Neighborhood Union Conditions for Hamiltonicity of P_{3}-dominated Graphs II

by

Xiaoling Ma ${ }^{(1)}$ and Elkin Vumar ${ }^{(2)}$

Abstract

A graph G is called P_{3}-dominated $(P 3 D)$ if it satisfies $J(x, y) \cup J^{\prime}(x, y) \neq \emptyset$ for every pair (x, y) of vertices at distance 2, where $J(x, y)=\{u \mid u \in N(x) \cap N(y), N[u] \subseteq$ $N[x] \cup N[y]\}$ and $J^{\prime}(x, y)=\{u|u \in N(x) \cap N(y)|$ if $v \in N(u) \backslash(N[x] \cup N[y])$, then $(N(u) \cup$ $N(x) \cup N(y)) \backslash\{x, y, v\} \subseteq N(v)\}$ for $x, y \in V(G)$ at distance 2$\}$. For a noncomplete graph G, the number $N C$ is defined as $N C=\min \{|N(x) \cup N(y)|: x, y \in V(G)$ and $x y \notin E(G)\}$, for a complete graph G, set $N C=|V(G)|-1$. In this paper, we prove that a 2-connected P_{3}-dominated graph G of order n is hamiltonian if $G \notin\left\{K_{2,3}, K_{1,1,3}\right\}$ and $N C(G) \geq(2 n-5) / 3$, moreover it is best possible.

Key Words: P_{3}-dominated graph, quasi claw-free graph, neighborhood union, hamiltonicity.
2010 Mathematics Subject Classification: Primary 05C45.

1 Introduction

We shall closely follow [9] for graph-theoretical terminology and notation not defined here. Let $G=(V, E)$ be a finite graph of order n without loops and multiple edges, where $V=V(G)$ is the vertex set and $E=E(G)$ is the edge set. For any $u \in V(G), N(u)=\{v \mid u v \in E(G)\}$ and $N[u]=N(u) \cup\{u\}$ and $d_{G}(u)=|N(u)|$. For subgraphs H and K of G, let $G-H$ denote the subgraph of G which is induced by $V(G) \backslash V(H)$, and let $N_{H}(K)$ denote the set of vertices in H that are adjacent to some vertex in K. A set $A \subseteq V(G)$ is independent if any vertices $x, y \in A$ are nonadjacent in G. The independence number $\alpha(G)$ of G is the cardinality of a maximum independent set in G. We denote by $\sigma_{k}(G)$ the minimum value of the degree-sum of any k pairwise non-adjacent vertices if $k \leq \alpha(G)$; if $k>\alpha(G)$, we set $\sigma_{k}(G)=k(n-1)$. For a graph G, we denote by $\delta(G)$ the minimum degree. If G is a noncomplete graph, then $N C$ is defined as $N C=\min \{|N(x) \cup N(y)|: x, y \in V(G), x y \notin E(G)\}$, for a complete graph G, set $N C=|V(G)|-1$. A cycle containing all the vertices of the graph is said to be a Hamilton cycle. A graph containing a Hamilton cycle is said to be hamiltonian.

A graph G is said to belong to the class $\mathcal{C F}$ of claw-free graphs if G does not contain an induced subgraph isomorphic to a claw $\left(K_{1,3}\right)$. While a large number of results have been obtained on claw-free graphs, during the last two decades several extensions of claw-free graphs have been introduced and many known results, concerning matching and hamiltonicity, on claw-free graphs have been extended to these classes. We refer to [1], [2], [4], [6]-[8], [11]-[12] and [15]-[16] for more details.

Following Ainouche [1], for each pair (x, y) of vertices at distance 2, we set $J(x, y)=$ $\{u \mid u \in N(x) \cap N(y), N[u] \subseteq N[x] \cup N[y]\}$. A graph G is quasi-claw-free if $J(x, y) \neq \emptyset$
for each pair (x, y) of vertices at distance 2 in G. As an extention of quasi-claw-free graphs, P_{3}-dominated graphs are introduced by Broersma and Vumar [5]. The class $\mathcal{P} 3 \mathcal{D}$ of $P_{3^{-}}$ dominated graphs is defined below.

Let (x, y) be a pair of vertices at distance 2 in G. We consider a common neighbor u of x and y with the following property.

> If $v \in N(u) \backslash\{x, y\}$ is neither adjacent to x nor to y, then it is adjacent to all vertices of $N(x) \cup N(y) \cup N(u) \backslash\{x, y, v\}$.

For a pair (x, y) of vertices at distance 2 in G, set $J^{\prime}(x, y)=\{u \in N(x) \cap N(y) \mid u$ satisfies (1.1) $\}$. We say that G is in the class $\mathcal{P} 3 \mathcal{D}$ of P_{3}-dominated graphs if $J(x, y) \cup J^{\prime}(x, y) \neq \emptyset$ for every pair (x, y) of vertices at distance 2 in G.

In [5], [10], [13]-[14] and [17]-[19], some known results on claw-free graphs have extended to P_{3}-dominated graphs. Particularly, the 3-connected case concerning hamiltonicity of P_{3} dominated graphs is shown [17]. However, in this paper we mainly discuss 2-connected case, which is different from the above work in [17]. Meanwhile, their neighborhood union conditions for hamiltonicity of P_{3}-dominated graphs are also different.

The objective of this paper is also to extend the following result on claw-free graphs, which was obtained by Bauer et al. [3], to P_{3}-dominated graphs. The main results of this paper are the following Theorem 2 and Corollary 1, and the proofs are given in Section 2.

Theorem 1 (Bauer et al. [3]). Let G be 2-connected claw-free graph of order n. If $N C(G) \geq$ $(2 n-5) / 3$, then G is Hamiltonian.

Theorem 2. If $G \notin\left\{K_{1,1,3}, K_{2,3}\right\}$ is a 2-connected P_{3}-dominated graph of order n such that $N C(G) \geq(2 n-5) / 3$, then G is Hamiltonian.

Since the class of P_{3}-dominated graphs contain all quasi claw-free graphs, we have:
Corollary 1. If G is a 2-connected quasi claw-free graph of order n such that $N C(G) \geq$ $(2 n-5) / 3$, then G is Hamiltonian.

Some ideas and proof techniques demonstrated by Broersma [7] are adopted in the proof of Theorem 2. Also some results obtained by Bauer [3] are used in the proof of Theorem 2. They are stated as lemmas in the following section.

2 Proof of Theorem 2

Before starting the proof of Theorem 2, we present some necessary notations and preliminary lemmas.

Let C be a cycle in G with an inherent clockwise orientation and H be a component of $G-C$. For $x, y \in V(C)$, let x^{+}and x^{-}be the successor and predecessor of x along the orientation of C, respectively. Set $x^{++}=\left(x^{+}\right)^{+}, x^{--}=\left(x^{-}\right)^{-}$. If $x, y \in V(C)$, then $C[x, y]$ denotes the consecutive vertices on C from x to y in the chosen direction of C, and $C(x, y)=C[x, y]-\{x, y\}$. Then same vertices in the reverse order are respectively denoted by $\overleftarrow{C}[y, x]$ and $\overleftarrow{C}(y, x)$. Both $C[x, y]$ and $\overleftarrow{C}[y, x]$ are considered as paths as well as vertex sets. In this section we will use such symbols for a given cycle without giving the definition.

Lemma 1. Let $G \notin\left\{K_{1,1,3}, K_{2,3}\right\}$ be a 2-connected P_{3}-dominated graph and let C be a longest cycle with a cyclic order in G, and let H be a component of $G-C$. Then (a) $x^{-} x^{+} \in E(G)$ for each $x \in N_{C}(H)$;
(b) $N\left(x^{-}\right) \cap\left\{y, y^{-}, y^{--}\right\}=\emptyset, N\left(x^{--}\right) \cap\left\{y, y^{-}, y^{--}\right\}=\emptyset$ for each $x, y \in N_{C}(H)$ with $x \neq y$.

Proof : For the proof of (a) see [5], and the proof of (b) is straightforward, hence we omit it.

Lemma 2 (Bauer et al. [3]). $\sigma_{3}(G) \geq 3 N C(G)-n+3$ for any graph G of order $n \geq 3$.
Lemma 3. Let $G \notin\left\{K_{2,3}, K_{1,1,3}\right\}$ be a 2-connected P_{3}-dominated graph of order n. If $\sigma_{3}(G) \geq n-2$, then G is Hamiltonian.

Combining Lemmas 2 and 3, we obtain the main result Theorem 2.

Proof of Lemma 3

Assume, to the contrary, that G is not hamiltonian. Let C be a longest cycle of G and H be a component of $G-C$. Fix an orientation on C. By assumption C is not a Hamilton cycle of G, there exists a vertex $u \in V(H)$. Since G is 2-connected, $G \notin\left\{K_{2,3}, K_{1,1,3}\right\}$, there exist at least 2 distinct vertices $w_{1}, w_{2}, \ldots, w_{k}$ of C such that $u w_{i} \in E(G)(i=1,2, \ldots, k)$. Let $\left\{w_{i} \mid i=1,2, \ldots, k\right\}$ be chosen such that k is maximum ($k \geq 2$). By the maximality of k, u has no neighbors in $V(C)-\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$. Let the order of occurrence on C of the vertices $w_{i}, i=1,2, \ldots, k$, be according to their indices. From the choice of C it follows that, for $1 \leq i \leq k, w_{i} w_{i+1} \notin E(C)($ indices $\bmod k), u w_{i}^{+} \notin E(G)$ and $u w_{i}^{-} \notin E(G)$. By Lemma 1 (a), we have $w_{i}^{+} w_{i}^{-} \in E(G)(i=1,2, \ldots, k)$. From the choice of C it also follows that w_{i}^{+}and w_{i+1}^{-}cannot coincide and $w_{i}^{+} w_{i+1}^{-} \notin E(C)($ indices $\bmod k)$ for $1 \leq i \leq k$. If $w_{i}^{+} w_{i+1}^{-} \in E(C)$, then the cycle $u w_{i} w_{i}^{+} \overleftarrow{C}\left[w_{i}^{-}, w_{i+1}^{+}\right] w_{i+1}^{-} w_{i+1} u$ contradicts the choice of C. By Lemma 1 (b), we have $w_{i}^{-} w_{j}^{-}, w_{i}^{--} w_{j}^{-}, w_{i}^{--} w_{j}^{--}, w_{i}^{--} w_{j}$ and $w_{i}^{-} w_{j} \notin E(G)$ where $i, j=1,2, \ldots, k$ and $i \neq j$.

Let s_{i} be a vertex of $C\left[w_{i}, w_{i+1}\right]$ such that
(i) s_{i}^{-}is adjacent to w_{i}^{--}, w_{i}^{-}or w_{i};
(ii) s_{i} is adjacent to none of w_{i}^{--}, w_{i}^{-}and w_{i};
(iii) $\left|C\left[s_{i}, w_{i+1}\right]\right|$ is minimum (indices $\bmod k$).

Since w_{i}^{+}is adjacent to w_{i}, and w_{i+1}^{-}is adjacent none of w_{i}^{--}, w_{i}^{-}and w_{i}, there exists at least one vertex of $C\left(w_{i}^{++}, w_{i+1}^{-}\right)$that satisfies both (i) and (ii). Thus s_{i} is well-defined.

Now we continue our proof for Lemma 3 with the following claims.
Claim 1. s_{i} is not adjacent to w_{j} or w_{j}^{+}.
If $s_{i} w_{j} \in E(G)$, we consider the following cases.

$$
\begin{array}{ll}
\text { Case } & \text { Cycle } C^{\prime} \\
s_{i}^{-} w_{i} \in E(G) & u w_{i} \overleftarrow{C}\left[s_{i}^{-}, w_{i}^{+} \overleftarrow{C}\left[w_{i}^{-}, w_{j}^{+}\right] \overleftarrow{C}\left[w_{j}^{-}, s_{i}\right] w_{j} u\right. \\
s_{i}^{-} w_{i}^{-} \in E(G) & u C\left[w_{i}, s_{i}^{-}\right] \overleftarrow{C}\left[w_{i}^{-}, w_{j}^{+}\right] \overleftarrow{C}\left[w_{j}^{-}, s_{i}\right] w_{j} u \\
s_{i}^{-} w_{i}^{--} \in E(G) & u w_{i} w_{i}^{-} C\left[w_{i}^{+}, s_{i}^{-}\right] \overleftarrow{C}\left[w_{i}^{--}, w_{j}^{+}\right] \overleftarrow{C}\left[w_{j}^{-}, s_{i}\right] w_{j} u
\end{array}
$$

If $s_{i} w_{j}^{+} \in E(G)$, we consider the following cases.
Case Cycle $C^{\prime \prime}$
$s_{i}^{-} w_{i} \in E(G) \quad u w_{i} \overleftarrow{C}\left[s_{i}^{-}, w_{i}^{+}\right] \overleftarrow{C}\left[w_{i}^{-}, w_{j}^{+}\right] C\left[s_{i}, w_{j}\right] u$
$s_{i}^{-} w_{i}^{-} \in E(G) \quad u C\left[w_{i}, s_{i}^{-}\right] \overleftarrow{C}\left[w_{i}^{-}, w_{j}^{+}\right] C\left[s_{i}, w_{j}\right] u$
$s_{i}^{-} w_{i}^{--} \in E(G) \quad u w_{i} w_{i}^{-} C\left[w_{i}^{+}, s_{i}^{-}\right] \overleftarrow{C}\left[w_{i}^{--}, w_{j}^{+}\right] C\left[s_{i}, w_{j}\right] u$
In each of these cases, the cycle C^{\prime} and $C^{\prime \prime}$ are longer than C, a contradiction.
Claim 2. $u s_{i} \notin E(G)$ and $N(u) \cap N\left(s_{i}\right)=\emptyset$ for $i=1,2, \ldots, k$.
Claim 3. $s_{i} s_{j} \notin E(G)$.
Assume $s_{i} s_{j} \in E(G)$. If $s_{i}^{-} w_{i}^{--} \in E(G)$, then we discuss the following cases.

Case
$s_{j}^{-} w_{j} \in E(G)$
$s_{j}^{-} w_{j}^{-} \in E(G)$
$s_{j}^{-} w_{j}^{--} \in E(G)$

Cycle C^{\prime}
$u w_{i} w_{i}^{-} C\left[w_{i}^{+}, s_{i}^{-}\right] \underset{\leftarrow}{\overleftarrow{C}}\left[w_{i}^{--}, s_{j}\right] C\left[s_{i}, w_{j}^{-}\right] C\left[w_{j}^{+}, s_{j}^{-}\right] w_{j} u$
$u w_{i} w_{i}^{-} C\left[w_{i}^{+}, s_{i}^{-}\right] \overleftarrow{C}\left[w_{i}^{--}, s_{j}\right] C\left[s_{i}, w_{j}^{-}\right] \overleftarrow{C}\left[s_{j}^{-}, w_{j}\right] u$
$u w_{i} w_{i}^{-} C\left[w_{i}^{+}, s_{i}^{-}\right] \overleftarrow{C}\left[w_{i}^{--}, s_{j}\right] C\left[s_{i}, w_{j}^{--}\right] \overleftarrow{C}\left[s_{j}^{-}, w_{j}^{+}\right] w_{j}^{-} w_{j} u$

Obviously, the cycle C^{\prime} contradicts the choice of C in each cases. The other cases $s_{i}^{-} w_{i}^{-} \in$ $E(G)$ or $s_{i}^{-} w_{i} \in E(G)$ are similar.

Claim 4. For similar reasons, $N_{G-C}\left(s_{i}\right) \cap N_{G-C}\left(s_{j}\right)=\emptyset$ for $i, j=1,2, \ldots, k$ and $i \neq j$.
Claim 5. If $v, v^{+} \in C\left[s_{i}^{+}, w_{j}^{-}\right]$, then at most one of edges $s_{j} v$ and $s_{i} v^{+}$is present in G.
Suppose $s_{j} v \in E(G)$ and $s_{i} v^{+} \in E(G)$. If $s_{i}^{-} w_{i}^{--} \in E(G)$, then we have the following cases.

Case \quad Cycle C^{\prime}
$s_{j}^{-} w_{j} \in E(G) \quad u w_{i} w_{i}^{-} C\left[w_{i}^{+}, s_{i}^{-}\right] \overleftarrow{C}\left[w_{i}^{--}, s_{j}\right] \overleftarrow{C}\left[v, s_{i}\right] C\left[v^{+}, w_{j}^{-}\right] C\left[w_{j}^{+}, s_{j}^{-}\right] w_{j} u$ $s_{j}^{-} w_{j}^{-} \in E(G) \quad u w_{i} w_{i}^{-} C\left[w_{i}^{+}, s_{i}^{-}\right] \overleftarrow{C}\left[w_{i}^{--}, s_{j}\right] \overleftarrow{C}\left[v, s_{i}\right] C\left[v^{+}, w_{j}^{-}\right] \overleftarrow{C}\left[s_{j}^{-}, w_{j}\right] u$ $s_{j}^{-} w_{j}^{--} \in E(G) \quad u w_{i} w_{i}^{-} C\left[w_{i}^{+}, s_{i}^{-}\right] \overleftarrow{C}\left[w_{i}^{--}, s_{j}\right] \overleftarrow{C}\left[v, s_{i}\right] C\left[v^{+}, w_{j}^{--}\right] \overleftarrow{C}\left[s_{j}^{-}, w_{j}^{+}\right] w_{j}^{-} w_{j} u$

The cycle C^{\prime} contradicts the choice of C in each cases. The other cases $s_{i}^{-} w_{i}^{-} \in E(G)$ or $s_{i}^{-} w_{i} \in E(G)$ are similar.

Claim 6. If $v, v^{+} \in C\left[w_{i}^{+}, s_{i}^{-}\right]$and $w_{i} s_{i}^{-} \in E(G)$, then at most one of the edges $s_{i} v$ and $s_{j} v^{+}$is present in G.

If $s_{i} v \in E(G)$ and $s_{j} v^{+} \in E(G)$, e.g., $s_{j}^{-} w_{j}^{--} \in E(G)$, then the cycle $u w_{i} \overleftarrow{C}\left[s_{i}^{-}, v^{+}\right] C\left[s_{j}, w_{i}^{-}\right]$ $C\left[w_{i}^{+}, v\right] C\left[s_{i}, w_{j}^{--}\right] \overleftarrow{C}\left[s_{j}^{-}, w_{j}^{+}\right] w_{j}^{-} w_{j} u$ is longer than C, a contradiction. The other cases are similar.

Claim 7. If $v, v^{+} \in C\left[w_{i}^{+}, s_{i}^{-}\right]$and $w_{i} s_{i}^{-} \notin E(G)$, then at most one of the edges $s_{j} v$ and $s_{i} v^{+}$is present in G.
The proof of this Claim is similar to that of Claim 5. So we omit it.
Claim 8. If $w_{i} s_{i}^{-} \notin E(G)$, then at most one of the edges $s_{i}^{-} s_{j}$ and $w_{i}^{+} s_{i}$ is present in G.
The proof of this Claim is similar to that of Claim 6. So we omit it.
If S is a subset of $V(G)$, then $d_{S}\left(s_{i}\right)=\left|N\left(s_{i}\right) \cap S\right|$. We consider the sets $I_{1}=C\left[w_{1}^{+}, s_{1}^{-}\right]$ and $I_{2}=C\left[s_{1}^{+}, w_{2}^{-}\right]$and let $A_{1}=\left\{v \in I_{1} \mid v s_{1} \in E(G)\right\}, B_{1}=\left\{v \in I_{2} \mid v s_{1} \in E(G)\right\}$ and $B_{2}=\left\{v \in I_{2} \mid v^{-} s_{2} \in E(G)\right\}$. If $w_{1} s_{1}^{-} \in E(G)$, then let $A_{2}=\left\{v \in I_{1} \mid v^{+} s_{2} \in E(G)\right\}$; if $w_{1} s_{1}^{-} \notin E(G)$ let $A_{2}=\left\{v \in I_{1} \mid v^{-} s_{2} \in E(G)\right\} . B_{1} \cap B_{2}=\emptyset$ by Claim 5 , hence we have $d_{I_{2}}\left(s_{1}\right)+d_{I_{2}}\left(s_{2}\right)=\left|B_{1}\right|+\left|B_{2}\right|=\left|B_{1} \cup B_{2}\right| \leq\left|I_{2}\right|$.

By the similar arguments, if $w_{1} s_{1}^{-} \in E(G), A_{1} \cap A_{2}=\emptyset$ by Claims 6 , then $d_{I_{1}}\left(s_{1}\right)+$ $d_{I_{1}}\left(s_{2}\right) \leq\left|I_{1}\right|$. For $w_{1} s_{1}^{-} \notin E(G)$, by Claim 7, we get $A_{1} \cap A_{2}=\emptyset$. Then we consider two possibilities:
(a) $s_{1}^{-} s_{2} \notin E(G)$. Then $d_{I_{1}}\left(s_{1}\right)+d_{I_{1}}\left(s_{2}\right)=\left|A_{1}\right|+\left|A_{2}\right|=\left|A_{1} \cup A_{2}\right| \leq\left|I_{1}\right|$;
(b) $s_{1}^{-} s_{2} \in E(G)$. Then $d_{I_{1}}\left(s_{1}\right)+d_{I_{1}}\left(s_{2}\right)=\left|A_{1}\right|+\left|A_{2}\right|+1=\left|A_{1} \cup A_{2}\right|+1$. In addition, $w_{1}^{+} \notin A_{1} \cup A_{2}$ by Claim 8. Hence $d_{I_{1}}\left(s_{1}\right)+d_{I_{1}}\left(s_{2}\right) \leq\left|I_{1}\right|$.

Similarly, we have $d_{I_{3}}\left(s_{1}\right)+d_{I_{3}}\left(s_{2}\right) \leq\left|I_{3}\right|$ for $I_{3}=C\left[w_{2}^{+}, s_{2}^{-}\right]$. Finally, we consider $I_{4}=C\left[s_{2}^{+}, w_{1}^{-}\right]$, and let $D_{1}=\left\{v \in I_{4} \mid v s_{2} \in E(G)\right\}$ and $D_{2}=\left\{v \in I_{4} \mid v^{-} s_{1} \in E(G)\right\}$. $D_{1} \cap D_{2}=\emptyset$ By Claim 5 and if $k \geq 3$, then $w_{i}^{+} \notin D_{1} \cup D_{2}$ by Claim 1, for $3 \leq i \leq k$. So $d_{I_{4}}\left(s_{1}\right)+d_{I_{4}}\left(s_{2}\right)=\left|D_{1}\right|+\left|D_{2}\right|=\left|D_{1} \cup D_{2}\right| \leq\left|I_{4}\right|-(k-2)$. In addition, by Claims 1 and 3 , $d_{V(C)}\left(s_{1}\right)+d_{V(C)}\left(s_{2}\right) \leq\left|I_{1}\right|+\left|I_{2}\right|+\left|I_{3}\right|+\left|I_{4}\right|-(k-2)=|V(C)|-k-2$. Hence, by Claims 2 and $4, d(u)+d\left(s_{1}\right)+d\left(s_{2}\right) \leq(n-1-|V(C)|)+k+|V(C)|-k-2=n-3$ which contraries to $\sigma_{3}(G) \geq n-2$. Thus the Lemma is proved.

Note that Lemma 3 and Theorem 2 are best possible. This can be seen from the $P_{3^{-}}$ dominated graph G obtained as follows: take three copies of the complete graph K_{t}, say, K_{t}^{1}, K_{t}^{2} and $K_{t}^{3}(t \geq 3)$, pick 2 distinct vertices x_{i}, y_{i} from $K_{t}^{i}(i=1,2,3)$ and then form 2 triangles $x_{1} x_{2} x_{3}$ and $y_{1} y_{2} y_{3}$. This graph G is 2-connected P_{3}-dominated graph, and we have $\sigma_{3}=n-3, N C=(2 n-6) / 3$, but G is not hamiltonian.

Acknowledgement. This work is supported by National Natural Science Foundation of China [grant number 11361060] and Doctoral Scientific Research Fund of Xinjiang University [grant number BS150205]. The authors would like to thank the editor and the anonymous referees' valuable suggestion.

References

[1] A. Ainouche, Quasi-claw-free graphs, Discrete Math. 179 (1998) 13-26.
[2] A. Ainouche, O. Favaron, H. Li, Global insertion and hamiltonicity in DCT-graphs, Discrete Math. 184 (1998) 1-13.
[3] D. Bauer, G. Fan, H.J. Veldman, Hamiltonian properties of graphs with large neighborhood unions, Discrete Math. 96 (1991) 33-49.
[4] H.J. Broersma, On some intriguing problems in hamiltonian graph theory - a survey, Discrete Math. 251 (2002) 47-69.
[5] H.J. Broersma, E. Vumar, On hamiltonicity of P_{3}-dominated graphs, Math. Meth. Oper. Res. 69 (2009) 297-306.
[6] H.J. Broersma, Z. Ryjáček, I. Schiermeyer, Toughness and hamiltoncity in almost claw-free graphs, J. Graph Theory 21 (1996) 431-439.
[7] H.J. Broersma, Hamilton cycles in graphs and related topics, Doctoral Thesis, University of Twente, Enschede, 1988.
[8] H. Li, C. Chen, A. Harkat-Benhamdine, Distance dominating cycles in quasi-clawfree graphs, Graphs and Combin. 15 (1999) 279-285.
[9] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London (1976).
[10] J. Guo, E. Vumar, On the Circumference of 2-Connected P_{3}-Dominated Graphs, Graphs and Combin. 24 (2008) 443-451.
[11] M. Li, Longest cycles in almost claw-free graphs, Graphs and Combin. 16 (2000) 177198.
[12] M. Li, Hamiltonian cycles in almost claw-free graphs, Graphs and Combin. 17 (2001) 687-706.
[13] M. Metsidik, E. Vumar, Toughness and matching extension in P_{3}-dominated graphs, Graphs and Combin. 26 (2010) 425-432.
[14] M. Metrose, E. Vumar, Distance-dominating cycles in P_{3}-dominated graphs, Ars Combinatoria 105 (2012) 387-393.
[15] R. Li, Hamiltonicity of 2-connected quasi-claw-free graphs, Discrete Math. 283 (2004) 145-150.
[16] R. Li, Hamiltonicity of 3-connected quasi-claw-free graphs, Discrete Math. 265 (2003) 393-396.
[17] X. Ma, E. Vumar, Neighborhood union conditions for hamiltonicity of P_{3}-dominated graphs, Graphs and Combin. 30 (2014) 1499-1511.
[18] X. Ma, E. Vumar, Two sufficient conditions for P_{3}-dominated hamiltonian graphs, OR Transactions 13 (2009) 59-67.
[19] Y. Chen, S. Fan, H-J. Lai, On 3-connected hamiltonian line graphs, Discrete Math. 312 (2012) 1877-1882.

Received: 03.03.2012
Revised: 10.05.2016
Accepted: 18.5.2016
${ }^{(1)}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046,
P.R. China.

E-mail: mathmxl115@xju.edu.cn
${ }^{(2)}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P.R. China.

E-mail: vumar@xju.edu.cn

