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A fractional-order two-neuron Hopfield neural network with delay is proposed based on the classic well-known Hopfield neural
networks, and further, the complex dynamical behaviors of such a network are investigated. A great variety of interesting dynamical
phenomena, including single-periodic,multiple-periodic, and chaoticmotions, are found to exist.The existence of chaotic attractors
is verified by the bifurcation diagram and phase portraits as well.

1. Introduction

Fractional calculus, which mainly deals with derivatives and
integrals of arbitrary order, was firstly introduced 300 years
ago. However, it is only in recent decades that fractional
calculus is applied to physics and engineering [1–3].Themain
advantage of fractional-order models in comparison with
its integer-order counterparts is that fractional derivatives
provide an excellent tool in the description of memory
and hereditary properties of various processes. In fractional
calculus, a generalized capacitor, called “fractance,” is often
considered to be the main operator. It is actually an electrical
circuit in which its voltage and current are related by the
fractional-order differential equation [4].

Chaos theory has been extensively investigated in vari-
ous fields of research after the first observation of chaotic
attractors in Lorenz system. Recently, study on the complex
dynamical behaviors of fractional-order systems has become
a hot research topic due to the fact that fractional-order sys-
tems show higher nonlinearity and more degrees of freedom
in the models, and therefore fractional-order chaotic systems
are considered to have the potential ability of improving the
security of chaotic communication systems [5]. It has been

known that chaos in many well-known integer-order chaotic
systems will remain when the orders become fractional, and
a great number of fractional-order chaotic systems have
been proposed as a consequence [6–14]. Moreover, chaotic
behaviors have also been found to exist in some discon-
tinuous systems with fractional derivatives [15]. However,
it is worthwhile to note that none of the aforementioned
fractional-order chaotic systems are time-delayed systems.

On the other hand, the dynamics of delayed neural net-
works (DNNs) with traditional integer-order derivatives have
been extensively studied both in theory and applications.
[16–25]. It has been reported that DNNs can really display
quite rich dynamical behaviors. For instance, Lu studied
the complex dynamics of a DNN of Hopfield-type with
two neurons and concluded that for a certain set of system
parameters such a network does exhibit chaotic attractors
[23]. The complex dynamics of a delay-free neural network
of Hopfield-type with four neurons have been investigated in
[24], and hyperchaotic attractors are found to exist for some
particular set of weight matrices. Chaotic attractors are also
known to exist in delayed cellular neural networks [25].

However, the dynamical analysis of fractional-order neu-
ral networks is a very recent and promising research topic.
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Actually, if we replace the common capacitor in the integer-
order Hopfield neural networks (HNNs) by the aforemen-
tioned “fractance,” we obtain the model of fractional-order
HNNs. The incorporation of fractional derivatives into the
network is a great improvement in modeling. It has been
pointed out that fractional differentiation provides neu-
rons with a fundamental and general computation that can
contribute to efficient information processing [26]. More
recently, efforts have been made to investigate the complex
dynamics of fractional-order neural networks. In [27], Arena
et al. firstly introduced a cellular neural network (CNN) with
fractional-order cells. In [28], Petráš presented a fractional
three-cell CNN which exhibits limit cycle and stable orbit for
different parameter values. A fractional two-cell chaotic CNN
was reported in [29] and the corresponding strange attractor
was shown. In [30], a fractional-order four-cell CNNhas been
presented and hyperchaotic attractors have been displayed.
In [31], the dynamics of fractional-order delay-free HNNs,
including stability andmultistability, bifurcations, and chaos,
have been investigated.

Time-delay is ubiquitous in physical systems, control
systems, and biological systems due to finite switching speeds
of amplifiers, finite signal propagation time in biological
networks, and so on. Chaotic attractors in a fractional-
order CNN with time-delay have been observed when the
fractional-order 𝛼 ≥ 0.1 [32]. The analysis of delay dynam-
ics in networked control systems has been made in [33].
Unfortunately, little effort has been devoted to the complex
dynamics of delayed fractional-order neural networks of
Hopfield-type so far. This is a new subject and needs to be
explored in depth.Themain aim of this paper is to investigate
the complex dynamics of fractional-order HNNs with time
delay; a great variety of interesting dynamical behaviors,
such as periodic and chaotic will be observed and the effect
of the time delay will also be discovered. The existence of
chaotic attractors is verified by bifurcation diagram and phase
portraits, respectively.

The rest of this paper is organized as follows. In Section 2,
definition for fractional derivatives and amodified numerical
algorithm for solving delayed fractional-order differential
equations are presented. In Section 3, a delayed fractional-
order HNN with two neurons is proposed. Bifurcation
analysis is made in Section 4. The lowest order, as well as the
highest order, for chaos to exist is determined and the effect of
the time delay is revealed. Finally, some concluding remarks
are reported in Section 5.

2. Preliminaries and Notations

There are threemost frequently used definitions for fractional
derivatives, that is, Riemann-Liouville, Grünwald-Letnikov,
and Caputo’s definitions. The main advantage of Caputo
definition is that the initial conditions for fractional-order
differential equations with Caputo derivatives take on the
same form as for integer-order differential equations [1]. And
therefore, this paper is based on Caputo’s definition.

Definition 1 (see [1]). The Caputo fractional derivative of
order 𝛼 of a continuous function 𝑓 : 𝑅

+
→ 𝑅 is defined

as follows:

𝐷
𝛼

𝑡
𝑓 (𝑡) =

{
{
{

{
{
{

{

1

Γ (𝑛 − 𝛼)

∫

𝑡

0

𝑓
(𝑛)

(𝜏)

(𝑡 − 𝜏)
𝛼+1−𝑛

𝑑𝜏, 𝑛 − 1 < 𝛼 < 𝑛,

𝑑
𝑛

𝑑𝑡
𝑛
𝑓 (𝑡) , 𝛼 = 𝑛,

(1)

where Γ is Γ-function, and

Γ (𝑧) = ∫

∞

0

𝑒
−𝑡

𝑡
𝑧−1

𝑑𝑡, Γ (𝑧 + 1) = 𝑧Γ (𝑧) . (2)

The numerical calculation of fractional-order differential
equations (FDEs) is not as simple as that of ordinary dif-
ferential equations (ODEs). Due to the nonlocal character
of fractional derivative operator, the numerical methods for
solving ODEs have to be modified to cater for solving FDEs.
In [34, 35], a method to numerically solve FDEs has been
proposed based on theAdams-Bashforth-Moulton predictor-
corrector scheme. Furthermore, an algorithm for solving
fractional-order delayed differential equations (FDDEs) in
the form of 𝐷𝛼

𝑡
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡 − 𝜏)) is presented in [36]. We

modify the predictor-corrector algorithm proposed in [36]
such that it is appropriate to solve FDDEs in the form of (3)
as below.

Consider the FDDEs described by

𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) , 𝑡 ∈ [0, 𝑇] , 0 < 𝛼 ≤ 1,

𝑥 (𝑡) = 𝑔 (𝑡) , 𝑡 ∈ [−𝜏, 0] .

(3)

It should be noted that 𝑓 is assumed to satisfy the
Lipschitz condition with respect to its second and third
variables, respectively, and 𝑔 is assumed to be continuous in
(3) in order to ensure the existence of solutions. For more
details, the reader can consult [37] and the references cited
therein.

Applying fractional integration 𝐼
𝛼

𝑡
on both sides of (3), we

obtain
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(4)

Discretizing (4) for uniform grid, 𝑡
𝑛
= 𝑛ℎ (𝑛 = −𝑙, −𝑙 +

1, . . . , −1, 0, 1, . . . , 𝑁), in which 𝑙 and 𝑁 are integers and
satisfy 𝑇 = 𝑁ℎ and 𝜏 = 𝑙ℎ. Let
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Suppose that we have obtained the approximations for
𝑥
ℎ
(𝑡
𝑖
) (𝑖 = 1, 2, . . . , 𝑛), and now we wish to calculate 𝑥

ℎ
(𝑡
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)

by using
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modified predictor-corrector algorithm can be presented as
follows:
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Remark 2. It should be noticed that the algorithm proposed
in [36] can be used to calculate the FDDEs in the form of
𝐷
𝛼

𝑡
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡 − 𝜏)), where the variable 𝑥(𝑡) does not

explicitly appear in the right-hand side function 𝑓. However,
when𝑓 is also a function of 𝑥(𝑡), that is, the FDDEs described
by 𝐷
𝛼

𝑡
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏)), the algorithm proposed in

[36] fails to be used in this case. For this reason, we modify
the algorithm such that it is appropriate to solve FDDEs in the
form of (3). Note that (10) is used indispensably to predict
the value of 𝑥

ℎ
(𝑡
𝑛+1

) as 𝑥
𝑝

ℎ
(𝑡
𝑛+1

). This is the main difference
between the modified algorithm and the algorithm proposed
in [36].

3. Description of the Delayed
Fractional-Order HNNs

In this paper, we consider the fractional-order HNNs with
time delay described by

𝐷
𝛼

𝑡
𝑥
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡) +
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𝑐
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(𝑡 − 𝜏)) + 𝐼

𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] , 0 < 𝛼 < 1,

(12)

where 𝛼 denotes the Caputo fractional derivative of order 𝛼,
𝑎
𝑖
> 0, 𝑏

𝑖𝑗
and 𝑐
𝑖𝑗
are real numbers, 𝜏 ≥ 0 represents the time

delay, and 𝐼
𝑖
are external inputs.The activation function 𝑓(𝑥)

is chosen as 𝑓(𝑥) = tanh (𝑥), and 𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡), 𝑡 ∈ [−𝜏, 0], is

the initial condition.
It should be noted that when 𝛼 = 1, (12) is reduced to the

classical integer-order delayed HNNs. The complex dynami-
cal behaviors of such a network with two neurons have been
investigated in [23] and single-periodic, multiple-periodic,
and chaotic motions have been revealed. In this paper, we
study the fractional-order case, that is, the complex dynamics
of system (12) with two neurons.

Rewrite (12) into a compact form

𝐷
𝛼

𝑡
𝑥 (𝑡) = −𝐴𝑥 (𝑡) + 𝐵𝑓 (𝑥 (𝑡)) + 𝐶𝑓 (𝑥 (𝑡 − 𝜏)) + 𝐼,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] , 0 < 𝛼 < 1,

(13)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇, 𝑓(𝑥(𝑡)) = (𝑓(𝑥

1
(𝑡)), 𝑓(𝑥

2
(𝑡)))
𝑇,

𝑓(𝑥(𝑡−𝜏)) = (𝑓(𝑥
1
(𝑡−𝜏)), 𝑓(𝑥

2
(𝑡−𝜏)))

𝑇, 𝐼 = (𝐼
1
, 𝐼
2
)
𝑇, 𝜙(𝑡) =

(𝜙
1
(𝑡), 𝜙
2
(𝑡))
𝑇, and

𝐴 = (

𝑎
1

0

0 𝑎
2

) , 𝐵 = (

𝑏
11

𝑏
12

𝑏
21

𝑏
22

) ,

𝐶 = (

𝑐
11

𝑐
12

𝑐
21

𝑐
22

) .

(14)

It should be noticed that we always assume that 𝐼 = 0 in the
remainder of this paper.

4. Bifurcation and Chaos in Delayed
Fractional-Order HNN

We firstly fix the values of system parameters of (13) as

𝐴 = (

1 0

0 1
) , 𝐵 = (

2.0 −0.1

−5.0 2.0
) ,

𝐶 = (

−1.5 −0.1

−0.2 −1.5
) ,

(15)

and the time delay 𝜏 = 1. The initial condition is
always chosen as the constant function on [−𝜏, 0].
The equilibrium points are calculated numerically as
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Figure 1: Different dynamical behaviors of system (13) with fixed parameter values 𝑏
22

= 2.0, 𝑐
22

= −1.5 and two groups of initial conditions
(0.4, 0.6)

𝑇 and (−0.4, −0.6)
𝑇 for 𝑡 ∈ [−1, 0], respectively; (a) period-one orbits when 𝛼 = 0.82; (b) period-two orbits when 𝛼 = 0.84; (c)

period-four orbits when 𝛼 = 0.85; (d) separate single-scroll chaotic attractors when 𝛼 = 0.90.

𝑥
∗

1
= (−0.37614, 2.35978), 𝑥

∗

2
= (0, 0), and 𝑥

∗

3
= (0.37614,

−2.35978). In this section, we employ the numerical method
proposed in Section 2 to solve (13). The step size ℎ is chosen
as 0.05, and the simulation time 𝑇 is chosen as 1000.

When the fractional order 𝛼 = 0.82, Figure 1(a) shows
the two separate period-one orbits with two groups of initial
conditions 𝑥

1
(𝑡) = 0.4, 𝑥

2
(𝑡) = 0.6 and 𝑥

1
(𝑡) = −0.4,

𝑥
2
(𝑡) = −0.6 for 𝑡 ∈ [−1, 0], respectively. It can be

easily found from Figure 1(a) that one period orbit oscillates
around the equilibrium point 𝑥

∗

1
= (−0.37614, 2.35978);

the other oscillates around the equilibrium point 𝑥
∗

3
=

(0.37614, −2.35978).With the increase of the derivative order,
period-two orbits and period-four orbits appear. Figure 1(b)
shows two separate period-two orbits with order𝛼 = 0.84 and
Figure 1(c) shows two separate period-four orbits with order
𝛼 = 0.85. If we continue to increase the derivative order, then
system (13) begins to exhibit chaotic behavior. Figure 1(d)
shows two separate coexisting single-scroll chaotic attractors
with order 𝛼 = 0.90. It should be noted that Figures 1(b), 1(c),
and 1(d) take on the same initial values as those in Figure 1(a).

If we further increase the derivative order to 0.92, two
separate single-scroll chaotic attractors merge into a double-
scroll chaotic attractor. Figure 2(a) shows a fully developed
double-scroll chaotic attractor with order 𝛼 = 0.92 and the
initial condition is set as 𝑥

1
(𝑡) = 0.4, 𝑥

2
(𝑡) = 0.6 for 𝑡 ∈

[−1, 0]. When the derivative order is increased to 𝛼 = 0.99,
Figure 2(b) shows a periodic orbit with the initial condition
𝑥
1
(𝑡) = 0.4, 𝑥

2
(𝑡) = 0.6 for 𝑡 ∈ [−1, 0]. That is to say, for

fractional-order nonlinear system with time delay, there is a
chance to be periodic after it has already entered the chaotic
domain.

We summarize the considered cases in Figures 1 and 2
in Table 1. We can find from Table 1 that when keeping the
values of 𝑏

22
and 𝑐
22

fixed, system (13) firstly undergoes the
process of period-doubling bifurcation with the increase of
𝛼 to some extent and then tends from disorder to order
when the value of 𝛼 continues to increase. This indicates that
the dynamical characteristics of fractional-order nonlinear
systems with delays are completely different from fractional-
order nonlinear systems without delays.
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Figure 2: (a) Double-scroll chaotic attractor when 𝛼 = 0.92 with the initial condition (0.4, 0.6)
𝑇 for 𝑡 ∈ [−1, 0]; (b) periodic orbit when

𝛼 = 0.99 with the initial condition (0.4, 0.6)
𝑇 for 𝑡 ∈ [−1, 0].

Table 1: Dynamics of system (13) with 𝑏
22

= 2.0, 𝑐
22

= −1.5, and
different 𝛼.

𝛼 Observation Figure
0.82 Period-1 Figure 1(a)
0.84 Period-2 Figure 1(b)
0.85 Period-4 Figure 1(c)
0.90 Single-scroll chaos Figure 1(d)
0.92 Double-scroll chaos Figure 2(a)
0.99 Period Figure 2(b)

Remark 3. It is generally known that chaotic behavior in
fractional-order nonlinear systems without time delays is
preserved when the derivative order is greater than a certain
value (called as the lowest order). However, an interesting
phenomenon for delayed fractional-order nonlinear system
is observed in the simulation; different from fractional-order
system without time delay, chaotic phenomena exist only
for a certain interval of derivative order, that is to say, a
lowest order as well as a highest order has been found to
exist in order to ensure the occurrence of chaos. As long as
the derivative order is beyond these two bounds, the chaotic
attractor will vanish.

In order to confirm the period-doubling bifurcation
process, we draw the bifurcation diagrams of 𝑥

1
with respect

to the derivative order 𝛼. Figure 3 shows a bifurcation process
when 𝛼 ranges from 0.8 to 1 with 𝑏

22
= 2.0, 𝑐

22
= −1.5. It can

be determined from Figure 3 that a periodic window is found
when 𝛼 is about 0.99. It confirms what we have observed in
Figures 1 and 2.

In what follows, we modify only the values of 𝑏
22
and 𝑐
22

into 𝑏
22

= 3.0, 𝑐
22

= −2.5 to investigate the dynamics of
system (13). Obviously, the equilibrium points of system (13)
do not change. It can be easily seen that with the increase of

1

0.5

0

−0.5
0.8 0.85 0.9 0.95 1

x
1

𝛼

Bifurcation a

Figure 3: Bifurcation diagrams of 𝑥
1
with respect to the derivative

order 𝛼 when 𝑏
22

= 2.0, 𝑐
22

= −1.5.

the system order, system (13) undergoes a similar process of
period-doubling bifurcation.

When the system order 𝛼 = 0.78, Figure 4(a) shows
two separate period-one orbits with two groups of initial
conditions 𝑥

1
(𝑡) = 0.4, 𝑥

2
(𝑡) = 0.6 and 𝑥

1
(𝑡) = −0.4, 𝑥

2
(𝑡) =

−0.6 for 𝑡 ∈ [−1, 0], respectively. Figures 4(b) and 4(c) show
two separate period-two and period-four orbits with system
order 𝛼 = 0.79 and 𝛼 = 0.80, respectively. Figure 4(d) shows
two separate single-scroll chaotic attractors with derivative
order 𝛼 = 0.83. It should be noted that Figures 4(b), 4(c), and
4(d) take on the same initial values as those in Figure 4(a).

It should also be noted that another interesting phe-
nomenon is observed; that is, evenwhen the system enters the
chaotic domain and if we continue to increase the fractional
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Figure 4: Different dynamical behaviors of system (13) with fixed parameter values 𝑏
22

= 3.0, 𝑐
22

= −2.5 and two groups of initial conditions
(0.4, 0.6)

𝑇 and (−0.4, −0.6)
𝑇 for 𝑡 ∈ [−1, 0], respectively; (a) period-one orbits when 𝛼 = 0.78; (b) period-two orbits when 𝛼 = 0.79; (c)

period-four orbits when 𝛼 = 0.80; (d) separate single-scroll chaotic attractors when 𝛼 = 0.83.

order, now the systemwill exhibit different patterns of chaotic
attractors. Figure 5 shows different fully developed double-
scroll chaotic attractors with parameters 𝑏

22
= 3.0, 𝑐

22
= −2.5

when system order is further increased. Figure 5(a) shows a
double-scroll chaotic attractor with fractional order 𝛼 = 0.87

and initial condition 𝑥
1
(𝑡) = 0.4, 𝑥

2
(𝑡) = 0.6 for 𝑡 ∈ [−1, 0].

Figures 5(b) and 5(c) show two chaotic attractors which are
symmetric about the origin with fractional order 𝛼 = 0.93

and initial conditions 𝑥
1
(𝑡) = 0.4, 𝑥

2
(𝑡) = 0.6 and 𝑥

1
(𝑡) =

−0.4, 𝑥
2
(𝑡) = −0.6 for 𝑡 ∈ [−1, 0], respectively. Figure 5(d)

shows another fully developed double-scroll chaotic attractor
with fractional order 𝛼 = 0.97 and initial conditions 𝑥

1
(𝑡) =

0.4, 𝑥
2
(𝑡) = 0.6 for 𝑡 ∈ [−1, 0].

Similarly, we summarize the considered cases in Figures
4 and 5 in Table 2.We can see fromTable 2 that when keeping
the values of 𝑏

22
= 3.0 and 𝑐

22
= −2.5 fixed, system (13)

undergoes the process of period-doubling bifurcation with
the increase of 𝛼 and then the chaotic behavior is preserved
although the patterns of the chaotic attractors are different.

Table 2: Dynamics of system (13) with 𝑏
22

= 3.0, 𝑐
22

= −2.5, and
different 𝛼.

𝛼 Observation Figure
0.78 Period-1 Figure 4(a)
0.79 Period-2 Figure 4(b)
0.80 Period-4 Figure 4(c)
0.83 Single-scroll chaos Figure 4(d)
0.87 Double-scroll chaos Figure 5(a)
0.93 Double-scroll chaos Figure 5(b)
0.93 Double-scroll chaos Figure 5(c)
0.97 Double-scroll chaos Figure 5(d)

Similarly, in order to confirm the period-doubling bifur-
cation process, we draw the bifurcation diagrams of 𝑥

1
with

respect to derivative order 𝛼. Figure 6 demonstrates bifurca-
tion process when 𝛼 ranges from 0.75 to 1 with 𝑏

22
= 3.0,

𝑐
22

= −2.5, which confirms what we have observed in Figures
4 and 5.
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Figure 5: Different fully developed double-scroll chaotic attractors; (a) with 𝛼 = 0.87 and initial value [0.4, 0.6]𝑇; (b) with 𝛼 = 0.93 and initial
value [0.4, 0.6]𝑇; (c) with 𝛼 = 0.93 and initial value [−0.4, −0.6]𝑇; (d) with 𝛼 = 0.97 and initial value [0.4, 0.6]𝑇.

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6
0.75 0.8 0.85 0.9 0.95 1

𝛼

x
1

Bifurcation b

Figure 6: Bifurcation diagrams of 𝑥
1
with respect to the derivative order 𝛼 when 𝑏
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= 3.0, 𝑐

22
= −2.5.
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5. Conclusion

In this paper, the complex dynamical behaviors of delayed
fractional-order Hopfield-type neural networks with two
neurons are detailedly investigated with the aid of numeri-
cal simulations. Different varieties of interesting dynamical
behaviors, including single-periodic, multiple-periodic, and
double-scroll chaotic attractors, have been discovered. It
should be pointed out that different from fractional-order
nonlinear systems without time delay, a lowest order as well
as a highest order has been found to exist in order to ensure
the emergence of chaos. The existence of chaotic attractors
is verified with bifurcation diagram and phase portraits. The
novel fractional-order chaos provides a new chaos generator
and can be applied in many engineering applications, espe-
cially in the secure communication.
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[28] I. Petráš, “A note on the fractional-order cellular neural net-
works,” in Proceedings of the International Joint Conference
on Neural Networks, pp. 1021–1024, Sheraton Vancouver Wall
Centre Hotel, Vancouver, Canada, July 2006.

[29] P. Arena, L. Fortuna, and D. Porto, “Chaotic behavior in
noninteger-order cellular neural networks,” Physical Review E,
vol. 61, no. 1, pp. 776–781, 2000.

[30] X. Huang, Z. Zhao, Z. Wang, and Y. Li, “Chaos and hyperchaos
in fractional-order cellular neural networks,” Neurocomputing,
vol. 94, pp. 13–21, 2012.



Advances in Mathematical Physics 9

[31] E. Kaslik and S. Sivasundaram, “Nonlinear dynamics and chaos
in fractional-order neural networks,” Neural Networks, vol. 32,
pp. 245–256, 2012.
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