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recent article of this series,1 we considered the peri-
odogram and correlogram estimators for the power spec-
tral density (PSD) function. However, they are only two of
several possibilities. 

In this installment, we consider two additional kinds of
spectrum estimates: autoregressive (AR) estimates and the
maximum entropy (ME) method. In the first approach, we
assume that an AR process generates the time series,
which means we can compute the PSD of the time series
from estimates of the AR parameters. The second ap-
proach is a special case of the first, but it uses a different
method for estimating the AR parameters. Specifically, it
chooses them to make the PSD’s inverse transform com-
patible with the measured time series, while remaining
maximally noncommittal about the data outside the ob-
servational window.

Autoregressive Time-Series Models
Both the periodogram and correlogram estimates make
rather unrealistic assumptions about the data outside the
observational window. Moreover, when they use tapering
windows or truncation of the autocorrelation function
(ACF), they change the observed data. The years since the
early 1970s have seen the development of a new class of
PSD estimators that are based on the idea of fitting a para-
metric time-series model to the observed data. This en-
ables us to use estimates of the parameters in the
theoretical expression of the model’s PSD to get an esti-
mate of the observed series’ PSD. If the model is a good
representation of the process that generated the data, it
should hopefully give a more realistic extrapolation for the
missing data.

The class of models used most often assumes that the data

are generated by an AR process in which each new data
point is formed from a linear combination of the preceding
data plus a random shock. The basic idea is that a system’s
future states depend in a deterministic way on previous
states, but at each time step, a random perturbation drives
the system forward. We can write the AR models of orders
1, 2, and 3 as

AR(1): xn = –a1xn–1 + un, n = 1, 2, …, N – 1,
AR(2): xn = –a1xn–1 – a2xn–2 + un, n = 2, 3, …, N – 1,
AR(3): xn = –a1xn–1 – a2xn–2 – 

a3xn–3 + un, n = 3, 4, …, N – 1, (1)

where a1, a2, and a3 are the AR parameters (whose values
must be determined to make the model fit the data), and
un is the random shock at time step n. We assume the ran-
dom shocks to be samples from a zero-mean distribution
whose variance remains constant in time. The choice of
negative signs for the parameters is a universal convention
adopted for notational convenience in derivations that we
won’t give here.

Autoregressive Spectral Estimates
In general, for any integer p < N – 1, the AR( p) model is
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, n = p,  p + 1, …, N – 1. (2)

We can show that the PSD function for this model is

(3)

where �w is another adjustable parameter that we can esti-
mate along with a1, a2, …, ap by solving the ( p + 1) � ( p + 1)
linear system of equations,

(4)

which are sometimes called the Yule-Walker equations. The
�-values in the matrix are just the autocorrelations �k = �(�k)
= �(k�t) that we defined in the last issue1 with

, (5)

where x* is the complex conjugate of x(t). We’re working
with real data, so �–k = �k, which means that the matrix is

symmetric and positive definite. Note that the element in
row i and column j is just �(i–j), which makes it a Toeplitz ma-
trix. Norman Levinson2 exploited this special structure to
devise a recursive algorithm that solves the system in times
proportional to (p + 1)2 rather than the (p + 1)3 required by
a general linear equations solver.

We can summarize the steps required to compute an au-
toregressive spectral estimate as follows:

1. Choose an autoregressive order p � N – 1.
2. Compute ACF estimates �̂0, �̂1, …, �̂p using the biased

estimator 

m = 0, 1, …, N – 1. (6)

3. Substitute �̂0,  �̂1, …,  �̂p into the matrix in Equation 4
and use the Levinson algorithm to compute estimates   
â1, â2, …, âp and  �̂w.

4. Substitute â1, â2, …, âp and  �̂w into Equation 3 to
compute the PSD estimate P̂AR(f ) on any desired fre-
quency mesh.

It’s absolutely necessary to use the biased ACF estimator in
step 2. Using the unbiased estimator produces an unstable
linear system (see Equation 4) with a matrix that numerically
isn’t positive definite.

It’s easy to do the calculations in the final step by using the
fast Fourier transform (FFT) algorithm to compute the de-
nominator in Equation 3. If we define â0 � 1, then

(7)

Suppose we want to evaluate PAR( f ) at (M/2 + 1) equally
spaced frequencies

, k = 0, 1, …, M/2, (8)

where M > p. Then, 

(9)

and we can compute these values quite quickly by zero
padding the sequence â0,  â1,  â2, …,  âp to have M terms and
applying the FFT algorithm.
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Figure 1. The time series generated by Equation 10 and its
periodogram. The discrete points in the upper plot are joined
by straight-line segments to emphasize the time series nature
of the data. The time series was zero padded to length M =
1,024 to compute the periodogram in the lower plot. 
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Two Examples
If we choose the AR order p properly, the peaks in the AR( p)
spectrum will be sharper than those in the periodogram or
correlogram estimates. There is no clear-cut prescription
for choosing p, but a fairly wide range of values will usually
give acceptable results. To illustrate the effect of the choice
of p, let’s revisit an example time series used in the last issue.1

Again, we’ll take N = 32, �t = 0.22, and consider the time se-
ries generated by

tj = j�t,    j = 0, 1, 2, …, N – 1,
xj = x(tj) = sin[2�f0(tj + 0.25)] + �j, (10)

with f0 = 0.5, and each �j a random number drawn indepen-
dently from a normal distribution with mean zero and stan-
dard deviation � = 0.25. Figure 1 plots the time series and
its periodogram, and Figure 2 gives three different AR( p)
spectra for the time series, together with the periodogram
for comparison. Table 1 gives the locations of the peak cen-
ters. Both the AR(16) and AR(24) estimates give better re-
sults than the periodogram, but for real-world problems, it’s
best to try several orders in the range N/2 � p � 3N/4 and
compare them to make the final choice. Our own experience
has indicated that the best choice usually has p � 2N/3.

To better illustrate the AR methods’ power, let’s recon-
sider another time series originally introduced in Part I of
our series (specifically, Figure 2a).3 We generated it by sum-
ming two sine waves, with amplitudes A1 = A2 = 1.0, fre-
quencies f1 = 1.0 and f2 = 1.3, and phases �1 = �2 = 0, at N =
16 equally spaced time points with �t = 0.125. Again, we add
random noise to make the problem more realistic, and write

tj = j�t,     j = 0, 1, …, N – 1,
xj = sin[2�f1tj] + sin[2�f2tj] + �j, (11)

with the �j chosen independently from a normal distribution;
the mean is 0 and standard deviation � = 0.25. This is the
same error distribution in the preceding example, but the
samples used here differ from any used there. The top graph
of Figure 3 gives plots of the noisy and noise-free time se-
ries, and the bottom graph gives their periodograms. Figure
4 gives plots of the PSD’s periodogram and AR(12) esti-
mates. The latter clearly indicates the presence of two peaks,
although it doesn’t completely resolve them. The two max-
ima occur at frequencies very near the true values used to
generate the time series. It’s remarkable that the AR(12) es-
timate could obtain such good agreement with the true val-
ues using only 16 noise-corrupted data points.
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Figure 2. AR(p) power spectral density (PSD) estimates. For 
p = 8, 16, and 24, and the periodogram for the time series
generated by Equation 10, the plot doesn’t cover the whole
Nyquist band 0 � f � 2.273, but rather only the frequency
range spanned by the central peak in the periodogram. Using
the whole Nyquist range renders the AR(p) peaks so narrow
that it’s difficult to distinguish between them.

Estimate Periodogram AR(8) AR(16) AR(24)
�
f0 0.493 0.491 0.495 0.504

Table 1. Peak centers.
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Figure 3. Time series. In (a) the noise-corrupted time series
generated by Equation 11, the noise is independently and
identically distributed n(0, 0.25). (b) Periodograms of the two
time series plotted in (a). In neither case was the periodogram
method able to resolve two separate peaks. For the noisy
spectrum, the unresolved lump peaks at frequency f
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The Maximum Entropy Approach
John Parker Burg invented the ME method in the late
1960s; he exhibited its strengths and advantages in oral pre-
sentations at geophysics conferences, but he didn’t publish
the mathematical derivations that defined and justified it un-
til his PhD thesis4 appeared in 1975. This lack of published
documentation produced a great deal of independent work
by other researchers who were trying to understand and ex-
tend the method. In fact, the ME method was one of the
chief motivators for the development of the AR methods and
can be classified as an AR method itself, although Burg
didn’t use AR models in its development.

Rather, Burg started with the definition for PSD, that is, 

, (12)

but sought a function Pe( f ), defined on the Nyquist band
–1/(2�t) � f � 1/(2�t), which satisfied three guiding principles:

1. The inverse Fourier transform of Pe( f ) should return
the autocorrelation function unchanged by any filter-
ing or tapering operations:

m = 0, 1, …, N – 1. (13)
2. Pe( f ) should correspond to the most random or unpre-

dictable time series whose autocorrelation function
agrees with the known values.

3. Pe( f ) > 0 on the interval –1/(2�t) � f � 1/(2�t).

The first condition merely states that the measured data
shouldn’t be changed in any way in computing Pe( f ). The

second is a statement about what is to be assumed about the
data outside the observational window. Essentially, it says
that those assumptions should be minimized.

To measure a time series’ randomness or unpredictability,
Burg used the information theoretic concept of entropy. A
random process

… x(–2�t), x(–�t), x(0), x(�t), x(2�t), … (14)

is said to be band limited if its PSD function is zero everywhere
outside its Nyquist band. If P( f ) is such a PSD function, then
the time series’ entropy rate (entropy per sample) is given by 

(15)

Burg’s idea was to maximize this quantity, subject to the
constraints imposed by Equation 13. More precisely, he
sought to impose the constraint at lags 0, �t, 2�t, …, p�t,
with p < N and then choose from the set of all nonnegative
functions P( f ) that satisfy those p + 1 constraints the partic-
ular one that minimizes the entropy rate (Equation 15). We
can write the problem formally as

(16)

We need techniques from the calculus of variations to solve
it; we can show that

, (17)

where a1, a2, …, ap and �e are parameters satisfying

(18)

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

0 1 2

1 0 1 1

2 1 0 2

...

...

...

... ...

p

p

p

−

−

.... ... ...
...ρ ρ ρ ρp p p− −























1 2 0

11

0
0

0

1

2

a
a

ap

e

... ...























=











ρ














.

P f

a fj t
t

fe
e

j
j

p
( )

exp( )

,=

+ − ∆

−
∆

≤ ≤
∆

=
∑

ρ

π1 2

1
2

1
2

1

2

i
tt

h P f

P f df

P f

P f

e

P f

{ ( )}

max ln[ ( )]

( ) ,

( )exp(
( )

=

> 0

2π iifm t df

m p

m

t

t

t

t ∆ =

=

−
∆

∆

−
∆

∆ ∫ ) ,

, , ...,

ρ
1

2

1

2
1

2

1

2

0 1

∫∫



























.

h P f P f df
t

t{( ( )} ln[ ( )] .=
−

∆

∆∫ 1

2

1

2

ρ ρ πm em t P f fm t df
t

t= ∆ = ∆
−

∆

∆∫( ) ( )exp( ) ,2
1

2

1

2 i

P f f d( ) ( )exp( )= −
−∞

∞
∫ ρ τ π τ τ2 i

E D U C A T I O N
P

(f
)

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0
0 1.00.5 1.5 2.0 2.5 3.0 3.5 4.0

f

PAR(f )
Periodogram

Figure 4. Power spectral density (PSD). The AR(12) and the
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Equation 17 is the same as Equation 3, and, because we’re
working with real data for which �–k = �k, Equation 18 is the
same as Equation 4. Thus, the maximum entropy method is
correctly classified as an AR method, even though Burg used
different methods to estimate the autorcorrelations and pa-
rameters in Equation 18.

Forward and Backward Prediction Filters
Burg regarded the vector (1  a1 a2 … ap)T as a prediction
filter, which he applied to the data x0, x1, …, xN–1 in both the
forward and reverse directions to get forward and backward
predictions  x̂ f

n,   x̂ b
n and their corresponding prediction er-

rors e f
n, eb

n: 

(19)

He reasoned that he could get the best estimates for a1, a2,
…, ap by minimizing the sum of squares of the predictions’
errors, for example, 

. (20)

He was able to devise a recursive algorithm that gave esti-
mates not only for a1, a2, …, ap, but also, at the same time,
for �e and for the autocorrelations �0, �1, …, �p. The de-
tails are complicated, so we won’t give them here.4 It’s re-
markable that the recursion generates a new estimator for
the elements of the matrix in Equation 18 at the same time
it’s solving the system of equations!

Choosing the Order p
Like the other AR methods, the ME method requires the
choice of an order p < N. Figure 5 exhibits the results of
choosing a low, intermediate, and high order for the time se-
ries generated by Equation 10. The same plots are repeated
using a logarithmic scaling in Figure 6. Table 2 gives the peak
locations. The ME(3) spectrum gave the best estimate  ̂f0, but
its peak is almost as broad as the periodogram. Increasing p
produces sharper peaks, but the locations display a noticeable
downward bias. The ME(14) estimate is fairly representative
of the orders in the range 4 � p � 25. At p = 26, the peak splits
into two, with the dominant one giving a better  ̂f0 than any of
the sharp single peaks for p = 4, 5, …, 25. The same splitting

occurs for orders p = 27, 28, 29, and 30, with the dominant
peak becoming sharper and sharper but remaining at  f̂0 =
0.492. These spurious splittings aren’t caused by errors in
the data. In fact, they occur much more readily for artificially
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Figure 5. Maximum entropy power spectral density (PSD)
estimates. For orders p = 3, 14, and 26, and the periodogram
for the time series generated by Equation 10, we see plots
along the same frequency range used for the AR(p) spectra in
Figure 2. The ME peaks are even sharper than the AR(p) peaks,
so they must be taller to preserve the area subtended. 

Estimate Periodogram ME(3) ME(14) ME(26)
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Table 2. Peak locations.
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Figure 6. Another view of the plots given in Figure 5. Using the
logarithm scale makes it easier to compare the ME(3) estimate
with the periodogram.
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generated time series without added noise, but the ME(26)
spectrum clearly demonstrates that they also occur in noisy
data, so great care must be exercised in interpreting high-
order ME spectra. One of the ME method’s strengths is its
ability to resolve closely spaced peaks, but in using it for that
purpose, always remember the possibility of a spurious split-
ting of a single peak.

Researchers have proposed several criteria for choosing
the optimal order for the ME method (and for the other AR
methods), but none of them work all of the time. In fact, it’s
easier to find a time series that confounds a given criterion
than it is to develop it. Many authors5,6 recommend p � N/2,
but higher order methods often give better results. Figure 7
shows the result of using a relatively high p for the time se-
ries generated by Equation 11. The very narrow spurious
peak at  f̂ = 2.901 is a typical occurrence when we use high
values for p. Such peaks can usually be easily identified be-
cause they’re so much sharper than the peaks correspond-
ing to real power. The one in Figure 7 is a small price to pay
for the excellent resolution of the two real peaks. It’s amaz-
ing that the ME method can achieve such good results us-
ing just 16 noisy data points spanning only � 2.5 cycles of
the higher frequency sine wave.

W e’ve now looked at four different methods of spec-
trum estimation, and although we haven’t ex-

hausted the subject, we must proceed. (More details about
this topic appear elsewhere.5,6) In the next installment, we’ll

take a brief look at filters and detrending before we present
an analysis of a bat chirp. In the final installment, we’ll dis-
cuss some statistical tests and use them to analyze atmos-
pheric pressure differences in the Pacific Ocean that have
significant environmental implications.
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