
96	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

W
e’re now just past the 40th anniver-
sary of the NATO Conference on
Software Engineering in Garmisch,
Germany, where the discipline of soft-
ware engineering was first proposed.
Because some of my early work be-

came part of that new discipline, this seems like
an appropriate moment for reassessment.

My early metrics book, Con-
trolling Software Projects: Man-
agement, Measurement, and
Estimation (Prentice Hall/Your-
don Press, 1982), played a role
in the way many budding soft-
ware engineers quantified work
and planned their projects. In
my reflective mood, I’m wonder-
ing, was its advice correct at the
time, is it still relevant, and do I

still believe that metrics are a must for any suc-
cessful software development effort? My answers
are no, no, and no.

The book for me is a curious combination of
generally true things written on every page but
combined into an overall message that’s wrong.
It’s as though the book’s young author had never
met a metric he didn’t like. The book’s deep mes-
sage seems to be, metrics are good, more would
be better, and most would be best. Today we all
understand that software metrics cost money and
time and must be used with careful moderation.
In addition, software development is inherently
different from a natural science such as physics,
and its metrics are accordingly much less precise
in capturing the things they set out to describe.
They must be taken with a grain of salt, rather
than trusted without reservation.

Compelled to Control
The book’s most quoted line is its first sentence:
“You can’t control what you can’t measure.” This
line contains a real truth, but I’ve become increas-
ingly uncomfortable with my use of it. Implicit in
the quote (and indeed in the book’s title) is that
control is an important aspect, maybe the most im-
portant, of any software project. But it isn’t. Many
projects have proceeded without much control but
managed to produce wonderful products such as
GoogleEarth or Wikipedia.

To understand control’s real role, you need to
distinguish between two drastically different kinds
of projects:

Project A will eventually cost about a mil-■■

lion dollars and produce value of around $1.1
million.
Project B will eventually cost about a million ■■

dollars and produce value of more than $50
million.

What’s immediately apparent is that control is re-
ally important for Project A but almost not at all
important for Project B. This leads us to the odd
conclusion that strict control is something that
matters a lot on relatively useless projects and
much less on useful projects. It suggests that the
more you focus on control, the more likely you’re
working on a project that’s striving to deliver
something of relatively minor value.

To my mind, the question that’s much more im-
portant than how to control a software project is,
why on earth are we doing so many projects that
deliver such marginal value?

Tom DeMarco

Software Engineering:
An Idea Whose Time Has Come and Gone?

C o n t a c t E d i t o r : D e n n i s T a y l o r n d t a y l o r @ c o m p u t e r . o r g

viewpoints

Continued on p. 95

We welcome
your letters.
Send them to
software@
computer.org.
Include your full
name, title,
affiliation, and
email address.
Letters are edited
for clarity
and space.

	 July/August 2009 I E E E S o f t w a r e � 95

Viewpoints

Can I really be saying that it’s OK to
run projects without control or with rela-
tively little control? Almost. I’m suggest-
ing that first we need to select projects
where precise control won’t matter so
much. Then we need to reduce our ex-
pectations for exactly how much we’re
going to be able to control them, no mat-
ter how assiduously we apply ourselves to
control.

An Unsettling Analogy
Imagine you’re trying to control a teen-
ager’s upbringing. The very idea of con-
trolling your child ought to make you
at least a little bit queasy. Yet the stakes
for control couldn’t be higher. If you
fail in your task, fail utterly, lives can be
ruined. So, it’s absolutely essential that
you not lose your grip entirely. You’re like
a fencer who’s learning to hold his sword
as though it were a bird: too tight and the
bird will be injured; too loose and it will
fly away.

Now apply “You can’t control what
you can’t measure” to the teenager. Most
things that really matter—honor, dignity,
discipline, personality, grace under pres-
sure, values, ethics, resourcefulness, loy-
alty, humor, kindness—aren’t measurable.
You must steer your child as best you can
without much metric feedback. It’s hard,
but then parenting is hard. You get a little
bit of measurement in the form of school
grades, and you’re grateful for it. But you
also know that your child’s math grade is
a better indicator of achievement than his
Spanish grade, because math understand-
ing is easier to measure. And his “grade”
in comportment is much more likely to
tell you something about the teacher than
about the child.

So, how do you manage a project with-
out controlling it? Well, you manage the
people and control the time and money.
You say to your team leads, for example,
“I have a finish date in mind, and I’m not
even going to share it with you. When I
come in one day and tell you the proj-
ect will end in one week, you have to be
ready to package up and deliver what
you’ve got as the final product. Your job
is to go about the project incrementally,
adding pieces to the whole in the order of
their relative value, and doing integration

and documentation and acceptance test-
ing incrementally as you go.”

This might sound like an agile-
methods prescription, but I’m too far
away today from the actual building of
software to recommend at the methods
level. Rather, I’m advocating a manage-
ment approach, one that might well steer
the team toward agile methods, at least
toward the incremental aspects of the
agile school.

S o far, I’ve mostly discussed software
engineering’s metric component. How
about the rest? I’m gradually coming

to the conclusion that software engineer-
ing is an idea whose time has come and
gone. I still believe it makes excellent sense
to engineer software. But that isn’t exactly
what software engineering has come to
mean. The term encompasses a specific set
of disciplines including defined process, in-
spections and walkthroughs, requirements
engineering, traceability matrices, metrics,
precise quality control, rigorous planning
and tracking, and coding and documenta-

tion standards. All these strive for consis-
tency of practice and predictability.

Consistency and predictability are still
desirable, but they haven’t ever been the
most important things. For the past 40
years, for example, we’ve tortured our-
selves over our inability to finish a soft-
ware project on time and on budget. But
as I hinted earlier, this never should have
been the supreme goal. The more impor-
tant goal is transformation, creating soft-
ware that changes the world or that trans-
forms a company or how it does business.
We’ve been rather successful at transfor-
mation, often while operating outside our
control envelope. Software development is
and always will be somewhat experimen-
tal. The actual software construction isn’t
necessarily experimental, but its concep-
tion is. And this is where our focus ought
to be. It’s where our focus always ought
to have been.

Tom DeMarco is a principal of the Atlantic Systems
Guild. Contact him at tdemarco@systemsguild.com.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer So-
ciety. IEEE headquarters: Three Park Ave., 17th Floor, New York, NY 10016-5997.
IEEE Computer Society Publications Office: 10662 Los Vaqueros Cir., PO Box 3014,
Los Alamitos, CA 90720-1314; +1 714 821 8380; fax +1 714 821 4010. IEEE Com-
puter Society headquarters: 2001 L St., Ste. 700, Washington, DC 20036. Subscription
rates: IEEE Computer Society members get the lowest rate of US$51 per year, which
includes printed issues plus online access to all issues published since 1988. Go to www.
computer.org/subscribe to order and for more information on other subscription prices.
Back issues: $20 for members, $163 for nonmembers (plus shipping and handling).

Postmaster: Send undelivered copies and address changes to IEEE Software, Member-
ship Processing Dept., IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854-4141.
Periodicals Postage Paid at New York, NY, and at additional mailing offices. Canadian
GST #125634188. Canada Post Publications Mail Agreement Number 40013885. Re-
turn undeliverable Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8,
Canada. Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of this material is
permitted without fee, provided such use: 1) is not made for profit; 2) includes this no-
tice and a full citation to the original work on the first page of the copy; and 3) does not
imply IEEE endorsement of any third-party products or services. Authors and their com-
panies are permitted to post their IEEE-copyrighted material on their own Web servers
without permission, provided that the IEEE copyright notice and a full citation to the
original work appear on the first screen of the posted copy.

Permission to reprint/republish this material for commercial, advertising, or promo-
tional purposes or for creating new collective works for resale or redistribution must
be obtained from IEEE by writing to the IEEE Intellectual Property Rights Office, 445
Hoes Lane, Piscataway, NJ 08854-4141 or pubs-permissions@ieee.org. Copyright ©
2009 IEEE. All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the source. Librar-
ies are permitted to photocopy for private use of patrons, provided the per-copy fee indi-
cated in the code at the bottom of the first page is paid through the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923.

Continued from p. 96

For access to more content from the IEEE Computer Society,
see computingnow.computer.org.

This article was featured in

Top articles, podcasts, and more.

computingnow.computer.org

http://computingnow.computer.org
http://computingnow.computer.org

