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Abstract. Clique-width is a graph parameter that measures in a certain sense the complexity
of a graph. Hard graph problems (e.g., problems expressible in Monadic Second Order Logic with
second-order quantification on vertex sets, that includes NP-hard problems such as 3-colorability)
can be solved in polynomial time for graphs of bounded clique-width. We show that the clique-width
of a given graph cannot be absolutely approximated in polynomial time unless P = NP. We also
show that, given a graph G and an integer k, deciding whether the clique-width of G is at most k
is NP-complete. This solves a problem that has been open since the introduction of clique-width in
the early 1990s.
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1. Introduction. Clique-width is a graph parameter that measures in a certain
sense the complexity of a graph. This parameter is defined via a graph construction
process where only a limited number of vertex labels are available; vertices that share
the same label at a certain point of the construction process must be treated uniformly
in subsequent steps. In particular, one can use the following four operations: the
creation of a new vertex with label i, the vertex-disjoint union of already constructed
labeled graphs, the insertion of all possible edges between vertices of specified labels,
and the uniform relabeling of vertices. The clique-width cwd(G) of a graph G is
the smallest number k of labels that suffice to construct G by means of these four
operations. Such a construction of a graph can be represented by an algebraic term
called a k-expression. More exact definitions are provided in Section 2.

This composition mechanism was first considered by Courcelle, Engelfriet, and
Rozenberg [9, 10]. Clique-width can be considered to be more general than the pop-
ular graph parameter treewidth since there are graphs of constant clique-width but
arbitrarily high treewidth (e.g., complete graphs), but graphs of bounded treewidth
also have bounded clique-width [14, 7]. In recent years, clique-width has received
much attention [4, 5, 3, 8, 6, 13, 11, 12, 14, 15, 7, 16, 19, 22, 26, 28, 27, 33].

In particular, the following result of Courcelle, Makowsky, and Rotics [11] makes
the parameter clique-width attractive: any graph problem that can be expressed in
Monadic Second Order Logic with second-order quantification on vertex sets (MSO1)
can be solved in linear time for graphs of clique-width bounded by some constant k;
albeit the running time involves a constant which can be multiply exponential in k.
A k-expression must be provided as input to the algorithm. Many NP-hard graph
problems, e.g., 3-colorability, can be expressed in MSO1. Seese [32] conjectured that if
C is a class of graphs such that it is decidable for every property that can be expressed
in MSO1 whether there exists a graph in C that satisfies the property, then C is of
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bounded clique-width. This conjecture can be considered as a kind of converse to the
result of [11]. A slightly weaker form of Seese’s Conjecture, where MSO1 with parity
predicates is considered, was recently shown by Courcelle and Oum [15].

A main limit for applications of the result of Courcelle, et al. [11] is that it is
not known how to efficiently obtain k-expressions for graphs of clique-width k (except
for graphs belonging to special classes [29]). In particular, the following question has
been open since the introduction of clique-width in the early 1990s.

Question 1. Is it possible to compute the clique-width of a graph in polynomial
time?

Since the computation of treewidth is well-known to be NP-hard (Arnborg,
Corneil, and Proskurowski [1]), it is obvious to assume that such a hardness result
should also hold for the more general parameter clique-width. Despite considerable ef-
forts, no hardness result for clique-width has until now been obtained. A main obstacle
for giving a reduction from a known NP-hard problem is certainly the strong gener-
ative power of clique-width: even very few labels are sufficient to construct graphs
of high connectivity; e.g., two labels are sufficient to construct complete graphs of
arbitrary size (see below).

In the present paper we answer Question 1 negatively as follows.
Theorem 1. Let ε be a constant with 0 ≤ ε < 1. The clique-width of graphs

with n vertices of degree greater than 2 cannot be approximated by a polynomial-time
algorithm with an absolute error guarantee of nε unless P = NP.

In particular, there is no polynomial-time absolute approximation algorithm for
clique-width unless P = NP.

Theorem 2. cwd-recognition is NP-complete.
Here, cwd-recognition refers to the following decision problem: given a graph

G and an integer k, is the clique-width of G at most k? We shall use a similar
terminology for other graph parameters such as pathwidth (pwd).

Our proofs rely ultimately on a reduction from pwd-recognition. However,
a direct reduction, where an instance (G, k) of pwd-recognition is reduced to an
instance (G′, k′) of cwd-recognition, seems to be difficult to obtain, as the combina-
torics for such a construction would be obliged to be “tight.” We base our reduction on
the following stronger result of Bodlaender, Gilbert, Hafsteinsson, and Kloks [2]: It is
NP-hard to approximate pathwidth within an absolute error guarantee. This stronger
basis allows the reduction to be lax, making the combinatorial effort somehow easier
than it would be for a direct reduction.

Obtaining the hardness for the exact solution of one problem from the non-
approximability of another problem is the key for our success with respect to Ques-
tion 1. We believe that this approach could be useful in many situations, possibly
also in parameterized complexity.

1.1. Related Work. Corneil, Habib, Lanlignel, Reed, and Rotics [6] show that
graphs of clique-width at most 3 can be recognized in polynomial time. Oum and Sey-
mour [31] present an algorithm that, for fixed k, computes (23k+2 −1)-expressions for
n-vertex graphs of clique-width at most k in time O(n9 log n). This result renders the
notion “class of bounded clique-width” feasible in much the same way that “class of
bounded treewidth” is feasible. The algorithm of Oum and Seymour computes first an
approximate “rank-decomposition” (a decomposition associated with the graph invari-
ant rank-width, for definitions see [31, 30]) and then converts the rank-decomposition
of width k into a (2k−1 + 1)-expressions. Oum [30] gives improved algorithms for
rank-width approximation that also give rise to improved algorithms for clique-width
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(however, still with an approximation error that is exponential in the clique-width).
The graph parameter “NLC-width” introduced by Wanke [34] is defined simi-

larly to clique-width using a single type of operation that combines disjoint union
and insertion of edges. Gurski and Wanke [20] show that NLC-width-recognition
is NP-hard. Since NLC-width and clique-width can differ by a factor of 2 (see Jo-
hansson [23]), non-approximability with an absolute error guarantee (or NP-hardness
of recognition) for one of the two parameters does not imply a similar result for the
other parameter.

2. Definitions and preliminaries. Unless otherwise stated, all graphs consid-
ered in this paper are finite, undirected, and simple.

2.1. Clique-width. Let k be a positive integer. A k-graph is a graph whose
vertices are labeled by integers from {1, . . . , k}. We consider an arbitrary graph as a
k-graph with all vertices labeled by 1. We call the k-graph consisting of exactly one
vertex v (say, labeled by i ∈ {1, . . . , k}) an initial k-graph and denote it by i(v).

The clique-width cwd(G) of a graph G is the smallest integer k such that G can
be constructed from initial k-graphs by means of repeated application of the following
three operations.

1. Disjoint union (denoted by ⊕);
2. Relabeling: changing all labels i to j (denoted by ρi→j);
3. Edge insertion: connecting all vertices labeled by i with all vertices labeled

by j, i %= j (denoted by ηi,j or ηj,i); already existing edges are not doubled.
A construction of a k-graph using the above operations can be represented by an
algebraic term composed of ⊕, ρi→j , and ηi,j , (i, j ∈ {1, . . . , k}, and i %= j). Such
a term is called a cwd-expression defining G. A k-expression is a cwd-expression in
which at most k different labels occur. Thus, the clique-width of a graph G is the
smallest integer k such that G can be defined by a k-expression.

For example, the complete graph K4 on the vertices u, v, w, x is defined by the
cwd-expression

ρ2→1(η1,2(ρ2→1(η1,2(ρ2→1(η1,2(2(u) ⊕ 1(v))) ⊕ 2(w))) ⊕ 2(x))).

Hence cwd(K4) ≤ 2. In general, every complete graph on n ≥ 2 vertices has clique-
width exactly 2.

2.2. Directed clique-width. One can use a k-expression to construct a directed
graph, interpreting ηi,j as the operation that inserts directed edges that are oriented
from vertices labeled i to vertices labeled j. Courcelle and Olariu [14] define the
clique-width of a directed graph D as the smallest integer k such that D can be
constructed by a k-expression. Theorems 1 and 2 carry over to directed graphs; this
follows from the following considerations.

Let G be an undirected graph, and let D be the directed graph obtained from G
by replacing every undirected edge uv of G with two directed edges (u, v) and (v, u).
It is easy to see that cwd(G) = cwd(D) since from any k-expression for G we can build
a k-expression for D by adding an ηi,j-operation immediately after any ηj,i-operation.
Thus, Theorems 1 and 2 imply their counterparts for directed graphs.

2.3. Linear clique-width. A cwd-expression is linear if whenever two k-graphs
are put together by disjoint union, at least one of the two graphs is an initial k-graph
(in contrast to non-linear cwd-expressions where both k-graphs can be arbitrarily
large). In other words, a linear k-expression encodes the composition of a graph
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G G2 G′ G′′

Fig. 3.1. Illustration for Constructions 1, 2, and 3.

starting with a single vertex to which one adds successively further vertices, one after
the other, with interleaved operations of relabeling and edge insertion. The parse
trees of linear k-expressions are path-like; hence one can consider the relation between
linear clique-width and clique-width as analogous to the relation between pathwidth
and treewidth. The linear clique-width lin-cwd(G) of a graph G is the smallest integer
k such that G can be defined by a linear k-expression.

Every complete graph on n ≥ 2 vertices has linear clique-width exactly 2 (observe
that the cwd-expression for K4 as given above is linear). However, the difference
between the clique-width and the linear clique-width of a graph can be arbitrarily
large. Let Th denote a complete ternary tree of height h and let T ′

h denote the graph
obtained from Th by means of Construction 2 as defined below. In [17] we show that
the clique-width of T ′

h is at most 4, but the linear clique-width of T ′
h is at least h− 1.

2.4. Treewidth and pathwidth. Let T be a tree and χ a labeling of the vertices
of T by sets of vertices of a graph G. The pair (T,χ) is a tree decomposition of G if
(i) every vertex of G belongs to χ(t) for some vertex t of T ; (ii) for every edge vw
of G there is some vertex t of T with v, w ∈ χ(t); (iii) for any vertices t1, t2, t3 of T ,
if t2 lies on a path from t1 to t3, then χ(t1) ∩ χ(t3) ⊆ χ(t2). The width of (T,χ) is
the maximum |χ(t)| − 1 over all vertices t of T . The treewidth twd(G) of G is the
minimum width over all tree-decompositions of G. The pathwidth pwd(G) of G is
the minimum width over all tree-decompositions (T,χ) of G where T is a path.

2.5. Cobipartite graphs. A graph is cobipartite if it is the complement of a
bipartite graph. That is, the vertex set of a cobipartite graph G can be partitioned
into two sets A and B such that each of them induces in G a complete subgraph.
Several graph parameters, including treewidth and pathwidth, agree on cobipartite
graphs (see, e.g., Fomin, Heggernes, and Telle [18]).

3. Proof of the main results. In what follows, let α denote an integer-valued
graph parameter. We consider the following decision problem.

α-recognition
Instance: A graph G and a positive integer k.
Question: Is α(G) at most k?

Arnborg et al. [1] have shown that pwd-recognition is NP-complete, even for cobi-
partite graphs.

The following construction is due to Bodlaender, Gilbert, Hafsteinsson, and
Kloks [2] (this and other constructions defined below are illustrated in Fig. 3.1).

Construction 1. Given a graph G, and an integer q ≥ 1, we obtain a graph Gq

by replacing each vertex v of G by q vertices v1, . . . , vq, and by joining two vertices
vi, wj by an edge if either v = w and i %= j, or v %= w and vw is an edge of G.
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Note that if G is cobipartite then so is Gq (as pointed out by Karpinski and
Wirtgen [24]). Bodlaender, et al. [2] show the following equation (the proof stated in
[2] for treewidth applies literally to pathwidth as well).

pwd(Gq) = q(pwd(G) + 1) − 1.(3.1)

Hence, if we apply an absolute approximation algorithm for pathwidth to Gq for q
large enough, then we can use equation (3.1) to calculate the exact pathwidth of G.
This idea provides the basis for the next lemma.

Lemma 1. Assume that there is a constant c such that |α(G)−pwd(G)| ≤ c holds
for every cobipartite graph G with minimum degree at least 3. Then the following
statements are true.

1. Unless P = NP there is no constant ε, 0 ≤ ε < 1, such that for graphs G
with n vertices and minimum degree at least 3, α(G) can be approximated in
polynomial-time with an absolute error guarantee of nε.

2. α-recognition is NP-hard.
Proof. Part 1. Let ε be a fixed constant with 0 ≤ ε < 1. Assume that there exists

a polynomial-time algorithm A that outputs for a given graph G with n vertices and
minimum degree at least 3 an integer A(G) such that |A(G) − α(G)| ≤ nε. Thus, we
have |A(G)− pwd(G)| ≤ nε + c. We choose a constant d ≥ 2 such that ε < d/(d + 3).
Let G be a given cobipartite graph with n ≥ 2 vertices where n is large enough to
satisfy n(d+2)ε+c ≤ n(d+3)ε. For q = nd+1 we form the graph Gq using Construction 1
(observe that since d is a constant, Gq can be formed in polynomial time). Note that
Gq is cobipartite, of minimum degree at least q−1 ≥ 3, and the number of vertices of
Gq is exactly nd+2. We apply algorithm A to Gq and get |A(Gq)−α(Gq)| ≤ n(d+2)ε.
The assumption of the lemma gives |A(Gq)− pwd(Gq)| ≤ n(d+2)ε + c ≤ n(d+3)ε < nd.
Using equation (3.1) we get |A(Gq) − q(pwd(G) + 1) + 1| < nd, hence |[(A(Gq) +
1)/q − 1] − pwd(G)| < 1/n ≤ 1/2. Hence we can use algorithm A to compute the
exact pathwidth of G in polynomial time. By the aforementioned theorem of Arnborg
et al., this is not possible unless P = NP.

Part 2. We reduce pwd-recognition to α-recognition. Let (G, k) be an
instance of pwd-recognition. Since pwd-recognition is NP-hard for cobipartite
graphs, we may assume that G is cobipartite. We obtain in polynomial time an
instance (G∗, k∗) of α-recognition, putting G∗ = G2c+3 and k∗ = (2c +3)(k + 1)+
c−1. Observe that G∗ is cobipartite and has minimum degree at least 3. We show that
(G, k) is a yes-instance of pwd-recognition if and only if (G∗, k∗) is a yes-instance
of α-recognition; that is, pwd(G) ≤ k if and only if α(G∗) ≤ k∗. First assume
pwd(G) ≤ k. Now by equation (3.1), α(G∗) ≤ pwd(G∗)+ c = (2c + 3)(pwd(G) + 1)−
1 + c ≤ (2c + 3)(k + 1) + c − 1 = k∗, thus α(G∗) ≤ k∗ follows. Conversely, assume
α(G∗) ≤ k∗. We have (2c + 3)(pwd(G) + 1) − 1 = pwd(G∗) ≤ α(G∗) + c ≤ k∗ + c =
(2c + 3)(k + 1) + c − 1 + c. Hence, pwd(G) ≤ k + 2c/(2c + 3). Since pwd(G) and k
are integers, pwd(G) ≤ k follows.

We shall use the following two constructions.
Construction 2. Let G denote a graph with n ≥ 2 vertices. We obtain a

graph G′ from G by replacing each edge uv of G by three internally disjoint paths
u − xi − yi − v, i = 1, 2, 3, of length 3 (the vertices xi, yi are new vertices); we call
such paths bridges.

Construction 3. Let G denote a graph with n ≥ 2 vertices. We obtain a
graph G′′ from G by replacing each edge uv of G by a path u − su,v − v, where su,v

is a new vertex.
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In Section 5 we show that the following inequalities hold.

pwd(G) ≤ lin-cwd(G′) ≤ pwd(G) + 4.(3.2)

In view of Lemma 1 this already implies the NP-hardness of lin-cwd-recognition
(see the end of Section 5). However, the gap between cwd(G) and lin-cwd(G) can be
arbitrarily large [21, 17]. Hence the hardness result for linear clique-width does not
extend directly to clique-width. Fortunately, we can bound the gap between cwd(G′)
and lin-cwd(G′) by a small constant if G′ is obtained from a cobipartite graph G
of minimum degree at least 2 by means of Construction 2. In particular, for such
graphs G′ we establish the following inequalities.

cwd(G′) ≤ lin-cwd(G′) ≤ cwd(G′) + 18.(3.3)

We obtain the non-trivial part of inequality (3.3) by means of Construction 3. We
show by Lemma 7, Theorem 5, and Lemma 8, respectively, that for every cobipartite
graph G of minimum degree at least 2 we have

lin-cwd(G′) ≤ lin-cwd(G′′) + 9 ≤ cwd(G′′) + 15 ≤ cwd(G′) + 18.(3.4)

The hardest task for showing (3.4) is to bound the linear clique-width of G′′ in terms of
the clique-width of G′′ plus a small constant; this is established in Theorem 5. There
we start with an arbitrary k-expression defining G′′ and modify this k-expression in
several steps. In each step we introduce only a small number of new labels, and finally
we are left with a linear (k + 6)-expression defining G′′.

Consider now the graph parameter

α(G) = cwd(G′);

i.e., α(G) is the clique-width of the graph G′ obtained from G by Construction 2.
Inequalities (3.2) and (3.3) yield |α(G) − pwd(G)| ≤ 18, hence the assumption of
Lemma 1 is met. It is now easy to establish Theorems 1 and 2 as follows.

Proof of Theorem 1. Assume that for a constant ε, 0 ≤ ε < 1, there exists a
polynomial-time algorithm A that outputs for a given graph G with n vertices of
degree at least 3 an integer A(G) with |A(G) − cwd(G)| ≤ nε. For a graph G with n
vertices and minimum degree at least 3, G′ has exactly n vertices of degree at least 3;
applying A to G′ gives now |A(G′) − cwd(G′)| = |A(G′) − α(G)| ≤ nε. Hence, by
the first part of Lemma 1 such algorithm A cannot exist unless P = NP. A similar
reasoning applies if the approximation error is bounded by some fixed constant.

Proof of Theorem 2. The second part of Lemma 1 implies that α-recognition is
NP-hard. We reduce α-recognition to cwd-recognition by taking for an instance
(G, k) of the former problem the instance (G′, k) of the latter problem; obviously
α(G) ≤ k if and only if cwd(G′) ≤ k. Thus cwd-recognition is NP-hard as well.
The problem is in NP since, given a graph G, we can guess a k-expression and check
in polynomial time whether it is indeed a k-expression defining G.

4. Further notation on clique-width. In this section we introduce further
(and more technical) notations for cwd-expressions that we will use in the proofs
below.

A vertex v of a labeled graph G is a singleton if there is no other vertex of G
that has the same label as v. For a cwd-expression t, we denote by val(t) the labeled
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graph defined by t. We denote a cwd-expression which uses at most k labels as a
k-expression; for convenience we assume that the k labels are the integers 1, . . . , k.
For a labeled graph G we denote by labels(G) the number of labels used in G.

For a cwd-expression t defining a graph G, we denote by tree(t) the parse tree
constructed from t in the usual way. Fig. 4.1 shows the tree for the cwd-expression for
K4 given in Section 2.1. The leaves of tree(t) are the vertices of G with their initial

ρ2→1

η1,2

⊕

ρ2→1

η1,2

⊕

ρ2→1

η1,2

⊕

1(v) 2(u)

2(w)

2(x)

Fig. 4.1. Parse tree.

labels, and the internal nodes of tree(t) correspond to the operations of t and can be
either binary, corresponding to ⊕, or unary, corresponding to η or ρ. For a node a
of tree(t), we denote by tree(t)〈a〉 the subtree of tree(t) rooted at a. We denote
by t〈a〉 the cwd-expression corresponding to tree(t)〈a〉; i.e., tree(t)〈a〉 = tree(t〈a〉).
Note that in t〈a〉, and similarly in tree(t〈a〉), we assume that the operation at a is
already established (this operation is the leading symbol of t〈a〉).

For a vertex x of val(t〈a〉), we say that x is dead at a, or dead at val(t〈a〉), if all
the edges incident to x in val(t) are included in val(t〈a〉). Otherwise we say that x is
active at a, or active at val(t〈a〉). We say that label & is dead in t if it is not involved
in any η-operation in t. In other words, & is dead in t if there is no η-operation in t of
the form η","′ for any label &′.

Let a be a ⊕-operation of a cwd-expression t. If z is a vertex of val(t〈a〉) and
has label & in val(t〈a〉) we say that z occurs at a with label &. Let b and c be the left
and right children of a, respectively. We say that vertex x occurs on the left (right)
side of a if it occurs at b (c). We say that a is a 1-⊕-operation if there is exactly
one vertex occurring on the left side of a or there is exactly one vertex occurring on
the right side of a. We say that a is a (> 1)-⊕-operation if it is not a 1-⊕-operation.
Thus, t is a linear cwd-expression if all ⊕-operations in t are 1-⊕-operations.

Let G′ and G′′ be the graphs obtained from G by means of Constructions 2 and 3,
respectively. We call the vertices of G′ and G′′ which are also vertices of G regular
vertices. We call the vertices of G′ and G′′ which are not vertices of G special vertices.

5. Comparing pathwidth and linear clique-width. This section is devoted
to showing that the pathwidth of G and the linear clique-width of G′ differ at most
by 4.
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We shall use a characterization of pathwidth by means of graph layouts. A (linear)
layout (or arrangement) of a graph G = (V, E) with n vertices is a 1-to-1 map ϕ :
V → {1, . . . , n}. For a layout ϕ of G and i ∈ {1, . . . , n} we define four sets of
vertices: LG(i,ϕ) is the set of vertices u ∈ V with ϕ(u) ≤ i; we put RG(i,ϕ) =
V \LG(i,ϕ). L∗

G(i,ϕ) is the set of vertices of LG(ϕ, i) that have a neighbor in RG(i,ϕ);
symmetrically, R∗

G(i,ϕ) is the set of vertices of RG(i,ϕ) that have a neighbor in
LG(i,ϕ). The in-degree and the out-degree of ϕ is defined as maxn−1

i=1 |R∗
G(i,ϕ)| and

maxn−1
i=1 |L∗

G(i,ϕ)|, respectively. The vertex separation number vsn(G) of G is defined
as the smallest in-degree over all layouts of G (which equals the smallest out-degree
over all layouts of G). It is well-known that pathwidth equals the vertex separation
number [25]. Using the notion of vertex separation number, it is easy to see that for
every graph G we have

lin-cwd(G) ≤ pwd(G) + 2.(5.1)

Namely, consider a layout ϕ of G with in-degree k. A linear (k+2)-expression defining
G can be obtained from ϕ as follows. We introduce the vertices according to ϕ one
after the other. At step i of the construction process we introduce vertex ϕ(i) with
label k+1; at this stage all vertices in L∗

G(i−1,ϕ) have distinct labels from {1, . . . , k}.
We can connect ϕ(i) with its neighbors in L∗

G(i − 1,ϕ) using separate η-operations.
Thereafter, we change the labels of vertices in L∗

G(i−1,ϕ)\L∗
G(i,ϕ) to the dead label

k+2. Since L∗
G(i,ϕ) ≤ k, at least one label j ∈ {1, . . . , k} is now available; we change

the label of ϕ(i) to j and continue. This process yields a linear (k + 2)-expression
defining G.

For the remainder of this section G denotes a fixed graph with n ≥ 2 vertices
and G′ denotes the graph obtained from G by means of Construction 2.

Lemma 2. If G admits a layout with in-degree k, then the linear clique-width
of G′ is at most k + 4. Hence lin-cwd(G′) ≤ pwd(G) + 4.

Proof. Assume pwd(G) = k. Hence there exists a layout ϕ of G with in-degree k.
For i = 1, . . . , n let Γi denote the set of vertices of G′ that belong to LG(i,ϕ) or are
of distance at most 2 apart from LG(i,ϕ). Thus, if at least one end of a bridge b
belongs to LG(i,ϕ), then both internal vertices of b belong to Γi. Let ∆i denote the
subset of Γi consisting of vertices that are adjacent in G′ with vertices outside of Γi.
Furthermore, let G′

i denote the subgraph of G′ induced by the set Γi.
We inductively obtain linear (k + 4)-expressions ti defining G′

i, i = 1, . . . , n, such
that the labeling of val(ti) satisfies the following conditions.

1. vertices in Γi \∆i are labeled by 1;
2. vertices in ∆i are labeled by integers from 5 . . . , k + 4;
3. two vertices of ∆i share the same label if and only if both vertices have a

common neighbor in G′.
Let f : R∗

G(1,ϕ) → {5, . . . , k + 4} be an injective map (such map exists since
|R∗

G(1,ϕ)| ≤ k). The expression t1 is obtained as follows.
1. We start with the term 2(u) which introduces the vertex u = ϕ−1(1) with

label 2.
2. For every pair x, y of vertices that lie on a bridge between u and some vertex

v ∈ R∗
G(1,ϕ) we add the following sequence of operations.

2.1. A 1-⊕-operation that adds vertex x with label 3.
2.2. An η2,3-operation that connects u and x.
2.3. A 1-⊕-operation that adds y with label 4.
2.4. An η3,4-operation that connects x and y.
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2.5. A ρ3→1-operation that gives x the dead label 1.
2.6. A ρ4→f(v) operation that gives y the label f(v).
3. Finally, we add a ρ2→1-operation that gives u the dead label 1.
The linear (k+4)-expression t1 defines G′

1 and the claimed properties are evidently
satisfied. Now assume that we have already a (k + 4)-expression ti−1 defining G′

i−1

for some i ∈ {2, . . . , n} such that val(ti−1) satisfies the claimed properties.
For vertices v ∈ R∗

G(i,ϕ) let ∆i−1(v) denote the set of vertices in ∆i−1 that
are adjacent to v in G′. Let u = ϕ−1(i). By assumption, there is an injective map
f ′ : R∗

G(i − 1,ϕ) → {5, . . . , k + 4} such that all vertices in ∆i−1(u) have the same
label f ′(u) in val(ti−1), and no other vertex of val(ti−1) is labeled with f ′(u). Since
|R∗

G(i,ϕ)| ≤ k, we can define an injective map f : R∗
G(i,ϕ) → {5, . . . , k + 4} with

f(v) = f(v)′ for v ∈ R∗
G(i − 1,ϕ) ∩ R∗

G(i,ϕ).
We extend ti−1 to a (k + 4)-expression ti defining G′

i, adding the following oper-
ations immediately above the root of tree(ti−1).

1. Add a 1-⊕-operation that introduces the vertex u with label 2 (u is now the
only vertex labeled with 2).

2. Add an ηf ′(u),2-operation that connects all vertices in ∆i−1(u) with u.
3. Add a ρf ′(u)→1-operation that gives all vertices in ∆i−1(u) the dead label 1.
4. As above, for every pair x, y of vertices that lie on a bridge between u and

some v ∈ R∗
G(1,ϕ) we add the sequence of operations 2.1–2.6 given above.

5. Finally, we add a ρ2→1-operation that gives u the dead label 1.
It is straightforward to verify that the obtained linear (k + 4)-expression defines

G′
i and that the labeling of val(ti) satisfies the claimed properties.

Since G′
n = G′, it follows that the linear clique-width of G′ is at most k + 4.

The next lemma will allow us to bound the pathwidth of G in terms of the linear
clique-width of G′, a result inverse to Lemma 2. To this end let us fix a linear
k-expression t defining G′. Since t is linear it gives raise to a sequence t1, . . . , ts
of linear k-expressions such that t1 defines an initial k-graph, ts = t, and for each
i ∈ {2, . . . , s}, ti is obtained from ti−1 by adding a ρ-operation, a η-operation, or 1-
⊕-operation that introduces a new vertex. For every edge e of G′ let j(e) := min{ 1 ≤
j ≤ s : e ∈ val(tj) }. We call a bridge u − x − y − v of G′ well-behaved (relative to t)
if u is a singleton in val(tj(ux)) and v is a singleton in val(tj(yv)).

Lemma 3. At least one of any three parallel bridges of G′ is well-behaved.
Proof. For an edge uv of G let b1, b2, b3 denote the three corresponding bridges

of G′, where bi is the bridge u − xi − yi − v, i = 1, 2, 3. For i = 1, 2, 3 we put
αi = max(j(uxi), j(yiv)).

Claim A: j(uxi) and j(yiv) must be distinct for i = 1, 2, 3. Otherwise, either u
would have the same label as yi or the same label as v in val(tj(uxi)). In the first case,
the addition of the edge yiv causes the addition of the edge uv. In the second case,
the addition of the edge yiv causes the addition of the edge yiu. However, neither uv
nor yiu is present in G′. Hence Claim A is shown.

Claim B: if j(uxi) < j(yiv), then u is singleton in val(tj(uxi)) for i = 1, 2, 3.
Assume to the contrary that there is a vertex w %= u in val(tj(uxi)) which shares the
label with u. It follows that G′ contains the edge wxi, hence w = yi. This, however,
implies that val(tj(yiv)) contains the edge uv, a contradiction. Hence Claim B is
shown.

Now we proceed with the proof of the lemma. We consider two cases.
Case 1: |{α1,α2,α3}| ≤ 2. We assume, w.l.o.g., α1 = α2 = j(y1v). Clearly

α2 = j(y2v), since otherwise, if α2 = j(ux2), then some of the edges uy1, uv were
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present in G′. Let w be a vertex of val(tj(y1v)) that shares the label with v. It follows
that G′ contains the edges wy1 and wy2; hence w = v. Thus v is a singleton in
val(tj(y1v)). Since j(ux1) < j(y1v), it follows from Claim B that u is a singleton in
val(tj(ux1)). Hence the bridge b1 is well-behaved.

Case 2: |{α1,α2,α3}| = 3. We assume, w.l.o.g., that j(y1v) = α1 < α2 < α3.
Subcase 2a: j(y2v) > j(y1v) or j(y3, v) > j(y1v). W.l.o.g., j(y2v) > j(y1v).

Similarly as above we conclude that for any vertex w of val(tj(y1v)) that shares the
label with v, the edges y1w and y2w are present in val(tj(y1v)) and val(tj(y2v)), re-
spectively. Hence w = v, and so v is a singleton in val(tj(y1v)). Furthermore, since
j(ux1) < j(y1v), it follows by Claim B that u is a singleton in val(tj(ux1)). Hence the
bridge b1 is well-behaved.

Subcase 2b: j(y2v) ≤ j(y1v) and j(y3, v) ≤ j(y1v). It follows that α2 = j(ux2)
and α3 = j(ux3). We show that u is a singleton in val(tj(ux2)). Let w be a vertex of
val(tj(ux2)) that shares the label with u. Consequently, the edges wx2 and wx3 are
present in val(tj(ux2)) and val(tj(ux3)), respectively. Thus u = w and so u is indeed
a singleton in val(tj(ux2)). Using a symmetrical version of Claim B, we conclude
from j(y2v) < j(ux2) that v is a singleton in val(tj(y2v)). Hence the bridge b2 is
well-behaved.

Lemma 4. If G′ has linear clique-width k, then G admits a layout of in-degree at
most k. Hence pwd(G) ≤ lin-cwd(G′).

Proof. Let k be the number of labels used in t. For a vertex v of G let β(v) denote
the smallest integer in {1, . . . , s} such that v is not a singleton of val(tβ(v)). Note
that β(v) is defined for every vertex v of G, since we assume that G has more than
one vertex and all vertices of val(t) have label 1. Note also that if β(v) = β(v′) = j
holds for two vertices v, v′ of G, then v and v′ have the same label in val(tj), but no
other vertex in val(tj) shares its label with v and v′ (either v and v′ are singletons in
val(tj−1) and one of the two vertices is relabeled with the other’s label in val(tj), or
one of the two vertices is a singleton in val(tj−1) and the other vertex is introduced in
val(tj) with the same label). Let ϕ be a layout of G satisfying ϕ(v) < ϕ(v′) whenever
β(v) < β(v′).

We show that the in-degree of the layout ϕ is at most k. Choose i ∈ {1, . . . , n−1}
arbitrarily. We show that |R∗

G(i,ϕ)| ≤ k. Let w = ϕ−1(i), j = β(w), and consider
the k-graph val(tj). By construction, the vertices in LG(i,ϕ) are not singletons of
val(tj). We assign to every vertex v ∈ R∗

G(i,ϕ) a label f(v) ∈ {1, . . . , k} as follows
(it will turn out that f is an injective map). Choose arbitrarily a vertex v ∈ R∗

G(i,ϕ).
By definition, v is in G adjacent to a vertex u ∈ LG(i,ϕ). Thus u and v are joined by
three parallel bridges in G′. By Lemma 3, at least one of the bridges between u and
v, say b = (u, xv, yv, v), is well-behaved in t. For vertices z of val(tj) let &(z) denote
the label of z in val(tj). We put

f(v) =






&(v) if v ∈ val(tj); (c1)
&(yv) if v /∈ val(tj) and yv ∈ val(tj); (c2)
&(xv) if v, yv /∈ val(tj). (c3)

Since u is not a singleton in val(tj), the edge uxv must already be present in val(tj)
as the bridge u−xv − yv − v is well-behaved. Consequently the above case distinction
is exhaustive. We split the set R∗

G(i,ϕ) into sets C1, C2, and C3, such that a vertex v
belongs to Ci if f(v) is assigned by means of the above case (ci). We further split C1

into sets C=
1 and C<

1 such that v ∈ C1 belongs to C=
1 if β(w) = β(v) and v belongs

to C<
1 if β(w) < β(v).
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To show that f is an injective map, suppose to the contrary that f(v) = f(v′)
for two distinct vertices v, v′ ∈ R∗

G(i,ϕ). Since the vertices of C<
1 are singletons in

val(tj), v, v′ /∈ C<
1 follows. For any v ∈ C3, the vertex xv is a singleton in val(tj)

since the edge xvyv is still missing, hence v, v′ /∈ C3. Furthermore, v and v′ cannot
both belong to C=

1 since then both would share the label with w in val(tj), but as
seen above, any v ∈ C=

1 shares its label only with w. If v ∈ C=
1 and v′ ∈ C2, then

when the edge yv′v′ is established, also the edge vv′ is established, a contradiction,
since vv′ is not an edge of G′. Hence we are left with the case v, v′ ∈ C2. Thus f(v)
is the label of yv and f(v′) is the label of yv′ . The edges yvv, yv′v′ are not yet present
in val(tj) since the vertices v, v′ are not yet present in val(tj) either. If at a further
step the edge yvv is added, also the edge yvv′ is added, but G′ does not contain the
edge yvv′, a contradiction. Thus f : R∗

G(i,ϕ) → {1, . . . , k} is indeed an injective map,
and so |R∗

G(i,ϕ)| ≤ k follows. Hence we have shown that pwd(G) = vsn(G) ≤ k.
Having established inequality (3.2), we can use a similar reasoning as outlined in

Section 3 (however, setting α(G) = lin-cwd(G′)) to establish the following results.
Theorem 3. Let ε be a constant with 0 ≤ ε < 1. The linear clique-width of graphs

with n vertices of degree greater than 2 cannot be approximated by a polynomial-time
algorithm with an absolute error guarantee of nε unless P = NP.

In particular, there is no polynomial-time absolute approximation algorithm for
linear clique-width unless P = NP.

Theorem 4. lin-cwd-recognition is NP-complete.

6. Comparing Construction 2 and Construction 3. For this section let G
denote a graph with minimum degree at least 2. We show that the clique-width of
G′′ is bounded by the clique-width of G′ plus a small constant, and that the converse
is true for linear clique-width.

6.1. From G′′ to G′.
Property 1. Let t be a linear cwd-expression defining G′′. We say that t has

Property 1 if the following two conditions are satisfied.
Condition 1.1: Every η-operation a in t establishes some edge which is not estab-

lished by another η-operation above a in tree(t).
Condition 1.2: For every two regular vertices x and y there is no node a in tree(t)

such that x and y are active at a and have the same label at a.
Lemma 5. Let t be a linear k-expression defining G′′. Then there exists a linear

(k + 2)-expression defining G′′ which has Property 1.
Proof. Let t be a linear k-expression defining G′′. Since we can remove η-opera-

tions that invalidate Condition 1.1 from t, we may assume that all η-operations in t
satisfy this condition. Let x and y be two regular vertices such that there exists a
node a in t such that x and y have the same label at a and are active at a. Let b the
lowest node in tree(t) corresponding to an operation which unifies the labels of x and
y. Clearly b corresponds to either a ρ or a 1-⊕-operation. Suppose b corresponds to
a 1-⊕-operation. This operation introduces either x or y (say that it introduces x).
Since x and y have the same label at b it follows that each neighbor of x is also a
neighbor of y. However, since G has minimum degree at least 2, there is a neighbor
of x in G′′ which is not a neighbor of y, a contradiction.

Let b1 be the child of b in tree(t). Clearly x and y are active at b. Since sx,y

is the unique vertex in G′′ which is adjacent to both x and y, it follows that if we
add the edges connecting x and y to sx,y immediately above b1, then x and y will not
be active at b. We show below how to construct an expression t1 which achieves this
goal.
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Let t′1 be the expression obtained by removing sx,y from t. Let t1 be the expression
obtained from t′1 by adding immediately above b1 the vertex sx,y with label k + 2,
then adding two η-operations which connect sx,y to both x and y and then renaming
the label of sx,y to k + 1. (Note that k + 1 will be a dead label, i.e., no edges will be
added to a vertex having label k + 1.) Since both edges connecting sx,y to x and y
already exists at val(t1〈b〉), it follows that x and y are not active at val(t1〈b〉).

Repeating the above construction for every pair of regular vertices x and y which
have the same label at a node a of tree(t) and are active at a, we finally get a linear
(k + 2)-expression t′ which defines G′′ and satisfies Property 1.

Note that whenever vertex sx,y gets label k + 2 at node a of t′ it is the unique
vertex having this label in val(t′〈a〉) and thus, it is possible to connect it to x and y
using two η-operations.

Lemma 6. Let t be a linear k-expression defining G′′ that has Property 1. Then
there exists a linear (k + 7)-expression defining G′.

Proof. Let t be a linear k-expression defining G′′ that has Property 1. Let s = sx,y

be a special vertex of G′′. Thus the neighbors of s in G′′ are the regular vertices x
and y. Let e1 and e2 denote the edges connecting s to x and y, respectively. If the
edges e1 and e2 are established in t by the same η-operation, then there is a node a in
t such that both x and y have the same label at a and are active at a, a contradiction.
Thus, we can assume without loss of generality that the edge e1 is established before
e2 in t. Let a denote the lowest node in tree(t) corresponding to the η-operation
which establishes the edge e1 in t. Since x and s must have unique labels at a, it
follows from Property 1 that node a is the only η-operation in t which connects x
to s. Let t′1 denote the expression obtained by removing s from t. Let t1 denote the
expression obtained from t′1 by replacing the node a with the following sequence of
operations:

1. Add vertices s1, . . . , s6 with labels k + 2, . . . , k + 7, respectively.
2. Add η-operations connecting s1, s2, and s3 to x.
3. Add η-operations connecting s1 to s4, s2 to s5, and s3 to s6.
4. Add ρ-operations which rename the labels of s1, s2, and s3 to k + 1 (k + 1 is

used as a dead label).
5. Add ρ-operations which rename the labels of s4, s5. and s6 to &, where & is the

label that s has in val(t〈a〉).
It is easy to check that t1 defines the graph obtained from G′′ by replacing the

path of length two x− s− y with the 3 paths of length 3, x− si − si+3 − y, i = 1, 2, 3.
Repeating the above construction for every special vertex s of G′′, we finally

obtain a linear (k + 7)-expression t′ which defines G′.
Note that whenever vertices s1, . . . , s6 get labels k + 2, . . . , k + 7 at node a of t′

they are the unique vertices having these labels in val(t′〈a〉) and thus, it is possible
to establish all the connections and renaming mentioned in steps 2–5 above.

This completes the proof of the lemma.
Lemma 7. lin-cwd(G′) ≤ lin-cwd(G′′) + 9.
Proof. Suppose lin-cwd(G′′) = k, i.e., there exists a linear k-expression t which

defines G′′. By Lemma 5 there exists a linear (k + 2)-expression t1 which defines G′′

and has Property 1. By Lemma 6 there exists a linear (k + 9)-expression t2 which
defines G′. Thus lin-cwd(G′) ≤ k + 9.

6.2. From G′ to G′′.
Lemma 8. cwd(G′′) ≤ cwd(G′) + 3.
For proving this lemma we shall use the following definitions and lemma.
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Let G be a graph and let D(G) denote the set of graphs which can be obtained
from G by replacing each edge of G either with a path of length two or with a path of
length three. Clearly, the graph G′′ belongs to D(G) and is obtained by replacing all
edges of G with a path of length two. For each graph G∗ in D(G) we call the vertices
of G∗ which are also vertices of G regular vertices and we call the other vertices of
G∗ special vertices.

Property 2. Let t be a k-expression defining a graph G∗ in D(G). We say that t
has Property 2 if the following conditions hold:

Condition 2.1: There is no η-operation in t which uses label 1, i.e, there is no
η1,"-operation in t for any label &. In other words, 1 is a dead label.

Condition 2.2: If label 2 is used in t, then it is used as follows: a special vertex
(say s) is introduced with label 2 using a 1-⊕-operation say a, such that s is the only
vertex having label 2 at a. Above a in tree(t) there is a sequence of one or more
η-operations followed by a ρ2→"-operation where & is any label different from 2 and 3.

Condition 2.3: If label 3 is used in t then it is used as follows: a regular vertex
(say r) is introduced with label 3 using a 1-⊕-operation, say a, such that r is the
only vertex having label 3 at a. Above a in tree(t) there is a sequence of operations
which can be either η, ρ, or 1-⊕-operations introducing special vertices, followed by
a ρ3→"-operation where & is any label different from 2 and 3.

Condition 2.4: No regular vertex ever gets label 2 and no special vertex ever gets
label 3.

Observation 1. Let G∗ be a graph in D(G) and let cwd(G∗) = k. Then there
is a (k + 3)-expression t′ defining G∗ which has Property 2.

Proof. Let t be a k-expression defining G∗. Let t′ be the k+3-expression obtained
from t by replacing all occurrences of the labels 1, 2 and 3 with the labels k + 1,k + 2
and k + 3, respectively. Clearly t′ defines G∗. Since the labels 1, 2 and 3 are not used
in t′, it is obvious that t′ has Property 2.

The following is the key lemma for proving Lemma 8.
Lemma 9. Let G∗ be a graph in D(G) and let t be a k-expression which defines

G∗ and has Property 2. Let a be a lowest node in tree(t) such that there exists an
induced path x − p − q − y in G∗ (x, y are regular vertices) and x, p, q, y occur at a.
Then there exists a k-expression t1 which has Property 2 and defines the graph G∗

1

obtained from G∗ by replacing the path x − p− q − y with a path x− s− y where s is
a new special vertex.

Proof. Let a and x, p, q, y as in the statement of the lemma. In each of the
following cases we obtain a k-expression t1 which defines G∗

1 and has Property 2. In
all cases it is easy to see that the expression t1 obtained has Property 2.

Case 1: suppose x and y occur on different sides of a. Assume w.l.o.g. that x is
on the left side of a and y is on the right side of a.

Case 1.1: suppose that p and q occur on the same side of a. Assume without loss
of generality that both p and q occur on the left side of a. Let a1 denote the lowest
node in tree(t) such that both x and p are in t〈a1〉. Let a2 denote the lowest node in
tree(t) such that both x and q are in t〈a2〉. By the above assumptions both a1 and
a2 are descendants of a in tree(t).

Case 1.1.1: suppose a1 is a proper descendant of a2 in tree(t). If x and q have
the same label at a2 it follows that y must be in t〈a2〉, a contradiction. Thus p and
q must have unique labels at a2. Let &p and &q denote the labels of p and q at a2,
respectively.

Case 1.1.1.1: suppose x has a unique label (say &x) at a2. In this case, t1 is
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obtained from t as follows:
1. Add the following sequence operations immediately above a2:
1.1. An η"x,"p-operation which connects x to p.
1.2. A ρ"p→"q -operation which renames the label of p to the label of q.
2. Omit q.
Case 1.1.1.2: Suppose x does not have unique label at a2. Thus the edge con-

necting x to p already exists at val(t〈a2〉). In this case, t1 is obtained from t as
follows:

1. Add immediately above a2 a ρ"p→"q -operation which renames the label of p to
the label of q.

2. Omit q.
In both cases 1.1.1.1 and 1.1.1.2, p is connected to y since after p gets the label

of q, the η-operation above a which connects q to y will connect p to y. Thus, p can
be considered as the new special vertex s in G∗

1 and the expression t1 defines G∗
1.

Case 1.1.2: Suppose a1 is equal to a2. In this case x and q must have unique
labels at a2; t1 is obtained from t as follows:

1. Add immediately above a2 an η"x,"q -operation which connects x and q.
2. Omit p.
In this case it is easy to see that t1 defines G∗

1 and q is the new special vertex s.
Case 1.1.3: suppose a2 is a proper descendant of a1 in tree(t). Since y is not in

t〈a1〉, x, p, and q must have unique labels at a1. Let &x, &p, and &q denote the labels
of x, p and q at a1, respectively. In this case, t1 is obtained from t as follows:

1. Add the following sequence operations immediately above a1:
1.1. An η"x,"p-operation which connects x to p.
1.2. A ρ"p→"q -operation which renames the label of p to the label of q.
2. Omit q.
As in the previous cases it is easy to see that t1 defines G∗

1 and p is the new special
vertex s.

Case 1.2: suppose that p and q occur on different sides of a.
Case 1.2.1: suppose p occurs on the left side of a and q occurs on the right side

of a. It is easy to see that at least one of p and q must have a unique label at a.
Assume w.l.o.g. that q has a unique label (say &q) at a. Let &p and &y denote the
labels that p and y have at a, respectively. Note that y is the only vertex which can
have the same label as p at a. In this case, t1 is obtained from t as follows:

1. Make changes to t such that y will have label &q at a. In particular let c be
the lowest ⊕-operation in tree(t) which contains both y and q. Add a ρ-operation
immediately above c which renames the label of y at c to the label of q at c. Note that
since q has a unique label &q at a, we may assume that the label of q at c is also &q.
Then follow the path from c to a in tree(t) and for each node d corresponding to
an η"1,"2-operation such that y has label &1 at d, add an η"q,"2-operation immediately
above d. Thus, after this step y is connected to all the vertices (except q) which it
was connected in val(t〈a〉) and has label &q at a.

2. Omit q.
3. After the above changes to y, the label &p of p at a is unique. Add the following

sequence of operations immediately above a:
3.1. An η"p,"q -operation which connects y to p.
3.2. A ρ"q→"y -operation which renames y to the label it has in val(t〈a〉).
By steps 1 and 3.2 above it is clear that all the vertices (except q) which are

connected to y in t are also connected to y in t1. Thus, t1 defines G∗
1 and p is the new
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special vertex s.
Case 1.2.2: suppose p occurs on the right side of a and q occurs on the left side

of a. Since p is adjacent just to x and q, it follows that either x and q have unique
labels at a or have the same label at a. If x and q have the same label at a, then
there is no way to connect y to q without connecting it also to x, a contradiction. We
conclude that the labels at a of p, q, x, and y (say &p, &q, &x and &y, respectively) are
unique. In this case t1 is obtained from t by omitting q and adding an η"p,"y -operation
immediately above a.

Case 2: suppose x and y occur on the same side of a. Assume without loss of
generality that x and y occur on the left side of a.

Case 2.1: suppose p and q occur on the same side of a. Since a is the lowest node
in tree(t) which contains x, y, p, and q, it follows that p and q must occur on the
right side of a. As in case 1.2.2 it is easy to see that the labels at a of p, q, x and y
(say &p, &q, &x, and &y) are unique. In this case t1 is obtained from t by omitting q
and adding an η"p,"y -operation immediately above a.

Case 2.2: suppose p and q occur on different sides of a. Assume without loss of
generality that p occurs on the left side of a and q occurs on the right side of a. Let
a1 denote the lowest node in tree(t) which contains both x and p. Let a2 denote the
lowest node in tree(t) which contains x and y.

Case 2.2.1: suppose a1 is equal to a2 or a2 is a proper descendant of a1. In
this case it is easy to see that x, y and p must have unique labels at a1 (say &x, &y,
and &p, respectively). In this case t1 is obtained from t by omitting q and adding an
η"p,"y -operation immediately above a1.

Case 2.2.2: suppose a1 is a proper descendant of a2.
Case 2.2.2.1: suppose y has unique label at a2 (say &y). In this case p must have

unique label at a2 (say &p) and t1 is obtained from t by omitting q and adding an
η"p,"y -operation immediately above a2.

Case 2.2.2.2: suppose y does not have unique label at a2. Let &p and &y denote
the labels of p and y at a2, respectively. Since q is adjacent just to y and p, it follows
that p is the only vertex which can share the label of y at a2. Thus, &p = &y. Assume
without loss of generality that y is on the right side of a2 and x and p are on the left
side of a2. Let b2 denote the right child of a2 in tree(t). Note that the complicated
handling of this case (as described below) is needed when x is active at a2 and has
the same label as another vertex which is on the right side of a2. Since q is the only
vertex which is adjacent to y and p, it follows that all the vertices which are adjacent
to y (except q) must be in val(t〈b2〉). Let U denote the set of all vertices (except q)
which are adjacent to y. Since y is regular vertex, all vertices in U must be special
and have degree exactly 2. For each vertex u in U , let other(u) denote the neighbor
of u which is not y. Let U1 denote the set of all vertices u in U such that other(u) is
in val(t〈b2〉) and let U2 = U \ U1. Let U11 denote the set of all vertices u in U1 such
that the lowest node in tree(t) which contains u and other(u) does not contain y.
Let U12 = U1 \ U11.

In this case t1 is obtained from t as follows:
1. Omit q and all vertices of U2.
2. Let c denote the lowest node in tree(t) which contains y. Follow the path from

c to b2 in tree(t) and omit any η"1,"2-operation such that the label of y at that point
is &1.

3. Repeat the following step for each u in U11: let c denote the lowest node in
tree(t) which contains u and other(u). Let d denote the lowest node in tree(t) which
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contains y and u. Since u is in U11, c is a descendant of d. Thus, u and other(u) have
unique labels at c (say &u and &, respectively). Add an η"u,"-operation immediately
above c which connects u and other(u). Add a ρ-operation immediately above d
which renames the label of u to the label of y at d. Thus, after step 3 each vertex u
in U11 is connected to other(u) and has label &y at a2.

4. Repeat the following step for each u in U12: let c denote the lowest node in
tree(t) which contains u and other(u).

4.1. Suppose other(u) is a special vertex. If other(u) does not have a unique
label at c then its label at c must be equal to the label of y at c, a contradiction,
since q distinguishes y and other(u). Thus, other(u) must have unique label at c.
If u does not have unique label at c, then the label of u at c must be equal to the
label of the unique regular vertex (say z) which is adjacent to other(u). But then
vertices of the induced path z − other(u) − u − y of G∗ occur at a2, and since a2

is a descendant of a, we have a contradiction to the selection of a as a lowest such
node with that property. We conclude that both u and other(u) have unique labels
at c. Thus, in this case add an η-operation immediately above c connecting u and
other(u) and above it add a ρ-operation which renames the label of u to the label
that y has at that point.

4.2. Suppose other(u) is a regular vertex. Since t has Property 2, it follows that
either label 2 is not used at c or u is the only vertex having label 2 at c. In this case
omit u from t and add the following sequence of operations immediately above c:

4.2.1. A 1-⊕-operation introducing u with label 2.
4.2.2. An η2,"-operation, where & is the unique label that other(u) has at c.
4.2.3. A ρ2→"′-operation where &′ is the unique label that y has at c.
Thus, after step 4 each vertex u in U12 is connected to other(u) and has label &y

at a2.
5. Omit y from t and add the following sequence of operations immediately

above a2:
5.1. A 1-⊕-operation which introduces y with label 3. Note that since t has

Property 2 label 3 is not used at a2.
5.2. An η3,"y -operation connecting y to p and all the vertices in U1.
5.3. A ρ"y→1-operation renaming p and all the vertices in U1 to a dead label.
5.4. For each vertex u in U2 add the following sequence of operations:
5.4.1. A 1-⊕-operation introducing u with label 2.
5.4.2. An η2,3-operation connecting u and y.
5.4.3. A ρ2→"-operation where & is the label that u has in t at a2.
Thus after step 5.4 all the vertices in U2 are connected to y and have the same

label as they have in t at a2.
5.5. A ρ3→1-operation renaming the label of y to a dead label.
Each vertex u in U1 is connected to other(u) in step 3 or in step 4 and is connected

to y in step 5.2. Each vertex u in U2 is connected to y at step 5.4.2 and the η-operation
in t above a2 which connects u to other(u) also exists in t1 and connects u to other(u)
since after step 5.4 the label of u is the same as its label at a2 in t.

Thus, t1 defines G∗
1 and p is the new special vertex s.

This completes the proof of Lemma 9.
Proof of Lemma 8. Suppose cwd(G′) = k. Let G′

1 denote the induced subgraph
of G′ obtained by removing from G′ for every edge e = xy of G, the two pairs of vertices
pi, qi, i = 1, 2, where x − pi − qi − y are two of the three paths of length 3 between x
and y. Since G′

1 is an induced subgraph of G′, it follows that cwd(G′
1) ≤ k. Clearly,
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G′
1 belongs to D(G). Let t be a k-expression which defines G′

1. By Observation 1,
there is a (k + 3)-expression t′ defining G′

1 which has Property 2. Let a be a lowest
node in tree(t′) such that for an induced path x−p− q−y of G′

1 (x and y are regular
vertices) the vertices x, p, q, y occur at a. By Lemma 9 there exists a (k+3)-expression
t′1 which has Property 2 and defines the graph G∗

1 obtained from G′
1 by replacing the

path x−p−q−y with a path x−s−y where s is a new special vertex. We can repeat
this process until we finally get a (k + 3)-expression t′′ which defines the graph G′′

that is obtained from G′
1 by replacing all induced paths of length 3 (with regular end

vertices and special internal vertices) by induced paths of length 2. This completes
the proof of Lemma 8.

7. Comparing clique-width and linear clique-width. As discussed in Sec-
tion 2.3, the difference between the clique-width and the linar clique-width of a graph
can be arbitrarily large. In this section we show that this is not true for graphs ob-
tained by means of Construction 3 from a cobipartite graphs of minimum degree at
least 2.

Theorem 5. If G is a cobipartite graph with minimum degree at least 2, then
lin-cwd(G′′) ≤ cwd(G′′) + 6.

In this section we assume that G is a cobipartite graph with minimum degree at
least 2. Since G is cobipartite the vertices of G can be partitioned into two cliques A
and B. The regular vertices of G′′ which belong to A, B are called A-regular vertices,
B-regular vertices, respectively.

Let t be a cwd-expression defining G′′. Let a be a ⊕-operation of t. We say that
there is a separation at a between the A-regular vertices and the B-regular vertices
if all A-regular vertices of val(t〈a〉) occur on one side of a (say, on the left side of a)
and all the B-regular vertices of val(t〈a〉) occur on the other side of a (say, on the
right side of a).

For the proof of Theorem 5, we start with a k-expression t defining G′′ and show with
a series of lemmas (Lemmas 10–15) how to construct a (k + 6)-expression t′ which
defines G′′ and includes at most one (> 1)-⊕-operation, say a, such that in a there is
a separation between the A-regular and the B-regular vertices. Finally, we show with
Lemma 16 how to construct from t′ a linear (k + 6)-expression defining G′′; this is
done by omitting the vertices on the left side of a and by introducing them instead
on the right side of a, one after the other using 1-⊕-operations.

Proposition 1. Let t be a cwd-expression defining G′′. For each ⊕-operation a
of t there is at most one pair of A-regular (B-regular) vertices which occur on different
sides of a and have the same label at a.

Proof. Suppose there are two different pairs {x1, y1} and {x2, y2} of A-regular
vertices such that for i = 1, 2, xi and yi occur at different sides of a and have the same
label at a. Assume without loss of generality that x1 and x2 occur on the left side of a
and y1 and y2 occur on the right side of a. Clearly, either x1 %= x2 or y1 %= y2. Assume
without loss of generality that x1 %= x2. Consider the special vertex sy1,x2 . If sy1,x2 is
not in val(t〈a〉), then when later on the edge connecting sy1,x2 to y1 will be establish,
also the edge connecting it to x1 will be established, a contradiction. Thus sy1,x2 is
in val(t〈a〉). If sy1,x2 occurs on the left side of a then when the edge connecting it to
y1 will be established, it will be connected also to x1, a contradiction. If sy1,x2 is on
the right side of a, then when the edge connecting it to x2 will be established, it will
be connected also to y2. Since the degree of sy1,x2 in G′′ is exactly 2, it follows that
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y1 must be equal to y2. Thus, the three vertices x1, x2 and y1 have the same label at
a, which implies that the η-operation above a which connect sy1,x2 to x2 connect it
also to x1, a contradiction. The argument for two different pairs of B-regular vertices
is symmetric.

Proposition 2. Let t be a cwd-expression defining G′′. Let a be a ⊕-operation
of t and let {x1, y1} be a pair of A-regular (B-regular) vertices which occur on different
sides of a and have the same label at a. Then at least one of x1 and y1 is active at
a and for every other vertex (say z) occurring at a the label of z is different from the
label of x1 and y1 at a.

Proof. Suppose that both x1 and y1 are dead at a. Since x1 is dead at a the
special vertex sx1,y1 must be on the same side of a as x1. Similarly, sx1,y1 must be on
the same side of a as y1, a contradiction, since x1 and y1 occur on different sides of a.
If there is another vertex z with the same label as x1 and y1 at a, then, when the
edges connecting some vertex of G′′ (say, w) to x1 or y1 will be established (such edges
must be established since either x1 or y1 is active at a), also the edge connecting it to
z will be established, a contradiction (no vertex of G′′ is adjacent to x1, y1 and z).

Proposition 3. Let t be a cwd-expression defining G′′. Let a be an ⊕-operation
of t and let {x1, y1} be a pair of regular vertices which occur on different sides of a
and have the same label at a. Then all the edges connecting x1 (y1) to its neighbors
in G′′ − sx1,y1 exist in val(t〈a〉).

Proof. Let s be a vertex which is adjacent to x1 in G′′−sx1,y1 . Clearly s must be a
special vertex of the form sx1,z for z %= y1. If s is not connected to x1 in val(t〈a〉), then
it is not possible to connect s to x1 without connecting it also to y1, a contradiction.

7.1. Property 3.
Property 3. We say that t has Property 3 if the following conditions hold for t:
Condition 3.1: The label 1 is dead in t.
Condition 3.2: For each (> 1)-⊕-operation a in t, there is no pair of A-regular

(B-regular) vertices which occur on different sides of a and have the same label at a.
Lemma 10. Let t be a k-expression defining G′′. Then there exists a (k + 4)-ex-

pression t′ defining G′′ such that t′ has Property 3.
Proof. Let t be a k-expression defining G′′. Let t1 denote the (k + 1)-expression

obtained from t by replacing each occurrence of the label 1 with the label k + 1.
Clearly, t1 defines G′′ and label 1 is dead in t1. Let a be a (> 1)-⊕-operation in t1
such that there exist at least one pair of regular vertices that violate Condition 3.2.
We define below a (k + 4)-expression t2 which defines G′′ and has the additional
property that there is no pair of regular vertices of the same type which occur on
different sides of a and have the same label in val(t2〈a〉). Let b denote the left child
of a in tree(t).

By Proposition 1, one of the following cases must prevail.
Case 1: Suppose there is exactly one pair (say {x1, y1}) of regular vertices of the

same type which occur on different sides of a and have the same label in val(t1〈a〉).
Assume without loss of generality that x1 occurs on the left side of a. By Proposition 2,
either x1 or y1 must be active at a and their label at a (say &) is different from the
labels of all the other vertices at a. In this case t2 is obtained from t1 as follows:

1. Add a ρ"→k+2-operation immediately above b.
2. Omit sx1,y1 .
3. Add the following sequence of operations immediately above a:
3.1. A 1-⊕-operation introducing sx1,y1 with label k + 4.
3.2. An ηk+4,"-operation which connects sx1,y1 to y1.
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3.3. An ηk+4,k+2-operation which connects sx1,y1 to x1.
3.4 A ρk+4→1-operation renaming the label of sx1,y1 to a dead label.
3.5 A ρk+2→1-operation renaming the label of x1 to a dead label.
3.6 A ρ"→1-operation renaming the label of y1 to a dead label.
Case 2: Suppose there are exactly two pairs (say {x1, y1} and {x2, y2}) of regular

vertices of the same type which occur on different sides of a and have the same label
in val(t1〈a〉). Assume without loss of generality that x1 and x2 occur on the left side
of a. By Proposition 2, either x1 or y1 is active at a and their label at a (say &1)
is different from the labels of all the other vertices at a. Similarly, x2 and y2 have
the same unique label at a (say &2). It follows that all the vertices x1, x2, y1, y2 are
distinct.

In this case t2 is obtained from t1 as follows:
1. Add the following sequence of operations immediately above b:
1.1 A ρ"1→k+2-operation renaming the label of x1 to to k + 2.
1.1 A ρ"2→k+3-operation renaming the label of x2 to to k + 3.
2. Omit sx1,y1 and sx2,y2 .
3. Add the following sequence of operations immediately above a:
3.1. A 1-⊕-operation introducing sx1,y1 with label k + 4.
3.2. An ηk+4,"1 -operation which connects sx1,y1 to y1.
3.3. An ηk+4,k+2-operation which connects sx1,y1 to x1.
3.4 A ρk+4→1-operation renaming the label of sx1,y1 to a dead label.
3.5. A 1-⊕-operation introducing sx2,y2 with label k + 4.
3.6. An ηk+4,"2 -operation which connects sx2,y2 to y2.
3.7. An ηk+4,k+3-operation which connects sx2,y2 to x2.
3.8 A sequence of ρ-operations renaming all labels &1, &2, k + 2, k +3, k + 4, to the

dead label 1.
In both cases 1 and 2 it follows from Proposition 3 that the expression t2 de-

fines G′′.
Repeating the above procedure for every (> 1)-⊕-operation in t2 we finally get a

(k + 4)-expression t′ defining G′′ such that t′ has Property 3.

7.2. Property 4. The following property is similar to Property 2.
Property 4. Let t be a k-expression defining G′′ which has Property 3. We say

that t has Property 4, if the following conditions hold:
Condition 4.1: If label 2 is used in t, then it is used as follows: a special vertex

(say s) is introduced with label 2 using a 1-⊕-operation say a, such that s is the only
vertex having label 2 at a. Above a in tree(t) there is a sequence of one or more
η-operations followed by a ρ2→"-operation where & is any label different from 2 and 3.

Condition 4.2: If label 3 is used in t then it is used as follows: a regular vertex
(say r) is introduced with label 3 using a 1-⊕-operation, say a, such that r is the
only vertex having label 3 at a. Above a in tree(t) there is a sequence of operations
which can be either η, ρ, or 1-⊕-operations introducing special vertices, followed by
a ρ3→"-operation where & is any label different from 2 and 3.

Condition 4.3: No regular vertex ever gets label 2 and no special vertex ever gets
label 3.

Lemma 11. Let t be a k-expression defining G′′ such that t has Property 3. Then
there exists a (k + 2)-expression t′ defining G′′ such that t′ has Property 4.

Proof. Let t be a k-expression defining G′′ such that t has Property 3. Let t′

denote the (k + 2)-expression obtained from t by replacing each occurrence of the
label 2 with the label k+1 and replacing each occurrence of the label 3 with the label
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k +2. Clearly, t′ defines G′′. Since labels 2 and 3 are not used in t′, it is obvious that
t′ has Property 4.

7.3. Property 5.
Property 5. Let t be a k-expression defining G′′ which has Property 4. We say

that t has Property 5, if the following condition holds:
Condition 5: For each (> 1)-⊕-operation a in t, there is no regular vertex which

occurs at a and has a unique label at a which is different from label 1.
Lemma 12. Let t be a k-expression defining G′′ such that t has Property 4. Then

there exists a k-expression t′ defining G′′ such that t′ has Property 5.
For proving this lemma we use the following definitions and lemma. Let t be a

k-expression defining G′′. For each (> 1)-⊕-operation a in t let n(t〈a〉) denote the
number of regular vertices which occur at a and have unique labels at a which are
different from label 1. Let n(t) denote the sum of n(t〈a〉) over all (> 1)-⊕-operations
in t. Clearly, if a k-expression t defines G′′ and has Property 4, then n(t) = 0 implies
that t has also Property 5.

Lemma 13. Let t be a k-expression defining G′′ such that t has Property 4 and
n(t) > 0. Then there exists a k-expression t′ defining G′′ such that t′ has Property 4
and n(t′) < n(t).

Proof. Let t be a k-expression defining G′′ such that t has Property 4 and n(t) > 0.
Since n(t) > 0, there exists a (> 1)-⊕-operation a in t and a regular vertex x such
that x has unique label (say &x) in val(t〈a〉). We will construct below a k-expression
t′ defining G′′, such that in t′, x is introduced by a 1-⊕-operation above a. We shall
use the following notation and proceed similarly as in the proof of Lemma 9. Let b
denote the child of a in tree(t) such that x is in val(t〈b〉). Let U denote the set of all
vertices which are adjacent to x and occur in val(t〈b〉). Since x is a regular vertex,
all vertices in U must be special and have degree exactly 2. For each vertex u ∈ U ,
let other(u) denote the neighbor of u which is not x. Let U1 denote the set of all
vertices u ∈ U such that other(u) is in val(t〈b〉) and let U2 = U \U1. Let U11 denote
the set of all vertices u ∈ U1 such that the lowest node in tree(t) which contains u
and other(u) does not contain x. Let U12 = U1 \U11. The k-expression t′ is obtained
from t as follows:

1. Omit all vertices of U2.
2. Let c denote the lowest node in tree(t) which contains x. Follow the path

from c to b in tree(t) and omit any η"1,"2-operation such that the label of x at that
point is &1.

3. Repeat the following step for each u ∈ U11: let d denote the lowest node in
tree(t) which contains u and other(u). Let e denote the lowest node in tree(t) which
contains x and u. Since u is in U11, d is a descendant of e. Thus, u and other(u) have
unique labels at d (say &u and &, respectively). Add an η"u,"-operation immediately
above d which connects u and other(u). Add a ρ-operation immediately above e
which renames the label of u to the label of x at e. Thus, after step 3 each vertex
u ∈ U11 is connected to other(u) and has label &x at a.

4. Repeat the following step for each u ∈ U12: let d denote the lowest node in
tree(t) which contains u and other(u). Since t has Property 4, and u and other(u)
occur on different sides of d it follows that the only vertex which can have label 2
at d is u. Omit u from t and add the following sequence of operations immediately
above d:

4.1. A 1-⊕-operation introducing u with label 2.
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4.2. An η2,"-operation connecting u and other(u), where & is the unique label
that other(u) has at d.

4.2.3. A ρ2→"′-operation where &′ is the unique label that x has at d.
Thus, after step 4 each vertex u ∈ U12 is connected to other(u) and has label &x

at a.
5. Omit x from t and add the following sequence of operations immediately

above a:
5.1. A 1-⊕-operation which introduces x with label 3. Note that since t has

Property 4 and a is a (> 1)-⊕-operation label 3 is not used at a.
5.2. An η3,"x-operation connecting x to all the vertices in U1.
5.3. A ρ"x→1-operation renaming the label of all the vertices in U1 to a dead

label.
5.4. For each vertex u ∈ U2 add the following sequence of operations:
5.4.1. a 1-⊕-operation introducing u with label 2;
5.4.2. an η2,3-operation connecting u to x;
5.4.3. a ρ2→"-operation where & is the label that u has in t at a.
Thus after step 5.4 all the vertices in U2 are connected to x and have the same

label as they have in t at a.
5.5. A ρ3→"x-operation renaming the label of x to the label it has in val(t〈a〉).
Each vertex u ∈ U1 is connected to other(u) in step 3 or in step 4 and is connected

to x in step 5.2. Each vertex u ∈ U2 is connected to x at step 5.4.2 and the η-operation
in t above a which connects u to other(u) also exists in t′ and connects u to other(u).
Since after step 5.5. the label of x is the same as its label in val(t〈a〉), it follows that
all the vertices which are adjacent to x and are not in U will be connected to x in t′

by the same η-operations which connect them to x in t.
Thus, t′ defines G′′. Since the above changes to t did not violate the rules of

Property 4, it follows that t′ has Property 4. Finally, since in t′, x is introduced by
a 1-⊕-operation above a, and all other regular vertices are not moved, it follows that
n(t′) < n(t). This completes the proof of Lemma 13.

Proof of Lemma 12. The result follows easily by applying Lemma 13 (at most)
n(t) times until a k-expression t′ is obtained such that t′ defines G′′ and n(t′) = 0.

Proposition 4. Let t be a k-expression defining G′′ such that t has Property 5.
Let a be a (> 1)-⊕-operation in t such that at least one regular vertex occurs on the
left side of a and at least one regular vertex occurs on the right side of a. Then there
is a separation at a between the A-regular and the B-regular vertices.

Proof. Let a be a (> 1)-⊕-operation in t and let x and y be two regular vertices
occurring on different sides of a. Assume without loss of generality that x occurs on
the left side of a and y occurs on the right side of a. Suppose x and y are both A-
regular vertices. By Condition 3.2, x and y do not have the same label at a. Suppose
x or y (say x) has label 1 at a. By Condition 5, there exists vertex z which have the
same label as y at a. The special vertex s = sx,y must occur on the left side of a, or
else no η-operation connect s and x in t, a contradiction. Thus, the η-operation above
a in tree(t) which connects s to y connects it also to z, a contradiction. We conclude
that both x and y do not have label 1 at a. By Condition 5, there are two vertices w
and z which have the same label as x and y at a, respectively. Let s = sx,y. If s does
not occur at a, then the η-operation in t which connects s to x, connects it also to w,
a contradiction. If s occurs on the left side of a, then the η-operation which connects
s to y connects it also to z, a contradiction. If s occurs on the right side of a, then
the η-operation which connects s to x connects it also to w, a contradiction. Thus x
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and y can not be both A-regular vertices.
Similarly, x and y cannot be both B-regular vertices. Thus, one of x and y

(say, x) must be A-regular and the other (say, y) must be B-regular. If there is a B-
regular vertex (say, z) on the left side then there are two B-regular vertices (z and y)
occurring on different sides of a, which is not possible by the above argument. Thus
all the A-regular vertices occur on the left side of a and all the B-regular vertices
occur on the right side of a.

7.4. Property 6.
Property 6. Let t be a k-expression defining G′′. We say that t has Property 6

if it has Property 5 and the following condition holds:
Condition 6: Either there are no (> 1)-⊕-operations in t or there is just one

(> 1)-⊕-operation in t (say, a) and there is a separation at a between the A-regular
and the B-regular vertices.

Lemma 14. Let t be a k-expression defining G′′ such that t has Property 5. Then
there exists a k-expression t′ which defines G′′ and has Property 6.

Proof. Let t be a k-expression which defines G′′ and has Property 5. Let a be
a (> 1)-⊕-operation in t such that one side of a (say, the left side) contains just
special vertices (say, s1, . . . , sm). Clearly, s1, . . . , sm are isolated vertices in val(t〈a〉)
and have unique labels in val(t〈a〉). Let &1, . . . , &m denote the labels of s1, . . . , sm in
val(t〈a〉), respectively. Let b be the right child of a. Let t1 be the expression obtained
from t by replacing t〈a〉 with

t〈b〉 ⊕ &1(s1) ⊕ . . . ⊕ &m(sm).

It is easy to verify that t1 also defines G′′ and has Property 5.
Let t′ denote the expression obtained from t1 by repeating the above process for

each (> 1)-⊕-operation a in t1 such that one side of a contains just special vertices.
Let a be a (> 1)-⊕-operation in t′. By the above construction, each side of a contains
at least one regular vertex. By Proposition 4, since Property 5 holds for t′, there
is a separation at a in t′ between the A-regular vertices and the B-regular vertices.
Suppose there is another (> 1)-⊕-operation (say a′) in t′. By the above argument
each side of a′ contains at least one regular vertex and there is a separation at a′

in t′ between the A-regular and the B-regular vertices. If a is a descendant of a′

in tree(t′), then there cannot be a separation at a′ between the A-regular and the
B-regular vertices, a contradiction. Similarly, a′ is not a descendant of a in tree(t′).
Let a′′ be the lowest node in tree(t′) which contains both a and a′. Clearly a′′ must
be a (> 1)-⊕-operation. By Proposition 4 there is a separation at a′′ in t′ between
the A-regular and the B-regular vertices. Since a occurs on one side of a′′, this side
of a′′ contains both A-regular and B-regular vertices, a contradiction. We conclude
that a is a unique (> 1)-⊕-operation in t′. Thus t′ is a k-expression which defines G′′

and has Property 6.

7.5. Property 7.
Property 7. Let t be a k-expression defining G′′. We say that t has Property 7

if it has Property 6 and either t is linear or the following condition holds:
Condition 7: Let a be the unique (> 1)-⊕-operation in t. Then for each A-regular

(B-regular) vertex x, which is active at a and occurs on one side (say left side) of a,
there is a unique B-regular (A-regular) vertex y which is active at a and occurs on
the other side (say right side) of a and has the same label as x in val(t〈a〉).

Lemma 15. Let t be a k-expression defining G′′ such that t has Property 6. Then
there exists a k-expression t′ which defines G′′ and has Property 7.
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Proof. Let a be the unique (> 1)-⊕-operation in t. Assume without loss of
generality that all the A-regular vertices of val(t〈a〉) occur on the left side of a and
all the B-regular vertices of val(t〈a〉) occur on the right side of a. Let x be a regular
vertex which is active at a. Let & denote the label of x at a. Since Condition 5 holds
for t, the label of x at a is not unique. Suppose there are two vertices u and v which
are distinct from x and have label & at a. Since x is active at a, there is an η-operation
above a in tree(t) which connects some special vertex (say, s) to x. This η-operation
connects s also to u and v, a contradiction (since s is adjacent in G′′ to exactly two
vertices). Thus, for each regular vertex x which has label & at a and is active at a
there is a unique second vertex (say y) which is active at a and has label & at a. By a
similar argument no η-operation above a in tree(t) connects a vertex other than sx,y

to x or to y. Thus, all edges incident to x or y in G′′, except xsx,y and ysx,y, already
exist in val(t〈a〉).

We now define the cwd-expression t1 depending on the following cases:
Case 1: One of the vertices x, y is A-regular and one is B-regular. Since Condi-

tion 7 holds in this case for x and y we set t1 = t.
Case 2: Both x and y are A-regular. Let b denote the left child of a. In this

case t1 is obtained from t as follows:
1. Omit sx,y from t.
2. Add immediately above b the following sequence of operations:
2.1. A 1-⊕-operation which introduces sx,y with label 2. Note that since t has

Property 4, and a is a (> 1)-⊕-operation, label 2 is not used in val(t〈a〉).
2.2. An η2,"-operation which connects sx,y to x and y, where & is the label that x

and y have in val(t〈b〉).
2.3. A ρ2→1-operation renaming the label of sx,y to the dead label 1.
2.4. A ρ"→1-operation renaming the label of x and y to the dead label 1.
Case 3: Both x and y are B-regular. This case is symmetric to Case 2.
Let t′ denote the expression obtained by repeating the above process for each

regular vertex which is active at a. It is easy to see that t′ defines G′′ and has
Property 7, as required.

7.6. Linear expressions for G′′.
Lemma 16. Let t be a k-expression defining G′′ such that t has Property 7. Then

there is a linear k-expression which defines G′′.
In the proof of Lemma 16 we shall use the following definition and proposition.
Let t be a cwd-expression which defines G′′, let a be any node of tree(t) and let

sx,y be any special vertex in val(t〈a〉). The label of sx,y at a is called an x-connecting
label at a (a y-connecting label at a) if val(t〈a〉) includes the edge connecting sx,y to
y (x) but does not include the edge connecting sx,y to x (y).

Proposition 5. Let t be a cwd-expression which defines G′′, let a be any node
of tree(t), and let y1, y2 be two distinct regular vertices of G′′. Suppose that there is a
y1-connecting label and a y2-connecting label at a. Then these two labels are different.

Proof. Let s1 and s2 be two special vertices that have a y1-connecting label and a
y2-connecting label at a, respectively. By definition, s1 is a special vertex of the form
sx1,y1 where s1 is connected to x1 and is not connected to y1 in val(t〈a〉). Similarly, s2

is a special vertex of the form sx2,y2 where s2 is connected to x2 and is not connected
to y2 in val(t〈a〉). Suppose that the labels of s1 and s2 are the same in val(t〈a〉).
The η-operation above a which connects s1 to y1 connects also s2 to y1. Thus s2 is
connected to x2, y2 and y1. Since y1 %= y2 and x2 %= y2 and s2 has degree 2, it follows
that x2 = y1. By a symmetric argument we get that x1 is equal to y2. We conclude
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that s1 = s2. But this is not possible since s1 = s2 is connected to x1 and is not
connected to y2 = x1.

7.7. Proof of Lemma 16. If there is no (> 1)-⊕-operation in t, the claim
follows immediately. Let a be the unique (> 1)-⊕-operation in t. Let b and c denote
the left child and the right child of a in tree(t), respectively. Assume without loss
of generality that all the regular vertices in val(t〈b〉) are A-regular and all regular
vertices in val(t〈c〉) are B-regular.

First we introduce the following notation. Let A1 (B1) denote the set of A-
regular (B-regular) vertices of val(t〈b〉) (val(t〈c〉)) and put A2 = A \ A1 and B2 =
B \ B1. Let Active(A1) (Active(B1)) denote the set of vertices of A1 (B1) which
are active at a. Let Dead(A1) (Dead(B1)) denote the set of vertices of A1 (B1)
which are dead at a. Clearly, A1 = Active(A1)∪Dead(A1) and B1 = Active(B1)∪
Dead(B1). By Condition 7, |Active(A1)| = |Active(B1)|. For each B-regular vertex
u ∈ Active(B1) we denote by mate(u) the unique A-regular vertex (guaranteed by
Condition 7) which is in Active(A1) and has the same label as u in val(t〈a〉). Let
|Dead(A1)| = q. Let xi, 1 ≤ i ≤ q, be the ith vertex in Dead(A1) which gets a
non-unique label or label 1 in t〈b〉 (if there is more than one such vertex, choose one
of them arbitrarily) and let wi be the highest node in tree(t〈b〉) such that xi has a
unique label (which is different from label 1) in t〈wi〉. Note that wi is well defined
since each regular vertex in G′′ is a leaf of tree(t) having a unique initial label (which
is different from label 1).

Let Xi = {x1, . . . , xi}, 1 ≤ i ≤ q. Let NXi, 1 ≤ i ≤ q, denote the set of B-regular
vertices which have a neighbor (in G) in the set Xi. For convenience we set NX0 = ∅.

For the proof of Lemma 16, we start with a k-expression t defining G′′ which has a
unique (> 1)-⊕-operation a, such that there is a separation at a between the A-regular
and the B-regular vertices, and show how to construct a linear k-expression t′ which
defines G′′, by omitting the vertices on the left side of a and introducing them using
1-⊕-operations one after the other on the right side of a. In particular, at the top
of the right side of a the following regular vertices are introduced in this order: the
vertices of Active(A1) (see the expression e2 below), the vertices of A2 ∪ B2 (see
the expression e3 below), and the vertices of Dead(A1) in the order xq , .., x1 (see the
expressions fi below). We show in a sequence of observations that for each regular
vertex x all its neighbors in G′′ exist in the linear cwd-expression t′ that we construct.
Finally, we use the bounds on k, obtained in Observations 4, 5, and 7, to show that
the number of labels used in t′ is at most k.

Observation 2. Let v be a vertex which is adjacent to xi (in G) and is not in
val(t〈wi〉). Then the special vertex sxi,v has the v-connecting label at wi.

Proof. Suppose the vertex s = sxi,v is not adjacent to xi in val(t〈wi〉). Let w′
i

denote the parent of wi in tree(t). The label of xi at w′
i is either 1 or the label of

another vertex (say u)). If the label of xi at w′
i is 1 then no η-operation in t connects

s and xi, a contradiction. Thus, the label of xi is is the same as the label of u at w′
i.

If u %= v then the η-operation above w′
i which connects s to xi connects it also to u, a

contradiction. If u = v then w′
i must correspond to a 1-⊕-operation which introduces

v with the label of xi. Since v and xi have the same label at w′
i it follows that each

neighbor of v is also a neighbor of xi. However, since G has minimum degree at
least 2, there is a neighbor of v in G′′ which is not a neighbor of xi, a contradiction.

Observation 3. For 1 ≤ i ≤ q, labels(val(t〈wi〉)) ≥ |A| + |NXi| + 1 − i.
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Proof. Let v be a vertex in Active(A1). If v occurs at wi, then v has a unique
label at val(t〈wi〉). If v does not occur at wi, then by Observation 2 the vertex sxi,v

has a v-connecting label at wi. Thus, so far we have |Active(A1)| different labels in
val(t〈wi〉). Let v be a vertex in Dead(A1)\Xi. If v occurs at wi, then by definition v
must have a unique label at wi. If v does not occur at wi, then by Observation 2 the
vertex sxi,v has a v-connecting label at wi. Thus, by Proposition 5, we have additional
|Dead(A1)\Xi| = q−i labels in val(t〈wi〉). Let v be a vertex in A2. By Observation 2,
the vertex sxi,v has the v-connecting label in val(t〈wi〉). Thus, additional |A2| labels
exists in val(t〈wi〉). Let v be a vertex in NXi. By definition there exists a vertex in
Xi (say xj) such that v is adjacent to xj in G. By Observation 2, vertex sxj ,v has the
v-connecting label at wj . Since v is not in val(t〈wi〉), the vertex sxj ,v also has the
v-connecting label in val(t〈wi〉). Thus, additional |NXi| labels exists in val(t〈wi〉).
Finally, by definition xi has a unique label at wi. Summarizing all the labels counted
so far gives |Active(A1)|+ |A2|+ |NXi|+1+ q− i = |A|+ |NXi|+1− i. Since t has
Properties 3 and 4 we may assume that the labels 1, 2, and 3 are already considered
in the counting of the k labels of t. Since the labels 1, 2, and 3 are not counted in the
formula of Observation 3, the next observation follows.

Observation 4. For 1 ≤ i ≤ q, k ≥ |A| + |NXi| + 4 − i.
Observation 5. k ≥ |A| + 3.
Proof. If Dead(A1) %= ∅ the claim follows from Observation 4 for i = 1. Suppose

Dead(A1) = ∅. Let x be any vertex of Active(A1). For each vertex v in A2 the
vertex sx,v must have a v-connecting label at a. Thus, so far we have |A2| different
labels at a. Since all the vertices in Active(A1) have different labels at a we get
|A2| + |Active(A1)| = |A| different labels at a. Since we did not count labels 1, 2,
and 3, the claim follows.

Observation 6. labels(val(t〈a〉)) ≥ |Active(A1)| + |A2| + |B2|.
Proof. By Property 7, each vertex v ∈ Active(A1) has a unique label in val(t〈b〉).

Thus there are at least |Active(A1)| labels in val(t〈a〉). Let v be a vertex in A2 and
let u be any vertex in A1. First assume u ∈ Dead(A1). Since u is dead at a, su,v must
be connected to u in val(t〈a〉)). Now assume u ∈ Active(A1). If su,v is not connected
to u in val(t〈a〉), then an η-operation above a that connects su,v to u connects it also
to the vertex x ∈ Active(B1) such that u = mate(x), a contradiction. Hence, in
any case su,v is connected to u and has the v-connecting label in val(t〈a〉). Thus
additional |A2| labels must exists in val(t〈a〉). By symmetry, additional |B2| vertices
must exists in val(t〈a〉).

Since labels 1, 2, and 3 are not counted in the formula of Observation 6 the next
observation follows.

Observation 7. k ≥ |Active(A1)| + |A2| + |B2| + 3.
Now we start the process of constructing a linear k-expression which defines G′′.

At each step we show that no more than k labels are used. Moreover, the η-operations
added at each step connect special vertices of the form sx,y to x and y, which implies
that all edges added in the process belong to G′′. Finally, we show in a sequence of
observations that for each regular vertex x of G′′ the edges which connect x to all
its neighbors in G′′ exist in the linear cwd-expression that we construct. Thus this
expression satisfies the conditions of the lemma.

Let e1 denote the expression obtained from t〈c〉 as follows:
1. Omit all the special vertices of the form sx,y such that both x and y do not

occur in val(t〈c〉).
2. Add immediately above c the following sequence of η-operations: for each
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special vertex s = sx,y such that s and x (y) occur in val(t〈c〉) but are not adjacent
in val(t〈c〉), add an η-operation which connects s and x (y).

Observation 8. For each vertex u ∈ Dead(B1), val(e1) includes all the edges
connecting u to all its neighbors in G′′.

Proof. Let u be a vertex in Dead(B1) and let s be a neighbor of u in G′′. Clearly,
s is a special vertex of the form s = su,v where v is a regular vertex which is a neighbor
of u in G. Since u is dead at val(t〈c〉), u is adjacent to s in val(t〈c〉), and therefore
the special vertex s is not omitted in step 1 of the construction of e1. Thus, u is
adjacent to s in val(e1).

Let e2 denote the expression obtained from e1 as follows:
1. For each vertex x such that val(e1) includes all the edges connecting x to all its

neighbors in G′′, add a ρ-operation which renames the label of x to the dead label 1.
2. Omit all the special vertices of the form sx,y such that x ∈ Active(B1) and

y = mate(x).
3. For each regular vertex u ∈ Active(B1) add the following sequence of opera-

tions:
3.1. A 1-⊕-operation which introduces mate(u) with label 3. Note that since t

has Property 4, label 3 is not used in val(t〈a〉), which implies that this label is not
used at the root of tree(e1).

3.2. A 1-⊕-operation which introduces s = su,mate(u) with label 2. Note that
since t has Property 4, label 2 is not used in val(t〈a〉), which implies that this label
is not used at the root of tree(e1).

3.3. An η2,3-operation which connects mate(u) and s.
3.4. An η2,"-operation which connects u and s, where & is the label that u has in

val(t〈a〉).
3.5. A ρ2→1-operation renaming the label of s to the dead label 1.
3.6. A ρ"→1-operation renaming the label of u to the dead label 1.
3.7. A ρ3→"-operation renaming the label of mate(u) to the label it has in

val(t〈a〉).
Observation 9. For each vertex u ∈ Active(B1), val(e2) includes all the edges

connecting u to all its neighbors in G′′.
Proof. Let u ∈ Active(B1) and let s be a neighbor of u in G′′. Clearly, s is a

special vertex of the form s = su,v where v is a regular vertex which is a neighbor of
u in G. Suppose v %= mate(u). If s is not in val(t〈c〉) then the η-operation above c
in tree(t) which connects s to u connects it also to mate(u), a contradiction. Thus,
both s and u are in val(t〈c〉). By step 2 of the construction of e1, u and s are adjacent
in val(e2). Suppose v = mate(u). By step 3.4 of the construction of e2, s and u are
adjacent in val(e2).

Let e3 denote the expression obtained from e2 by adding the following sequence
of operations immediately above the root of tree(e2):

1. For each vertex u ∈ A2 ∪ B2, if there is no u-connecting label in val(e2), add
a 1-⊕-operation which introduces u with a unique label &u (distinct from 1, 2, and
3). Otherwise, let & denote the u-connecting label in val(e2) (note that we assume
that the label & is unique, otherwise we can add ρ-operations which unify all the
u-connecting labels to a unique label), and add the following sequence of operations:

1.1. A 1-⊕-operation which introduces u with label 3.
1.2. An η3,"-operation which connects u to all the vertices having a u-connecting

label in val(e2).
1.3. A ρ"→1-operation renaming label & to the dead label 1.
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1.4. A ρ3→"-operation renaming the label of u to &.
2. For each special vertex s = sx,y such that both x and y are in Active(A1) ∪

A2 ∪ B2, add the following sequence of operations:
2.1. A 1-⊕-operation which introduces s with label 2.
2.2. An η2,"x-operation, which connects s to x, where &x is the (unique) label of x

at that point.
2.3. An η2,"y -operation, which connects s to y, where &y is the (unique) label of y

at that point.
2.4. A ρ2→1-operation renaming the label of s to the dead label 1.
3. For each regular vertex u ∈ B2 \ NXq, add a ρ"u→1-operation renaming the

label of u to the dead label 1, where &u is the (unique) label that u has at that point.
Observation 10. e3 is a k-expression, and labels(val(e3)) ≤ |Active(A1)| +

|NXq| + |A2| + 1.
Proof. The expression e1 is constructed from t〈c〉 without adding new labels. The

expression e2 is constructed from e1 using the labels of e1 in addition to the labels
1, 2, and 3 which are already considered in counting the k labels of t. Thus, e2 is a
k-expression.

In the construction of e3 from e2 (described above) the highest number of labels
used is immediately before the completion of step 2 (which is the same as the number
of labels used immediately before the completion of step 1). At that point all the
vertices in Active(A1) ∪A2 ∪ B2 have unique labels, the vertices in B1 have label 1,
the last special vertex considered has label 2 and all the other special vertices have
label 1. Thus the total number of labels used at that point is at most |Active(A1)|+
|A2|+ |B2|+ 2 which, by Observation 7, is less than k. When step 2 is completed the
number of labels is reduced by one, since the last special vertex considered gets label
1. After step 3 is completed the number of labels is reduced by |B2 \ NXq|.

Let f0 = e3 and for 1 ≤ i ≤ q let fi be the expression obtained by adding the
following sequence of operations immediately above the root of tree(fi−1):

1. A 1-⊕-operation which introduces xq−(i−1) with a unique label, denoted by
&(xq−(i−1)).

2. For each special vertex s = sx,y such that x = xq−(i−1) and y is in NXq−(i−1)

add the following sequence of operations:
2.1. A 1-⊕-operation which introduces s with label 2.
2.2. An η2,"(xq−(i−1))-operation, which connects s to xq−(i−1).
2.3. An η2,"y -operation, which connects s to y, where &y is the (unique) label of y

at that point.
2.4 A ρ2→1-operation renaming the label of s to the dead label 1.
3. For each regular vertex u ∈ NXq−(i−1) \NXq−i, add a ρ"u→1-operation renam-

ing the label of u to the dead label, where &u is the (unique) labels that u has at that
point.

Observation 11. For each vertex u ∈ B2, val(fq) includes all the edges con-
necting u to all its neighbors in G′′.

Proof. Let u be a vertex in B2 and let s be a neighbor of u in G′′. Clearly, s is a
special vertex of the form s = su,v where v is a regular vertex which is a neighbor of
u in G. If v ∈ Active(A1) ∪ A2 ∪ B2, then the s is connected to u by one of the two
η-operations added in steps 2.2 and 2.3 of the construction of e3. Suppose v ∈ B1. By
Observations 8 and 9, s is connected to v in val(e2). Thus, s has a u-connecting label
in val(e2) and is connected to u in step 1.2 of the construction of e3. The last case to
consider is when v is in Dead(A1). In this case v = xq−(i−1) for some i ∈ {1, . . . , q}
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and u must be in NXq−(i−1). Thus, u (denoted as y) is connected to s in step 2.3 of
the construction of fi.

Observation 12. For 0 ≤ i ≤ q, the fi is a k-expression, and labels(val(fi)) ≤
|Active(A1)| + |A2| + |NXq−i| + 1 + i = |A| + |NXq−i| + 1 − (q − i).

Proof. The proof is by induction on i. For i = 0 the claim follows from Observa-
tion 10, hence assume i > 0. It follows by Observation 10 that the number of labels
used in e3 is at most k. The highest number of labels used in the construction of fi

from fi−1 is immediately after step 2.1 is completed. At that point the number of
labels used is equal to labels(val(fi−1)) plus one new label for xq−(i−1) plus the label
2 used for introducing the special vertex at step 2.1. By the inductive hypothesis this
number is at most |A|+ |NXq−(i−1)|+ 3− (q − (i− 1)) which by Observation 4 is less
than k. At the completion of step 2 of the construction of fi the number of labels is
reduced by one since the label 2 is renamed to 1. At the completion of step 3. the
number of labels is reduced by |NXq−(i−1) \ NXq−i| which gives the claimed formula
for labels(val(fi)).

Let t′ denote the expression obtained from fq by adding the following sequence
of operations immediately above the root of tree(fq):

1. For each special vertex s = sx,y such that x ∈ Dead(A1) and y ∈ A add the
following sequence of operations:

1.1. A 1-⊕-operation which introduces s with label 2.
1.2. An η2,"x-operation, which connects s to x, where &x is the unique label of x

in val(fq).
1.3. An η2,"y -operation, which connects s to y, where &y is the unique label of y

in val(fq).
1.4. A ρ2→1-operation renaming the label of s to the dead label 1.
Observation 13. For each vertex u ∈ A, val(t′) includes all the edges connecting

u to all its neighbors in G′′.
Proof. Let u be a vertex in A and let s be a neighbor of u in G′′. Clearly, s is a

special vertex of the form s = su,v where v is a regular vertex which is a neighbor of
u in G. We consider the following cases:

Case 1: Suppose u ∈ Active(A1). If v ∈ Active(A1) ∪ A2 ∪ B2, then u is
connected to s in step 2.2 or step 2.3 of the construction of e3. If v ∈ Active(B1),
then u must be equal to mate(v) and is connected to s in step 3.3 of the construction
of e2. If v ∈ Dead(A1), then u (denoted as y) is connected to s in step 1.3 of the
construction of t′. The last case to consider is when v is in Dead(B1). In this case s
must occur at c which implies that the η-operation above a in tree(t) which connects
s to u also connects s to the vertex z such that u = mate(z), a contradiction. Thus,
the case when v is in Dead(B1) is not possible.

Case 2: Suppose u ∈ A2. If v ∈ Active(A1) ∪ A2 ∪ B2, then u is connected to
s in step 2.2 or step 2.3 of the construction of e3. If v ∈ B1, then s must have a
u-connecting label in val(e2) and is connected to u in step 1.2 of the construction
of e3. If v ∈ Dead(A1), then u (denoted as y) is connected to s in step 1.3 of the
construction of t′.

Case 3: Suppose u ∈ Dead(A1). If v ∈ A, then u (denoted as x) is connected
to s in step 1.2. of the construction of t′. If v ∈ Active(B1), then s must occur
at b, which implies that the η-operation above a in tree(t) which connects s to v also
connects s to mate(v), a contradiction. If v ∈ Dead(B1) then s must occur at c,
which is not possible since u ∈ Dead(A1) implies that s must occur at b. The last
case to consider is v ∈ B2. Since u ∈ Dead(A1), u = xq−(i−1) for some i ∈ {1, . . . , q},



CLIQUE-WIDTH IS NP-COMPLETE 29

and v ∈ NXq−(i−1). Thus, u is connected to s in step 2.2 of the construction of fi.
Observation 14. The expression t′ defines G′′.
Proof. From the construction of t′, it is clear that all the η-operations of t′ add

edges which belong to G′′. To complete the proof we show that all edges of G′′ exist in
val(t′). Let e = uv be an edge of G′′. By definition of G′′ one of the two endpoints of
e (say u) is a regular vertex. If u ∈ A, then e is present in val(t′) by Observation 13.
If u ∈ B1, then e is present in val(t′) by Observations 8 and 9. If u ∈ B2, then e is
present in val(t′) by Observation 11.

Observation 15. The expression t′ is a linear k-expression.
Proof. Since t has Property 6, a is the unique (> 1)-⊕-operation in t, which implies

that t〈c〉 is linear. The expression t′ is constructed by adding to t〈c〉 a sequence of
operations which are either η, ρ, or 1-⊕-operations. Thus, t′ is a linear expression. To
complete the proof we show that at most k labels are used in t′. By Observation 12,
the number of labels used in fq is at most k. The highest number of labels used in
the construction of t′ from fq is equal to labels(val(fq)) plus one new label which is
used to introduce special vertices (with label 2). By Observation 12 this number is at
most |A| + |NX0| + 1 which, by Observation 5, is less than k.

Lemma 16 follows now from Observations 14 and 15. This concludes the proof of
Lemma 16.

7.8. Combining the previous results. By combining the previous lemmas we
obtain a proof of Theorem 5, which states that lin-cwd(G′′) ≤ cwd(G′′) + 6 holds if
G is a cobipartite graph with minimum degree at least 2.

Proof of Theorem 5. Let t be a k-expression defining G′′. By Lemma 10, there
exists a (k + 4)-expression t1 defining G′′ such that t1 has Property 3. By Lemma 11,
there exists a (k + 6)-expression t2 defining G′′ such that t2 has Property 4. By
Lemma 12, there exists a (k+6)-expression t3 defining G′′ such that t3 has Property 5.
By Lemma 14, there exists a (k + 6)-expression t4 defining G′′ such that t4 has
Property 6. By Lemma 15, there exists a (k + 6)-expression t5 defining G′′ such that
t5 has Property 7. By Lemma 16, there exists a linear (k + 6)-expression t′ which
defines G′′. This completes the proof of Theorem 5.

8. Open Questions. Our results show that the clique-width of a graph cannot
be computed in polynomial time unless P = NP, and we are left with the question
of the parameterized complexity of clique-width: what is the complexity of decid-
ing whether the clique-width of a graph does not exceed a fixed parameter k? In
particular, the following questions remain open:

1. Is it possible to recognize graphs of clique-width at most 4 in polynomial
time?

2. If k is a fixed constant, is it possible to recognize graphs of clique-width at
most k in polynomial time?

3. Is the recognition of graphs of clique-width at most k fixed-parameter tractable
with k as the parameter? I.e., is it possible to recognize graphs of clique-width
at most k in time O(f(k)nc), where n denotes the size of the given graph, f
is a computable function, and c is a constant which does not depend on k.

4. Which graph classes admit clique-width computation in polynomial time?
Obviously, a positive answer to Question 1 is a necessary pre-condition for a

positive answer to Question 2, and a positive answer to Question 2 is a necessary
pre-condition for a positive answer to Question 3.
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