions are used in order to
reduce the performance penalty of this transformation. Since this is the only
transformation in which there is a difference between P and Q, the round
constants must be different for P and Q.

SubBytes

The SubBytes transformation is the only non-linear transformation in Grøstl.
It uses the same S-box as used in Rijndael. For a walk-through of its prop-
erties, we refer to one of [42, 44].

ShiftBytes and ShiftBytesWide

The shift values used in ShiftBytes affect the speed of diffusion in P and Q.
For the 512-bit permutations, every byte of the state affects every other byte
after two rounds. For the 1024-bit permutations, this happens after three
rounds. In both cases, the speed of diffusion is optimal for the respective
state geometries.

MixBytes

The main design goal of the MixBytes transformation is to follow the wide
trail strategy [43]. Hence, the MixBytes transformation is based on an error-
correcting code with the MDS (maximum distance separable) property. This
ensures that the branch number is 9. In other words, a difference in k > 0
bytes of a column will result in a difference in at least 9− k bytes after one
MixBytes application.

There exist many MDS codes with the required parameters. Grøstl

uses a code which can be implemented efficiently in many settings. The

5.1. SHA-3 CANDIDATE: GRØSTL 141

MixBytes transformation multiplies each column of A with the MDS ma-
trix B = circ(02, 02, 03, 04, 05, 03, 05, 07) over the finite field F256. In most
environments, the multiplication with a constant of this matrix is the most
expensive part. The implementation costs can be reduced by using constants
of low degree. The minimum degree of the constants for an MDS code of
size 8 is 2. However, this comes at a higher cost for the additions due to a
slightly higher Hamming weight of the elements. In Grøstl, the values are
chosen such that the additional costs of additions can be compensated by
combining intermediate results. Particularly on 8-bit platforms, this results
in more efficient implementations. We note that on modern PC platforms,
the exact specification of B has no impact on the performance.

Output transformation

Since the size of the chaining variables is larger than the required output
size, an output transformation is needed. Simple truncation would be a
possibility. However, since the compression function is not ideal, we chose
to apply a function which is believed to be one-way and collision resistant,
but does not compress before the truncation. Also, as mentioned, a collision
in the hash function implies a collision in the compression function or in the
output transformation, and therefore it makes sense to strengthen the output
transformation so that it is believed to be collision resistant.

Let ω(x) = P (x)⊕ x. The Matyas-Meyer-Oseas construction (Construc-
tion 3.2) for hash functions based on block ciphers provides a compression
function g based on the encryption function EK (with K being the key) as
follows:

g(h,m) = Eh(m)⊕m.

This function g has been proved to provide a collision resistant and one-way
hash function when iterated in the Merkle-Damg̊ard mode [24], under the
assumption that E is an ideal block cipher. This implies that g is collision
resistant and one-way if h is fixed, since this corresponds to hashing a one-
block message. Hence, g̃(m) = Eh∗(m) ⊕ m, where h∗ is a constant, is
one-way and collision resistant as well. Since g̃ = ω with P = Eh∗ , ω may
reasonably be believed to be one-way and collision resistant. This seems to
make it difficult to attack Grøstl via the output transformation.

5.1.9 Preliminary cryptanalysis results

In this section, we describe the results of a preliminary cryptanalytic inves-
tigation of Grøstl.

142 CHAPTER 5. THE SHA-3 COMPETITION

Generic attacks

With its large internal state size, Grøstl seems to protect against many
of the generic attacks that apply to Merkle-Damg̊ard hash functions (see
Section 2.2).

With the best known collision attack on the compression function f with
fixed chaining input being the birthday attack, the multi-collision attack of
Joux (Section 2.2.3) on Grøstl is less efficient than a brute force multi-
collision attack; it requires time t2`/2 to find a 2t-collision, and with ` ≥ 2n,
the complexity is at least t2n.

Similarly, the linking part of the second preimage attack of Kelsey and
Schneier (Section 2.2.4) takes time about 2`−k for a 2k-block first preimage,
and with k ≤ 64, the complexity is always above 2n. We do note, however,
that fixed points can be used to produce the expandable message in the
case of Grøstl. The complexity of finding a fixed point is equivalent to one
compression function evaluation (choose m and compute h = P−1(Q(m))⊕
m), but constructing an expandable message using fixed points is expected
to take time 2`/2 ≥ 2n.

With respect to the length extension attack (Section 2.2.2) that enables
the attacker to form many collisions from a single, initial collision, this attack
can be applied to Grøstl if the initial collision occurs before the output
transformation (i.e., is an internal collision). However, finding an internal
collision, as mentioned, takes an expected time 2`/2 ≥ 2n. Initial collisions
that occur in the output transformation do not lead to other collisions (we
note that a random collision most likely occurs in the output transformation).
The output transformation also protects against the length extension attack
which allows to compute a hash value without knowing the message.

To summarise, generic attacks that apply to the Merkle-Damg̊ard con-
struction do not apply to Grøstl directly via birthday and brute force meth-
ods.

Classical attacks

The effectiveness of classical attacks such as differential [18, 19], linear [125,
126], integral [41, 108] and algebraic [38, 96] attacks on Rijndael have already
been studied quite extensively, with no significant success. This research
may also be applied to Grøstl, and although an attacker has more degrees
of freedom when attacking a hash function than he has when attacking a
block cipher, these classical attacks do not seem to apply to Grøstl. For
instance, the lowest number of active bytes in a four-round differential trail
is 81 for both permutation sizes [44, Theorem 9.5.1]. In an eight-round

5.1. SHA-3 CANDIDATE: GRØSTL 143

trail, the lowest number of active bytes is 162, and in a twelve-round trail it
is 243. These numbers, combined with the maximum difference propagation
probability of the S-box of 2−6, mean that the probabilities of any differential
trail (assuming independent rounds) over eight and twelve rounds (for either
P or Q) are expected to be at most 2−6·162 = 2−972, respectively 2−1458.

5.1.10 Grøstl implementations

In this section, we briefly describe the implementability of Grøstl.

In software, Grøstl performs well. Grøstl implementations particularly
take advantage of 64-bit instructions, and hence, the performance of Grøstl
is particularly good on 64-bit processors, and on processors offering “vector
instructions” such as those of the MMX, SSE, and SSE2 instruction sets.
Almost all 32-bit Intel and AMD processors since 1997 offer this type of
instructions. The 64-bit instructions, if available, are applied to one column
at the time, meaning that each new column in a round of P and Q can be
computed effectively using 8 table look-ups and 7 XORs.

As an example, Grøstl-256 (and shorter variants) operates at around
25 cycles/byte on a 64-bit processor such as the Intel Core 2 Duo. Longer
variants perform at around 37 cycles/byte. Additional benchmarks may be
found in [64, 71].

New AES instructions offered by Intel on future processors [85] may be
used to develop Grøstl implementations that are both efficient and resistant
to side-channel attacks such as cache-timing attacks.

Since P and Q can be described as consisting of operations on bytes,
performance on 8-bit processors is also good. Moreover, many trade-offs
between running time and memory usage are possible.

Similarly, several trade-offs are also possible when it comes to hardware
implementations; for more information, see [71].

5.1.11 Summary

Grøstl is a permutation based hash function. The permutations were de-
veloped with the block cipher Rijndael as the main source of inspiration.
Grøstl operates with a large internal state size, and the compression func-
tion construction comes with a security proof. The fate of Grøstl in the
SHA-3 competition may be followed via the Grøstl web site [78].

144 CHAPTER 5. THE SHA-3 COMPETITION

5.2 Other SHA-3 candidates

Sixty-four candidates were submitted to the SHA-3 competition. Within the
first week, four out of around 20 published candidates were broken in the
sense of attacks that were carried out in practice (Grøstl was not among
these four). One candidate, Vortex [79], is based upon the MDC-2 construc-
tion method (Construction 3.5), but with a different mixing function after
the block cipher applications. In Section 4.3.5 we (briefly) described how to
find collisions and preimages in Vortex.

As of November 26, 2008, 31 SHA-3 candidates were publicly known, ac-
cording to the “SHA-3 Zoo” [194]. NIST had not yet finished its formal checks
of all 64 submissions, and most likely, some of these will not be accepted as
“complete and proper”, and therefore will not enter the competition. Those
that are accepted, will be published by NIST when all submissions have been
checked.

Chapter 6

Conclusions

The topic of cryptographic hash functions has received an enormous amount
of attention in the cryptographic community in the last few years, and with
the initiation of a cryptographic hash function competition, the attention
will only increase. The enthusiasm is settled on the rather disturbing fact
that hash functions in wide use can no longer be considered secure.

Hash functions are expected to be extremely efficient. The question is
whether it is possible to construct a secure hash function that is faster than
the fastest, secure block ciphers. The fundamental difference between these
two types of cryptographic primitives is that a block cipher accepts a key
input, whereas as a traditional cryptographic hash function does not. Hence,
in a cryptographic hash function, all information is public, which gives an
attacker a huge amount of freedom when carrying out attacks. The attacker
can choose to hash any message, and thereby compute the same intermediate
and resulting hash values as any legitimate user of the hash function. The
attacker can pre-compute values, and use them any time in the future. The
attacker can carry out a collision attack with no input. Moreover, an n-bit
block cipher offers up to 2n security, but an n-bit hash function offers at most
2n/2 security. Therefore, a hash function needs to operate with a larger state
than a block cipher. These issues, along with practical experience, indicate
that designing a secure and efficient cryptographic hash function may be
more challenging than designing a secure and efficient block cipher.

Another question one might ask is whether it makes sense to use one, sin-
gle cryptographic hash function in so many different applications, or whether
we should rather go back to separating hash functions into sub-classes such
as one-way hash functions, collision resistant hash functions, checksum func-
tions etc. An argument that one sometimes comes across for the high effi-
ciency needed of a cryptographic hash function is, that someone might want
to compute the checksum of a hard drive, possibly several terabytes in size.

145

146 CHAPTER 6. CONCLUSIONS

To give a feeling for the complexity of this task, it takes at least an hour to
encrypt this amount of data using the AES on a standard (year 2008) PC.
The most efficient cryptographic hash functions can do it in about half an
hour. If one wants to be able to do it in a minute or two, one should not use
a cryptographic primitive. This illustrates that the amount of security that
one requires needs to be compared against the amount of data that must be
processed. Extremely high security does not go well with extremely large
amounts of data – unless one is prepared to wait for an extremely long time.

A third question one might ask is whether preimage and second preimage
resistance at the optimal levels of 2n are required, or whether the birthday
bound of 2n/2 is good enough for all kinds of attack. We have seen quite a
large number of examples of attacks of a generic nature, that have complexi-
ties somewhere in between the birthday bound and the “brute force bound”.
Examples are the multi-collision attack by Joux, the second preimage attack
by Kelsey and Schneier, the Nostradamus attack by Kelsey and Kohno, and
the attacks on checksum-based hash functions. It is likely that new applica-
tions, variants, and extensions of these attacks will appear in the future. It
is important to note, that all these mentioned attacks require the ability to
produce a collision of some form or another. This fact, combined with the
fact that hash functions are nearly always expected to be collision resistant
in the first place, thus placing restrictions on the output size, could be inter-
preted as being evidence that the birthday bound should be appropriate and
sufficient for all types of attack. An argument that goes against this view
is that a collision found in the future will have little impact on documents
that are prepared today, whereas a preimage or a second preimage may be
devastating. Hence, preimage resistance and second preimage resistance are,
so to speak, required to reach further into the future than collision resistance.

The SHA-3 competition will teach the cryptographic community a lot
about the design and cryptanalysis of hash functions. The candidates have
very different properties, and they will be attacked in many different ways.
Some candidates are extremely fast, and others are slower than the SHA-2
hash functions. In the call for submissions to the SHA-3 competition, NIST
requires that the winner be at least as secure, and significantly faster than
SHA-2. Therefore, it is likely that the candidate that is chosen in the end will
be one of the fastest candidates, for which no weaknesses are found during
the competition. It will be interesting to see whether the winner turns out
to be as good a choice as Rijndael (so far) turned out to be for the Advanced
Encryption Standard. It will also be interesting to see just how fast the
winner will be.

Bibliography

[1] C. M. Adams, G. Kramer, S. Mister, and R. J. Zuccherato. On The
Security of Key Derivation Functions. In K. Zhang and Y. Zheng,
editors, International Conference on Information Security (ISC) 2004,
Proceedings, volume 3225 of Lecture Notes in Computer Science, pages
134–145. Springer, 2004.

[2] American National Standards Institution. ANSI X9.71. Keyed Hash
Message Authentication Code, 2000.

[3] R. J. Anderson, E. Biham, and L. R. Knudsen. Serpent: A Proposal for
the Advanced Encryption Standard. AES Algorithm Submission, 1998.
Available: http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf

(2008/11/06).

[4] E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton. Three-property
preserving iterations of keyless compression functions. Presented
at ECRYPT Hash Workshop, May 24–25, 2007, Barcelona, Spain.
Available: http://events.iaik.tugraz.at/HashWorkshop07/

papers/Andreeva_Three-propertyPreservingIterations.pdf

(2008/09/18).

[5] E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton. Seven-Property-
Preserving Iterated Hashing: ROX. In K. Kurosawa, editor, Advances
in Cryptology – ASIACRYPT 2007, Proceedings, volume 4833 of Lec-
ture Notes in Computer Science, pages 130–146. Springer, 2007.

[6] P. S. L. M. Barreto and V. Rijmen. The Whirlpool Hashing Func-
tion. Submitted to NESSIE, September 2000. Revised May 2003. Avail-
able: http://paginas.terra.com.br/informatica/paulobarreto/

WhirlpoolPage.html (2008/07/08).

[7] M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Functions for
Message Authentication. In N. Koblitz, editor, Advances in Cryptology

147

http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
http://events.iaik.tugraz.at/HashWorkshop07/papers/Andreeva_Three-propertyPreservingIterations.pdf
http://events.iaik.tugraz.at/HashWorkshop07/papers/Andreeva_Three-propertyPreservingIterations.pdf
http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html

148 BIBLIOGRAPHY

– CRYPTO ’96, Proceedings, volume 1109 of Lecture Notes in Com-
puter Science, pages 1–15. Springer, 1996.

[8] M. Bellare and T. Ristenpart. Multi-Property-Preserving Hash Domain
Extension and the EMD Transform. In X. Lai and K. Chen, editors, Ad-
vances in Cryptology – ASIACRYPT 2006, Proceedings, volume 4284
of Lecture Notes in Computer Science, pages 299–314. Springer, 2006.

[9] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In First ACM Conference on Com-
puter and Communications Security, Proceedings, pages 62–73, 1993.

[10] D. J. Bernstein. Personal communication, January 2008.

[11] T. A. Berson. Differential Cryptanalysis Mod 232 with Applications
to MD5. In R. A. Rueppel, editor, Advances in Cryptology – EURO-
CRYPT ’92, Proceedings, volume 658 of Lecture Notes in Computer
Science, pages 71–80. Springer, 1993.

[12] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Ra-
dioGatún, a Belt-and-Mill Hash Function. Presented at Second
NIST Cryptographic Hash Workshop, August 24–25, 2006, Santa Bar-
bara, California, USA. Available: http://radiogatun.noekeon.org/
RadioGatun.pdf (2008/11/25).

[13] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge
Functions. Presented at ECRYPT Hash Workshop, May 24–25,
2007, Barcelona, Spain. Available: http://sponge.noekeon.org/

SpongeFunctions.pdf (2008/10/01).

[14] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the In-
differentiability of the Sponge Construction. In N. Smart, editor, Ad-
vances in Cryptology – EUROCRYPT 2008, Proceedings, volume 4965
of Lecture Notes in Computer Science, pages 181–197. Springer, 2008.

[15] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Kec-
cak specifications. SHA-3 Algorithm Submission, October 2008.
Available: http://keccak.noekeon.org/Keccak-specifications.

pdf (2008/11/07).

[16] E. Biham and R. Chen. Near-Collisions of SHA-0. In M. K. Franklin,
editor, Advances in Cryptology – CRYPTO 2004, Proceedings, volume
3152 of Lecture Notes in Computer Science, pages 290–305. Springer,
2004.

http://radiogatun.noekeon.org/RadioGatun.pdf
http://radiogatun.noekeon.org/RadioGatun.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf
http://keccak.noekeon.org/Keccak-specifications.pdf
http://keccak.noekeon.org/Keccak-specifications.pdf

BIBLIOGRAPHY 149

[17] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby.
Collisions of SHA-0 and Reduced SHA-1. In R. Cramer, editor, Ad-
vances in Cryptology – EUROCRYPT 2005, Proceedings, volume 3494
of Lecture Notes in Computer Science, pages 36–57. Springer, 2005.

[18] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryp-
tosystems. In A. Menezes and S. A. Vanstone, editors, Advances in
Cryptology – CRYPTO ’90, Proceedings, volume 537 of Lecture Notes
in Computer Science, pages 2–21. Springer, 1991.

[19] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryp-
tosystems. Journal of Cryptology, 4(1):3–72, 1991.

[20] A. Biryukov. The Design of a Stream Cipher LEX. In E. Biham and
A. M. Youssef, editors, Selected Areas in Cryptography 2006, Proceed-
ings, volume 4356 of Lecture Notes in Computer Science, pages 67–75.
Springer, 2007.

[21] J. Black. The Ideal-Cipher Model, Revisited: An Uninstantiable
Blockcipher-Based Hash Function. In M. J. B. Robshaw, editor, Fast
Software Encryption 2006, Proceedings, volume 4047 of Lecture Notes
in Computer Science, pages 328–340. Springer, 2006.

[22] J. Black, M. Cochran, and T. Highland. A Study of the MD5 Attacks:
Insights and Improvements. In M. J. B. Robshaw, editor, Fast Soft-
ware Encryption 2006, Proceedings, volume 4047 of Lecture Notes in
Computer Science, pages 262–277. Springer, 2006.

[23] J. Black, M. Cochran, and T. Shrimpton. On the Impossibility of
Highly-Efficient Blockcipher-Based Hash Functions. In R. Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, Proceedings,
volume 3494 of Lecture Notes in Computer Science, pages 526–541.
Springer, 2005.

[24] J. Black, P. Rogaway, and T. Shrimpton. Black-Box Analysis of
the Block-Cipher-Based Hash-Function Constructions from PGV. In
M. Yung, editor, Advances in Cryptology – CRYPTO 2002, Proceed-
ings, volume 2442 of Lecture Notes in Computer Science, pages 320–
335. Springer, 2002.

[25] D. Boneh and M. K. Franklin. Efficient Generation of Shared RSA
Keys (Extended Abstract). In B. S. Kaliski Jr., editor, Advances in
Cryptology – CRYPTO ’97, Proceedings, volume 1294 of Lecture Notes
in Computer Science, pages 425–439. Springer, 1997.

150 BIBLIOGRAPHY

[26] B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas, Jr.,
C. H. W. Meyer, J. Oseas, S. Pilpel, and M. Schilling. Data authentica-
tion using modification detection codes based on a public one way en-
cryption function, March 13, 1990. US Patent no. 4,908,861. Assigned
to IBM. Filed August 28, 1987. Available: http://www.google.com/

patents?vid=USPAT4908861 (2008/09/02).

[27] R. P. Brent. An improved Monte Carlo factorization algorithm. BIT,
20(2):176–184, 1980.

[28] L. Brown, J. Pieprzyk, and J. Seberry. LOKI - A Cryptographic Prim-
itive for Authentication and Secrecy Applications. In J. Seberry and
J. Pieprzyk, editors, Advances in Cryptology – AUSCRYPT ’90, Pro-
ceedings, volume 453 of Lecture Notes in Computer Science, pages 229–
236. Springer, 1990.

[29] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Method-
ology, Revisited (Preliminary Version). In 30th ACM Symposium on the
Theory of Computing 1998, Proceedings, pages 209–218. ACM, 1998.

[30] C. D. Cannière and C. Rechberger. Preimages for Reduced SHA-0
and SHA-1. In D. Wagner, editor, Advances in Cryptology – CRYPTO
2008, Proceedings, volume 5157 of Lecture Notes in Computer Science,
pages 179–202. Springer, 2008.

[31] F. Chabaud and A. Joux. Differential Collisions in SHA-0. In
H. Krawczyk, editor, Advances in Cryptology – CRYPTO ’98, Pro-
ceedings, volume 1462 of Lecture Notes in Computer Science, pages
56–71. Springer, 1998.

[32] D. Chang, S. Lee, M. Nandi, and M. Yung. Indifferentiable Security
Analysis of Popular Hash Functions with Prefix-Free Padding. In X. Lai
and K. Chen, editors, Advances in Cryptology – ASIACRYPT 2006,
Proceedings, volume 4284 of Lecture Notes in Computer Science, pages
283–298. Springer, 2006.

[33] D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically Strong
Undeniable Signatures, Unconditionally Secure for the Signer. In
J. Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91, Pro-
ceedings, volume 576 of Lecture Notes in Computer Science, pages 470–
484. Springer, 1992.

[34] S. Contini, A. K. Lenstra, and R. Steinfeld. VSH, an Efficient and
Provable Collision-Resistant Hash Function. In S. Vaudenay, editor,

http://www.google.com/patents?vid=USPAT4908861
http://www.google.com/patents?vid=USPAT4908861

BIBLIOGRAPHY 151

Advances in Cryptology – EUROCRYPT 2006, Proceedings, volume
4004 of Lecture Notes in Computer Science, pages 165–182. Springer,
2006.

[35] D. Coppersmith. Another Birthday Attack. In H. C. Williams, editor,
Advances in Cryptology – CRYPTO ’85, Proceedings, volume 218 of
Lecture Notes in Computer Science, pages 14–17. Springer, 1986.

[36] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. The MIT Press, 1990.

[37] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard
Revisited: How to Construct a Hash Function. In V. Shoup, editor,
Advances in Cryptology – CRYPTO 2005, Proceedings, volume 3621 of
Lecture Notes in Computer Science, pages 430–448. Springer, 2005.

[38] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algo-
rithms for Solving Overdefined Systems of Multivariate Polynomial
Equations. In B. Preneel, editor, Advances in Cryptology – EURO-
CRYPT 2000, Proceedings, volume 1807 of Lecture Notes in Computer
Science, pages 392–407. Springer, 2000.

[39] J. Daemen. Cipher and hash function design strategies based on lin-
ear and differential cryptanalysis. PhD thesis, Katholieke Universiteit
Leuven, March 1995.

[40] J. Daemen and C. S. K. Clapp. Fast Hashing and Stream Encryption
with Panama. In S. Vaudenay, editor, Fast Software Encryption ’98,
Proceedings, volume 1372 of Lecture Notes in Computer Science, pages
60–74. Springer, 1998.

[41] J. Daemen, L. R. Knudsen, and V. Rijmen. The Block Cipher Square.
In E. Biham, editor, Fast Software Encryption 1997, Proceedings,
volume 1267 of Lecture Notes in Computer Science, pages 149–165.
Springer, 1997.

[42] J. Daemen and V. Rijmen. AES Proposal: Rijndael. AES Algorithm
Submission, September 3, 1999. Available: http://csrc.nist.gov/

archive/aes/rijndael/Rijndael-ammended.pdf (2008/10/29).

[43] J. Daemen and V. Rijmen. The Wide Trail Design Strategy. In
B. Honary, editor, Cryptography and Coding 2001, Proceedings, volume
2260 of Lecture Notes in Computer Science, pages 222–238. Springer,
2001.

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

152 BIBLIOGRAPHY

[44] J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2002.

[45] J. Daemen and V. Rijmen. A New MAC Construction Alred and
a Specific Instance Alpha-MAC. In H. Gilbert and H. Handschuh,
editors, Fast Software Encryption 2005, Proceedings, volume 3557 of
Lecture Notes in Computer Science, pages 1–17. Springer, 2005.

[46] W. Dai. Crypto++ R© Library 5.5.2 (2008). http://www.cryptopp.

com (2008/09/30).

[47] I. Damg̊ard. Collision Free Hash Functions and Public Key Signature
Schemes. In D. Chaum and W. L. Price, editors, Advances in Cryptol-
ogy – EUROCRYPT ’87, Proceedings, volume 304 of Lecture Notes in
Computer Science, pages 203–216. Springer, 1988.

[48] I. Damg̊ard. A Design Principle for Hash Functions. In G. Brassard,
editor, Advances in Cryptology – CRYPTO ’89, Proceedings, volume
435 of Lecture Notes in Computer Science, pages 416–427. Springer,
1990.

[49] I. B. Damg̊ard, L. R. Knudsen, and S. S. Thomsen. Dakota – Hashing
from a Combination of Modular Arithmetic and Symmetric Cryptogra-
phy. In S. M. Bellovin, R. Gennaro, A. D. Keromytis, and M. Yung, ed-
itors, Applied Cryptography and Network Security (ACNS) 2008, Pro-
ceedings, volume 5037 of Lecture Notes in Computer Science, pages
144–155. Springer, 2008.

[50] D. W. Davies and W. L. Price. The Application of Digital Signatures
based on Public Key Cryptosystems. Technical Report DNACS 39/80,
National Physical Lab, Teddington, Middlesex, England, 1980.

[51] C. De Cannière, F. Mendel, and C. Rechberger. Collisions for 70-
Step SHA-1: On the Full Cost of Collision Search. In C. M. Adams,
A. Miri, and M. J. Wiener, editors, Selected Areas in Cryptography
2007, Proceedings, volume 4876 of Lecture Notes in Computer Science,
pages 56–73. Springer, 2007.

[52] C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics:
General Results and Applications. In X. Lai and K. Chen, editors, Ad-
vances in Cryptology – ASIACRYPT 2006, Proceedings, volume 4284
of Lecture Notes in Computer Science, pages 1–20. Springer, 2006.

[53] R. D. Dean. Formal Aspects of Mobile Code Security. PhD thesis,
Princeton University, January 1999.

http://www.cryptopp.com
http://www.cryptopp.com

BIBLIOGRAPHY 153

[54] B. den Boer and A. Bosselaers. An Attack on the Last Two Rounds of
MD4. In J. Feigenbaum, editor, Advances in Cryptology – CRYPTO
’91, Proceedings, volume 576 of Lecture Notes in Computer Science,
pages 194–203. Springer, 1992.

[55] B. den Boer and A. Bosselaers. Collisions for the Compression Func-
tion of MD5. In T. Helleseth, editor, Advances in Cryptology – EU-
ROCRYPT ’93, Proceedings, volume 765 of Lecture Notes in Computer
Science, pages 293–304. Springer, 1994.

[56] P. Diaconis and F. Mosteller. Methods for Studying Coincidences.
Journal of the American Statistical Association, 84(408):853–861, 1989.

[57] T. Dierks and C. Allen. The TLS Protocol Version 1.0. Internet Request
for Comments (RFC) 2246, January 1999.

[58] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

[59] H. Dobbertin. Cryptanalysis of MD4. In D. Gollmann, editor, Fast
Software Encryption 1996, Proceedings, volume 1039 of Lecture Notes
in Computer Science, pages 53–69. Springer, 1996.

[60] H. Dobbertin. The Status of MD5 After a Recent Attack. CryptoBytes,
2(2):1–6, 1996.

[61] H. Dobbertin. Cryptanalysis of MD4. Journal of Cryptology, 11(4):253–
271, 1998.

[62] H. Dobbertin. The First Two Rounds of MD4 are Not One-Way. In
S. Vaudenay, editor, Fast Software Encryption ’98, Proceedings, volume
1372 of Lecture Notes in Computer Science, pages 284–292. Springer,
1998.

[63] Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin. Ran-
domness Extraction and Key Derivation Using the CBC, Cascade and
HMAC Modes. In M. K. Franklin, editor, Advances in Cryptology –
CRYPTO 2004, Proceedings, volume 3152 of Lecture Notes in Com-
puter Science, pages 494–510. Springer, 2004.

[64] eBACS: ECRYPT Benchmarking of Cryptographic Systems. Measure-
ments of hash functions. http://bench.cr.yp.to/results-hash.

html (2008/11/21).

http://bench.cr.yp.to/results-hash.html
http://bench.cr.yp.to/results-hash.html

154 BIBLIOGRAPHY

[65] The eSTREAM Project. http://www.ecrypt.eu.org/stream/.

[66] A. Evans Jr., W. Kantrowitz, and E. Weiss. A User Authentication
Scheme Not Requiring Secrecy in the Computer. Communications of
the ACM, 17(8):437–442, 1974.

[67] R. W. Floyd. Nondeterministic Algorithms. Journal of the Association
for Computing Machinery, 14(4):636–644, 1967.

[68] P.-A. Fouque, J. Stern, and S. Zimmer. Cryptanalysis of Tweaked
Versions of SMASH and Reparation. In Selected Areas in Cryptography
2008, Proceedings, Lecture Notes in Computer Science. Springer. To
appear.

[69] P. Gauravaram and J. Kelsey. Linear-XOR and Additive Check-
sums Don’t Protect Damg̊ard-Merkle Hashes from Generic Attacks.
In T. Malkin, editor, Topics in Cryptology – CT-RSA 2008, Proceed-
ings, volume 4964 of Lecture Notes in Computer Science, pages 36–51.
Springer, 2008.

[70] P. Gauravaram, J. Kelsey, L. R. Knudsen, and S. S. Thomsen. On
hash functions using checksums. Technical Report MAT 2008-06, De-
partment of Mathematics, Technical University of Denmark, Novem-
ber 2008. Available: http://orbit.dtu.dk/getResource?recordId=
228687&objectId=1&versionId=1 (2008/11/18).

[71] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rech-
berger, M. Schläffer, and S. S. Thomsen. Grøstl – a SHA-3 can-
didate. SHA-3 Algorithm Submission, October 31, 2008. Available:
http://www.groestl.info/Groestl.pdf (2008/11/03).

[72] P. Gauravaram, W. Millan, E. Dawson, and K. Viswanathan. Con-
structing Secure Hash Functions by Enhancing Merkle-Damg̊ard Con-
struction. In L. M. Batten and R. Safavi-Naini, editors, Australasian
Conference on Information Security and Privacy (ACISP) 2006, Pro-
ceedings, volume 4058 of Lecture Notes in Computer Science, pages
407–420. Springer, 2006.

[73] M. Gebhardt, G. Illies, and W. Schindler. A Note on the Practical Value
of Single Hash Collisions for Special File Formats. In J. Dittmann,
editor, Sicherheit 2006, Beiträge der 3. Jahrestagung (Proceedings),
volume 77 of LNI, pages 333–344. GI, 2006.

http://www.ecrypt.eu.org/stream/
http://orbit.dtu.dk/getResource?recordId=228687&objectId=1&versionId=1
http://orbit.dtu.dk/getResource?recordId=228687&objectId=1&versionId=1
http://www.groestl.info/Groestl.pdf

BIBLIOGRAPHY 155

[74] H. Gilbert and H. Handschuh. Security Analysis of SHA-256 and Sis-
ters. In M. Matsui and R. J. Zuccherato, editors, Selected Areas in
Cryptography 2003, Proceedings, volume 3006 of Lecture Notes in Com-
puter Science, pages 175–193. Springer, 2004.

[75] The GNU MP Bignum Library (2007). http://gmplib.org

(2008/09/30).

[76] S. Goldwasser, S. Micali, and R. L. Rivest. A “Paradoxical” Solution
To The Signature Problem (Extended Abstract). In 25th Annual Sym-
posium on Foundations of Computer Science 1984, Proceedings, pages
441–448. IEEE, 1984.

[77] Web page of the Grindahl hash functions. http://www.ramkilde.com/
grindahl.

[78] Grøstl – a SHA-3 candidate. http://www.groestl.info.

[79] S. Gueron and M. E. Kounavis. Vortex: A New Family of One Way
Hash Functions based on Rijndael Rounds and Carry-less Multiplica-
tion. Cryptology ePrint Archive, Report 2008/464, November 2008.
http://eprint.iacr.org/.

[80] P. Hawkes, M. Paddon, and G. Rose. Automated Search for
Round 1 Differentials for SHA-1: Work in Progress. Pre-
sented at Second NIST Cryptographic Hash Workshop, Au-
gust 24–25, 2006, Santa Barbara, California, USA. Avail-
able: http://csrc.nist.gov/groups/ST/hash/documents/HAWKES_

sha1_obs_nist11%5B2%5D.pdf (2008/11/25).

[81] S. Hirose. Provably Secure Double-Block-Length Hash Functions in a
Black-Box Model. In C. Park and S. Chee, editors, International Con-
ference on Information Security and Cryptology (ICISC) 2004, Pro-
ceedings, volume 3506 of Lecture Notes in Computer Science, pages
330–342. Springer, 2005.

[82] S. Hirose. Some Plausible Constructions of Double-Block-Length Hash
Functions. In M. J. B. Robshaw, editor, Fast Software Encryption
2006, Proceedings, volume 4047 of Lecture Notes in Computer Science,
pages 210–225. Springer, 2006.

[83] W. Hohl, X. Lai, T. Meier, and C. Waldvogel. Security of Iterated
Hash Functions Based on Block Ciphers. In D. R. Stinson, editor,

http://gmplib.org
http://www.ramkilde.com/grindahl
http://www.ramkilde.com/grindahl
http://www.groestl.info
http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/hash/documents/HAWKES_sha1_obs_nist11%5B2%5D.pdf
http://csrc.nist.gov/groups/ST/hash/documents/HAWKES_sha1_obs_nist11%5B2%5D.pdf

156 BIBLIOGRAPHY

Advances in Cryptology – CRYPTO ’93, Proceedings, volume 773 of
Lecture Notes in Computer Science, pages 379–390. Springer, 1994.

[84] S. Indesteege, F. Mendel, B. Preneel, and C. Rechberger. Collisions
and other Non-Random Properties for Step-Reduced SHA-256. In
R. Avanzi, editor, Selected Areas in Cryptography 2008, Proceedings,
Lecture Notes in Computer Science. Springer. To appear.

[85] Intel Corporation. Advanced Encryption Standard (AES) Instructions
Set. http://softwarecommunity.intel.com/articles/eng/3788.

htm.

[86] International Organization for Standardization. ISO/IEC 10118-
2:1994. Information technology – Security techniques – Hash-functions
– Part 2: Hash-functions using an n-bit block cipher algorithm, 1994.
Revised in 2000.

[87] International Organization for Standardization. ISO/IEC 10118-
4:1998, Information technology – Security techniques – Hash-functions
– Part 4: Hash-functions using modular arithmetic, 1998.

[88] International Organization for Standardization. ISO 9735-6:2002. Elec-
tronic data interchange for administration, commerce and transport
(EDIFACT) – Application level syntax rules (Syntax version num-
ber: 4, Syntax release number: 1) – Part 6: Secure authentica-
tion and acknowledgement message (message type – AUTACK), 2002.
Available: http://www.gefeg.com/jswg/v41/data/V41-9735-6.pdf

(2008/09/02).

[89] International Organization for Standardization. ISO/IEC 18033-
2:2006. Information technology – Security techniques – Encryption al-
gorithms – Part 2: Asymmetric ciphers, 2006.

[90] A. Joux. Multicollisions in Iterated Hash Functions. Application to
Cascaded Constructions. In M. K. Franklin, editor, Advances in Cryp-
tology – CRYPTO 2004, Proceedings, volume 3152 of Lecture Notes in
Computer Science, pages 306–316. Springer, 2004.

[91] B. S. Kaliski Jr. The MD2 Message-Digest Algorithm. Internet Request
for Comments (RFC) 1319, April 1992.

[92] B. S. Kaliski Jr. and M. Robshaw. Message Authentication with MD5.
CryptoBytes, 1(1):5–8, 1995.

http://softwarecommunity.intel.com/articles/eng/3788.htm
http://softwarecommunity.intel.com/articles/eng/3788.htm
http://www.gefeg.com/jswg/v41/data/V41-9735-6.pdf

BIBLIOGRAPHY 157

[93] J. Kelsey and T. Kohno. Herding Hash Functions and the Nostrada-
mus Attack. In S. Vaudenay, editor, Advances in Cryptology – EURO-
CRYPT 2006, Proceedings, volume 4004 of Lecture Notes in Computer
Science, pages 183–200. Springer, 2006.

[94] J. Kelsey and B. Schneier. Second Preimages on n-Bit Hash Func-
tions for Much Less than 2n Work. In R. Cramer, editor, Advances in
Cryptology – EUROCRYPT 2005, Proceedings, volume 3494 of Lecture
Notes in Computer Science, pages 474–490. Springer, 2005.

[95] S. Kent and R. Atkinson. Security Architecture for the Internet Pro-
tocol. Internet Request for Comments (RFC) 2401, November 1998.

[96] A. Kipnis and A. Shamir. Cryptanalysis of the HFE Public Key Cryp-
tosystem by Relinearization. In M. J. Wiener, editor, Advances in
Cryptology – CRYPTO ’99, Proceedings, volume 1666 of Lecture Notes
in Computer Science, pages 19–30. Springer, 1999.

[97] L. R. Knudsen. Truncated and Higher Order Differentials. In B. Pre-
neel, editor, Fast Software Encryption 1994, Proceedings, volume 1008
of Lecture Notes in Computer Science, pages 196–211. Springer, 1995.

[98] L. R. Knudsen. SMASH – A Cryptographic Hash Function. In
H. Gilbert and H. Handschuh, editors, Fast Software Encryption 2005,
Proceedings, volume 3557 of Lecture Notes in Computer Science, pages
228–242. Springer, 2005.

[99] L. R. Knudsen and T. A. Berson. Truncated Differentials of SAFER. In
D. Gollmann, editor, Fast Software Encryption 1996, Proceedings, vol-
ume 1039 of Lecture Notes in Computer Science, pages 15–26. Springer,
1996.

[100] L. R. Knudsen and X. Lai. New Attacks on all Double Block Length
Hash Functions of Hash Rate 1, including the Parallel-DM. In
A. De Santis, editor, Advances in Cryptology – EUROCRYPT ’94,
Proceedings, volume 950 of Lecture Notes in Computer Science, pages
410–418. Springer, 1995.

[101] L. R. Knudsen and J. E. Mathiassen. Preimage and Collision Attacks
on MD2. In H. Gilbert and H. Handschuh, editors, Fast Software En-
cryption 2005, Proceedings, volume 3557 of Lecture Notes in Computer
Science, pages 255–267. Springer, 2005.

158 BIBLIOGRAPHY

[102] L. R. Knudsen, J. E. Mathiassen, F. Muller, and S. S. Thomsen. Crypt-
analysis of MD2. Submitted to a journal, August 2007.

[103] L. R. Knudsen, F. Mendel, C. Rechberger, and S. S. Thomsen. Crypt-
analysis of MDC-2. Submitted to an international conference, Septem-
ber 2008.

[104] L. R. Knudsen and B. Preneel. Hash Functions Based on Block Ci-
phers and Quaternary Codes. In K. Kim and T. Matsumoto, editors,
Advances in Cryptology – ASIACRYPT ’96, Proceedings, volume 1163
of Lecture Notes in Computer Science, pages 77–90. Springer, 1996.

[105] L. R. Knudsen and B. Preneel. Fast and Secure Hashing Based on
Codes. In B. S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO
’97, Proceedings, volume 1294 of Lecture Notes in Computer Science,
pages 485–498. Springer, 1997.

[106] L. R. Knudsen and B. Preneel. Construction of secure and fast hash
functions using nonbinary error-correcting codes. IEEE Transactions
on Information Theory, 48(9):2524–2539, 2002.

[107] L. R. Knudsen, C. Rechberger, and S. S. Thomsen. The Grindahl Hash
Functions. In A. Biryukov, editor, Fast Software Encryption 2007,
Proceedings, volume 4593 of Lecture Notes in Computer Science, pages
39–57. Springer, 2007.

[108] L. R. Knudsen and V. Rijmen. Known-Key Distinguishers for Some
Block Ciphers. In K. Kurosawa, editor, Advances in Cryptology – ASI-
ACRYPT 2007, Proceedings, volume 4833 of Lecture Notes in Com-
puter Science, pages 315–324. Springer, 2007.

[109] L. R. Knudsen and S. S. Thomsen. Proposals for Iterated Hash Func-
tions. In M. Malek, E. Fernández-Medina, and J. Hernando, editors,
SECRYPT 2006, Proceedings, pages 246–253. INSTICC Press, 2006.

[110] L. R. Knudsen and S. S. Thomsen. Proposals for Iterated Hash Func-
tions. In J. Filipe and M. S. Obaidat, editors, E-Business and Telecom-
munication Networks. Third International Conference, ICETE 2006.
Selected Papers., volume 9 of Communications in Computer and Infor-
mation Science, pages 107–118. Springer, 2008.

[111] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In N. Koblitz, editor, Advances in

BIBLIOGRAPHY 159

Cryptology – CRYPTO ’96, Proceedings, volume 1109 of Lecture Notes
in Computer Science, pages 104–113. Springer, 1996.

[112] D. Kraus. Integrity mechanism in German and international payment
systems, 2002. Available: http://www.src-gmbh.de/whitepapers/

Intergrity_mechanisms_in_payment_systems_Kraus_en.pdf

(2008/09/02).

[113] H. Krawczyk. On Extract-then-Expand Key Derivation Function and
an HMAC-based KDF, March 2008. Manuscript. Available: http:

//www.ee.technion.ac.il/~hugo/kdf/kdf.pdf (2008/09/15).

[114] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for
Message Authentication. Internet Request for Comments (RFC) 2104,
February 1997.

[115] X. Lai and J. L. Massey. Hash Functions Based on Block Ciphers. In
R. A. Rueppel, editor, Advances in Cryptology – EUROCRYPT ’92,
Proceedings, volume 658 of Lecture Notes in Computer Science, pages
55–70. Springer, 1993.

[116] A. K. Lenstra and B. de Weger. On the Possibility of Constructing
Meaningful Hash Collisions for Public Keys. In C. Boyd and J. M. G.
Nieto, editors, Australasian Conference on Information Security and
Privacy (ACISP) 2005, Proceedings, volume 3574 of Lecture Notes in
Computer Science, pages 267–279. Springer, 2005.

[117] A. K. Lenstra, D. Page, and M. Stam. Discrete Logarithm Variants of
VSH. In P. Q. Nguyen, editor, Progress in Cryptology – VIETCRYPT
2006, Proceedings, volume 4341 of Lecture Notes in Computer Science,
pages 229–242. Springer, 2006.

[118] G. Leurent. Message Freedom in MD4 and MD5 Collisions: Application
to APOP. In A. Biryukov, editor, Fast Software Encryption 2007,
Proceedings, volume 4593 of Lecture Notes in Computer Science, pages
309–328. Springer, 2007.

[119] G. Leurent. MD4 is Not One-Way. In K. Nyberg, editor, Fast Soft-
ware Encryption 2008, Proceedings, volume 5086 of Lecture Notes in
Computer Science, pages 412–428. Springer, 2008.

[120] J. Linn. Privacy Enhancement for Internet Electronic Mail: Part III
– Algorithms, Modes, and Identifiers. Internet Request for Comments
(RFC) 1115, August 1989.

http://www.src-gmbh.de/whitepapers/Intergrity_mechanisms_in_payment_systems_Kraus_en.pdf
http://www.src-gmbh.de/whitepapers/Intergrity_mechanisms_in_payment_systems_Kraus_en.pdf
http://www.ee.technion.ac.il/~hugo/kdf/kdf.pdf
http://www.ee.technion.ac.il/~hugo/kdf/kdf.pdf

160 BIBLIOGRAPHY

[121] S. Lucks. A Failure-Friendly Design Principle for Hash Functions. In
B. K. Roy, editor, Advances in Cryptology – ASIACRYPT 2005, Pro-
ceedings, volume 3788 of Lecture Notes in Computer Science, pages
474–494. Springer, 2005.

[122] S. Lucks and M. Daum. The Story of Alice and her Boss: Hash
Functions and the Blind Passenger Attack. Presented at the EU-
ROCRYPT 2005 rump session. Available: http://th.informatik.

uni-mannheim.de/People/lucks/HashCollisions/ (2008/10/07).

[123] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting
Codes. North-Holland Mathematical Library, 1977.

[124] W. Mao. Modern Cryptography – Theory & Practice. Prentice Hall,
2004.

[125] M. Matsui. Linear Cryptoanalysis Method for DES Cipher. In T. Helle-
seth, editor, Advances in Cryptology – EUROCRYPT ’93, Proceed-
ings, volume 765 of Lecture Notes in Computer Science, pages 386–397.
Springer, 1994.

[126] M. Matsui. The First Experimental Cryptanalysis of the Data En-
cryption Standard. In Y. Desmedt, editor, Advances in Cryptology –
CRYPTO ’94, Proceedings, volume 839 of Lecture Notes in Computer
Science, pages 1–11. Springer, 1994.

[127] S. M. Matyas, C. H. Meyer, and J. Oseas. Generating strong one-
way functions with crypographic algorithm. IBM Technical Disclosure
Bulletin, 27(10A):5658–5659, 1985.

[128] F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen. Analysis
of Step-Reduced SHA-256. In M. J. B. Robshaw, editor, Fast Soft-
ware Encryption 2006, Proceedings, volume 4047 of Lecture Notes in
Computer Science, pages 126–143. Springer, 2006.

[129] F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen. The Impact
of Carries on the Complexity of Collision Attacks on SHA-1. In M. J. B.
Robshaw, editor, Fast Software Encryption 2006, Proceedings, volume
4047 of Lecture Notes in Computer Science, pages 278–292. Springer,
2006.

[130] F. Mendel and V. Rijmen. Weaknesses in the HAS-V Compression
Function. In K.-H. Nam and G. Rhee, editors, International Conference
on Information Security and Cryptology (ICISC) 2007, Proceedings,

http://th.informatik.uni-mannheim.de/People/lucks/HashCollisions/
http://th.informatik.uni-mannheim.de/People/lucks/HashCollisions/

BIBLIOGRAPHY 161

volume 4817 of Lecture Notes in Computer Science, pages 335–345.
Springer, 2007.

[131] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

[132] R. C. Merkle. Secure Communications Over Insecure Channels. Com-
munications of the ACM, 21(4):294–299, 1978.

[133] R. C. Merkle. A Fast Software One-Way Hash Function. Journal of
Cryptology, 3(1):43–58, 1990.

[134] R. C. Merkle. One Way Hash Functions and DES. In G. Brassard,
editor, Advances in Cryptology – CRYPTO ’89, Proceedings, volume
435 of Lecture Notes in Computer Science, pages 428–446. Springer,
1990.

[135] C. H. Meyer and M. Schilling. Secure program load with manipulation
detection code. In SECURICOM 88, Proceedings, pages 111–130, 1988.

[136] S. Miyaguchi, K. Ohta, and M. Iwata. 128-bit Hash function (N-Hash).
NTT Review, 2(6):128–132, November 1990.

[137] F. Muller. The MD2 Hash Function Is Not One-Way. In P. J. Lee, edi-
tor, Advances in Cryptology – ASIACRYPT 2004, Proceedings, volume
3329 of Lecture Notes in Computer Science, pages 214–229. Springer,
2004.

[138] Y. Naito, Y. Sasaki, N. Kunihiro, and K. Ohta. Improved Collision
Attack on MD4 with Probability Almost 1. In D. Won and S. Kim, ed-
itors, International Conference on Information Security and Cryptology
(ICISC) 2005, Proceedings, volume 3935 of Lecture Notes in Computer
Science, pages 129–145. Springer, 2006.

[139] Y. Naito, Y. Sasaki, T. Shimoyama, J. Yajima, N. Kunihiro, and
K. Ohta. Improved Collision Search for SHA-0. In X. Lai and K. Chen,
editors, Advances in Cryptology – ASIACRYPT 2006, Proceedings, vol-
ume 4284 of Lecture Notes in Computer Science, pages 21–36. Springer,
2006.

[140] National Bureau of Standards. Federal Information Processing Stan-
dards Publication (FIPS PUB) 46. Data Encryption Standard (DES),
January 1977.

162 BIBLIOGRAPHY

[141] National Institute of Standards and Technology. Announcing Request
for Candidate Algorithm Nominations for a New Cryptographic Hash
Algorithm (SHA-3) Family. In Federal Register Vol. 27, No. 212,
November 2007.

[142] National Institute of Standards and Technology/U.S. Department of
Commerce. Federal Information Processing Standards Publication
(FIPS PUB) 180. Secure Hash Standard, May 1993.

[143] National Institute of Standards and Technology/U.S. Department of
Commerce. Federal Information Processing Standards Publication
(FIPS PUB) 180-1. Secure Hash Standard, April 1995.

[144] National Institute of Standards and Technology/U.S. Department of
Commerce. Federal Information Processing Standards Publication
(FIPS PUB) 186-2. Digital Signature Standard (DSS), January 2000.

[145] National Institute of Standards and Technology/U.S. Department of
Commerce. Federal Information Processing Standards Publication
(FIPS PUB) 197. Advanced Encryption Standard (AES), November
2001.

[146] National Institute of Standards and Technology/U.S. Department of
Commerce. Federal Information Processing Standards Publication
(FIPS PUB) 180-2. Secure Hash Standard, August 2002.

[147] National Institute of Standards and Technology/U.S. Department of
Commerce. Federal Information Processing Standards Publication
(FIPS PUB) 198. The Keyed-Hash Message Authentication Code
(HMAC), March 2002.

[148] National Institute of Standards and Technology/U.S. Department of
Commerce. Change Notice for FIPS PUB 180-2 [146], February 2004.

[149] National Institute of Standards and Technology/U.S. Department of
Commerce. NIST Special Publication 800-56A. Recommendation for
Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryp-
tography (Revised), March 2007.

[150] National Institute of Standards and Technology/U.S. Department of
Commerce. NIST Special Publication 800-57. Recommendation for
Key Management – Part 1: General (Revised), March 2007.

BIBLIOGRAPHY 163

[151] National Institute of Standards and Technology/U.S. Department of
Commerce. NIST Special Publication 800-90. Recommendation for
Random Number Generation Using Deterministic Random Bit Gener-
ators (Revised), March 2007.

[152] National Institute of Standards and Technology/U.S. Department of
Commerce. NIST Special Publication 800-67. Recommendation for the
Triple Data Encryption Algorithm (TDEA) Block Cipher (Revised),
May 2008.

[153] D. A. Osvik. Speeding up Serpent. In Third AES Candidate Con-
ference, pages 317–329, 2000. Available: http://www.ii.uib.no/

~osvik/pub/aes3.pdf (2008/11/25).

[154] T. Peyrin. Cryptanalysis of Grindahl. In K. Kurosawa, editor, Ad-
vances in Cryptology – ASIACRYPT 2007, Proceedings, volume 4833
of Lecture Notes in Computer Science, pages 551–567. Springer, 2007.

[155] T. Peyrin, H. Gilbert, F. Muller, and M. J. B. Robshaw. Combining
Compression Functions and Block Cipher-Based Hash Functions. In
X. Lai and K. Chen, editors, Advances in Cryptology – ASIACRYPT
2006, Proceedings, volume 4284 of Lecture Notes in Computer Science,
pages 315–331. Springer, 2006.

[156] J. M. Pollard. A Monte Carlo method for factorisation. BIT, 15(3):331–
334, 1975.

[157] N. Pramstaller, C. Rechberger, and V. Rijmen. Preliminary Analysis
of the SHA-256 Message Expansion. Presented at NIST Crypto-
graphic Hash Workshop, October 31–November 1, 2005, Gaithersburg,
Maryland, USA. Available: http://csrc.nist.gov/groups/ST/

hash/documents/Rechberger_PreliminaryAnalysisOfSHA256.pdf

(2008/11/25).

[158] N. Pramstaller, C. Rechberger, and V. Rijmen. Exploiting Coding
Theory for Collision Attacks on SHA-1. In N. P. Smart, editor, Cryp-
tography and Coding 2005, Proceedings, volume 3796 of Lecture Notes
in Computer Science, pages 78–95. Springer, 2005.

[159] N. Pramstaller, C. Rechberger, and V. Rijmen. Impact of Rotations in
SHA-1 and Related Hash Functions. In B. Preneel and S. E. Tavares,
editors, Selected Areas in Cryptography 2005, Proceedings, volume 3897
of Lecture Notes in Computer Science, pages 261–275. Springer, 2006.

http://www.ii.uib.no/~osvik/pub/aes3.pdf
http://www.ii.uib.no/~osvik/pub/aes3.pdf
http://csrc.nist.gov/groups/ST/hash/documents/Rechberger_PreliminaryAnalysisOfSHA256.pdf
http://csrc.nist.gov/groups/ST/hash/documents/Rechberger_PreliminaryAnalysisOfSHA256.pdf

164 BIBLIOGRAPHY

[160] B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD
thesis, Katholieke Universiteit Leuven, February 1993.

[161] B. Preneel, A. Bosselaers, R. Govaerts, and J. Vandewalle. Collision-
free hashfunctions based on blockcipher algorithms. In International
Carnahan Conference on Security Technology 1989, Proceedings, pages
203–210. IEEE, 1989.

[162] B. Preneel, R. Govaerts, and J. Vandewalle. On the Power of Memory
in the Design of Collision Resistant Hash Functions. In J. Seberry
and Y. Zheng, editors, Advances in Cryptology – ASIACRYPT ’92,
Proceedings, volume 718 of Lecture Notes in Computer Science, pages
105–121. Springer, 1993.

[163] B. Preneel, R. Govaerts, and J. Vandewalle. Hash Functions Based
on Block Ciphers: A Synthetic Approach. In D. R. Stinson, editor,
Advances in Cryptology – CRYPTO ’93, Proceedings, volume 773 of
Lecture Notes in Computer Science, pages 368–378. Springer, 1994.

[164] B. Preneel and P. C. van Oorschot. MDx-MAC and Building Fast
MACs from Hash Functions. In D. Coppersmith, editor, Advances in
Cryptology – CRYPTO ’95, Proceedings, volume 963 of Lecture Notes
in Computer Science, pages 1–14. Springer, 1995.

[165] G. B. Purdy. A High Security Log-in Procedure. Communications of
the ACM, 17(8):442–445, 1974.

[166] J.-J. Quisquater and M. Girault. 2n-Bit Hash-Functions Using n-Bit
Symmetric Block Cipher Algorithms. In J.-J. Quisquater and J. Van-
dewalle, editors, Advances in Cryptology – EUROCRYPT ’89, Proceed-
ings, volume 434 of Lecture Notes in Computer Science, pages 102–109.
Springer, 1990.

[167] M. O. Rabin. Digitalized signatures. In R. Lipton and R. DeMillo,
editors, Foundations of Secure Computation, pages 155–166. Academic
Press, 1978.

[168] M. O. Rabin. Digitalized Signatures and Public Key Functions
as Intractable as Factorization. Technical Report 212, MIT,
1979. Available: http://publications.csail.mit.edu/lcs/pubs/

pdf/MIT-LCS-TR-212.pdf (2008/09/17).

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-212.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-212.pdf

BIBLIOGRAPHY 165

[169] V. Rijmen and E. Oswald. Update on SHA-1. In A. Menezes, editor,
Topics in Cryptology – CT-RSA 2005, Proceedings, volume 3376 of
Lecture Notes in Computer Science, pages 58–71. Springer, 2005.

[170] R. L. Rivest. The MD4 Message Digest Algorithm. Internet Request
for Comments (RFC) 1186, October 1990.

[171] R. L. Rivest. The MD4 Message Digest Algorithm. In A. Menezes
and S. A. Vanstone, editors, Advances in Cryptology – CRYPTO ’90,
Proceedings, volume 537 of Lecture Notes in Computer Science, pages
303–311. Springer, 1991.

[172] R. L. Rivest. The MD4 Message-Digest Algorithm. Internet Request
for Comments (RFC) 1320, April 1992.

[173] R. L. Rivest. The MD5 Message-Digest Algorithm. Internet Request
for Comments (RFC) 1321, April 1992.

[174] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications of
the ACM, 21(2):120–126, 1978.

[175] P. Rogaway. Formalizing Human Ignorance. In P. Q. Nguyen, editor,
Progress in Cryptology – VIETCRYPT 2006, Proceedings, volume 4341
of Lecture Notes in Computer Science, pages 211–228. Springer, 2006.

[176] P. Rogaway and T. Shrimpton. Cryptographic Hash-Function Basics:
Definitions, Implications, and Separations for Preimage Resistance,
Second-Preimage Resistance, and Collision Resistance. In B. K. Roy
and W. Meier, editors, Fast Software Encryption 2004, Proceedings,
volume 3017 of Lecture Notes in Computer Science, pages 371–388.
Springer, 2004.

[177] P. Rogaway and J. Steinberger. Security/Efficiency Tradeoffs for
Permutation-Based Hashing. In N. Smart, editor, Advances in Cryptol-
ogy – EUROCRYPT 2008, Proceedings, volume 4965 of Lecture Notes
in Computer Science, pages 220–236. Springer, 2008.

[178] P. Rogaway and J. P. Steinberger. Constructing Cryptographic Hash
Functions from Fixed-Key Blockciphers. In D. Wagner, editor, Ad-
vances in Cryptology – CRYPTO 2008, Proceedings, volume 5157 of
Lecture Notes in Computer Science, pages 433–450. Springer, 2008.

166 BIBLIOGRAPHY

[179] N. Rogier and P. Chauvaud. MD2 Is not Secure without the Checksum
Byte. Designs, Codes and Cryptography, 12(3):245–251, 1997.

[180] Rostekhregulirovaniye (Russia’s Federal Agency for Technical Regula-
tion and Metrology). GOST R 34.11-94: Information technology –
Cryptographic data security – Hashing function, 1994.

[181] RSA Laboratories. PKCS #1: RSA Cryptography Standard (Version
2.1, June 14, 2002). Available: http://www.rsa.com/rsalabs/node.
asp?id=2125 (2008/09/30).

[182] RSA Laboratories. PKCS #5: Password-Based Cryptography Stan-
dard (Version 2.0, March 25, 1999). Available: http://www.rsa.com/
rsalabs/node.asp?id=2127 (2008/09/30).

[183] M.-J. O. Saarinen. Security of VSH in the Real World. In R. Barua
and T. Lange, editors, Progress in Cryptology – INDOCRYPT 2006,
Proceedings, volume 4329 of Lecture Notes in Computer Science, pages
95–103. Springer, 2006.

[184] S. K. Sanadhya and P. Sarkar. New Local Collisions for the SHA-2 Hash
Family. In K.-H. Nam and G. Rhee, editors, International Conference
on Information Security and Cryptology (ICISC) 2007, Proceedings,
volume 4817 of Lecture Notes in Computer Science, pages 193–205.
Springer, 2007.

[185] S. K. Sanadhya and P. Sarkar. Attacking Reduced Round SHA-256.
In S. M. Bellovin, R. Gennaro, A. D. Keromytis, and M. Yung, edi-
tors, Applied Cryptography and Network Security (ACNS) 2008, Pro-
ceedings, volume 5037 of Lecture Notes in Computer Science, pages
130–143. Springer, 2008.

[186] S. K. Sanadhya and P. Sarkar. Non-linear Reduced Round Attacks
against SHA-2 Hash Family. In Y. Mu, W. Susilo, and J. Seberry,
editors, Australasian Conference on Information Security and Privacy
(ACISP) 2008, Proceedings, volume 5107 of Lecture Notes in Computer
Science, pages 254–266. Springer, 2008.

[187] Y. Sasaki and K. Aoki. Preimage Attacks on Step-Reduced MD5. In
Y. Mu, W. Susilo, and J. Seberry, editors, Australasian Conference on
Information Security and Privacy (ACISP) 2008, Proceedings, volume
5107 of Lecture Notes in Computer Science, pages 282–296. Springer,
2008.

http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2127

BIBLIOGRAPHY 167

[188] Y. Sasaki, Y. Naito, N. Kunihiro, and K. Ohta. Improved Collision
Attacks on MD4 and MD5. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E90-A(1):36–47,
2007.

[189] Y. Sasaki, L. Wang, N. Kunihiro, and K. Ohta. New Message Differ-
ences for Collision Attacks on MD4 and MD5. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
E91-A(1):55–63, 2008.

[190] Y. Sasaki, L. Wang, K. Ohta, and N. Kunihiro. New Message Differ-
ence for MD4. In A. Biryukov, editor, Fast Software Encryption 2007,
Proceedings, volume 4593 of Lecture Notes in Computer Science, pages
329–348. Springer, 2007.

[191] Y. Sasaki, L. Wang, K. Ohta, and N. Kunihiro. Security of MD5 Chal-
lenge and Response: Extension of APOP Password Recovery Attack.
In T. Malkin, editor, Topics in Cryptology – CT-RSA 2008, Proceed-
ings, volume 4964 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2008.

[192] M. Schläffer and E. Oswald. Searching for Differential Paths in MD4. In
M. J. B. Robshaw, editor, Fast Software Encryption 2006, Proceedings,
volume 4047 of Lecture Notes in Computer Science, pages 242–261.
Springer, 2006.

[193] Quote: Bruce Schneier, NIST Cryptographic Hash Workshop, October
31–November 1, 2005, Gaithersburg, Maryland, USA.

[194] The SHA-3 Zoo. http://ehash.iaik.tugraz.at/wiki/The_SHA-3_

Zoo.

[195] T. Shrimpton and M. Stam. Building a Collision-Resistant Com-
pression Function from Non-compressing Primitives. In L. Aceto,
I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and
I. Walukiewicz, editors, International Colloquium on Automata, Lan-
guages and Programming (ICALP) 2008, Proceedings, volume 5126 of
Lecture Notes in Computer Science, pages 643–654. Springer, 2008.

[196] M. Stam. Beyond Uniformity: Better Security/Efficiency Tradeoffs for
Compression Functions. In D. Wagner, editor, Advances in Cryptol-
ogy – CRYPTO 2008, Proceedings, volume 5157 of Lecture Notes in
Computer Science, pages 397–412. Springer, 2008.

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

168 BIBLIOGRAPHY

[197] J. P. Steinberger. The Collision Intractability of MDC-2 in the Ideal-
Cipher Model. In M. Naor, editor, Advances in Cryptology – EURO-
CRYPT 2007, Proceedings, volume 4515 of Lecture Notes in Computer
Science, pages 34–51. Springer, 2007.

[198] M. Stevens, A. K. Lenstra, and B. de Weger. Chosen-Prefix Collisions
for MD5 and Colliding X.509 Certificates for Different Identities. In
M. Naor, editor, Advances in Cryptology – EUROCRYPT 2007, Pro-
ceedings, volume 4515 of Lecture Notes in Computer Science, pages
1–22. Springer, 2007.

[199] M. M. J. Stevens. On Collisions for MD5. Master’s thesis, Tech-
nische Universiteit Eindhoven/Eindhoven University of Technology,
June 2007. Available: http://www.win.tue.nl/hashclash/

On%20Collisions%20for%20MD5%20-%20M.M.J.%20Stevens.pdf

(2008/09/25).

[200] B. Struif. German Health Professional Card and Security Module Card,
Specification, Pharmacist & Physician, v. 2.0, 2003. Available: http:

//www.dkgev.de/media/file/2589.spez-engl-3.pdf (2008/09/02).

[201] M. Sugita, M. Kawazoe, L. Perret, and H. Imai. Algebraic Cryptanal-
ysis of 58-Round SHA-1. In A. Biryukov, editor, Fast Software En-
cryption 2007, Proceedings, volume 4593 of Lecture Notes in Computer
Science, pages 349–365. Springer, 2007.

[202] K. Suzuki, D. Tonien, K. Kurosawa, and K. Toyota. Birthday Para-
dox for Multi-collisions. In M. S. Rhee and B. Lee, editors, Inter-
national Conference on Information Security and Cryptology (ICISC)
2006, Proceedings, volume 4296 of Lecture Notes in Computer Science,
pages 29–40. Springer, 2006.

[203] S. S. Thomsen. Website of Søren Steffen Thomsen. http://www.mat.
dtu.dk/people/S.Thomsen.

[204] S. S. Thomsen. Website of the Anaconda hash functions. http:

//www.mat.dtu.dk/people/S.Thomsen/anaconda.

[205] S. S. Thomsen. Cryptographic Hash Functions. Master’s thesis, Dan-
marks Tekniske Universitet/Technical University of Denmark, Novem-
ber 2005. Available: http://www.mat.dtu.dk/people/S.Thomsen/

sst_masters.pdf (2008/09/25).

http://www.win.tue.nl/hashclash/On%20Collisions%20for%20MD5%20-%20M.M.J.%20Stevens.pdf
http://www.win.tue.nl/hashclash/On%20Collisions%20for%20MD5%20-%20M.M.J.%20Stevens.pdf
http://www.dkgev.de/media/file/2589.spez-engl-3.pdf
http://www.dkgev.de/media/file/2589.spez-engl-3.pdf
http://www.mat.dtu.dk/people/S.Thomsen
http://www.mat.dtu.dk/people/S.Thomsen
http://www.mat.dtu.dk/people/S.Thomsen/anaconda
http://www.mat.dtu.dk/people/S.Thomsen/anaconda
http://www.mat.dtu.dk/people/S.Thomsen/sst_masters.pdf
http://www.mat.dtu.dk/people/S.Thomsen/sst_masters.pdf

BIBLIOGRAPHY 169

[206] S. S. Thomsen. The Anaconda hash functions. Technical Report
MAT 2008-05, Department of Mathematics, Technical Univer-
sity of Denmark, November 2008. Available: http://orbit.

dtu.dk/getResource?recordId=228495&objectId=1&versionId=1

(2008/11/12).

[207] G. Tsudik. Message Authentication with One-Way Hash Functions. In
INFOCOM ’92, Proceedings, pages 2055–2059, 1992.

[208] P. C. van Oorschot and M. J. Wiener. Parallel Collision Search with
Application to Hash Functions and Discrete Logarithms. In ACM Con-
ference on Computer and Communications Security 1994, Proceedings,
pages 210–218. ACM, 1994.

[209] P. C. van Oorschot and M. J. Wiener. Parallel Collision Search with
Cryptanalytic Applications. Journal of Cryptology, 12(1):1–28, 1999.

[210] H. C. A. van Tilborg, editor. Encyclopedia of Cryptography and Secu-
rity. Springer, 2005.

[211] S. Vaudenay. On the Need for Multipermutations: Cryptanalysis of
MD4 and SAFER. In B. Preneel, editor, Fast Software Encryption
1994, Proceedings, volume 1008 of Lecture Notes in Computer Science,
pages 286–297. Springer, 1995.

[212] J. Viega. The AHASH Mode of Operation, September 2004.
Manuscript. Available: http://www.cryptobarn.com/papers/

ahash.pdf (2008/09/02).

[213] D. Wagner. A Generalized Birthday Problem. In M. Yung, editor,
Advances in Cryptology – CRYPTO 2002, Proceedings, volume 2442 of
Lecture Notes in Computer Science, pages 288–303. Springer, 2002.

[214] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the
Hash Functions MD4 and RIPEMD. In R. Cramer, editor, Advances in
Cryptology – EUROCRYPT 2005, Proceedings, volume 3494 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2005.

[215] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-
1. In V. Shoup, editor, Advances in Cryptology – CRYPTO 2005,
Proceedings, volume 3621 of Lecture Notes in Computer Science, pages
17–36. Springer, 2005.

http://orbit.dtu.dk/getResource?recordId=228495&objectId=1&versionId=1
http://orbit.dtu.dk/getResource?recordId=228495&objectId=1&versionId=1
http://www.cryptobarn.com/papers/ahash.pdf
http://www.cryptobarn.com/papers/ahash.pdf

170 BIBLIOGRAPHY

[216] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions.
In R. Cramer, editor, Advances in Cryptology – EUROCRYPT 2005,
Proceedings, volume 3494 of Lecture Notes in Computer Science, pages
19–35. Springer, 2005.

[217] X. Wang, H. Yu, and Y. L. Yin. Efficient Collision Search Attacks on
SHA-0. In V. Shoup, editor, Advances in Cryptology – CRYPTO 2005,
Proceedings, volume 3621 of Lecture Notes in Computer Science, pages
1–16. Springer, 2005.

[218] D. Watanabe. A note on the security proof of Knudsen-Preneel
construction of a hash function, 2006. Manuscript. Available:
http://csrc.nist.gov/groups/ST/hash/documents/WATANABE_kp_

attack.pdf (2008/07/18).

[219] M. V. Wilkes. Time-Sharing Computer Systems. Macdonald and
Jane’s, 1968.

[220] R. S. Winternitz. A Secure One-Way Hash Function Built from DES.
In IEEE Symposium on Security and Privacy, pages 88–90, 1984.

[221] J. Yajima, Y. Sasaki, Y. Naito, T. Iwasaki, T. Shimoyama, N. Kuni-
hiro, and K. Ohta. A New Strategy for Finding a Differential Path
of SHA-1. In J. Pieprzyk, H. Ghodosi, and E. Dawson, editors, Aus-
tralasian Conference on Information Security and Privacy (ACISP)
2007, Proceedings, volume 4586 of Lecture Notes in Computer Science,
pages 45–58. Springer, 2007.

[222] H. Yoshida and A. Biryukov. Analysis of a SHA-256 Variant. In B. Pre-
neel and S. E. Tavares, editors, Selected Areas in Cryptography 2005,
Proceedings, volume 3897 of Lecture Notes in Computer Science, pages
245–260. Springer, 2006.

[223] H. Yu and X. Wang. Multi-collision Attack on the Compression Func-
tions of MD4 and 3-Pass HAVAL. In K.-H. Nam and G. Rhee, edi-
tors, International Conference on Information Security and Cryptology
(ICISC) 2007, Proceedings, volume 4817 of Lecture Notes in Computer
Science, pages 206–226. Springer, 2007.

[224] G. Yuval. How to swindle Rabin. Cryptologia, 3(3):187–189, 1979.

[225] Y. Zheng, T. Matsumoto, and H. Imai. Connections among Several
Versions of One-Way Hash Functions. IEICE Transactions (1976–
1990). Special Issue on Cryptography and Information Security, E73-
E(7):1092–1099, 1990.

http://csrc.nist.gov/groups/ST/hash/documents/WATANABE_kp_attack.pdf
http://csrc.nist.gov/groups/ST/hash/documents/WATANABE_kp_attack.pdf

BIBLIOGRAPHY 171

[226] Y. Zheng, T. Matsumoto, and H. Imai. Structural Properties of One-
way Hash Functions. In A. Menezes and S. A. Vanstone, editors,
Advances in Cryptology – CRYPTO ’90, Proceedings, volume 537 of
Lecture Notes in Computer Science, pages 285–302. Springer, 1991.

[227] Y. Zheng, J. Pieprzyk, and J. Seberry. HAVAL – A One-Way Hashing
Algorithm with Variable Length of Output. In J. Seberry and Y. Zheng,
editors, Advances in Cryptology – ASIACRYPT ’92, Proceedings, vol-
ume 718 of Lecture Notes in Computer Science, pages 83–104. Springer,
1993.

172 BIBLIOGRAPHY

Index

Abreast Davies-Meyer construc-
tion, 37

active byte, 70
advantage, 9
adversary, 4
“always” security notion, 9
Anaconda, 80

birthday attack, 4
birthday paradox, 4
block cipher, 31
Blum integer, 72
bridging, 124
brute force attack, 5

capacity, 51
chaining value, 18
challenge, 9
checksum, 53
collision resistance, 3
compression function, 17
cryptanalysis, 4, 93
cycle, 95
cycle-finding method, 95

Dakota, 71
Davies-Meyer construction, 33
design, 31
differential cryptanalysis, 70
digital signature, 12
digital signature standard, DSS, 14
direct address table, 94

discrete logarithm problem, 11
distinguished point, 96
double length construction, 35
double-pipe construction, 46

EMD construction, 50
“everywhere” security notion, 9
expandable message, 23

factoring, 11
false alarm, 97
fixed point, 18
free-start collision attack, 7

generic attack, 20
greatest common divisor (gcd), 73
Grindahl, 63
Grøstl, 131

hash function
applications, 11
block cipher-based, 32
Chaum-van Heijst-Pfitzmann,

78
checksum-based, 47
dedicated, 31
discrete logarithm, 78
family, 8
Goldwasser-Micali-Rivest, 72
permutation-based, 38

hash table, 94
hash value, 1
herding attack, 26

173

174 INDEX

Hirose construction, 37
HMAC, 13

ideal cipher model, 32
indifferentiability, 49
indistinguishability, 8
initial value, 17

key, 8
key derivation, 15
key schedule, 32
Knudsen-Thomsen construction,

43

length extension, 21

MAC, 13
MASH, 78
Matyas-Meyer-Oseas construction,

34
maximum distance separable, 66,

140
MD-strengthening, 19
MD2, 52

cryptanalysis of, 99
MD4, 56
MD4 family, 55
MD5, 58
MDC-2, 35

cryptanalysis of, 112
MDC-4, 35
meaningful message, 94
meet-in-the-middle attack, 97
memoryless collision search, 95
Merkle-Damg̊ard construction, 18
message authentication, 13
message block, 17
message digest, 1
message expansion, 56
Miyaguchi-Preneel construction,

34
multi-collision, 22

multi-property preserving con-
struction, 49

near-attack, 7
Nostradamus attack, 26

one-way, 2
output transformation, 40, 77, 133

padding, 18
passive byte, 70
password protection, 11
prefix-free padding, 49
preimage resistance, 3
proof of knowledge, 14
property preservation, 21
pseudo-attack, 7
pseudo-random number generator,

14
public key cryptography, 12

Rabin construction, 34
random oracle, 7
random oracle model, 7
rate, 32
ROX construction, 50
RSA modulus, 72

S-box, 54
searching, 93
second preimage resistance, 3
security notions, 8
seed, 14
SHA-0, 59
SHA-1, 60
SHA-2, 60
SHA-224, 60
SHA-256, 60
SHA-3 competition, 2, 131
SHA-384, 60
SHA-512, 60
shortcut attack, 20

INDEX 175

Σ function, 61, 86
single length construction, 33
sorting, 93
sponge construction, 50
standard model, 8

tail, 95

Tandem Davies-Meyer construc-
tion, 36

VSH, 78

Wagner’s generalised birthday at-
tack, 98

wide-pipe construction, 46

	Introduction
	Hash function properties
	Collision resistance
	Preimage resistance
	Second preimage resistance
	Resistance to near-attacks
	Pseudo-attacks
	Randomness properties
	Formalising implications of security notions

	Applications of hash functions
	Password Protection
	Digital Signatures
	Message Authentication
	Ciphertext Correctness Verification
	Proof of Knowledge
	Source of Pseudo-randomness
	Key Derivation

	Brief history

	The Merkle-Damgård construction
	Introduction
	Attacks and weaknesses
	Property preservation
	Length extension
	Multi-collisions
	Second preimage attack
	The ``Nostradamus'' attack

	Hash function design
	Hash functions based on block ciphers
	Single length constructions
	Double length constructions
	A generalisation

	Permutation-based hash functions
	The results of Black, Cochran, and Shrimpton
	The results of Rogaway and Steinberger
	Provably secure constructions

	Alternatives to Merkle-Damgård
	Knudsen-Thomsen, Secrypt 2006
	The wide-pipe and the double-pipe constructions
	Checksum-based hash functions
	Multi-property preserving constructions
	The sponge construction

	Dedicated designs
	MD2
	The MD4 family
	Grindahl
	Dakota
	Anaconda

	Hash function cryptanalysis
	Introduction
	Searching and sorting
	Meaningful messages
	Memoryless collision search
	Meet-in-the-middle attack
	Wagner's generalised birthday attack

	Cryptanalysis of MD2
	Observations on the compression function
	The collision attack
	The preimage attack
	Second preimages
	Summary

	Cryptanalysis of MDC-2
	Preliminaries
	The collision attack
	Preimage attacks
	Other non-random properties
	Application to other constructions

	Generic attacks on checksum-based hash functions
	Invertible checksum function
	One-way checksum function
	Application to MD2
	Summary

	A concrete collision attack on some rate 1/2 permutation-based hash functions

	The SHA-3 competition
	SHA-3 candidate: Grøstl
	The hash function construction
	The compression function construction
	The output transformation
	Grøstl instances
	The permutations P and Q
	Padding
	Initial values
	Grøstl features
	Preliminary cryptanalysis results
	Grøstl implementations
	Summary

	Other SHA-3 candidates

	Conclusions

