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Abstract. The post-transcriptional regulation of genes by microRNAs
(miRNAs) is a recently discovered mechanism of growing importance.
To uncover functional relations between genes regulated by the same
miRNA or groups of miRNAs we suggest the simultaneous visualization
of the miRNA regulatory network and the Gene Ontology (GO) cate-
gories of the targeted genes. The miRNA regulatory network is shown
using circular drawings and the GO is visualized using treemaps. The
GO categories of the genes targeted by user-selected miRNAs are high-
lighted in the treemap showing the complete GO hierarchy or selected
branches of it. With this visualization method patterns of reoccurring
categories can easily identified supporting the discovery of the func-
tional role of miRNAs. Executables for MS-Windows are available under
www.ics.forth.gr/∼reczko/isbmda06

1 Introduction

MicroRNAs (miRNAs) are very small non coding DNA regions regulating the
post-transcriptional activity of other genes [1]. Experimental verification of these
regulations is very expensive both in time and money so prediction algorithms
are being developed [2,3,4,5,6,7,8,9,10]. In the following we have used the mi-
Randa program ([2,3,4]), where every prediction is also assigned a score that
reflects the strength of the regulation. The genes and miRNAs together with a
set of predicted regulations form a (predicted) miRNA regulatory network. In-
formation about genes is stored in the Gene Ontology (GO) where terms related
to genes’ functionalities are hierarchically organized [11].

Since research is focused on predictions little attention has been paid to the
produced networks, their structure and properties. Here, we present algorithms
for the visualization of miRNA regulatory networks and the GO. We also propose
an alternative point of view for miRNA regulatory networks through the GO.
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The remainder of this paper is organized as follows: In Section 2 we discuss
how the biological information is transformed into graphs and review appropri-
ate drawing techniques. In Section 3 we discuss an interactive drawing technique
that allows the user to see the portion of the miRNA regulatory network that is
of interest to him. In Section 4 we explain how we adopt the use of treemaps for
the visualization of the GO. In Section 5 we discuss how these two drawing tech-
niques communicate to support our suggestion for looking at miRNA regulatory
networks through the GO. Finally, in Section 6 we discuss future extensions of
our work.

2 Background

2.1 From Biology to Graph Theory

Here, we discuss how miRNA regulatory networks and the GO can be mathe-
matically modeled as graphs. A graph G(V, E) is a set V of vertices, which can
represent objects and a set of edges E ⊆ {V ∗ V }, which represents relations
between the vertices.

The miRNA Regulatory Network. The miRNA network consists of miR-
NAs and protein coding genes. We also know that miRNAs regulate certain
genes. We can construct a graph that represents this information: The set of
vertices V is the set of miRNAs and genes. Then, for every regulation, we insert
an edge that joins the two respective vertices. These edges have a weight, the
score that is associated to the respective prediction. Since no direct relations
exist between two miRNAs or two genes, this is a bipartite graph where the two
partitions V 1 and V 2 are: V 1: the set of miRNAs, V 2: the set of genes.

Gene Ontology. The GO stores terms that describe information related to
the biological role of genes. It has three main branches with different aspects
of genes functionality. The first branch, ”biological process” stores information
about the various broad biological goals that are served by genes. The second
branch, ”molecular function” stores terms that describe various tasks that are
performed by individual gene products. Typically, series of molecular functions
form biological processes. Finally, the third branch, the ”cellular component”
stores various sub-cellular locations where gene products operate. The GO is
organized in a hierarchical manner, so the terms are placed in layers that go
from general to specific. The first layers are quite general and are used only to
create main categories.

Since the GO consortium is an active project, new terms are inserted and
others are updated or removed. In order to keep information about the removed
terms three additional sets are used, one for each main branch and obsolete
terms are placed in them. This information can be modeled with a graph, where
each term is represented by a vertex. At this point the existence of synonyms
must be mentioned. Synonyms that describe the same term are used in the GO.
For all the synonyms of a term only one vertex is used in order to keep the
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size of the graph small. Edges are used to declare the relations. They have to
be directed to show which is the general and which the specific term. The GO
hierarchical construction guarantees the absence of cycles in the graph. Thus,
the GO hierarchy is a Directed Acyclic Graph (DAG). Since every term appears
in exactly one branch and has no edge to the other two, the GO consists of three
DAGs merged under a common root. The three obsolete sets are also placed
under this root.

2.2 Graph Drawing Techniques

Graph drawing has applications in many different fields such as computer and
social networks, E-R models or any other network. In [12] a large number of
graph drawing algorithms are described. Here we review appropriate drawing
techniques for the visualization of miRNA regulatory networks and the GO.

Visualization of miRNA Networks. Bipartite graphs are typically drawn
based on the idea of the placement of each partition in a column. The main
problem is to compute the ordering of vertices in the partitions that gives the
lowest number of crossings. This is an NP-complete problem [13] even if the
ordering of one partition is fixed [14] so various heuristics have been proposed to
determine an ordering which gives a small number of edge crossings [15,16,17,18].
The size of a miRNA regulatory network (some thousands of genes and some
hundreds of miRNAs) makes the adoption of such a technique inefficient. Efforts
are focused on the prediction of regulations and not the network itself, so no
special techniques seem to be available for miRNA regulatory networks. Here
we introduce an interactive technique using circular drawings that allows the
user to see only the portion of the network that interests him and not the full
network.

Visualization of the GO. DAGs (like the GO) are typically drawn using
algorithms that try to display their hierarchical structure. The polyline drawing
convention is the basis for such algorithms, [19,20] and the main idea is to
create hierarchical layers, [21,22,23]. Another approach to the visualization of
hierarchies are treemaps [24,25,26], where vertices that are low in the hierarchy
are placed over those that are in the first layers in the hierarchy. This method
works for trees, but can handle DAGs as well, since they can be transformed into
trees. Tools like GOfish [27], Amigo[28], CGAP[29] and dagEdit [30], visualize
the GO with expanding lists or trees, which can manipulate small hierarchies,
but face difficulties for large hierarchies. Treemaps which are a space-efficient
manner for displaying hierarchies and also support fast and easy navigation
have more recently been used for the visualization of the GO [31,32]. In both of
them additional information e.g. about the number of genes related to the GO
terms is used and weights are assigned to the terms based on this, offering a
visualization of the part of GO that is related to the available information. We
also use treemaps but choose to display the GO without additional information.
This way we have a general-purpose browser for the whole GO. One has still
access to the relations between genes and GO terms through interactive methods.
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3 Drawing the miRNA Network

For this network, the main requirement is that the bipartite structure must be
clear. Also since a prediction-score is assigned to each regulation we also want
to see this information. Small bipartite graphs are typically drawn using two
columns, but the size of the network and the difference in the cardinalities of
the two partitions (miRNAs are expected to be 1-10% of the number of genes)
inhibit the adoption of such a technique. Furthermore, due to the large degree
of many miRNA-vertices, there are many edge crossings and the result is very
cluttered. In addition, most of our available drawing area is occupied by the GO.
as we discuss later, thus the space that is available for the miRNA regulatory
network is limited. While ideally one would like to have a visualization of the
whole regulatory network where the bipartite structure and other properties are
clear, due to the aforementioned problems this can not be achieved. But we can
circumvent these difficulties with an interactive visualization technique, where
the user specifies what he wants to see.

In order to draw the miRNA regulatory network interactively we use two lists,
and allow the user to select genes and miRNAs. If some miRNA is selected it
is drawn using a small circle and all genes that are regulated by it are placed
on the periphery of a circle whose center is the miRNA. This way, we avoid
drawing lines for many edges and obtain a much clearer result. An edge has to
be drawn only if some gene has been previously drawn. This happens when the
user selects to display some miRNA which regulates a gene that is also regulated
by some other previously selected miRNA (and is drawn on its periphery). We
also suggest that dots for miRNAs are a bit larger than genes, to further clarify
the bipartite structure. The miRNAs are placed in two columns, in the order
they are selected. The first miRNA in the left column, the second in the right,
the third in the left under the first and so on. The names of the miRNAs are
printed in the interior, while genes names are shown when the mouse is over
them. An example is shown in figure 1(a).

The user can also select some gene from the respective list. If the gene has
already been drawn on the periphery of a cycle, all miRNAs that regulate it
and have not been yet drawn are placed in the lists and the respective lines are
drawn to indicate the relationship. If the gene has not been already drawn, all
regulating miRNAs are drawn and the gene is placed on the periphery of the
first of them. The newly added miRNAs are not expanded (no genes are placed
on their periphery and no lines are added) in order to keep the image as clear
as possible. This is shown in figure 1. the network of fig. 1 by selecting gene
ENSG00000048740 leads to the drawing in fig. 1(b).

For genes with many related miRNAs a large number of new cycles can be
produced. Thus, an option to remove some miRNA from the network is available
on right click. This drawing method offers many advantages. First of all, the user
sees only the portion of the network that is of interest to him. Secondly, since
this image is being created in a step-by-step interactive process, it is easy to
remember where each term is and thus, maintain a mental map of the network.
The bipartite structure of the network is also obvious: miRNAs appear in the
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(a) Initial display. (b) Expansion.

Fig. 1. The sub-network, after selecting hsa-let-7c, hsa-let-7i, hsa-mir-107, hsa-mir-
125a, hsa-mir-125b, hsa-mir-106a, hsa-mir-196 and the expansion after selecting gene
ENSG00000048740

middle of the cycles and are a bit larger, while genes appear on the periphery.
Due to the convention that genes on the periphery are regulated by the miRNA
in the center, many edges are implied and do not have to be drawn. With some
other drawing technique which displays all edges for the part of the network in
Figure 1, 82 more edges would have to be drawn. Finally, this method is very
fast, since every selection simply adds a few elements to the already constructed
image. An equivalent gene-oriented visualization is available as an option with
the roles of miRNAs and genes interchanged.

Weighted edges
Every prediction has an associated score, which represents its ”strength”, so
it is important to show this information. To this end, the median value of the
scores for the edges is computed. All edges that have score below the median
are colored in red and the brightness reflects the value. The lower the score,
the brighter the color. For edges that have score equal to the median black is
used, while edges with higher score are colored using green where again, the
brightness reflects the value. Since viewing edges is important, we have added
some features. By clicking on a vertex, all the associated edges which are initially
visible are hidden. So even if a complex image has been created, the user has the
ability to unclutter it. By re-clicking, the edges are revealed. Similarly, for the
edges that are implied by the placement of vertices on the periphery of a cycle,
an option to show them is also available(Fig 2).

4 Drawing the Gene Ontology DAG

In order to display the GO DAG efficiently three aspects must be considered: a)
display the whole graph, b) maintain the hierarchy, c) traverse through the graph
easily. The GO DAG currently contains about 20000 terms. Any traditional
graph drawing technique would fail to draw such a large graph efficiently within
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Fig. 2. Figure 1 including in-cycle edges

the limited area of a computer monitor. The hierarchical structure though, allows
for the decomposition to a hierarchical tree. This process creates a tree with even
more vertices but enables us to use treemaps which is among the most space-
efficient techniques to draw large trees.

4.1 Converting a DAG into a Tree

The method that decomposes a DAG to a tree is based on the placement of
multiple copies for vertices with many in-coming neighbors, since these are the
vertices that destroy the tree structure. Fig. 3 shows an example.

(a) DAG (b) ”equivalent”
tree

Fig. 3. DAG to tree conversion

First we create the root of the tree which is the (unique) source of the DAG.
Then for every vertex v in the DAG, a recursive method insertNode is called.
This method inserts the necessary copies of a vertex in the tree after ensuring
that all the ancestors have been inserted. If v has been processed insertNode
simply returns, otherwise it adds all the incoming neighbors of v in the tree one
by one with recursive calls. Once a recursive call for an incoming neighbor u
terminates, the necessary copies of u have been inserted in the tree. Now we
can insert copies of v to be children of u as many times as the copies of u are.
Repeating this for every parent of v in the DAG adds the necessary copies in
the tree. For fast access to the many copies of a vertex we use a hashtable where
the key is a vertex and the value is a list with all of its copies.
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dag2tree( Directed acyclic graph G)
1 Hashtable vertexCopies
2 treeRoot = G.vertexWithInDegree0
3 vertexCopies.put(treeRoot, treeRoot)
4 for each vertex v in G
5 do insertNode(v)

insertNode(v)
1 if not vertexCopies.get(v).isEmpty() //if inserted
2 then
3 return
4 for each incoming neighbor w of v
5 do
6 insertNode(w)
7 for each w−copy in vertexCopies.get(w)
8 do
9 make a new copy v−copy of v

10 insert v−copy to be a child of w−copy
11 append v−copy in vertexCopies.get(v)

The hashtable performs the search operation in constant time (O(1)). Hence,
the cost for calling insertNode for one vertex in the DAG, is linear to the number
of ancestors of the respective copies in the resulting tree, or equivalently to the
number of incoming edges for all copies of the vertex, plus the cost of potential
recursive calls. Since insertNode is called for every vertex creating different
edges, the overall complexity is proportional to the sum of the incoming degrees
of all vertices, or the number of edges in the tree. So the overall complexity is
O(Etree) where Etree is the number of edges in the tree. This process leads to a
tree with ∼ 100.000 vertices. The careful management of synonyms which was
discussed in Section 2.1 pays back here: If all synonyms were represented with
different vertices, the resulting tree would have ∼ 150.000 nodes.

4.2 Treemaps

Treemaps were introduced by Johnson and Shneiderman in 1991 [24,25]. In
treemaps, every node of the tree is represented by some rectangular area. The
main idea is to place each vertex on top of its parent’s rectangle starting from
the root and proceeding in a depth-first-search way. This way, layers of hierarchy
are created. On the upper, visible layer only the leaves appear.

Treemap( vertex v, rectangular area area)
1 v.area=area;
2 divide area to the children of v
3 for each child c of v
4 do Treemap(c,c′s computed area )

callTreemap(treeRoot,drawingArea)
1 Treemap(treeRoot,drawingArea)
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If instead of the root some other vertex is used for calling the algorithm, the
subtree rooted under this vertex is shown. This means that the algorithm itself
can be used for zooming-in and out. For the space division in step 2 various
approaches have been proposed. The original idea, ”slice and dice” [24,25]was to
divide the area to slices with size proportional to some metric defined for the ver-
tices. This metric typically is the weight in case of weighted trees and the number
of leaves in the subtree for non-weighted trees. For better visualization results
the orientation of the slices alters from horizontal to vertical between subsequent
layers. A drawback is that slice and dice tends to create long and thin rectan-
gles. In an attempt to avoid this, Bruls et. al. proposed squarified treemaps [26].
They divide the area using a heuristic which aims to create rectangles as close
to squares as possible. This additional constraint usually alters the placement
of vertices while zooming the tree in and out. In [24] the authors also propose
nesting to show internal vertices and the hierarchical structure. An additional
advantage of nesting is that the unoccupied space can be used for placing labels.
The thin slices of slice & dice create an obstacle in this concept. We support
nesting in the following manner: Whenever some area is assigned to a vertex, a
small border is placed on its boundary and only its interior is given as drawing
area for the children. The user has the option to set the size of the border. We
have chosen to use the squarified approach since the results of slice & dice for
large trees are relatively poor. We also manage to keep track of an interesting
vertex after zooming in and out by highlighting the path from the root of the tree
to it (Fig 4). Larger figures are available atwww.ics.forth.gr/∼reczko/isbmda06

We also provide an option to show only a number of hierarchical layers in
order to hide small, hardly visible rectangles that are produced for vertices in
the deeper layers. Zoom-in allows the user to access deeper layers. Zoom-in is
straightforward and is performed when some term is left-clicked. For zooming
out we provide three options, which become available on right-click. The user
can move one or two layers higher. Alternatively, he can move up to the root of
the tree and display the whole GO.

(a) ”ligase activity” in
the ”molecular function”
branch

(b) ”ligase activity” in
the ”catalytic activity”
branch

Fig. 4. Treemaps of subtrees of the GO. The term ”ligase activity” is highlighted with
a red border.
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4.3 Integrated Visualization of the miRNA Regulatory Network
and the Gene Ontology

We have discussed how to visualize an interesting part of the miRNA regulatory
network and how to explore the GO with treemaps. Here, we discuss how one
can combine them using information about GO terms that are related to genes.
miRNAs are also related to GO terms through their regulating genes.

Gene Ontology Based Analysis of the miRNA Regulatory Network.
Every gene in the network is related to at least one term in the GO. So the first
requirement is to see the genes that are related to some specific term. In order
to ask this question, the user has to select some term and choose the ”Show
Genes” option. All genes that are related to the selected GO term and belong to
the visible portion of the network on the left are highlighted (colored in green).
An instance is illustrated in Fig. 5.

Fig. 5. Highlighted genes on the cycles on the left(87470, 68383, 101384) are related
to ”cell communication”

With the drawing method used for the miRNA regulatory network, only a
portion of the regulatory network is drawn. This way the user sees only the part
of interest and not the whole complex network, but some of the genes that are
related to some GO term may not be visible. These additional genes can be
shown with the option ”Expand & show Genes”.

As an example for the miRNAs known to be related to the category ”neuro-
genesis” the subset targeting genes in the category ”axonogenesis” is highlighted
in figure 6.

Search for GO Related Properties of the miRNA Regulatory Net-
work. Complementary, the user can search for GO properties based on genes
or miRNAs. If some gene is selected, the GO terms that are related to it are
colored in bright green. Because of the option to show only some layers some
terms may not be visible . In this case, the closest visible ancestor is highlighted
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Fig. 6. Highlight visible genes and miRNAs related to ”axonogenesis”

using dark green (Fig. 7(a)). If the branch is of interest, one can zoom in and
identify the related term, which is in bright green(Fig. 7(b) ).

An interesting relation between a miRNA and the GO is implied by the GO
terms that are related to the genes it regulates.

Selecting a miRNA, the set of GO terms that are related to at least one of the
genes it regulates are colored. The coloring is the same as in the previous case.
For hsa-mir-17 5p, the miRNA with the maximum number of predicted target
genes, the result appears in Figure 8.

For miRNAs with many target genes, a large portion of the GO is highlighted.
The user can see the terms that are related to the genes, but does not know the
number of genes that are related to these terms. So, we support an option to
iterate through the genes that are regulated by some miRNA and display for
every gene the related GO terms with animated highlighting. Now, the user can
see how often some term is highlighted and is able to observe emerging patterns
of reoccurring terms. With this feature it became obvious that 17 out of the 21
genes that are regulated by hsa-mir-98 are related to the category ”binding” or
a even more specific term, emphasizing the likelihood of those predictions.

(a) (b)

Fig. 7. Left: All terms related to gene ENSG00000157087 (PLASMA MEMBRANE
CALCIUM-TRANSPORTING ATPASE 2). Right: After zooming-in ”cell”.
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Fig. 8. All GO terms that are related to hsa-mir-17 5p

5 Discussion

We have introduced a novel combination of visualization methods to explore the
relation of microRNAs and their target genes. The interactive construction of
miRNAs and functionally related targeted genes will be of great use in discov-
ering the functional role of many miRNAs. The treemap based browser might
establish a standard ’mental map’ of the GO and can independently be used to
visualize any GO related information. Currently we support data in the format
presented in [2] but the support for other prediction methods is planned.

References

1. R.C. Lee et. al. C. elegans heterochronic gene lin-4 encodes small rnas with anti-
sense complementarity to lin-14. Cell, 75:843–854, 1993.

2. B. John et. al. Human microrna targets. PLoS Biology, 2:e363, 2004.
3. A. J. Enright et. al. microrna targets in drosophila. Genome Biol., 5:R1, 2003.
4. A. Stark et. al. Identification of drosophila microrna targets. PLoS Biology, 1:E60,

2003.
5. B.P. Lewis et. al. Prediction of mammalian microrna targets. Cell, 115:787–798,

2003.
6. S. Pfeffer et. al. Identification of virus encoded micrornas. Science, 304:734–736,

2004.
7. M. Kiriakidou et. al. A combined computational-experimental approach predicts

human microrna targets. Genes dev., 18:1165–1178, 2004.
8. D. Grün et. al. microrna target predictions across seven drosophial species and

comparison to mammalian targets. PLoS Comp. Biol., 1:e13, 2005.
9. A. Krek et. al. Combinatorial microrna target predictions. Nature Genetics,

37:495–500, 2005.
10. M. Rehmsmeier et. al. Fast and effective prediction of microrna/target duplexes.

RNA, 10:1507–1517, 2004.
11. http://www.geneontology.org .
12. G. Di Battista et. al. Graph Drawing: Algorithms for the Visualization of Graphs.

Prentice Hall, 1999.
13. M.R. Garey and D.S. Johnson. Crossing number is np-complete. SIAM J. Algebraic

Discrete Methods, 4:312–316, 1983.
14. P. Eades et. al. On an edge crossing problem. In Proc. of the Ninth Australian Com-

puter Science Conference, pages 327–334. Australian National University, 1986.

http://www.geneontology.org


24 A. Symeonidis, I.G. Tollis, and M. Reczko

15. P. Eades and D. Kelly. Heuristics for drawing 2-layered networks. Ars Combin.,
21-A:89–98, 1986.

16. P. Eades and N. Wormald. Edge crossings in drawings of bipartite graphs. Algo-
rithmica, 11(4):379 – 403, 1994.
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