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Abstract. This paper studies an incentive structure for cooperation and
its stability in peer-assisted services when there exist multiple content
providers, using a coalition game theoretic approach. We first consider a
generalized coalition structure consisting of multiple providers with many
assisting peers, where peers assist providers to reduce the operational cost
in content distribution. To distribute the profit from cost reduction to
players (i.e., providers and peers), we then establish a generalized formula
for individual payoffs when a “Shapley-like” payoff mechanism is adopted.
We show that the grand coalition is unstable, even when the operational
cost functions are concave, which is in sharp contrast to the recently stud-
ied case of a single provider where the grand coalition is stable. We also
show that irrespective of stability of the grand coalition, there always exist
coalition structures which are not convergent to the grand coalition. Our
results give us an important insight that a provider does not tend to coop-
erate with other providers in peer-assisted services, and be separated from
them. To further study the case of the separated providers, three examples
are presented; (i) underpaid peers, (ii) service monopoly, and (iii) oscil-
latory coalition structure. Our study opens many new questions such as
realistic and efficient incentive structures and the tradeoffs between fair-
ness and individual providers’ competition in peer-assisted services.

1 Introduction

The Internet is becoming more content-oriented, and the need of cost-effective
and scalable distribution of contents has become the central role of the Internet.
Uncoordinated peer-to-peer (P2P) systems, e.g., BitTorrent, has been successful
in distributing contents, but the rights of the content owners are not protected
well, and most of the P2P contents are in fact illegal. In its response, a new
type of service, called peer-assisted services, has received significant attentions
these days. In peer-assisted services, users commit a part of their resources to
assist content providers in content distribution with objective of enjoying both
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Fig. 1. Coalition Structures for a Dual-Provider Network

scalability/efficiency in P2P systems and controllability in client-server systems.
Examples of peer-assisted services include nano data center [1] and IPTV [2],
where high potential of operational cost reduction was observed. For instance,
there are now 1.8 million IPTV subscribers in South Korea, and the financial
sectors forecast that by 2014 the IPTV subscribers is expected to be 106 million,
see, e.g., [3]. However, it is clear that most users will not just “donate” their re-
sources to content providers. Thus, the key factor to the success of peer-assisted
services is how to (economically) incentivize users to commit their valuable re-
sources and participate in the service.

One of nicemathematical tools to study incentive-compatibility of peer-assisted
services is the coalition game theory which covers how payoffs should be dis-
tributed and whether such a payoff scheme can be executed by rational indi-
viduals or not. In peer-assisted services, the “symbiosis” between providers and
peers are sustained when (i) the offered payoff scheme guarantees fair assessment
of players’ contribution under a provider-peer coalition and (ii) each individual
has no incentive to exit from the coalition. In the coalition game theory, the
notions of Shapley value and the core have been popularly applied to address
(i) and (ii), respectively, when the entire players cooperate, referred to as the
grand coalition. A recent paper by Misra et al. [4] demonstrates that the Shapley
value approach is a promising payoff mechanism to provide right incentives for
cooperation in a single-provider peer-assisted service.

However, in practice, the Internet consists of multiple content providers, even
if only giant providers are counted. The focus of our paper is to study
the cooperation incentives for multiple providers. In the multi-provider case, the
model clearly becomes more complex, thus even classical analysis adopted in the
single-provider case becomes much more challenging, and moreover the results
and their implications may experience drastic changes. To motivate further, see
an example in Fig. 1 with two providers (Google TV and iTunes) and consider
two cases of cooperation: (i) separated, where there exists a fixed partition of
peers for each provider, and (ii) coalescent, where each peer is possible to assist
any provider. In the separated case, a candidate payoff scheme is based on the
Shapley value in each separated coalition. Similarly, in the coalescent case, the
Shapley value is also a candidate payoff scheme after the worth function of the
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grand coalition N (the player set) is defined appropriately. A reasonable defini-
tion of the worth function1 can be the total cost reduction, maximized over all
combinations of peer partitions to each provider2. Then, it is not hard to see
that the cost reduction for the coalescent case exceeds that for the separated
case, unless the two partitions are equivalent in both cases. This implies that at
least one individual in the separated case is underpaid than in the coalescent case
under the Shapley-value based payoff mechanism. Thus, providers and users are
recommended to form the grand coalition and be paid off based on the Shapley
value, i.e., the due desert.

However, it is still questionable whether peers will stay in the grand coali-
tion and thus the consequent Shapley-value based payoff mechanism is desirable
in the multi-provider setting. In this paper, we anatomize incentive structures
in peer-assisted services with multiple content providers and focus on stability
issues from two different angles: stability at equilibrium of Shapley value and
convergence to the equilibrium.

Our main contributions are summarized as follows:

1) We first provide a closed-form formula of the Shapley value for a general case
of multiple providers and peers. To that end, we define a worth function to
be the maximum total cost reduction over all possible peer partitions to each
provider. Due to the intractability of analytical computation of the Shapley
value, we take a fluid-limit approximation that assumes a large number of
peers and re-scales the system with the number of peers. This is a non-
trivial generalization of the Shapley value for the single-provider case in [4].
In fact, our formula in Theorem 1 establishes the general Shapley value for
distinguished multiple atomic players and infinitesimal players in the context
of the Aumann-Shapley (A-S) prices [5] in coalition game theory.

2) We prove in Theorem 2 that the Shapley value for the multiple-provider case
is not in the core under mild conditions, e.g., each provider’s cost function
is concave. This is in stark contrast to the single-provider case where the
concave cost function stabilizes the equilibrium.

3) We study, for the first time, the endogenous formation of coalitions in peer-
assisted services by introducing the stability notion defined by the seminal
work of Hart and Kurz [6]. We show that, if we adopt a Shapley-like payoff
mechanism, called Aumann-Drèze value, irrespective of stability of the grand
coalition, there always exist initial states which are not convergent to the
grand coalition. An interesting fact from this part of study is that peers and
providers have opposite cooperative preferences, i.e., peers prefer to cooperate
with more providers, whereas providers prefer to be separated from other
providers.

1 We establish in Section 3.1 that this definition is derived directly from an essential
property of coalition.

2 The notion of peer partitions implicitly assumes that a peer assists only one provider.
However, our model is not restricted in the sense that we will study the regime of a
large number of peers for mathematical tractability, in which case a peer assisting
two providers can be regarded as two distinct peers assisting distinct providers.
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In short, the Shapley payoff regime cannot incentivize rational players to form
the grand coalition, implying that fair profit-sharing and opportunism of players
cannot stand together. If the grand coalition is broken up, the Shapley payoff
scheme cannot be executed because the total profit of a coalition differs from
the sum of Shapley payoffs in the coalition. Only payoff mechanisms for general
coalition structure may be used. In conjunction with this point, we present three
examples for non-cooperation among providers who adopt the Shapley-like payoff
scheme: (i) the peers are underpaid than their Shapley payoffs, (ii) a provider
with more “advantageous” cost function monopolizes all peers, and (iii) Shapley
value for each coalition gives rise to an oscillatory behavior of coalition structures.
These examples suggest that the system with the separated providers may be
even unstable as well as unfairness in a peer-assisted service market.

The rest of the paper is organized as follows. In Section 2, we define Shap-
ley and Aumann-Drèze values with minimal formalism. After formulating the
fluid Aumann-Drèze formula for multiple providers, we establish results on the
stability-related concepts in Section 4 to substantiate that it is very unlikely that
the grand coalition occurs. Then we point out main drawbacks of Aumann-Drèze
value in Section 5 and conclude this paper.

2 Preliminaries

Since this paper investigates a multi-provider case, where a peer can choose
any provider to assist, we start this section by defining a coalition game with a
peer partition (i.e., a coalition structure) and introducing the payoff mechanism
thereof.

2.1 Game with Coalition Structure

A game with coalition structure is a triple (N, v,P) where N is a player set and
v : 2N → R (2N is the set of all subsets of N) is a worth function, v(∅) = 0.
v(K) is called the worth of a coalition K ⊆ N . P is called a coalition structure
for (N, v); it is a partition of N where C(i) ∈ P denotes the coalition containing
player i. For your reference, a coalition structure P can be regarded as a set of
disjoint coalitions. The grand coalition is the partition P = {N}. For instance3,
a partition of N = {1, 2, 3, 4, 5} is P = {{1, 2}, {3, 4, 5}}, C(4) = {3, 4, 5}, and
the grand coalition is P = {{1, 2, 3, 4, 5}}. P(N) is the set of all partitions of
N . For notational simplicity, a game without coalition structure (N, v, {N}) is
denoted by (N, v). A value of player i is an operator φi(N, v,P) that assigns a
payoff to player i. We define φK =

∑
i∈K φi for all K ⊆ N .

To conduct the equilibrium analysis of coalition games, the notion of core has
been extensively used to study the stability of grand coalition P = {N}:
Definition 1 (Core). The core is defined by {φ(N, v) | ∑

i∈N φi(N, v) = v(N)
and

∑
i∈K φi(N, v) ≥ v(K), ∀K ⊆ N}.

3 A player i is an element of a coalition C = C(i), which is in turn an element of a
partition P . P is an element of P(N) while a subset of 2N .



Shapley-Like Payoff Mechanisms in Peer-Assisted Services 401

If a payoff vector φ(N, v) lies in the core, no player in N has an incentive to
split off to form another coalition K because the worth of the coalition K, v(K),
is no more than the payoff sum

∑
i∈K φi(N, v). Note that the definition of the

core hypothesizes that the grand coalition is already formed ex-ante. We can see
the core as an analog of Nash equilibrium from noncooperative games. Precisely
speaking, it should be viewed as an analog of strong Nash equilibrium where no
arbitrary coalition of players can create worth which is larger than what they
receive in the grand coalition. If a payoff vector φ(N, v) lies in the core, then
the grand coalition is stable with respect to any collusion to break the grand
coalition.

2.2 Shapley Value and Aumann-Drèze Value

On the premise that the player set is not partitioned, i.e., P = {N}, the Shapley
value, denoted by ϕ (not φ), is popularly used as a fair distribution of the grand
coalition’s worth to individual players, defined by:

ϕi(N, v) =
∑

S⊆N\{i}
|S|!(|N | − |S| − 1)!

|N |! (v(S ∪ {i})− v(S)) . (1)

Shapley [7] gives the following interpretation: “(i) Starting with a single member,
the coalition adds one player at a time until everybody has been admitted.
(ii) The order in which players are to join is determined by chance, with all
arrangements equally probable. (iii) Each player, on his admission, demands
and is promised the amount which his adherence contributes to the value of
the coalition.” The Shapley value quantifies the above that is axiomatized (see
Section 2.3) and has been treated as a worth distribution scheme. The beauty
of the Shapley value lies in that the payoff “summarizes” in one number all the
possibilities of each player’s contribution in every coalition structure.

Given a coalition structure P 	= {N}, one can obtain the Aumann-Drèze
value (A-D value) [8] of player i, also denoted by ϕ, by taking C(i), which is the
coalition containing player i, to be the player set and by computing the Shapley
value of player i of the reduced game (C(i), v). It is easy to see that the A-D
value can be construed as a direct extension of the Shapley value to a game with
coalition structure. Note that both Shapley value and A-D value are denoted by
ϕ because the only difference is the underlying coalition structure P .

2.3 Axiomatic Characterizations of Values

We provide here the original version [7] of the axiomatic characterization of the
Shapley value.

Axiom 1 (Coalition Efficiency, CE).
∑

j∈C φj(N, v,P) = v(C), ∀C ∈ P.

Axiom 2 (Coalition Restricted Symmetry, CS). If j ∈ C(i) and v(K ∪
{i}) = v(K ∪ {j}) for all K ⊆ N \ {i, j}, then φi(N, v,P) = φj(N, v,P).
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Fig. 2. If a payoff vector lies in the core, the grand coalition is stable [6].

Axiom 3 (Additivity, ADD). φi(N, v + v′,P) = φi(N, v,P) + φi(N, v′,P)
for all coalition functions v, v′ and i ∈ N .

Axiom 4 (Null Player, NP). If v(K ∪ {i}) = v(K) for all K ⊆ N , then
φi(N, v,P) = 0.

Recall that the basic premise of the Shapley value is that the player set is not
partitioned, i.e., P = {N}. Also, the Shapley value, defined in (1), is uniquely
characterized by CE, CS, ADD and NP for P = {N} [7]. The A-D value is
also uniquely characterized by CE, CS, ADD and NP (Axioms 1-4), but in
this case for arbitrary coalition structure P [8]. In the literature, e.g., [9,10], the
A-D value has been used to analyze the static games where a coalition structure
is exogenously given.

Definition 2 (Coalition Independent, CI). If i ∈ C ⊆ N , C ∈ P and
C ∈ P ′, then φi(N, v,P) = φi(N, v,P ′).

From the definition of the A-D value, the payoff of player i in coalition C(i) is
affected neither by the player set N nor by coalitions C ∈ P , C 	= C(i). Note
that only C(i) contains the player i. Thus, it is easy to prove that the A-D
value is coalition independent. From CI of the A-D value, in order to decide
the payoffs of a game with general coalition structure P , it suffices to decide the
payoffs of players within each coalition, say C ∈ P , without considering other
coalitions C ∈ P , C 	= C(i). In other words, once we decide the payoffs of a
coalition C ∈ P , the payoffs remains unchanged even though other coalitions,
C ′ ∈ P , C′ 	= C, vary. Thus, for any given coalition structure P , any coalition
C ∈ P is just two-fold in terms of the number of providers in C: (i) one provider
or (ii) two or more providers, as depicted in Fig. 1.

The notion ofCI also enables us to define the stability of a game with coalition
structure in the following simplistic way:

Definition 3 (Stable Coalition Structure [6]). We say that a coalition
structure P ′ blocks P, where P ′, P ∈ P(N), with respect to φ if and only if
there exists some C ∈ P ′ such that φi(N, v, {C, · · · }) > φi(N, v,P) for all i ∈ C.
In this case, we also say that C blocks P. If there does not exist any P ′ which
blocks P, P is called stable.

Due to CI of the A-D value, all stability notions defined by the seminal work
of Hart and Kurz [6] coincide with the above simplistic definition, as discussed
by Tutic [11]. Definition 3 can be intuitively interpreted that, if there exists any
subset of players C who improve their payoffs away from the current coalition
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structure, they will form a new coalition C. In other words, if a coalition structure
P has any blocking coalition C, some rational players will break P to increase
their payoffs. The basic premise here is that players are not clairvoyant, i.e.,
they are interested only in improving their instant payoffs. If a payoff vector lies
in the core, the grand coalition is stable in the sense of Definition 3, but the
converse is not necessarily true (see Fig. 2).

3 Coalition Game in Peer-Assisted Services

In this section, we first define a coalition game in a peer-assisted service with
multiple content providers by classifying the types of coalition structures as
separated, where a coalition includes only one provider, and coalescent, where a
coalition is allowed to include more than one providers (see Fig. 1). To define the
coalition game, we will define a worth function of an arbitrary coalition S ⊆ N
for such two cases.

3.1 Worth Function in Peer-Assisted Services

Assume that players N are divided into two sets, the set of content providers
Z := {p1, · · · , pζ}, and the set of peers H := {n1, · · · , nη}, i.e., N = Z ∪H . We
also assume that the peers are homogeneous, e.g., the same computing powers,
disk cache sizes, and upload bandwidths. Later, we discuss that our results can be
readily extended to nonhomogeneous peers. The set of peers assisting providers
is denoted by H̄ := {n1, · · · , nx·η} where x = |H̄ |/η, i.e., the fraction of assisting
peers. We define the worth of a coalition S to be the amount of cost reduction due
to cooperative distribution of the contents by the players in S in both separated
and coalescent cases.

Separated case: Denote by Ωη
p (x(S)) the operational cost of a provider p when

the coalition S consists of provider p and x(S) · η assisting peers. Since the op-
erational cost cannot be negative, we assume Ωη

p (x(S)) > 0. Note that from the
homogeneity assumption of peers, the cost function depends only on the fraction
of assisting peers. Then, we define the worth function v̂(S) for the coalition S
as:

v̂(S) := Ωη
p (0)−Ωη

p (x(S)) (2)

where Ωη
p (0) corresponds to the cost when there are no assisting peers. For

notational simplicity, in what follows, x(S) is denoted by x from now on.

Coalescent case: In contrast to the separated case, where a coalition includes
a single provider, the worth for the coalescent case is not clear yet, since de-
pending on which peers assist which providers the amount of cost reduction may
differ. One of reasonable definitions would be the maximum worth out of all peer
partitions, i.e., the worth for the coalescent case is defined by:

v(S) = max
{∑

C∈P v̂(C)
∣
∣
∣ P ∈ P(S) such that |Z ∩ C| = 1, ∀C ∈ P

}
. (3)
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The definition above implies that we view a coalition containing more than one
provider as the most productive coalition whose worth is maximized by choosing
the optimal partition P∗ among all possible partitions of S. Note that (3) is
consistent with the definition (2) for |Z∩S| ≤ 1, i.e., v(S) = v̂(S) for |Z∩S| ≤ 1.

Four remarks are in order. First, as opposed to [4] where v̂({p}) = ηR−Ωη
p (0)

(R is the subscription fee paid by any peer), we simply assume that v̂({p}) = 0.
Note that, as discussed in [10, Chapter 2.2.1], it is no loss of generality to assume
that, initially, each provider has earned no money. In our context, this means
that it does not matter how much fraction of peers is subscribing to each provider
because each peer has already paid the subscription fee to providers ex-ante.

Second, it is also important to note that we cannot always assume that Ωη
p (x)

is monotonically decreasing because providers have to pay the electricity expense
of the computers and the maintenance cost of the hard disks of assisting peers.
For example, a recent study [12] found that Annualized Failure Rate (AFR) of
hard disk drives is over 8.6% for three-year old ones. We discuss in Appendix
of [13] that, if we consider a more intelligent coalition, the cost function Ωη

p (x)
is always non-increasing. However, we assume the following to simplify the ex-
position:

Assumption 1. Ωη
p (x) is non-increasing in x for all p ∈ Z.

Third, the worth function in peer-assisted services can reflect the diversity of
peers. It is not difficult to extend our result to the case where peers belong to
distinct classes. For example, peers may be distinguished by different upload
bandwidths and different hard disk cache sizes. A point at issue for the multi-
ple provider case is whether peers who are not subscribing to the content of a
provider may be allowed to assist the provider or not. On the assumption that
the content is ciphered and not decipherable by the peers who do not know its
password which is given only to the subscribers, providers will allow those peers
to assist the content distribution. Otherwise, we can easily reflect this issue by
dividing the peers into a number of classes where each class is a set of peers
subscribing to a certain content.

Lastly, it should be pointed out that the worth function in (3) is rigorously
selected in order to satisfy a basic property:

Definition 4 (Superadditivity). A worth function v is superadditive if the
following holds: (S, T ⊆ N and S ∩ T = ∅) ⇒ v(S ∪ T ) ≥ v(S) + v(T ).

Suppose we have a superadditive worth function v′. We require v′(S) = v̂(S) if
S includes one provider. It follows from the definition of v in (3) that v′(·) is no
greater than v(·), i.e., v(·) ≥ v′(·) because v is the total cost reduction that is
maximized over all possible peer partitions to each provider. In the meantime,
since v′ is superadditive, it must satisfy v′(S ∪T ) ≥ v′(S)+ v′(T ) for all disjoint
S, T ⊆ N , implying that v′(·) ≥ v(·). This completes the proof of the following
lemma.
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Lemma 1. When the worth is given by (2), there exists a superadditive worth
function, uniquely given by (3).

Superadditivity is one of the most elementary properties, which ensures that the
core is nonempty by appealing to Bondareva-Shapley Theorem [10, Theorem
3.1.4]. In light of this lemma, we can clearly restate that our objective in this
paper is to analyze the incentive structure of peer-assisted services when the
worth of coalition is superadditive. This objective then necessarily implies the
form of worth function in (3).

3.2 Fluid Aumann-Drèze Value for Multiple-Provider Coalitions

So far we have defined the worth of coalitions. Now let us distribute the worth to
the players for a given coalition structure P . Recall that the payoffs of players in
a coalition are independent from other coalitions by the definition of A-D payoff.
Pick a coalition C without loss of generality, and denote the set of providers in C
by Z̄ ⊆ Z. With slight notational abuse, the set of peers assisting Z̄ is denoted by
H̄ . Once we find the A-D payoff for a coalition consisting of arbitrary provider set
Z̄ ⊆ Z and assisting peer set H̄ ⊆ H , the payoffs for the separated and coalescent
cases in Fig. 1 follow from the substitutions Z̄ = Z and Z̄ = {p}, respectively.
In light of our discussion in Section 2.2, it is more reasonable to call a Shapley-
like payoff mechanism ‘A-D payoff’ and ‘Shapley payoff’ respectively for the
partitioned and non-partitioned games (N, v, {Z̄∪H̄, · · · }) and (N, v, {Z∪H})4.
Fluid Limit: We adopt the limit axioms for a large population of users to
overcome the computational hardness of the A-D payoffs:

limη→∞ Ω̃η
p (·) = Ω̃p(·) where Ω̃η

p (·) = 1
ηΩ

η
p (·) (4)

which is the asymptotic operational cost per peer in the system with a large
number of peers. We drop superscript η from notations to denote their limits
as η → ∞. From the assumption Ωη

p (x) > 0, we have Ω̃p(x) ≥ 0. To avoid

trivial cases, we also assume Ω̃p(x) is not constant in the interval x ∈ [0, 1] for
any p ∈ Z. We also introduce the payoff of each provider per user, defined as
ϕ̃η
p := 1

ηϕ
η
p. We now derive the fluid limit equations of the payoffs which can be

obtained as η → ∞. The proof of the following theorem is given in Appendix
of [13].

Theorem 1 (A-D Payoff for Multiple Providers). As η tends to ∞, the
A-D payoffs of providers and peers under an arbitrary coalition C = Z̄ ∪ H̄
converge to the following equation:
⎧
⎨

⎩

ϕ̃Z̄
p (x) = Ω̃p(0)−∑

S⊆Z̄\{p}
∫ 1

0
u|S|(1− u)|Z̄|−1−|S|

(
M

S∪{p}
Ω (ux)−MS

Ω(ux)
)
du,

ϕ̃Z̄
n (x) = −∑

S⊆Z̄

∫ 1

0
u|S|(1− u)|Z̄|−|S| dMS

Ω
dx

(ux)du,

(5)

4 On the contrary, the term ‘Shapley payoff’ was used in [4] to refer to the payoff
for the game (N, v, {Z̄ ∪ H̄, · · · }) where a proper subset of the peer set assists the
content distribution.
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where p ∈ Z̄ and n ∈ H̄. HereMS
Ω(x) :=min

{∑
i∈S Ω̃i(yi)

∣
∣ ∑

i∈S yi≤x, yi ≥ 0
}

and M∅
Ω(x) := 0. Note that M

{p}
Ω (x) = Ω̃p(x).

The following corollaries are immediate as special cases of Theorem 1, which we
will use in Section 5.

Corollary 1 (A-D Payoff for Single Provider). As η tends to ∞, the A-
D payoffs of providers and peers who belong to a single-provider coalition, i.e.,
Z̄ = {p}, converge to the following equation:

{
ϕ̃
{p}
p (x) = Ω̃p(0)−

∫ 1

0 M
{p}
Ω (ux)du,

ϕ̃
{p}
n (x) = − ∫ 1

0 u
dM

{p}
Ω

dx (ux)du, for n ∈ H̄.
(6)

Corollary 2 (A-D Payoff for Dual Providers). As η tends to ∞, the A-
D payoffs of providers and peers who belong to a dual-provider coalition, i.e.,
Z̄ = {p, q}, converge to the following equation:
{
ϕ̃

{p,q}
p (x) = Ω̃p(0) −

∫ 1

0
uM

{p,q}
Ω (ux)du− ∫ 1

0
(1− u)M

{p}
Ω (ux)du+

∫ 1

0
uM

{q}
Ω (ux)du,

ϕ̃
{p,q}
n (x) = − ∫ 1

0
u2 dM

{p,q}
Ω
dx

(ux)du−∑
i∈{p,q}

∫ 1

0
u(1− u)

dM
{i}
Ω

dx
(ux)du,

(7)

where p and q are interchangeable and n ∈ H̄.

Note that our A-D payoff formula in Theorem 1 generalizes the formula in Misra
et al. [4, Theorem 4.3] (i.e., |Z| = 1). It also establishes the A-D values for
distinguished multiple atomic players (the providers) and infinitesimal players
(the peers), in the context of the Aumann-Shapley (A-S) prices [5] in coalition
game theory.

Our formula for the peers can be interpreted as follows. Take the second line
of (7) as an example. Recall the definition of the Shapley value (1). The payoff of
peer n is the marginal cost reduction v(S ∪ {n})− v(S) that is averaged over all
equally probable arrangements, i.e., the orders of players. It is also implied by
(1) that the expectation of the marginal cost is computed under the assumption
that the events |S| = y and |S| = y′ for y 	= y′ are equally probable, i.e.,
P(|S| = y) = P(|S| = y′). Therefore, in our context of infinite player game in
Theorem 1, for every values of ux along the interval [0, x], the subset S ⊆ Z̄ ∪ H̄
contains ux fraction of the peers. More importantly, the probability that each
provider is a member of S is simply u because the size of peers in S, ηux, is
infinite as η → ∞ so that the size of S is not affected by whether a provider
belongs to S or not. Therefore, the marginal cost reduction of each peer on

the condition that both providers are contained in S becomes −u2 dM
{p,q}
Ω

dx (ux).
Likewise, the marginal cost reduction of each peer on the condition that only

one provider is in the coalition is −u(1− u)
dM

{p}
Ω

dx (ux).

4 Instability of the Grand Coalition

In this section, we study the stability of the grand coalition to see if rational
players are willing to form the grand coalition, only under which they can be
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paid their respective fair Shapley payoffs. The key message of this section is
that the rational behavior of the providers makes the Shapley value approach
unworkable because the major premise of the Shapley value, the grand coalition,
is not formed in the multi-provider games.

4.1 Stability of the Grand Coalition

Guaranteeing the stability of a payoff vector has been an important topic in
coalition game theory. For the single-provider case, |Z| = 1, it was shown in [4,
Theorem 4.2] that, if the cost function is decreasing and concave, the Shapley
incentive structure lies in the core of the game. What if for |Z| ≥ 2? Is the grand
coalition stable for the multi-provider case? Prior to addressing this question,
we first define the following:

Definition 5 (Noncontributing Provider). A provider p ∈ Z is called non-

contributing if MZ
Ω (1)−M

Z\{p}
Ω (1) = Ω̃p(0).

To understand this better, note that the above expression is equivalent to the
following:

(∑
i∈Z Ω̃i(0)−MZ

Ω (1)
)
−
(∑

i∈Z\{p} Ω̃i(0)−M
Z\{p}
Ω (1)

)
= 0 (8)

which implies that there is no difference in the total cost reduction, irrespective
of whether the provider p is in the provider set or not. Interestingly, if all cost
functions are concave, there exists at least one noncontributing provider.

Lemma 2. Suppose |Z| ≥ 2. If Ω̃p(·) is concave for all p ∈ Z, there exist |Z|−1
noncontributing providers.

To prove this, recall the definition of MZ
Ω (·):

MZ
Ω (x) = miny∈Y (x)

∑
i∈Z Ω̃i(yi)

where Y (x) := {(y1, · · · , y|Z|)
∣
∣
∑

i∈Z

yi ≤ x, yi ≥ 0}.

Since the summation of concave functions is concave and the minimum of a
concave function over a convex feasible region Y (x) is an extreme point of Y (x)
as shown in [14, Theorem 3.4.7], we can see that the solutions of the above
minimization are the extreme points of {(y1, · · · , y|Z|) |

∑
i∈Z yi ≤ x, yi ≥ 0},

which in turn imply yi = 0 for |Z| − 1 providers in Z. Note that the condition
|Z| ≥ 2 is necessary here.

We are ready to state the following theorem, a direct consequence of Theorem
1. The proof is given in Appendix of [13].

Theorem 2 (Shapley Payoff Not in the Core). If there exists a noncon-
tributing provider, the Shapley payoff for the game (Z ∪H, v) does not lie in the
core.
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It follows from Lemma 2 that, if all operational cost functions are concave and
|Z| ≥ 2, the Shapley payoff does not lie in the core. This result appears to
be in best agreement with our usual intuition. If there is a provider who does
not contribute to the coalition at all in the sense of (8) and is still being paid
due to her potential for imaginary contribution assessed by the Shapley formula
(1), which is not actually exploited in the current coalition, other players may
improve their payoff sum by expelling the noncontributing provider.

The condition |Z| ≥ 2 plays an essential role in the theorem. For |Z| ≥ 2, the
concavity of the cost functions leads to the Shapley value not lying in the core,
whereas, for the case |Z| = 1, the concavity of the cost function is proven to
make the Shapley incentive structure lie in the core [4, Theorem 4.2].

4.2 Convergence to the Grand Coalition

The notion of the core lends itself to the stability analysis of the grand coali-
tion on the assumption that the players are already in the equilibrium, i.e., the
grand coalition. However, Theorem 2 still lets further questions unanswered. In
particular, for the non-concave cost functions, it is unclear if the Shapley value
is not in the core, which is still an open problem. We rather argue here that,
whether the Shapley value lies in the core or not, the grand coalition is unlikely
to occur by showing that the grand coalition is not a global attractor under some
conditions.

To study the convergence of a game with coalition structure to the grand
coalition, let us recall Definition 3. It is interesting that, though the notion of
stability was not used in [4], one main argument of this work was that the system
with one provider would converge to the grand coalition, hinting the importance
of the following convergence result with multiple providers. The proof of the
following theorem is given in Appendix of [13].

Theorem 3 (A-D Payoff Does Not Lead to the Grand Coalition). Sup-

pose |Z| ≥ 2 and Ω̃p(y) is not constant in the interval y ∈ [0, x] for any p ∈ Z
where x = |H̄ |/|H |. The followings hold for all p ∈ Z and n ∈ H̄.

– The A-D payoff of provider p in coalition {p} ∪ H̄ is larger than that in all
coalition T ∪ H̄ for {p} � T ⊆ Z.

– The A-D payoff of peer n in coalition {p} ∪ H̄ is smaller than that in all
coalition T ∪ H̄ for {p} � T ⊆ Z.

In plain words, a provider, who is in cooperation with a peer set, will re-
ceive the highest dividend when she cooperates only with the peers excluding
other providers whereas each peer wants to cooperate with as many as possible
providers. It is surprising that, for the multiple provider case, i.e., |Z| ≥ 2, each
provider benefits from forming a single-provider coalition whether the cost func-
tion is concave or not. There is no positive incentives for providers to cooperate
with each other under the implementation of A-D payoffs. On the contrary, a
peer always looses by leaving the grand coalition.

Upon the condition that each provider begins with a single-provider coalition
with a sufficiently large number of peers, one cannot reach the grand coalition
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Shapley Values

Shapley Value

Fig. 3. Example 1: A-D Payoffs of Two Providers and Peers for Convex Costs

because some single-provider coalitions are already stable in the sense of the
stability in Definition 3. That is, the grand coalition is not the global attractor.
For instance, take P = {{p} ∪ H, · · · } as the current coalition structure where
all peers are possessed by the provider p. Then it follows from Theorem 3 that
players cannot make any transition from P to {Φ ∪H, · · · } where Φ ⊆ Z is any
superset of {p} because provider p will not agree to do so.

5 A Critique of the A-D Payoff for Separate Providers

The discussion so far has focused on the stability of the grand coalition. The
result in Theorem 2 suggests that if there is a noncontributing (free-riding)
provider, which is true even for concave cost functions for multiple providers,
the grand coalition will not be formed. The situation is aggravated by Theorem
3, stating that single-provider coalitions (i.e., the separated case) will persist
if providers are rational. We now illustrate the weak points of the A-D payoff
under the single-provider coalitions with a few representative examples.

Example 1 (Unfairness). Suppose that there are two providers, i.e., Z =

{p, q}, with Ω̃p(x) = 7(x − 1)1.5/8 + 1/8 and Ω̃q(x) = 1 − x, both of which
are decreasing and convex. All values are shown in Fig. 3 as functions of x. In
line with Theorem 3, providers are paid more than their Shapley values, whereas
peers are paid less than theirs.

We can see that each peer n will be paid 21/32 (ϕ̃
{p}
n (0)) when he is contained

by the coalition {p, n} and the payoff decreases with the number of peers in this
coalition. On the other hand, provider p wants to be assisted by as many peers as

possible because ϕ̃
{p}
p (x) is increasing in x. If it is possible for n to prevent other

peers from joining the coalition, he can get 21/32. However, it is more likely in
real systems that no peer can kick out other peers, as discussed in [4, Section
5.1] as well. Thus, p will be assisted by x = 0.6163 fraction of peers, which is the

unique solution of ϕ̃
{p}
n (x) = ϕ̃

{q}
n (x) while q will be assisted by 1 − x = 0.3837

fraction of peers.
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Shapley Values

Shapley Value

Fig. 4. Example 2: A-D Payoffs of Two Providers and Peers for Concave Costs

Example 2 (Monopoly). Consider a two-provider system Z = {p, q} with

Ω̃p(x) = 1−x3/2 and Ω̃q(x) = 1−2x/3, both of which are decreasing and concave.
All values including the Shapley values are shown in Fig. 4. Not to mention
unfairness in line with Example 1 and Theorem 3, provider p monopolizes the
whole peer-assisted services. No provider has an incentive to cooperate with other

provider. It can be seen that all peers will assist provider p because ϕ̃
{p}
n (x) >

ϕ̃
{q}
n (x) for x > 25/81. Appealing to Definition 3, if the providers are initially

separated, the coalition structure will converge to the service monopoly by p. In
line with Lemma 2 and Theorem 2, even if the grand coalition is supposed to be
the initial condition, it is not stable in the sense of the core. The noncontributing
provider (Definition 5) in this example is q.

The last example illustrates the A-D payoff can even induce an analog of the
limit cycle in nonlinear control theory.

Example 3 (Oscillation). Consider a game with two providers and two peers
where N = {p1, p2, n1, n2}. If {n1}, {n2} and {n1, n2} assist the content distri-
bution of p1, the reduction of the distribution cost is respectively 10$, 9$ and 11$
per month. However, the hard disk maintenance cost incurred from a peer is 5$.
In the meantime, if {n1}, {n2} and {n1, n2} assist the content distribution of p2,
the reduction of the distribution cost is respectively 6$, 3$ and 13$ per month. In
this case, the hard disk maintenance cost incurred from a peer is supposed to be
2$ due to smaller contents of p2 as opposed to those of p1. We refer to Appendix
of [13] for a detailed analysis.

Table 1 contains A-D payoffs (and Shapley payoffs for the grand coalition) and
blocking coalitions C ⊆ N for any coalition structure where, for notational
simplicity, we adopt a simplified expression for coalitional structure P : a coalition
{a, b, c} ∈ P is denoted by abc and each singleton set {i} is denoted by i. We
first observe that the Shapley payoff of this example does not lie in the core.

As time tends to infinity, the A-D payoff exhibits an oscillation of the partition
P consisting of the four recurrent coalition structures as shown in Fig. 5. As of
now, from the-state-of-the-art in the literature on this behavior [11], it is not yet
clear how this behavior will be developed in large-scale systems.
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Table 1. Example 3: A-D Payoff and Blocking Coalition C

{p1p2, n1n2} {p1p2, n1, n2} {p1, p2, n1n2} {p1, p2, n1, n2} {p1n1, p2n2}
ϕp1 0 0 0 0 5/2=2.5

ϕp2 0 0 0 0 1/2=0.5

ϕn1 0 0 0 0 5/2=2.5

ϕn2 0 0 0 0 1/2=0.5

C p1n1,p1n2,p2n1,p2n2,p1p2n1n2,p2n1n2 p2n1n2

recurrent X X X X O

{p1p2n1n2} {p1p2n1, n2} {p2n1n2, p1} {p1p2n2, n1} {p1n2, p2, n1}
ϕp1 7/6 = 1.17 7/6=1.17 0 5/3=1.67 2

ϕp2 19/6 = 3.17 2/3=0.67 23/6=3.83 1/6=0.17 0

ϕn1 17/6 = 2.83 19/6=3.17 10/3=3.33 0 0

ϕn2 11/6 = 1.83 0 11/6=1.83 13/6=2.17 2

C p1n2 p1n1,p2n1

recurrent X X O X X

{p1n1n2, p2} {p1n1, p2, n2} {p1, n1, p2n2} {p1n2, p2n1} {p1, n2, p2n1}
ϕp1 11/6=1.83 5/2=2.5 0 2 0

ϕp2 0 0 1/2=0.5 2 2

ϕn1 -1/6=-0.17 5/2=2.5 0 2 2

ϕn2 -2/3=-0.67 0 1/2=0.5 2 0

C
p1n1,p1n2,p2n1, p1n1,p1n2,p2n1, p1n1,p1n2,

p2n2,p2n1n2, p2n1n2,p2n2 p1p2n1n2, p1n1 p1p2n1n2

n1, n2, n1n2 p2n1n2 p2n1n2

recurrent X O X O X

{ , }p p n n1 2 1 2

{ , }p p n1 2 2n1 ,

{ , }p p n1 2 2n1{ , }p p n1 2 1n2

Fig. 5. Example 3: A-D Payoff Mechanism Leads to Oscillatory Coalition Structure

6 Concluding Remarks

A quote from an interview of BBC iPlayer with CNET UK [15]: “Some people
didn’t like their upload bandwidth being used. It was clearly a concern for us, and
we want to make sure that everyone is happy, unequivocally, using iPlayer.”

In this paper, we have studied whether the Shapley incentive structure in
peer-assisted services would be in conflict with the pursuit of profits by rational
content providers and peers. A lesson from our analysis is summarized as: even
though it is righteous to pay peers more because they become relatively more
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useful as the number of peer-assisted services increases, the content providers
will not admit that peers should receive their due deserts. The providers tend to
persist in single-provider coalitions. In the sense of the classical stability notion,
called ‘core’, the cooperation would have been broken even if we had begun with
the grand coalition as the initial condition. Secondly, we have illustrated yet
another problems when we use the Shapley-like incentive for the exclusive single-
provider coalitions. These results suggest that the profit-sharing system, Shapley
value, and hence its fairness axioms, are not compatible with the selfishness of
the content providers.
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