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Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation

technique, which has brain network-level effects in healthy individuals and is also used to

treat many neurological and psychiatric conditions in which brain connectivity is believed

to be abnormal. Despite the fact that rTMS is being used in a clinical setting and

animal studies are increasingly identifying potential cellular and molecular mechanisms,

little is known about how these mechanisms relate to clinical changes. This knowledge

gap is amplified by non-overlapping approaches used in preclinical and clinical rTMS

studies: preclinical studies are mostly invasive, using cellular and molecular approaches,

while clinical studies are non-invasive, including functional magnetic resonance imaging

(fMRI), TMS electroencephalography (EEG), positron emission tomography (PET), and

behavioral measures. A non-invasive method is therefore needed in rodents to link our

understanding of cellular and molecular changes to functional connectivity changes

that are clinically relevant. fMRI is the technique of choice for examining both short

and long term functional connectivity changes in large-scale networks and is becoming

increasingly popular in animal research because of its high translatability, but, to date,

there have been no reports of animal rTMS studies using this technique. This review

summarizes the main studies combining different rTMS protocols with fMRI in humans,

in both healthy and patient populations, providing a foundation for the design of

equivalent studies in animals. We discuss the challenges of combining these two

methods in animals and highlight considerations important for acquiring clinically-relevant

information from combined rTMS/fMRI studies in animals. We believe that combining

rTMS and fMRI in animal models will generate new knowledge in the following ways:

functional connectivity changes can be explored in greater detail through complementary

invasive procedures, clarifying mechanism and improving the therapeutic application

of rTMS, as well as improving interpretation of fMRI data. And, in a more general

context, a robust comparative approach will refine the use of animal models of specific

neuropsychiatric conditions.
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INTRODUCTION

An exciting approach for the treatment of neuropsychiatric
conditions is to use neuronal activity itself to encourage repair
and improve brain function. This method can be used as
an adjuvant with other interventions and might prove to be
more effective and specific than a pharmacological approach,
which often has side-effects and might not induce lasting
changes. Several lines of evidence suggest that dysfunctional
connectivity within specific neural networks may underpin
many neurological and psychiatric conditions (Seeley et al.,
2009; van den Heuvel and Hulshoff Pol, 2010). Transcranial
magnetic stimulation (TMS) is a non-invasive neuromodulation
technique that uses magnetic fields to induce electrical currents
in the brain, thereby modulating neuronal activity, and networks
(Barker and Freeston, 2007; Wassermann and Zimmermann,
2012). TMS works according to the principle of electromagnetic
induction: pulses of current flowing through a TMS coil generate
a controllable, pulsatile magnetic field that passes into the
brain unimpeded by skin, muscle or skull (basic principles
described in Walsh, 1998). This time-dependent magnetic field
induces transient electrical currents within the brain. TMS is
able to stimulate the human brain and deep peripheral nerves
without causing pain because current is not induced in the skin,
i.e., pain fiber nerve endings are not activated. This lack of
discomfort enables the technique to be used readily on patients
and volunteers for research and therapeutic purposes (Barker and
Freeston, 2007).

Repetitive transcranial magnetic stimulation (rTMS) delivers
trains of closely spaced pulses to the brain to induce transient
modulation of neural excitability and brain function. Although
transient, the modulation can outlast the stimulation period
leading to long-term changes in synaptic plasticity and behavior
(for review, see Lenz and Vlachos, 2016). George et al. (1995)
were the first to use rTMS as a treatment for depression and
its efficacy in medication-resistant patients has been validated
by numerous clinical trials (Gaynes et al., 2014). In 2008, an
rTMS device developed by Neuronetics was approved by the
Food and Drug Administration in the United States for the
treatment of patients with major depressive disorder who are
resistant to at least one antidepressant drug (O’Reardon et al.,
2007). rTMS has since been shown to have therapeutic potential
for a range of psychiatric disorders, including unipolar (Xia et al.,
2008; Gaynes et al., 2014) and bipolar depression (Xia et al.,
2008), schizophrenia (Dlabac-de Lange et al., 2010), obsessive-
compulsive disorder (Jaafari et al., 2012), and post-traumatic
stress disorder (Clark et al., 2015) as well as in neurological
conditions such as Parkinson’s disease (Arias-Carrión, 2008),
dystonia (Machado et al., 2011), tinnitus (Soleimani et al., 2015),
epilepsy (Pereira et al., 2016), and stroke (Corti et al., 2012).
rTMS has also shown promising results in the treatment of
pain syndromes such as migraine (Lipton and Pearlman, 2010)
and chronic pain (Galhardoni et al., 2015). However, there is
significant inter- and intra-individual variability in the after-
effects induced by rTMS and increasing evidence suggests that
subject-related variables such as gender, age, exercise, diet, use of
neuropharmacological drugs, the state of the subject, and genetic

backgroundmight affect the stimulation-induced effects of rTMS
in both healthy individuals and patient populations (for review,
see Ridding and Ziemann, 2010). To improve the safety and
efficacy of rTMS in a clinical setting, a better understanding of
how rTMS affects the brain is required (Müller-Dahlhaus and
Vlachos, 2013).

Animal models have been useful in elucidating some of the
mechanisms of rTMS as they allow us to perform invasive studies
of molecular and genetic changes that are not ethically possible in
humans. These studies have been reviewed extensively elsewhere
(e.g., Tang et al., 2015; Lenz andVlachos, 2016). However, to align
the different experimental approaches used in preclinical animal
studies (invasive: cellular andmolecular outcomes) and in human
studies (non-invasive: e.g., TMS and motor-evoked potentials,
MEPs; electroencephalography, EEG; optical imaging, positron
emission tomography, PET; functional magnetic resonance
imaging, fMRI, behavior) is difficult. Although MEPs (electrical
signals induced in muscles following cortical stimulation), which
are currently the most common outcome measure used in
humans, can also be measured in animals (Rotenberg et al., 2010;
Sykes et al., 2016), this approach lacks sensitivity and can be
applied only to motor cortical areas. The vast majority of TMS
research and clinical treatments target non-motor regions such
as the prefrontal or sensory cortex (e.g., Schneider et al., 2010;
Liston et al., 2014; Jansen et al., 2015; Valchev et al., 2015), with
effects that extend to deeper regions that are not accessible to
MEPs (e.g., Komssi et al., 2004). Similarly, EEG (e.g., Komssi
et al., 2004; Benali et al., 2011) and optical imaging (e.g., Allen
et al., 2007; Kozel et al., 2009) have restricted depth of recording
and can detect rTMS-induced functional changes only in the
most superficial regions of the brain.

The ability to measure whole-brain functional connectivity
before and after rTMS is important because rTMS can induce
widespread changes both in cortical and subcortical networks.
Currently, PET and fMRI are the only techniques capable
of measuring functional effects of rTMS in the whole brain.
Combined rTMS/PET have been used in humans (e.g., Paus et al.,
1997; Kimbrell et al., 1999; Speer et al., 2000; Mintun et al.,
2001; Conchou et al., 2009) and animal models (e.g., Gao et al.,
2010; Salinas et al., 2013). However, a major disadvantage of
PET with regards to safety is the use of radiotracers, exposing
subjects to ionizing radiation. A single PET scan using a standard
radiotracer dose leads to radiation exposure up to an order of
magnitude greater than that received annually from background
radiation. Therefore, longitudinal rTMS/PET studies requiring
repeated measurements are not ethically feasible. fMRI, on the
other hand, does not require the use of ionizing radiation and
therefore, is a safe imaging tool appropriate for repeated long-
term experiments.

Therefore, in this review, we suggest that fMRI will be a
powerful tool amenable to visualizing and comparing rTMS-
induced short and long term neural connectivity changes
throughout the brain at high spatio-temporal resolutions in
both humans and animals. This method could potentially
help unravel the physiological processes underlying the rTMS-
induced changes in the cortex and in functionally connected
brain regions. Comparison of rTMS effects in human and
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animal studies will also provide insight into the usefulness of
animal models in understanding and improving rTMS based
treatments for humans. Here, we review findings from combined
rTMS/fMRI studies in humans and consider potential insights
from, and limitations of, using fMRI in animal rTMS studies.

INFORMATION OBTAINED FROM
COMBINED RTMS AND FMRI
TECHNIQUES IN HUMANS

Ability of fMRI to Detect Network-Level
Effects of rTMS on Healthy Volunteers
Bohning et al. (1998) were the first to demonstrate the feasibility
of combining TMS and fMRI protocols, by performing TMS
stimulation inside an MRI scanner. TMS applied to the primary
motor cortex (M1) in humans resulted in a significant increase
in activity in M1 as detected by the fMRI scan. Soon after,
the same authors demonstrated that there was a significant
increase in activity not only in M1 but also in areas distal to
the stimulation site (e.g., the contralateral M1 and ipsilateral
cerebellum), illustrating the potential of this technique for
mapping connectivity patterns between brain areas (Bohning
et al., 1999). The ability of rTMS to target both local and remote
brain regions was confirmed by Bestmann et al. (2004), who used
interleaved rTMS/fMRI to compare different intensities of rTMS
(Figure 1). They showed that fMRI can detect effects of rTMS
delivered at an intensity that does not elicit a motor response
(i.e, MEP). Therefore, fMRI provides a significant improvement
in terms of sensitivity and resolution over MEPs.

Since then, a range of combined rTMS/fMRI human studies
have been conducted to record the rTMS-induced changes in
hemodynamic activity both in healthy subjects and subjects with
neurological disorders (Schneider et al., 2010; Fox et al., 2012b).
In healthy subjects, for example, fMRI was used to detect plastic
changes induced in the brain after 5Hz rTMS was applied to
the right dorsolateral prefrontal cortex (DLPFC) (Esslinger et al.,
2014). No change in activation was detected at the stimulation
site, but there was increased connectivity within the right
DLPFC as well as from the stimulated DLPFC to the ipsilateral
superior parietal lobule, which is functionally associated with the
right DLPFC during working memory (Esslinger et al., 2014).
This increased connectivity was associated with a decrease in
reaction time during a workingmemory task (n-back task). These
results suggested the presence of rTMS-induced plasticity in
prefrontally connected networks downstream of the stimulation
site (Esslinger et al., 2014). Similar results were found when
Valchev et al. (2015) delivered a continuous train of theta
burst stimulation (cTBS) to the left primary somatosensory
cortex of healthy volunteers. Functional connectivity between the
stimulated brain region and several functionally-connected brain
regions, including the dorsal premotor cortex, cerebellum, basal
ganglia, and anterior cingulate cortex, decreased. Another study
applying high-frequency (10Hz) rTMS to the right DLPFC in
healthy volunteers while passively viewing emotional faces found
significant right amygdala activity attenuation when evaluating
negatively valenced visual stimuli (Baeken et al., 2010). Taken

FIGURE 1 | Human fMRI data showing whole-brain effects of (Left)

high-intensity rTMS at 110% resting motor threshold (RMT), and (Right)

low-intensity rTMS at 90% active motor threshold (AMT). Coronal standard

MNI brain sections (Talairach coordinates indicated) with superimposed fMRI

results are shown. Areas of significant (n = 11, corrected p < 0.01) activations

during rTMS compared to rest have been colored red-yellow, and decrease in

fMRI signal in blue. Suprathreshold rTMS induced an increase in activity in the

stimulated left sensorimotor cortex, medial supplementary and cingulate motor

area, auditory cortex, lateral postcentral region, and left thalamus. Decrease in

activity was observed in the right sensorimotor cortex and occipital cortex.

Subthreshold rTMS produced similar but smaller activations, with no

significant changes in the stimulated brain region. Image from Bestmann et al.

(2004). Permission to reuse Figure 7 from the article was granted by John

Wiley and Sons and Copyright Clearance Center through their RightsLink®

service on 17th of August 2017.

together, these studies show that rTMS can have widespread
effects, not limited to the stimulated brain area and demonstrate
that brain stimulation studies and treatment plans need to take
network-level effects into account. Although the hippocampus
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as a deep brain structure is unlikely to be directly modulated by
rTMS, which affects only superficial regions immediately beneath
the coil, an ipsilateral change in the hippocampus was detected
following multiple-session high-frequency (20Hz) stimulation to
the left lateral parietal cortex of healthy adults (Wang et al., 2014).
Increased functional connectivity was observed and this change
was correlated with improved associative memory performance.
The effects of rTMS on these brain regions (e.g., cerebellum,
basal ganglia, cingulate cortex, amygdala, hippocampus) are
interesting because they have therapeutic implications which will
be summarized in section Potential Applications of Combined
rTMS/fMRI Studies in Human Diseases, along with more
detailed effects of rTMS on functional connectivity in the intact
normal state vs. diseased states.

Activation Patterns in Healthy vs. Diseased
States in Humans
While fMRI detects changes in brain activity during an active
task, resting-state fMRI (rs-fMRI) provides information about
connectivity between brain regions at rest, i.e., when no specific
stimulus or task is presented. Rs-fMRI detects brain regions
whose patterns of spontaneous blood oxygen level dependent
(BOLD) contrast fluctuations are temporally correlated when the
subject is at rest. These brain regions with coherent spontaneous
fluctuations in activity form an organized network called the
resting-state network (Biswal et al., 1995). The default mode
network (DMN), a resting-state network with a synchronized
activity pattern, shows highest activation when the subject is at
rest and is deactivated in goal-oriented tasks (Raichle et al., 2001).
The DMN has been associated with cognitive performance and
is thought to play an important role in neuroplasticity through
the consolidation and maintenance of brain functions (Marcotte
et al., 2013). For example, a higher resting-state activity within
the DMN is hypothesized to favor network efficiency (Kelly
et al., 2008), while decreased connectivity between the frontal
and posterior DMN brain regions is associated with functional
deficits (Davis et al., 2009). Consistent with these hypotheses,
patients with neurological and psychiatric disorders show DMN
dysregulation compared with healthy individuals (for review,
see van den Heuvel and Hulshoff Pol, 2010). Disruptions in
functional connectivity between brain regions forming part of the
DMNhave been implicated, inter alia, in patients with conditions
like Alzheimer’s disease (Greicius et al., 2004), multiple sclerosis
(Lowe et al., 2002; Sbardella et al., 2015), autism (Cherkassky
et al., 2006; Kennedy et al., 2006), epilepsy (Waites et al., 2006),
depression (Greicius et al., 2007), schizophrenia (Bluhm et al.,
2007; Whitfield-Gabrieli et al., 2009), aphasia (Marcotte et al.,
2013), and addiction (Sutherland et al., 2012; Lerman et al., 2014).

Given that the pathophysiology of many psychiatric and
neurological disorders is believed to be related to altered neural
connectivity and network dynamics, interleaved rTMS/fMRI
protocols provide an opportunity to investigate altered patterns
of neural activity in these disorders (for review, see Hampson and
Hoffman, 2010). The activation patterns in healthy individuals
and patients with neurological or psychiatric conditions can
be compared after an rTMS session to determine how these

patterns are disrupted in the disease state (Hampson and
Hoffman, 2010). For example, Schneider et al. (2010) examined
the effect of 5Hz rTMS on the primary somatosensory cortex
in patients with dystonia (a condition associated with impaired
somatosensory ability) and healthy controls based on their ability
to discriminate between two stimulation frequencies applied to
the right index finger before and after the rTMS session. An fMRI
scan was carried out together with the tactile discrimination task.
Without rTMS application, patients showed relative overactivity
in the basal ganglia compared to healthy controls (Figure 2A).
rTMS led to an improved performance in this task in healthy
controls but not in the patients. There was increased activity
detected in the stimulated primary somatosensory cortex and
bilateral premotor cortex in both groups (Figures 2B,C) but
fMRI detected an increase in activity in the basal ganglia
in healthy subjects only (Figure 2D), suggesting an abnormal
functional connectivity in the cortico-basal network in dystonia.
The authors hypothesized that this could be related to altered
sensory circuits and sensorimotor integration in patients with
dystonia.

Interestingly, rTMS has been shown to modulate functional
connectivity in humans, but the direction (increase or decrease
in activity) and extent of this modulation depend on the rTMS
protocol used, as we review below (Fox et al., 2012b; more recent
articles: Popa et al., 2013; Glielmi et al., 2014; Jansen et al.,
2015; Li et al., 2016). Using fMRI, increases and decreases in
functional activity have been found depending on the stimulated
brain region and the frequency of rTMS, allowing insight into
how rTMS affects complex brain circuits (Bohning et al., 1999;
Kimbrell et al., 1999).

rTMS PROTOCOLS AND THEIR SPECIFIC
EFFECTS IN HUMANS

Simple Stimulation Protocols
There is considerable evidence from MEP and animal studies
that that low-frequency (<5Hz) rTMS has long-term synaptic
depression (LTD) like effects and thereby decreases brain
excitability (Klomjai et al., 2015; Wilson and St George, 2016).
The inhibitory effect of low-frequency rTMS has been confirmed
in studies of the DMN. For example, van der Werf et al.
(2010) applied 1Hz rTMS for two sessions over the left
DLPFC of healthy volunteers. The rTMS sessions appeared to
decrease resting-state network activity within the DMN, with
the reductions happening in the temporal lobes, distant from
the stimulated region. More specifically, they found that the
hippocampus had reduced activation bilaterally following the
application of low-frequency rTMS. They hypothesized that this
change in neuronal activity of the hippocampus could arise from
a change in cortical excitability or the transcallosal spread of
rTMS effects inducing bilateral inhibition. The inhibitory effect
of low-frequency rTMS was also confirmed in a resting-state
connectivity study between motor regions in healthy individuals
(Glielmi et al., 2014). Interestingly, 1Hz, an inhibitory frequency,
is thought to decrease the activity of inhibitory neurones in the
stimulated hemisphere, causing a reduction in the inhibitory
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FIGURE 2 | Evidence of functional connectivity abnormalities in patients with dystonia and changes following rTMS. (A) Connectivity maps of patients vs. controls

during the sham condition showing bilaterally greater activity in the ventromedial pallidum of patients compared to healthy controls. Effects of rTMS (real versus sham

condition) on neuronal activity during sensory discrimination task in dystonia patients (B) and controls (C). Both patients with dystonia (B) and healthy controls

(C) show relatively greater activity ipsilaterally in the left premotor cortex (PMC) and the left sensorimotor cortex (S1) following after real-rTMS compared to sham

stimulation. In addition, there is activation of the ventromedial pallidum bilaterally in healthy controls, but not in patients with dystonia. (D) Interaction (group ×

condition) during rTMS in patients with dystonia compared to controls. Compared to controls, dystonia patients show reduced activity in the left oribtofrontal cortext

(OFC) and the ventromedial pallidum bilaterally after real-rTMS compared to sham stimulation (D). Image from Schneider et al. (2010). Permission to reuse Figures 3

and 4 from the article was granted by John Wiley and Sons and Copyright Clearance Center through their RightsLink® service on 13th of February 2018.

interhemispheric drive, which in turn leads to an increase in
excitability of the contralateral hemisphere. For example, O’Shea
et al. (2007) found that even when 1Hz stimulation over the left
dorsal premotor cortex had no effect on behavior, there was a
compensatory increase in activity in the right dorsal premotor
cortex and connected medial premotor areas. This contralateral
effect of 1Hz rTMS has been utilized to treat patients with
stroke by applying low-frequency stimulation to the unaffected
hemisphere to decrease transcallosal inhibition of the lesioned
hemisphere and consequently improve motor function in such

patients. An rTMS/fMRI study by Grefkes et al. (2010) recruited
patients with mild to moderate unilateral hand weakness after
a first-ever subcortical ischemic stroke in the middle cerebral
artery. Each subject underwent a baseline fMRI scan, a post-
sham stimulation scan, and a post 1Hz stimulation scan. rTMS
applied over contralesional M1 significantly improved the motor
performance of the paretic hand, and the improvement in
symptomswas correlated with the functional connectivity results.
The fMRI data showed a decrease in negative transcallosal
influences from the contralesional M1 and an increase in
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functional connectivity between the ipsilesional supplementary
motor area (SMA) and M1.

In contrast to low-frequency stimulation, high-frequency
(≥5Hz) rTMS has long-term synaptic potentiation (LTP) like
effects and increases brain excitability (Klomjai et al., 2015;
Wilson and St George, 2016). In patients with stroke, high-
frequency rTMS is sometimes applied directly to the affected
hemisphere to increase excitability and promote plasticity of
the lesioned hemisphere. For example, rs-fMRI demonstrated a
bilateral increase inM1 connectivity in such patients after 10 days
of 5Hz rTMS applied ipsilesionally (Li et al., 2016). There was
also an increased connectivity between the stimulated ipsilesional
M1 and the SMA, bilateral thalamus, contralesional postcentral
gyrus, and superior temporal gyrus and decreased connectivity
between the stimulated ipsilesional M1 and the ipsilesional
postcentral gyrus, M1, middle frontal gyrus, and superior parietal
gyrus. An improved interhemispheric functional connectivity
was also found in a case study of post-stroke apathy by Mitaki
et al. (2016) when 5Hz rTMS was applied to the SMA of each
hemisphere of the patient over the course of two weeks. The
improvement in the interhemispheric functional disconnection
was correlated with the patient’s recovery from post-stroke
apathy.

Even though the studies tend to have small sample sizes
(Watrous et al., 2013), these results show that understanding the
effects of rTMS on multiple brain regions is important and that
the effects can be determined to some extent by specific rTMS
protocols. Information about the extent to which the functional
connectivity within and between different networks can be
modulated by different rTMS protocols may prove helpful in the
development of treatment options for dysfunctional connectivity.

Complex Stimulation Patterns
In contrast to the simple frequencies described above, theta
burst stimulation (TBS) uses a composite stimulation pattern,
consisting of repeating bursts of stimuli (Larson et al., 1986).
Each burst consists of three pulses of stimulation at 50Hz, and
the bursts are repeated at 5Hz (0.2 s) (for review, see Cárdenas-
Morales et al., 2010). This pattern of stimulation is based on
the endogenous brain oscillations observed in the hippocampus
(Huang et al., 2005), with human hippocampal theta oscillations
being at a lower frequency (around 3Hz) than the hippocampal
theta oscillations of rats (8Hz) (Watrous et al., 2013; Jacobs,
2014). The effect of TBS on the brain depends on the pattern of
stimulation (Ljubisavljevic et al., 2015). For example, when cTBS
is applied for 40 s (i.e., 600 stimuli) to M1 in humans, there is
a decrease in brain excitability (Green et al., 1997). In contrast,
when intermittent TBS (iTBS), with a 2 s train of TBS repeated
every 10 s for 190 s (i.e., 600 stimuli), there is an increase in brain
excitability (Green et al., 1997). Even though recent studies show
evidence of substantial inter- and intra-individual variability in
response to TBS (Zangen and Hyodo, 2002; Cho et al., 2012), the
two main modalities, in general, have opposite effects on brain
excitability.

Research on the DMN extends our understanding of the
effects of TBS. iTBS applied over the left and right lateral
cerebellum in patients with progressive supranuclear palsy

for 10 sessions over the course of two weeks lead to an
increased signal in the caudate nucleus bilaterally within the
DMN (Brusa et al., 2014). iTBS also increased the efficiency
of the impaired functional connectivity between the cerebellar
hemisphere and the contralateral M1 observed in these patients
compared with healthy individuals and patients with Parkinson’s
disease. The enhanced functional connectivity between the
cerebellar hemisphere, the caudate nucleus, and the cortex
was accompanied by an improvement of dysarthria in all
patients. iTBS was also shown to have a dose-dependent effect
on excitability and functional connectivity within the motor
system (Nettekoven et al., 2014). When applied over the M1 of
healthy volunteers, iTBS increased the resting-state functional
connectivity between the stimulated M1 and premotor regions
bilaterally. iTBS also increased connectivity between M1 and
the ipsilateral dorsal premotor cortex when the number of
stimuli was increased. The authors hypothesized that dense
connections between M1 and the regions showing increased
functional connectivity might facilitate simultaneous stimulation
of these interconnected brain areas by the iTBS protocol, thereby
modulating the synchrony of the resting activity in those regions.

There have also been studies of the inhibitory action of
cTBS on brain activity using fMRI. Following eight sessions
of 30Hz cTBS applied to the SMA over two consecutive days,
patients with Tourette syndrome or chronic tic disorder showed
a significant reduction in the activity of SMA and left and
right M1 activation during a finger-tapping exercise, suggesting
inhibition in the motor network. However, improvement in
symptoms was not significantly different between test and control
subjects, perhaps because of the small sample size. Similar to
1Hz rTMS, cTBS has been shown to dis-inhibit contralateral
targets; in healthy individuals, cTBS application to the right
Heschl’s gyrus did not induce changes in the stimulated brain
region, but significantly increased activity in the contralateral
Heschl’s gyrus, postcentral gyrus, and left insula and in the
bilateral lateral occipital cortex (Andoh and Zatorre, 2012). The
mechanisms underlying this interhemispheric interaction are not
well understood but could be related to short-term plasticity or
compensatory mechanisms to preserve function by increasing
the activity of homologous brain regions in the contralateral
hemisphere (Andoh and Zatorre, 2012).

In summary, a range of frequencies and stimulation
patterns have been tested in human subjects and have specific
impacts on brain function and network connectivity. There is
significant opportunity to develop other stimulation paradigms
systematically, whichmight have different neuronal effects, and to
produce precise and reproducible effects in the brains of patients.

POTENTIAL APPLICATIONS OF
COMBINED rTMS/fMRI STUDIES IN
HUMAN DISEASES

Change in Connectivity Post rTMS Linked
to Improvement in Symptoms
Change in functional connectivity achieved using rTMS as
a treatment method can be used to determine the neural
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mechanisms of improvement in symptoms in patients. For
example, a longitudinal study by González-García et al. (2011)
used fMRI to investigate the mechanisms by which 25Hz rTMS
(10 trains of 100 pulses) over M1 for three months improves
the motor symptoms of patients with Parkinson’s disease. rTMS
was found to cause an increase in activity in the caudate nucleus
during a simple motor task (finger-tapping test). fMRI also
showed a decline in activity in the SMA, which was accompanied
by an increase in its functional connectivity to the prefrontal
areas. These changes substantiated the beneficial effect of rTMS
on the symptoms of Parkinson’s disease observed in these
patients.

Another way to analyze the link between rTMS therapy
and improvement in symptoms is to use rs-fMRI to detect
the change in functional connectivity after rTMS. Popa et al.
(2013) found that the connectivity within both the cerebello-
thalamo-cortical network and the DMN was compromised in
patients with essential tremor. Application of 1Hz rTMS for five
consecutive days bilaterally over lobule VIII of the cerebellum
appeared to have re-established the connectivity in the cerebello-
thalamo-cortical network only, and this change in functional
connectivity was accompanied by a significant improvement
in symptoms. Another study that also used an rTMS/rs-fMRI
protocol carried out a whole-brain connectivity analysis to
unravel the effect of rTMS on functional connectivity and motor
symptoms in patients with multiple system atrophy (Chou
et al., 2015). 5Hz rTMS was applied over the left M1 of such
patients for 10 sessions over the course of two weeks. Only
the active rTMS group showed a significant improvement in
motor symptoms, and these improvements were correlated to
the modulation of functional links connecting to the default
mode, cerebellar, and limbic networks by high-frequency rTMS.
These findings suggest that rTMS can be used to target specific
brain networks as a therapy for patients with multiple system
atrophy.

Predicting Susceptibility to rTMS Therapy
More recently, baseline functional connectivity was shown to
be a potential predictor of response to rTMS treatment, for
example, in Mal de Debarquement Syndrome, a neurological
condition representing a persistent false perception of rocking
and swaying following exposure to unfamiliar motion patterns
(Yuan et al., 2017). Pre- and post-rTMS rs-fMRI were carried
out to assess functional connectivity changes as a result of daily
rTMS treatment to the DLPFC (1,200 pulses of 1Hz rTMS over
right DLPFC followed by 2000 pulses of 10Hz rTMS to the
left DLPFC) over five consecutive days. A significantly positive
baseline functional connectivity between the right DLPFC and
the right entorhinal cortex and between the left DLPFC and
bilateral entorhinal cortex were identified in patients showing
improvement in symptoms following treatment, but not in
patients whose symptoms worsened or remained unchanged
(Figure 3A). Improvement in symptom severity was correlated
with a decrease in functional connectivity between the left
entorhinal cortex and posterior DMN regions such as the
contralateral entorhinal cortex, the right inferior parietal lobule,
and the left precuneus (Figure 3B).

Functional connectivity analysis on pre-treatment fMRI has
also been used to predict the response to rTMS treatment
in depression. Drysdale et al. (2017) found two groups of
functional connectivity features that were linked to specific
combinations of clinical symptoms in patients with depression.
Anhedonia and psychomotor retardation were primarily linked
to frontostriatal and orbitofrontal connectivity features, while
anxiety and insomnia were primarily linked to a different group
of primarily limbic connectivity features involving the amygdala,
ventral hippocampus, ventral striatum, subgenual cingulate, and
lateral prefrontal control areas. Testing the abnormalities in
these connectivity features, based on their rs-fMRI data, revealed
that not all patients with depression had the same functional
connectivity patterns. They could be categorized, with high
sensitivity and specificity, into four biotypes based on the distinct
patterns of dysfunctional connectivity in the frontostriatal and
limbic networks, which were most homogeneous within the
subtypes and most dissimilar between subtypes. Moreover,
patients with these neurophysiological subtypes of depression
had different susceptibility to rTMS therapy: after five weeks of
high-frequency rTMS delivered to the dorsomedial prefrontal
cortex, biotype 1 patients showed a significant response to
rTMS therapy (82.5% of that group), and biotype 2 patients
were the least responsive (25.0%). This study suggests that
heterogeneous symptom profiles in depression could be caused
by distinct patterns of dysfunctional connectivity and that
categorizing patients into subtypes based on these patterns
might enable the prediction of treatment response to rTMS.
Two years earlier, Downar et al. (2015) found that the resting-
state functional connectivity features of the DLPFC to the
subgenual cingulate cortex in patients with major depressive
disorder could predict response either to 10Hz or iTBS rTMS
therapy. The role of subgenual cingulate connectivity in patients
with depression has been indicated in several other studies
(Greicius et al., 2007; Fox et al., 2012a; Liston et al., 2014;
Hopman et al., 2017). More recent studies have since confirmed
that it is possible to predict the response to iTBS or 10Hz
rTMS using resting-state functional connectivity between ventral
striatum and bilateral frontal pole, as well as between the left
DLPFC and the left anterior cingulate cortex (Dunlop et al.,
2017). Therefore, rs-fMRI potentially could be used to select
optimal rTMS parameters for the treatment of patients with
depression.

Other Outcomes
Combining fMRI and rTMS has proven useful for investigating
a range of other neural functions, providing evidence supporting
the following: the functional relevance of the parietal cortex for
visuospatial functions (Sack et al., 2002); a link between neural
activity in the left inferior prefrontal cortex and episodic memory
formation (Köhler et al., 2004); the involvement of premotor
cortical areas in speech perception (for review, see Iacoboni,
2008); the presence of functional asymmetry highlighting
interhemispheric differences in the auditory network (Andoh
et al., 2015); and enabled targeting of stimulation based on
the individual’s MRI anatomy, functional connectivity results or
activated brain regions during specific tasks (e.g., Sack et al., 2002;
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FIGURE 3 | Evidence of correlation between behavioral improvements and functional connectivity before and after rTMS treatment. (A) Correlation between baseline

entorhinal cortex–dorsolateral prefrontal cortex (DLPFC) functional connectivity and treatment response. Higher baseline functional connectivity exhibited by both right

entorhinal cortex–right DLPFC connectivity (top) and left entorhinal cortex–left DLPFC connectivity (bottom) is associated with a greater magnitude of symptom

reduction (change < 0) after rTMS. (B) Directional effect of functional connectivity changes between the left entorhinal cortex and the right entorhinal cortex (top), right

inferior parietal lobule (middle), and the left precuneus (bottom). Functional connectivity between these regions decreased in patients showing improvement in

symptoms (positive responders) compared with patients whose symptoms remained unchanged (neutral responders) or worsened (negative responders). *,**Indicate

significant changes for p < 0.05 and p < 0.01, respectively. Image from Yuan et al. (2017), an open access article distributed under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fitzgerald et al., 2009; Eldaief et al., 2011; Binney and Lambon
Ralph, 2015; Nierat et al., 2015; Valchev et al., 2015).

NEED FOR ANIMAL rTMS/fMRI STUDIES

The induction of plasticity as described in previous sections
has been the driving force behind clinical studies of rTMS as a
potential treatment of neurological and psychiatric conditions.
However, even in neurologically normal subjects, the variability
in response to rTMS is high (Maeda et al., 2000). Increasing
evidence suggests that rTMS may not induce reliable and
reproducible effects, therefore limiting the current therapeutic
usefulness of this technology (for review, see Ridding and
Ziemann, 2010). Animal models give us the opportunity to
mitigate the confounding effects of variability in studies by
controlling for gender, age, diet, drugs, genetic background, and
the time at which experiments are carried out. The relative
importance of these contributing factors can then be identified
using animal studies (e.g., state-dependent variability explored in
Pasley et al., 2009).

Interleaving rTMS and fMRI has opened doors to many
possibilities in the clinical setting. However, there have been no
reports of animal studies using those same techniques. fMRI

in rodent research is becoming increasingly popular because of
its high translatability. Moreover, rodent rs-fMRI studies have
confirmed that rodents possess a DMN similar to humans despite
the distinct evolutionary paths of rodent and primate brains
(Figure 4; Lu et al., 2012). Because rodents are widely used as
preclinical models of neuropsychiatric disease (e.g., Tan et al.,
2013; Yang et al., 2014, 2015; Zhang et al., 2015; Kistsen et al.,
2016), a thorough understanding of how rTMS affects the rodent
neural networks is of particular importance for both interpreting
rodent fMRI data and translating findings from humans to
animals and back again.

Future Experiments: Linking Functional
Connectivity Changes Post rTMS to
Genetic/Molecular Changes
Animal models provide a unique opportunity to combine
techniques: changes in functional connectivity between spatially
separated brain regions caused by long-term modulation of
network dynamics by rTMS, can be studied in parallel with
changes in behavioral measures, and followed by invasive
procedures to detect cellular and molecular changes, all within
the same animal. As shown in human rTMS/fMRI studies, the
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FIGURE 4 | Evidence of translatability of fMRI studies: similar brain regions forming part of the default mode network (DMN) in the rat (Paxino’s atlas coordinates

indicated) and human (Talairach coordinates indicated) brains. Connectivity maps are shown in the coronal (A), axial (B), and sagittal (C) planes. Significant clusters for

rat DMN (left) include: 1, orbital cortex; 2, prelimbic cortex (PrL); 3, cingulate cortex (CG1, CG2); 4, auditory/temporal association cortex (Au1, AuD, AuV, TeA); 5,

posterior parietal cortex; 6, retrosplenial cortex (corresponding to the posterior cingulate cortex in humans); 7, hippocampus (CA1). The sagittal plane (medial–lateral:

+0.4mm) also shows: FrA, frontal association cortex; MO, medial orbital cortex; RSG/RSD, granular/dysgranular retrosplenial cortex. Color bar indicates t scores

(n = 16, t > 5.6, corrected p < 0.05). Significant clusters for human DMN (right) include: 1, orbital frontal cortex; 2/3, medial prefrontal cortex/anterior cingulate cortex;

4, lateral temporal cortex; 5, inferior parietal lobe; 6, posterior cingulate cortex; 7, hippocampus/parahippocampal cortex. Color bar indicates z scores (n = 39,

z > 2.1, corrected p < 0.05). Image adapted from Lu et al. (2012), an open access article under the creative commons license and can be republished without the

need to apply for permission provided the material is cited correctly and is republished under the same license.

functional connectivity effects of rTMS are distributed across
the whole brain (Figure 1). But, even when in-depth studies of
the molecular mechanisms are carried out (e.g., quantification of
gene expresssion inmultiple brain regions using low-density PCR
arrays by Ljubisavljevic et al., 2015), how these molecular changes
from animal studies underpin functional connectivity changes
described in humans remains unclear. Future studies should aim
to identify brain regions affected by the stimulation in animals
using fMRI and then rTMS mechanisms further elucidated in
the same individuals, for example by measuring changes in gene
expression in the corresponding brain regions postmortem. Such
correlational approaches will provide a compelling view of how
rTMS affects the brain at systems levels.

Future Experiments: Linking Functional
Connectivity Changes Post rTMS to
Structural Changes
The induction of brain plasticity has been the driving force
behind clinical studies of rTMS as a potential treatment

of neurological and psychiatric conditions. A more detailed
understanding of how rTMS treatment leads to long-term
modulation of network dynamics will be essential for the
interpretation of neuropsychological and cognitive effects of
rTMS in a clinical context. Combined rTMS/fMRI studies in
animals can be used in longitudinal studies to investigate the
long-term effects of rTMS. For example, fMRI can be used to
measure cumulative effects of repeated rTMS delivery, following
which fluorescent dye tracers can be injected into brain to
anatomically label neuronal pathways of interest identified by
fMRI. Conducting neuronal tract tracing after an fMRI study
could elucidate whether long-term treatment with rTMS can
eventually elicit changes in fiber tracts in the brain. Analyzing
functional connectivity and anatomical connectivity within the
same animals will provide information about how observed
functional changes correlate with the structural changes detected
at a cellular level. Although there is a general trend toward
functional and structural connectivity being strongly associated,
there are some mismatches within the DMN whereby regions
showing high correlation have low fiber connectivity (Hsu et al.,
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2016). Therefore, future studies to investigate whether the effect
of rTMS on functional connectivity is related to fiber connectivity
are warranted.

Future Experiments: Combined rTMS/fMRI
Studies Using Animal Models
An important recent development in animal research has
been the use of rs-fMRI for the characterization of models
of neuropsychiatric disorders. Studies have revealed abnormal
functional connectivity patterns in animal models due to
pharmacological modulations or genetic manipulations which
mimic connection abnormalities observed in corresponding
human disorders (Jonckers et al., 2015; Gozzi and Schwarz,
2016; Gorges et al., 2017). These animal models represent a
powerful tool to understand the neurobiological basis of the
reported ability of rTMS to assist in remediating functional
dysconnectivity observed in human disorders. First, fMRI
can be used to identify the abnormal functional connectivity
in an animal model specific to a neurological disorder.
For example, the Wistar-Kyoto rat, an accepted model for
depression which has shown resistance to acute antidepressant
treatment (Lahmame et al., 1997; López-Rubalcava and Lucki,
2000), also shows functional connectivity anomalies between
hippocampus, cortical, and sub-cortical regions (Williams et al.,
2014), as has been observed in humans with major depressive
disorder. Future studies can investigate the effects of rTMS
on such animal models. Functional connectivity changes post-
rTMS treatment can then be linked to improvement in
symptoms (through behavioral tests such as the forced swim
test commonly used in depression studies) as well as to any
induced molecular and cellular changes (through postmortem
analysis). Therefore, extending the use of combined rTMS/fMRI
techniques in various types of neurological and psychiatric
conditions using appropriate animal models is a promising
avenue for understanding the fundamental properties of the
functional re-organization in these conditions in a unique way.

While the use of combined rTMS/fMRI techniques in rodent
research has great potential because of its high translatability,
there are challenges as we review below.

CHALLENGES ASSOCIATED WITH
rTMS/fMRI STUDIES IN ANIMALS

Choice of Animal Model and Development
of rTMS Coils
A wide range of animal models have been used with the aim
of understanding the underlying mechanisms and optimizing
the therapeutic applications of rTMS: rats (Tan et al., 2013;
Yang et al., 2015; Zhang et al., 2015), mice (Kistsen et al.,
2016), guinea pigs (Mulders et al., 2016), rabbits (Guo et al.,
2008), felines (Allen et al., 2007; Valero-Cabré et al., 2007),
and in a very limited way, non-human primates (Valero-Cabre
et al., 2012; Salinas et al., 2013; Mueller et al., 2014). These
animal models have contributed considerably to our current
understanding of the non-invasive neuromodulatory effects of
rTMS (reviewed in Tang et al., 2015). However, the variation

in brain structure and the smaller sized brains of non-human
animals present a fundamental challenge in the application of
rTMS and interpretation of its effects.

Non-human primates are clearly the closest to humans in
terms of brain structure and size and have the advantage that
they can be taught behavioral tasks similar to those used in
human rTMS studies. However, the high cost of using non-
human primates limit opportunities for invasive studies in large
numbers of animals. Rodents, on the other hand, although they
are the most commonly used laboratory animals, have important
differences in brain structure compared to humans. Their smooth
cortex possesses a very different geometry to the highly folded
human cortex and this is an important consideration because
the characteristics of the electric field induced by rTMS are
predicted to be influenced by the orientation of the tissue relative
to the coil (Opitz et al., 2011). In addition to differences in
brain structure, the small size of the rodent brain presents a
serious challenge. In humans, rTMS is most commonly delivered
using a coil shaped like a “figure-of-eight” (Figure 5). This
configuration provides a stimulation hotspot at the intersection
of the loops that can be positioned over the target brain region
to provide focal stimulation. Adjacent brain areas also receive
stimulation but at much lower intensity. In most animal models,
even the smallest commercially available rTMS coil results in
a different ratio between head size and coil size from that in
humans, reducing stimulation focality and efficiency (Rodger
and Sherrard, 2015). For example, using a standard, human-
sized “figure-of-eight” coil in mice stimulates the entire brain
and often an appreciable portion of the body (Figure 5). The
discrepancy in size, therefore, precludes easy interpretation and
translation of animal results into clinical applications. Many
rodent studies are therefore compromised by the use of large,
human-scale coils to deliver rTMS (e.g., Yang et al., 2014, 2015;
Zhang et al., 2015), and some groups have used miniaturized
rTMS coils in order to more closely mimic focal human rTMS
in rodents. For example, custom-made 8mm diameter round
coils have been used to stimulate one hemisphere in both mice
and rats (Rodger et al., 2012; Makowiecki et al., 2014), with
the induced current fully contained within the brain, increasing
the efficiency of induction. However, there is a heat dissipation
problem when using small round coils (Cohen and Cuffin, 1991;
Wassermann and Zimmermann, 2012), limiting the intensity of
themagnetic field to levels roughly 10–100 times lower than those
commonly applied in humans (low-intensity; LI-rTMS) (Rodger
and Sherrard, 2015).

Despite the existing inability to deliver the same magnetic
field parameters in humans and in animals with small brains
(Rodger and Sherrard, 2015), beneficial effects are seen in animal
models of neurological disease using human rTMS coils (e.g., Tan
et al., 2013; Yang et al., 2015; Zhang et al., 2015; Kistsen et al.,
2016) and small LI-rTMS coils (Makowiecki et al., 2014; Clarke
et al., 2017), suggesting that both approaches have therapeutic
potential. Because fMRI can detect both high and low-intensity
rTMS effects in the brain, this technique will be useful in
establishing a direct comparison of different intensity magnetic
field effects in human and animal brains. This information is
imperative if we are to define the best clinical protocols for rTMS.
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FIGURE 5 | rTMS coil size with respect to brain sizes of humans, macaque and rodents. For all panels, coils are shown in black and the approximate location of the

induced current is in gray. (A) Typical human “figure of eight” coil with stimulation hotspot at the intersection of the loops in dark gray showing the “focal” stimulation in

humans and macaques. When applied to the head, the hotspot is positioned over the target brain region, but the rest of the brain also receives stimulation, albeit at

lower intensity. However, when this human coil is applied in rodents (B), the hotspot is no longer focal relative to the target, but rather stimulates the entire head and

an appreciable portion of the body (left). This reduces the efficiency of magnetic induction and changes the properties of the induced current. To address this problem,

custom-made round coils (right) have been used to deliver focal stimulation in rodents (Rodger et al., 2012; Makowiecki et al., 2014; Tang et al., 2016). Although these

deliver low intensity magnetic fields, the induced current is fully contained within the brain, increasing efficiency of induction. The coils are small enough to stimulate

one hemisphere in both mice and rats. Image adapted from Rodger and Sherrard (2015), an open-access article distributed under the terms of the Creative

Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.

Use of Anesthetics in Animal fMRI Studies
Although fMRI can be performed on awake, normally behaving
animals that have been extensively trained and habituated
(Brydges et al., 2013; Kenkel et al., 2016), one advantage of rs-
fMRI is that being a task-free technique, functional connectivity
can be investigated in anesthetized animals without relying
on, or being confounded by, behavior. In human studies,
the physiological condition of the subject is assumed to be
relatively constant throughout an fMRI scan session (Pan
et al., 2015). On the other hand, in animal fMRI, the use
of anesthesia is generally required to immobilize the animal
and reduce stress (Vincent et al., 2007; Pan et al., 2015).
Isoflurane is the anesthetic of choice for repeated long-term
experiments because of its ease of use and control, and rapid
reversibility (Masamoto and Kanno, 2012). However, anesthetics,
including isoflurane, might confound the imaging results as
they may cause alterations in neural activity, vascular reactivity,
and neurovascular coupling. Isoflurane decreases excitatory
and increases inhibitory transmission, causing an overall
suppression of neural activity, most likely by modulating the
intracellular concentration of calcium (Gomez and Guatimosim,
2003; Ouyang and Hemmings, 2005). As such, the ability of
high-frequency rTMS to depolarise neurons is impaired in
the presence of isoflurane (Gersner et al., 2011). Additionally,

isoflurane, being a GABAergic anesthetic, induces vasodilation
through the activation of ATP-sensitive potassium channels of
smooth muscle cells in cerebral arteries (Ohata et al., 1999;
Pan et al., 2015). Vasodilation leads to an increase in cerebral
blood flow, which can be interpreted as an increase in activity.
Moreover, the use of an isoflurane-only anesthetic regime has
been reported to decrease inter-thalamic connectivity, thalamo–
cortical connections, and DMN–thalamic network connections
(Bukhari et al., 2017). These potential confounding effects of
isoflurane should be taken into account when interpreting
findings.

An alternative to general anesthesia is sedation, for example
using medetomidine or its active enantiomer, dexmedetomidine.
These drugs lack the dose-dependent vasodilation and neural
suppression observed with isoflurane use. However, being α2-
adrenergic agonists, they activate α2-adrenergic receptors and
cause a decrease in cerebral blood flow, potentially because
of increased vascular resistance via cerebral vasoconstriction
(Prielipp et al., 2002). Moreover, there is a potential issue with
prolonged studies because the dose of medetomidine needs to
be increased after 2 h to maintain sedation (Pawela et al., 2009).
Furthermore, the use of a medetomidine-only anesthetic regime
produced decreased inter-cortical connectivity (Bukhari et al.,
2017).
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Interestingly, using a combination of low-dose isoflurane
and medetomidine appears to mitigate some of these factors.
This anesthetic combination not only allows stable sedation for
over four hours (Lu et al., 2012) but also maintains strong
inter-cortical and cortical-subcortical connectivity (Grandjean
et al., 2014; Bukhari et al., 2017). The BOLD signal was
determined to be maximally stable approximately 90min after
the initiation of medetomidine infusion, suggesting that fMRI
data should be collected at this time (Lu et al., 2012). Moreover,
data were reproducible from repeated fMRI experiments on
the same animal one week apart (Lu et al., 2012). The high
reproducibility and minimal impact on network connectivity
of the medetomidine/isoflurane combination anesthesia make
it a preferred anesthetic regime for prolonged and longitudinal
rs-fMRI studies in rodents.

Rs-fMRI Studies in Rodents—Challenges
in Data Analysis
As with human data, rodent rs-fMRI data need to undergo
extensive pre-processing prior to analysis. Rodent studies
have used a variety of software packages such as Statistical
Parametric Mapping (SPM) (e.g., Jonckers et al., 2011), Analysis
of Functional NeuroImages (AFNI) (e.g., Hsu et al., 2016),
BrainVoyager (e.g., Hutchison et al., 2010), and Functional MRI
of the Brain (FMRIB) Software Library (FSL) (e.g., Tambalo et al.,
2015), which were designed for human fMRI data. Therefore,
modifications to the data format and pre-processing steps are
often necessary to undertake analysis of rodent brain data. For
example, the field of view can be altered by up-scaling the voxel
sizes by a factor of 10 to be closer to the size of a human brain
(Tambalo et al., 2015). Likewise, because of the smaller size of
the rodent brain, higher spatial smoothing may be required in
animal fMRI data to increase the signal-to-noise ratio without
reducing valid activation. Temporal band-pass filtering can also
be used to reduce hardware noise, low-frequency signal drifts,
and some artifacts caused by cardiac rhythm and respiration, as
well as thermal noise (for review, see Pan et al., 2015). Recently,
Zerbi et al. (2015) described the use of single-session independent
component analysis (ICA) in the FSL for significantly improved
artifact reduction in rs-fMRI rodent data. This method removes
signals from common sources, for example breathing, which
can be isolated into separate components and removed as noise
from the data. Additionally, because of the difference in the
shape of human and animal brains, skull-stripping—a fully-
automated step in human fMRI data pre-processing required to
prevent extra-brain matter from interfering with the results—is
still largely performed through manual segmentation in animal
studies (Sierakowiak et al., 2015; Zerbi et al., 2015). Before
analysis, normalization to map functional networks onto a
common space is necessary to allow for comparison across
subjects or groups. However, because not all rodent strains have
an available standard template or atlas for co-registration, some
studies acquire and use high-resolution structural images or
group-averaged images as a common space (Sierakowiak et al.,
2015; Zerbi et al., 2015).

Two of the popular methods for rs-fMRI data are seed-based
connectivity analysis (e.g., Hutchison et al., 2010; Sierakowiak
et al., 2015; Huang et al., 2016) and ICA (e.g., Hutchison et al.,

2010; Jonckers et al., 2011; Lu et al., 2012; Zerbi et al., 2015;
Hsu et al., 2016). Seed-based correlation, used in the earliest
functional connectivity studies, is a hypothesis-driven approach,
which is particularly attractive for area-based hypotheses-driven
rs-fMRI studies in rodents. The temporal correlation of all voxels
within the brain is analyzed relative to user-defined seed voxel
or small region of interest (Joel et al., 2011). However, seed-
points can differ in their location between studies, which affects
the connectivity patterns considerably and renders comparisons
between studies difficult. In addition, this method is not suitable
for exploratory analyses. In contrast, the use of data-driven
ICA enables identification of networks of functional connectivity
within the entire brain without a priori knowledge, and thus
is a less biased approach (Cole et al., 2010). Moreover, this
approach might improve reproducibility because there is no
(arbitrary) seed selection (Rosazza et al., 2012). However, the
results might depend on the number of components used.
Despite the rodent DMN producing similar spatial patterns and
being robust irrespective of the number of components (Lu
et al., 2012), the number of components chosen can impact
on the ease of analysis. For example, Jonckers et al. (2011)
and Hsu et al. (2016) chose 15-components in ICA over ICAs
repeated with a higher number of components to avoid splitting
of the DMN or splitting of some brain regions into different
components. Therefore, despite ICA becoming increasingly
popular for the analysis of rodent rs-fMRI data, challenges
remain as there is no set protocol for selecting the number of
components.

SUMMARY

Considered together, the human studies discussed in this review
demonstrate the broad relevance and significance of the results
from combined rTMS/fMRI protocols. Results from human
studies to date inter alia have permitted the characterization
of corrupted networks in diseased states, as well as intriguing
glimpses into how alterations in functional connectivity patterns
after rTMS are correlated with improvements in symptoms.
There is also exciting evidence that functional connectivity can be
used to predict responses to rTMS treatment with high reliability.

Although methodological challenges remain in the use of
brain imaging techniques in rodents, we anticipate that the use
of fMRI to study rTMS in animal models will not only permit
more detailed characterizations of how different rTMS protocols
affect network dynamics and connectivity but will also elucidate
how these changes reflect the manifestation of symptoms in
preclinical models. Linking these functional changes to the
molecular and cellular changes currently known in rodents will
provide new insights into the fundamental mechanisms of brain
plasticity and how to use rTMS therapeutically.
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