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Abstract: Most of predictive maintenance technologies are inaccessible to 
small scale and medium scale industries due to their demanding cost. This 
paper proposes a predictive maintenance policy using failure mode effect and 
criticality analysis (FMECA) and non-homogeneous Poisson process (NHPP) 
models which require minimal use of advanced monitoring technologies and 
sophisticated data acquisition systems. Most of the repairable systems show 
long term reliability degradation with repeated overhauls. Here, critical 
component of a system or machinery exhibiting sad (deteriorating) trend is 
used as an indicator to predict overall maintenance time of a system. Firstly, the 
component to be used as an indicator for predictive maintenance is chosen 
using FMECA method, in which the most critical component is chosen. 
Secondly, the failure data of the chosen component is analysed using NHPP 
models and based on analysis of the data, relevant NHPP model is selected and 
finally, the Mean Time Between Failure (MTBF) of the component is 
compared with the threshold mean time between failure [MTBF(Th)] of the 
component to decide the overall maintenance time for the system. The 
developed methodology is validated on an overhead crane in a steel 
manufacturing company. 
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1 Introduction 

It is evident that health of any operating system deteriorates with time and requires 
frequent maintenance. Maintenance can be defined as the set of activities performed in 
order to restore a system to its acceptable working condition (Ahmad and Kamaruddin, 
2012; Dhillon, 2002). Maintenance can be classified under three main headings. Firstly, 
corrective maintenance, where the system is restored to its working condition after it has 
failed (Ahmad and Kamaruddin, 2012; Bevilacqua and Braglia, 2000). Secondly, the 
preventive maintenance, where periodic maintenance is performed to prevent breakdowns 
and thereby decreasing the likelihood of equipment failure and improving the availability 
of the system (Moghaddam and Usher, 2011; Joo and Min, 2013; Yeh et al., 2009; You  
et al., 2011; Zhao, 2003). Lastly the predictive maintenance, where the system is 
continuously monitored to determine the health of the system and the maintenance is 
done when the health of the system deteriorates to a predefined threshold level (Chu  
et al., 1998; Costa et al., 2012; Dieulle et al., 2001; Hsiao et al., 2013; Moya, 2004; 
Neves et al., 2011; Silva et al., 2012). There are several benefits associated with 
predictive maintenance over corrective and preventive maintenance such as, increased 
plant reliability, improved plant availability, reduced maintenance cost, better asset 
protection, reduced spare part inventory, reduced catastrophic and unexpected machine 
failures, better product quality, reduced energy consumption, increased personnel safety, 
reduced mean time between failure (MTBF) of plant equipment (Beltran and Lopez, 
2000; Carnero, 2006; Christer et al., 1997; Hu et al., 2012; Kakkar, 1999; Lupinucci  
et al., 2000; Shahin et al., 2012; Tan and Raghavan, 2008; Villar et al., 2000). 

Two major difficulties are practically encountered during implementation of 
predictive maintenance policy. Firstly, it is the absence of any concrete statistical model 
for predictive maintenance (Tan and Raghavan, 2008) and secondly, it is the demanding 
cost of advanced monitoring technology and sophisticated data acquisition systems which 
makes it a complex and costly affair (Wendai and Daescu, 2002). Most of the models 
developed for failure data analysis are followed by supposition that the failure data is 
homogeneous and identically distributed which is true in most of the cases where total 
renewal process takes place (Coetzee, 1997; Walls and Bendell, 1986). However in 
reality most of the repairable systems show long term reliability degradation with 
repeated overhaul and at times replacement of the degraded component of the system, 
failure data is found to be non-homogeneous exhibiting sad failure trend that is wear-out 
failures, in which the failure rate increases wit time(Coetzee, 1997; Battini et al., 2013). 
The proceeding section shows the framework of the proposed predictive maintenance 
policy for repairable systems. This paper proposes a predictive maintenance policy for 
system consisting of large number of components with assumption of minimal repair 
(Barlow and Hunter, 1960) and follows non-homogeneous failure trend with minimum 
use of advanced monitoring technologies and sophisticated data acquisition systems. 
Maintenance of the machine is based on the failure pattern of most critical component, 
where the criticality of the component is calculated using failure mode effect and 
criticality analysis (FMECA) method. The failure data of the most critical component is 
analysed using non-homogeneous Poisson process (NHPP) models. After analysis the 
most appropriate NHPP model is selected and the MTBF for the selected component is 
calculated which is compared with the threshold mean time between failure [MTBF(Th)] 
to predict the overall maintenance time of the system. 
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The following section of the paper, literature review on predictive maintenance policy 
is discussed. Subsequently, a predictive maintenance framework and methodology is 
proposed. Section 4, basically demonstrates how the proposed methodology is tested on 
overhead cranes in a steel manufacturing company. Finally, the general conclusion is 
presented in Section 5 of this research paper. 

2 Literature survey 

In past, various models have been proposed for predictive maintenance. Basically there 
are five classes of models developed so far. Firstly, there are probabilistic models based 
on assumptions that a system either undergoes a perfect renewal with a constant 
probability of p or minimal repair with a constant probability of (1-p) and on further 
enhancement of these probabilistic models a time varying probabilistic function was 
introduced to account the systems age and degradation (Caesarendra et al., 2011; Chu  
et al., 1998; Tan and Raghavan, 2008, 2010; Widodo and Yang, 2011; Zhao et al., 2010). 
Secondly, we have age-based models, where ageing factor plays a dominant role in 
deciding the maintenance times of the system (Fan et al., 2011; Yang and Liu, 1999; 
Zhou et al., 2007). Thirdly, is the cost-based models, where the maintenance times or 
component replacement of the system is dependent on the maintenance cost of the system 
(Bajracharya et al., 2009; Crowder and Lawless, 2007; Curcuru et al., 2010; Ekpenyong 
et al., 2012;Grall et al., 2002; Maillart and Pollock, 2002; Wu et al., 2007). Fourthly, 
there are technological models, where different technology such as vibration analysis, 
thermography, sensors, etc. are used for monitoring the identified machine parameters 
and when the parameter value falls below a predefined threshold level maintenance is 
performed (Bagavathiappan et al., 2013; Bogard et al., 2002; Chiementin et al., 2008, 
2009; Hashemian, 2011; Hashemian and Bean, 2011; Orhan et al., 2006; Rodriguez and 
Perez, 2002; Schlangen et al., 2010; Taplak et al., 2013; Wilson et al., 2011; Younus and 
Yang, 2012). Finally, there are degradation models, where system undergoes degradation 
owing to different stress conditions and random shock events (Deloux et al., 2009; Grall 
et al., 2002; Fouladirad et al., 2008; Kaiser and Gebraeel, 2009; Ponchet et al., 2010; You 
et al., 2010a, 2010b) . Predictive maintenance models along with their classifications are 
shown in Table 1. 
Table 1 Classification of predictive maintenance models 

Predictive maintenance models 
1 Probabilistic models 
 • Chu et al. (1998) used Markov process and dynamic programming to develop a PdM 

model for single unit replacement. 
• Practical PdM framework for multi-state systems using Markov chain analysis, 

universal generating function is developed (Tan and Raghavan, 2008). 
• Tan and Raghavan (2010) developed a PdM model for multi state systems using 

Markov chain, universal generating function and restoration factor. 
• Zhao et al. (2010) developed a PdM method using probabilistic fault prediction which 

reveals evolvement of the systems degradation for a gradually deteriorating system. 
• Caesarendra et al. (2011) and Widodo and Yang (2011) used probability approach and 

support vector machine to predict machine health conditions. 
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Table 1 Classification of predictive maintenance models (continued) 

Predictive maintenance models 

2 Age-based models 
 • Yang and Liu (1999) simulated ageing failure mode of a DC motor using rotating speed 

as a state variable. 

• Zhou et al. (2007) developed a PdM programme based on hybrid hazard rate recursion 
rule using age reduction factor and hazard rate increase factor. 

• Fan et al. (2011) proposed a cooperative PdM model based upon hazard rate function 
and effective age of the system. 

3 Cost-based models 
 • Grall et al. (2002) to minimise the long run expected maintenance cost per unit time 

derived a mathematical model for the system. 

• Maillart and Pollock (2002) presented cost-minimising policies to determine the time 
and allocation of monitoring resources to multiple systems. 

• Wu et al. (2007) developed a cost-based PdM model using condition monitoring of 
rolling element bearing through vibration analysis, artificial neural network model and 
cost matrix. 

• Crowder and Lawless (2007) observed wear process over time and developed a PdM 
model based on degradation and monitoring cost using Gamma process, Weiner 
process and replacement cycle cost analysis. 

• Bajracharya et al. (2009) developed a framework to predict the health state of the 
equipment based on effects of different maintenance actions. The maintenance action 
is optimised using cost function. 

• Curcuru et al. (2010) proposed a procedure for the computation of the maintenance 
time that minimises the overall maintenance cost. 

• Ekpenyong et al. (2012) developed modified generator maintenance scheduling model 
by modifying classical generator scheduling model and formulated an economic cost 
objective function. 

4 Technological models 
 • Vibration analysis models: where system vibrations are sensed and used for PdM 

(Bogard et al., 2002; Chiementin et al., 2008, 2009; Orhan et al., 2006; Taplak et al., 
2013). 

• Thermography-based models: where heat signatures are sensed and used for PdM 
(Younus and Yang, 2012; Bagavathiappan et al., 2013; Schlangen et al., 2010; Wilson 
et al., 2011). 

• Hashemian (2011), Hashemian and Bean (2011) and Rodriguez and Perez (2002) 
developed sensor-based models for predictive maintenance. 

5 Degradation models 
 • Grall et al. (2002) developed a PdM structure for a gradually deteriorating single unit 

system using mathematical modelling, replacement and renewal process. 

• Fouladirad et al. (2008) proposed an on-line change detection policy for non-stationary 
degradation process due to sudden changes. 

• Deloux et al. (2009) proposed a PdM policy using statistical process control and 
condition-based maintenance to inspect and replace the system in accordance with the 
observed deterioration level. 
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Table 1 Classification of predictive maintenance models (continued) 

Predictive maintenance models 
5 Degradation models 
 • Ponchet et al. (2010) developed a maintenance policy for stochastically deteriorating 

system using Markov process. 

• You et al. (2010b) proposed an updated sequential PdM policy to decide a real time 
PdM schedule for a continuously monitored degrading system. 

• You et al. (2010a) developed a statistically planned and individually improved PdM 
policy for degrading systems and compared it with typical degradation model showing 
higher availability in case of the developed PdM policy. 

• Kaiser and Gebraeel (2009) proposed a maintenance policy which utilises 
contemporary degradation models with reliability and degradation characteristics of 
the component’s population. 

FMECA is typically used as a technique for identifying critical failure modes, thus 
improving the reliability of products or component. There are quite a number of research 
papers addressing the application of FMECA. For example, a distributed computing 
system approach of FMECA for air traffic control is presented by Becker and Flick 
(1996). Braglia (2000) developed an integrated FMECA with economic considerations 
for failure investigation and tested it on an Italian refrigerator manufacturing company. 
Bertolini et al. (2006) applied FMECA methodology to traceability system analysis in 
food supply chain in order to locate critical points in traceability system and propose 
improvements. Bassetto et al. (2011) performed FMECA for risk analysis in order to 
assess risk involved in production ramp-up by semi-conductor manufacturers. Okayama 
et al. (2011) used FMECA and fuel cycle system (FCS) to assess system availability in a 
tritium plant. Vayrynen et al. (2011) performed FMECA on a remotely operated water 
hydraulic manipulator (WHMAN) for reliability improvements. Ahmad et al. (2012) 
integrated FMECA and failure time modelling (FTM) based on proportional hazard 
model (PHM) to obtain more reliable results in failure analysis. Jun and Huibin (2012) 
applied FMECA in an aircraft equipment in order to analyse its reliability and hence 
improving operational reliability of the product. Sawant and Christou (2012) used 
FMECA as a tool to identify the critical failure modes of the LEDs and its suitability for 
the target medical diagnostic applications. Kim and Jeong (2013) used FMECA to 
develop Reliability Centered Maintenance programme for wind turbines. Igba et al. 
(2013) studied braking system of railroad vehicles using FMECA in order to improve 
efficiency, reliability and safety of railroad maintenance task. 

3 Methodology 

In this research paper, we propose a hybrid technique of predictive maintenance policy by 
combining the benefits of FMECA methodology for identifying the critical modes and 
NHPP models for taking decision on times when the maintenance has to be scheduled. 
NHPP is a reliability engineering tool finding wide application in modelling failure 
process of repairable systems (Bae et al., 2013; Coetzee, 1997; Krivtsov, 2007; Louit  
et al., 2009; Weide and Pandey, 2011; Yue and Cao, 2001), software reliability (Hsu  
et al., 2011; Okamura et al., 2013; Zheng, 2009), warranty claims (Akbarov and Wu, 
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2012; Wu and Akbarov, 2012), etc. Here we assume that; the components of machine are 
repaired or replaced on failure, single component failure pattern could be used to predict 
the overall maintenance time of the machine and the machine degrades with time 
following increasing (sad) failure trend. Figure 1 depicts the proposed framework for 
predictive maintenance using FMECA method and NHPP models. 

Figure 1 Framework for predictive maintenance 

Failure Data Input

Failure mode effect and criticality 
analysis (FMECA)

Most critical component is chosen 
for analysis

Failure trend analysis of the chosen 
critical component is done using 

NHPP models

Suitable NHPP model is selected for 
MTBF calculation

Maintenance schedule is generated

If 
MTBF<MTBF(Th)  MTBF(Th) 

No 

Yes

 

The proposed framework basically involves the following steps. 

Step 1 As a first step of the proposed methodology failure data is generated from the 
downtime of the machine (Edward et al., 1998). The data contains all relevant 
information required for developing the maintenance policy, such as: 
• type of failure 
• reasons of failure 
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• component(s)/part(s) failed 
• frequency of failure. 

Step 2 Failure data generated in Step 1 is analysed using FMECA where the criticality 
for each failure mode and failed component is calculated. FMECA involves 
reviewing components, assemblies and sub-systems to identify failure modes, 
causes, effects and criticality of such failures. For each failure mode the failed 
component is identified, their effect on the rest of the system is noted down and 
classifies it into several categories based on their severity (shown in Table 2). 

Table 2 Severity classification and its’ probability value 

Category Classification Description Probability value (fs) 

I Catastrophic Significant system failure causing 
major damage such as loss of life, 

injury, etc. 

1.00 

II Critical Complete loss of system occurs 0.75 

III Marginal System is degraded 0.50 

IV Negligible Minor failure occurs 0.25 

Criticality of failure modes are calculated for each of the component (Ebeling, 1997; 
O’Connor, 2010; Ahmad et al., 2012). 
Table 3 FMECA worksheet 

Component Failure 
mode 

Failure 
cause 
and 

effect 

Sevearity 
class, fs 

Parameters of criticality index 

Failure 
mode 
ratio  
αi = fi/ft 

Failure 
rate λpi = 

fi/t 
Operating 
time βi × t 

Failure 
mode 

criticality 
Cm= βi × 
αi × λpi  × 

t 

        

From the Table 3, the most critical component whose Cm value is largest is chosen for 
further analysis 

Step 3 For the identified critical component, the failure data collected in Step 1 is used 
to develop the prediction model. It is quiet logical that the failure pattern of this 
component will perhaps dictate the maintenance policy of the whole machine or 
equipment. Here, we use NHPP models for fitting the failure data. The NHPP 
models used in this paper are chosen on the basis of, well established theoretical 
base, suitability for modelling data with a trend and minimal repair systems and 
models have been tested fairly well (Ascher and Feingold, 1969; Bassin, 1969, 
1973; Bell and Mioduski, 1976; Crow, 1974, 1990; Durr, 1980; Thompson, 
1981 ). Some of the popular NHPP model used for failure analysis are shown in 
Table 4. The NHPP model reflecting the highest coefficient of correlation (R2) is 
selected as it is the best fit model. 
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Table 4 NHPP models 

Model Parameter estimation 

1 1 1
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Coefficient of correlation 

2 SSRR
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where 
2
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MTBF calculation 
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−
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−
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1 Power law 

W(T) = λβTβ–1 

for λ > 0, β > 
0, T ≥ 0 

(Crow, 1974; 
Duane, 1964) 

2 The linear 
model 

W(T) =  λ(1 + 
αT) 

for λ > 0, T ≥ 0 

(Vesely, 1991; 
Atwood, 1992) 
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Table 4 NHPP models (continued) 

Model Coefficient of correlation 
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MTBF calculation 
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2 The linear 
model 

3 The log-linear 
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(Cox and 
Lewis, 1966) 

Parameter estimation 
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Step 4 For the NHPP model as selected in Step 3, the calculated MTBF is compared 
with MTBF(Th). MTBF(Th) is derived by equating weekly machine 
maintenance cost with overall machine maintenance cost. 

System maintenance cost is the total maintenance cost incurred during a week which 
includes the replacement cost of the critical component, labour cost for maintenance of 
critical component, downtime cost and other cost. Here, downtime cost is the cost 
incurred due to loss of production during machine breakdowns and other cost includes 
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the maintenance cost of other non-critical components of the system. Thus the derivation 
of MTBF(Th) is given as: 

( ) ( )Th o l l d d mC W C C T C T C= × + × + × +  

Or 

( ( ) ( ))d d m l l
Th

o

C C T C C TW
C

− × − − ×
=  

We know that, 

1( )
Th

MTBF Th
W

=  

So, we get, 

( )
( ) ( )

o

d d m l l

CMTBF Th
C C T C C T

=
− × − − ×

 

On comparison if MTBF is found more than MTBF(Th) the system is in acceptance level 
of performance and does not require maintenance. It is obvious that the MTBF will 
remain same till the occurrence of next component failure. On occurrence of next 
component failure the whole process from Step 1 is repeated again and in case MTBF 
becomes less than MTBF(Th) then the maintenance schedule is generated and the 
machine maintenance is performed. 

4 Application of model – a case example 

Here we consider a case example of a steel manufacturing company in India, where we 
tried to develop a maintenance policy of a newly bought overhead crane. An overhead 
crane, also called as a bridge crane consists of parallel runways with a travelling bridge 
spanning the gap. The overhead crane is a heavy duty crane with 100 ton capacity. The 
crane is used in a steel warehouse which handles loads averaging 55% of the rated 
capacity. It operates with an average lifts of 10 to 15 per hour to an average height of  
15 feet. Presently, the overall maintenance of the overhead crane is only performed in 
every 16th week. Components associated with several failure mode shows varying 
severity effecting production rate. 

Step 1 Twelve week failure data of the overhead crane was collected. The collected 
data contain all relevant information such as: 
• type of failure 
• reasons of failure 
• component(s)/part(s) failed 
• frequency of failure. 

Step 2 Failure data generated in step 1 is analysed using FMECA method as shown in 
Table 5. 
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Table 5 FMECA of overhead crane data 

Component Failure 
mode 

Failure cause 
and effect 

Sevearity 
class, 

sf  

Parameters of criticality index 

Failure 
mode 
ratio 
αi = fi/ft

Failure 
rate 

λpi = fi/t

Operating 
time βi × t 

Failure 
mode 

criticality 
Cm= βi × 
αi × λpi  × t 

A/H Brake A/H 
brake 
loose 

Wear and 
tear; loss of 

control 

IV, 0.25 1.00 0.0402 168 6.75 

Gearbox 
coupling 
bolt 

loose wear and tear; 
increased 
noise and 

power 
consumption 

IV, 0.25 1.00 0.064 168 10.75 

LT wheel 
coupling 
bolt 

loose wear and tear; 
increased 
noise and 

power 
consumption 

IV, 0.25 1.00 0.0714 168 12.00 

O-ring Failed Wear and 
tear; 

increased 
noise, power 
consumption 

and 
vibrations 

III, 0.50 1.00 0.0804 336 27.01 

Motor M/H 
brake 
loose 

Wear and 
tear; loss of 

control 

IV, 0.25 0.45 0.0268 75.6 2.06 

coupling 
bolt 

loose 

wear and tear; 
increased 
noise and 

power 
consumption 

IV, 0.25 0.30 0.0179
0 

50.4 0.92 

base bolt 
loose 

Wear and 
tear; loss of 
control and 
increased 

noise 

IV, 0.25 0.25 0.0149 42 0.63 

From Table 5, we observe that O-ring is the most critical component and hence it is 
chosen for further analysis. 

Step 3 Failure data as obtained in Step 1 of critical component O-ring is analysed using 
NHPP models. O-ring failure data is shown in Table 6, where number of failures 
is shown for a particular week. 
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Table 6 O-ring failure data 

Week no. Number of failures 

1 1 
2 1 
3 2 
4 2 
5 3 
6 4 
7 5 
8 5 
9 6 
10 7 
11 9 
12 11 

The data in Table 6 is fitted in NHPP models and coefficient of correlation for each 
model is calculated as shown in Table 7. 
Table 7 NHPP model analysis 

NHPP model Coefficient of correlation 

The power law model 0.965 
The linear model 0.940 
The log-linear model 0.983 

From Table 7, we observe that the log-linear model has the highest coefficient of 
correlation and hence is the best fit model. So, the log-linear model is used for further 
analysis. 

Step 4 Here the MTBF calculated using NHPP model selected in Step 3 is compared 
with MTBF(Th). MTBF(Th) is calculated using the following data: 

As per the data obtained from company log books: 

Co = Rs 650/- Cl = Rs 350/- Cd = Rs 500/- Cm = Rs 6,500/- 
Tl = 0.6 hours Td = 9.6 hours C = Rs 18,000/-  
(Note: Here Rs stands for Rupees and 1 US$ = Rs 59.8) 

We get; 

MTBF(Th) = 0.1002 

The MTBF(Th) so calculated is compared with the MTBF calculated using NHPP model 
selected in Step 3. If MTBF calculated is more than MTBF(Th) the system is in 
acceptance level of performance and does not require maintenance. It is obvious that the 
MTBF will remain same till the occurrence of next component failure. On occurrence of 
next component failure the whole process from Step 1 is repeated again and in case 
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MTBF becomes less than MTBF(Th) the maintenance schedule is generated and the 
machine maintenance is performed. 
Table 8 Comparison of MTBF and MTBF(Th) 

Week no. MTBF (log-linear model) MTBF(Th) Action performed 

1 0.9259 0.1002 None 

2 0.7407 0.1002 None 

3 0.5952 0.1002 None 

4 0.4761 0.1002 None 

5 0.3831 0.1002 None 

6 0.3076 0.1002 None 

7 0.2469 0.1002 None 

8 0.1980 0.1002 None 

9 0.1589 0.1002 None 

10 0.1274 0.1002 None 

11 0.1001 0.1002 Overall maintenance schedule 
generated 

12 0.0821 0.1002 Overall maintenance schedule 
generated 

From Table 8, we observe that the crane requires maintenance in 11th week of operation 
instead of 16th week, as the company perform scheduled maintenance every 16th week. 
Since company did not performed maintenance in 11th week, the methodology generated 
maintenance schedule for 12th week also. 

Further, we calculated the, extra expenditures incurred during operation of the 
overhead crane from 12th to 16th week, as given in Table 9. 
Table 9 Maintenance expenditure incurred 

Week no. Maintenance expenditure (Me) 
in Rupees 

Extra expenditure incurred (Me – 18,000) 
in Rupees 

12 20533.56 2533.56 
13 23950.50 5950.50 
14 28224.36 10224.36 
15 33270.43 15270.44 
16 40349.78 22349.78 
Total 56328.64 

Note: 1 US$ = Rs 59.8 

From Table 9, it can be seen that the extra expenditure incurred during 12th to 16th week 
of operation amounts to Rupees 56328.64 every 16 weeks. Thus expenditure on 
maintenance increases if the overall maintenance is delayed beyond 11th week. The 
proposed methodology hence seems economical and provides better control over machine 
failures. 
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5 Conclusions 

This paper proposes a new methodology for developing predictive maintenance policy 
using FMECA method and NHPP models. This methodology avoids costly technology 
for continuous monitoring of conditions of machine and moreover it is very simpler to 
adopt in practical cases. Through FMECA we identify the critical component and 
subsequently through NHPP model we find the MTBF and is compared with the 
predetermined value, MTBF(Th). This methodology is applied in a real life case situation 
for deciding maintenance policy of an overhead crane in a steel manufacturing company 
in India. The analysis of the case shows the need of machine maintenance in 11th week 
instead of 16th week as is the policy of the company. On further analysis we observe that 
on applying the proposed model, a savings of Rupees 168985.92 per annum can be made. 
This model can also be applied in other industries and on other machines also. 
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Notations 

W(T) = Failure rate (ROCOF) ft = Total number of failure used in the analysis  
β = Parameter of NHPP model λ = Parameter of NHPP model 
R(T) = Reliability function α = Parameter of NHPP model 
N(t) = Random variable of special interest N(T) = Number of failures in (0, T) 
n = Number of observed failures MTBF = Mean time between failures 
SST = Total sum of squares R2 = Coefficient of determination 
SSE = Error sum of squares component SSR = Regression sum of squares 
Cl = Cost of labour WTh = Threshold failure rate of critical 
Tw=Total operating time per day function Tl = Labour hours employed 
αi = Failure mode ratio βi = Conditional probability of loss of  
Co = Cost of critical component λpi = Part failure rate 
Cd = Downtime cost per hour Td = Total downtime 
C = Overall maintenance cost classification Cm = Other costs 
fi = Number of failure of component i for a 
 particular failure mode 

fs = Probability value of severity  

 


