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Some Remarks on Computing the Square Parts 
of Integers 
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Let n be a positive integer, and suppose n = n pp’ is its prime factorization. Let 
0(n) = n pp- ‘, so that n/0(n) is the largest squarefree factor of n. We show that 0 
is deterministic polynomial time Turing reducible to cp, the Euler function. We also 
show that Q is reducible to I, the Carmichael function. We survey other recent work 
on computing the square part of an integer and give upper and lower bounds on 
the complexity of solving the problem. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Integer factorization has intrigued mathematicians for centuries and 
computer scientists for over a decade. The problem seems quite hard, and 
that may be because it requires more than polynomial time. At this point 
no one knows. A useful approach is to study subproblems, in the hope that 
that will give an insight into the main question. 

We say that a number is squarefree if it is not divisible by any square of 
a natural number except 1. We suggest that testing squarefreeness, and 
computing the square part of an integer is an appropriate question. In 
particular, in the analogous situation for polynomials, a polynomial time 
solution for determining the square part of a polynomial was known long 
before a polynomial time algorithm for factorization. We begin our study 
of computing square parts of integers by surveying some related work. 

Suppose n is a positive integer with prime factorization n p:. Let q(n) 
be the usual Euler phi-function, with 

cp(n)=n ppP’(p;- 1). 

Also let 

n(n)=lcm(p’;lP’(p, - I), . . . . pF-l(pk- 1)) 
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be the Carmichael function, and let 

l’(n) = lcm(p, - 1, . . . . pk - 1). 

Computing q(n) is deterministic polynomial time reducible to fac- 
torization. Miller showed that under the extended Riemann hypothesis 
(ERH), factoring is deterministic polynomial time reducible to cp (Miller, 
1976). Long, and others, later showed that without any ERH assumption, 
factoring is random polynomial time reducible to cp (Long, 1981). The 
same is true for 1 and 1’. (The ERH reduction is due to Miller, the random 
polynomial time reduction to Long. See (Miller, 1976, pp. 315-316) for a 
discussion of the ERH.) 

Another number theoretic function of interest is a(n), which is the sum of 
the divisors of n; thus 

0,+1-l 
a(n) = n pi 

pi-1 . 

Bach, Miller, and Shallit (1986) showed that factorization is random 
polynomial time reducible to computing a(n); clearly o(n) is deterministic 
polynomial time reducible to factoring. 

If one considers the question of determining the squarefree part of a 
polynomial, the algorithm is very simple. Let f(x) be the polynomial in 
question, and let f’(x) be its derivative. If gk(x)If(x), but gk+‘(x) If(x), 
then gk-’ I gcd(f’(x), f(x)), while gk(x) 1 gcd(f’(x), f(x)). Thus f(x)/ 
gcd(f’(x), f(x)) is the largest squarefree factor of f(x). By analogy we 
define 

e(n) = n py 1, 

so that n/O(n) is the largest squarefree factor of n. Another function of 
interest is the decision function: 

if n is squarefree 
otherwise. 

Clearly O(n) = 1 iff O’(n) = 1. Restricting our attention to deterministic 
polynomial time Turing reductions, let f G, g mean that we can compute f 
in deterministic polynomial time given an oracle for g. Woll (1987) was the 
first to observe any reduction regarding squarefreeness; she showed: 

THEOREM 1 (Woll). 8’ G, cp. 

We extend this result to show that: 
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THEOREM 2. 8g, cp. 

THEOREM 3. tl<,i. 

Despite the fact that factorization is ERH and random polynomial time 
reducible to A’, the same reduction which shows that 8 <, cp and 8 <, A 
does not show that 8 <r A.‘. We discuss this in greater detail later. 

2. MAIN RESULT 

Let n be a positive integer, and suppose n py’ is its prime factorization. 
Then p(n) = n p”- ‘(p, - 1). This means that the 

where ei is 1 or 0 according to whether or not pi 1 q - 1 for some prime q 
dividing n. It is the second part which makes things difficult; the first part 
of the gcd is exactly 0(n). Suppose we let 

r = n/gcd(n, q(n)) = fl p,! -Q. 

Notice that r is never 1, since if pmax is the largest prime divisor of n, 
there will be no other prime divisor pi of n with pmax ( pi - 1. It is this idea 
which we exploit to create a reduction from 8 to cp. To show that 8 6, cp, 
we will compute a special factorization of n, one in which the primes which 
appear to power 1 are grouped together, those which appear to power 2 
are grouped together, etc. Let u[i] be the product of primes which appear 
to power i in n; then n can be written uniquely as 

with the u[i] pairwise relatively prime and squarefree. For example, 
6732 = 187 x 6’= (11 x 17) x (2 x 3)2. We present an algorithm (see Fig. l), 
and prove correctness. 

CLAIM. Squarepart works correctly. 

Proof We prove this by induction. For n = 1, 2, it is clear. 
Suppose true for all k <n. Now if gcd(cp(n), n) = 1, then n is squarefree, 

and the algorithm halts on line 4 with o[l] =n and u[i] = 1 for i=2, . . . . 
Llog n_l. Certainly it works correctly. So suppose that k = gcd(rp(n), n) # 1. 

Then 
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!Squarepart( n ) 
input: n: an integer; 
output: vector v of length Llog n J such that v[ i] is squarefree for each i, the 
v[i] are pairwise relatively prime, and n = l-j (v[ i])i; 

(1) BEGIN 
(2) FOR i= 1 TO LlognJ DO v[i] +- 1; 
(3) k + gcd(cp(n), n); 
(4) IF k = 1 THEN u[ 1 ] t n, RETURN 
(5) ELSE BEGIN 
(6) v c squarepart( 
(7) r t n/k; 

(8) FOR i= 1 TO Llognl DO: 
(9) BEGIN 

(10) temp + gcd(r, v[i]); 
(11) v[i] t o[i]/temp; 

(12) o[i+l]cu[i+l].temp; 

(13) r + rltemp; 

(14) END 
(15) v[l]+-u[l].r; 
(16) END; 
(17) END. 

FIGURE 1. 

where e, is 1 or 0 according to whether or not pi 1 q - 1 for some prime q 
dividing n. By induction we can assume that the vector u returned on line 6 
is correct. Now 

Note that if pmax is the largest prime dividing n, then there is no prime pi 
such that pmax 1 pi - 1. Thus r # 1. 

By our induction assumption, k = n (v[i])i, with the u[i] squarefree 
and pairwise relatively prime. Also n = k .r. Thus if p is a prime which 
divides both k and r, then p should appear to one higher power in the vec- 
tor decomposition for n than it does in the one for k. This is accomplished 
by the calculations in lines (11 b( 13). Any prime factor of n which appears 
in r but not in k is accounted for in line (15). Such a factor will have 
exponent 1 in n. 1 

CLAIM. Assuming the call on cp takes constant time, there is a constant c 
such that c log3 n is an upperbound on the running time of Squarepart( 
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Proof Let c be a constant such that k =gcd(cp(n), n), r =n/k, temp< 
gcd(r, k), k/temp and temp. r can all be computed in less than (c/5) log2(n) 
steps. Let T(n) be the running time for Squarepart( 

Certainly the claim is true for n = 2. Assume it holds for all k < n. Lines 
(l)-(5) take less than (c/5) log’n steps. Line (6) takes T(k) steps, with 
k < n/2. Line (7) takes no more (c/5) log’ n steps. Next consider lines 
(8)-( 14): the loop is iterated t = Llog n J times. Each of lines (lo)-( 13) take 
no more than (c/5) log’ n steps. Actually we can do better. Let us consider 
line (10) in detail. Iterating line (10) will take no more than 

(c/5)(10g2u[1]+10g~u[2]+- ... +log2u[t]) 

steps, which is less than 

(c/5)(logu[1]+logu[2]+ ... +logu[t])2 

steps. Since k = JJ u[ili, the above expression is no bigger than (c/5) 
(log2 k), and thus line (10) takes no more than (c/5) log* k steps. Lines 
( 1 1 )-( 13) are similar. Therefore lines (8 t( 14) take no more than 
(4c/5) log2 n steps. Then 

T(n) < (c/5) log’ n + T(k) + (4c/5) log* n 

<c log2 n + c log3(n/2) 

= c(log2 n + (log n - 1)3) 

<clog3 n. 1 

Let Sq(n) be the function which returns the vector u[i] described above. 

LEMMA 4. Sq and 8 are deterministic polynomial time Turing reducible to 
one another. 

Proof 0(n) = n (u[i])‘- ‘, thus Sq <,8. The reverse is equally easy to 
show. Let Ok(n) = 0(0(. . (e(n). . .)) applied k times. Then u[ l] = n/O(n), 
1421 = 6+)/O*(n), . . . . u[log n] = elogn- 1 (n)/eloB”(n). Since log n calls of 
0(n) are allowed, the reduction is polynomial time. 1 

This completes the proof of Theorem 2. But we should note that the 
algorithm Squarepart uses very little of the power of cp to compute the 
decomposition. 

THEOREM 5. Let f(n) be any function from Z to Z such that tf n is not 
squarefree, then gcd( f (n), n) # 1, n. Then 8 <, f Assuming the call on f 
takes constant time, there is a constant c such that c log4 n is an upperbound 
on the running time of Squarepart( 
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ProoJ: Substitute f(n) for q(n) in line 4 of the algorithm. We use two 
facts to show 8 <r cp: (1) that gcd(cp(n), n) is neither 1 nor n whenever n is 
divisible by a nontrivial square, and (2) that r is squarefree. In general, we 
may have to call Squarepart as well as Squarepark( Thus an upper 
bound on the running time is O(log4 n) steps. 1 

COROLLARY 6. 8 <t A. The time bound is the same as the one established 
for v(n). 

Proof If p21n, then pi l(n), and thus gcd(l(n), n) # 1. Since l(n) = 
lcm(pyl-‘pi - 1, . . . . p;k- lpk - 1) <n, we know that gcd(A(n), n) #n. The 
time bound is the same since the only change is that l(n) is substituted for 
q(n) in line 3 of the program. 1 

We also have the following two lemmas. 

LEMMA 7. 1’<,1. 

Proof: This comes from the previous corollary and the fact that A’(n) = 
4nP(n)). I 

We let f d g@ h mean that f is deterministic polynomial time reducible 
to an oracle for both g and h. 

LEMMA 8. A<,8@1’. 

Proof: We know that A(n) = lcm(pyl-‘(pi - l), . . . . p$-‘(pk - 1)) = 
lcm(n py’- l, pi - 1, . . . . pk - 1). But the first term is just O(n), 
and lcm(a, b, c) = lcm(a, lcm(b, c)), Thus we have A(n) = lcm(O(n), 
lcm(p,- 1, . . . . pk - 1)) = lcm(O(n), l’(n)). 1 

It is easy to see that the reduction of algorithm Squarepart does not 
show O(n) < L’(n), since there can be a prime p with p*I n and yet 
gcd(l’(n), n) = 1; that is, A’ is insensitive to the exponents of the primes 
appearing in n. The fact is that A’(n) is a unusual function; under ERH 
factorization is deterministic polynomial time reducible to it, yet we have 
not been able to reduce e(n) to it. Its power in factorization comes from the 
fact that it is a multiple of p - 1, for a prime factor p of n (Bach and 
Shallit, 1985). Both q(n) and l(n) share this characteristic;which is why 
factorization is (ERH and random) polynomial time reducible to the two 
functions. But q(n) and A(n) also have the characteristic that if p*)n for 
some prime p, then the gcd of the function with n is nontrivial. The 
function A’(n) does not. For this reason we believe that I’ is a weaker 
function than cp or 2, and we suspect that 0 is not reducible to 1’. We pose 
the following: 
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Open Question 1. What is the relationship among ~0, 1, and A’? Is 
fp<,A’? Is A<,,‘? 

Open Question 2. What is the relationship between 8 and A’? We con- 
jecture that 1’ “does not help” to compute 8, by which we mean: if 0 <( h’, 
then B is in polynomial time. (Note that conjecture implies that if ERH 
holds then 8 is in P.) 

3. UPPER AND LOWER BOUNDS FOR 0(n) 

How hard is it to compute 0? Theorems 2, 3, and 4 give an upper bound 
for computing A. This is the first deterministic reduction we know for f? 
other than the obvious one of integer factorization. Yet if we consider 
e(pq), for p and q primes, the function 8 gives us virtually no information. 
It would seem that 8 should be a weaker function than factorization, and 
that the upper bound proved in this paper is too generous. 

There is a connection between computing the basis for a ring of algebraic 
integers and computing the greatest square divisor of an integer. Several 
researchers have noted that given an irreducible quadratic polynomial f 
over Q, and an integral basis for the ring of integers defined by f, it is easy 
to find the squarefree part of the dis~~minant off: This is simply because if 
Q(s) is a quadratic extension of Q with d squarefree, then a basis for the 
ring of integers of that extension is: 

if d= 1 (mod 4) 

L,/;i if d s 2 or 3 (mod 4). 

Thus suppose we are given a polynomial x2-d over Z, and a basis 
(a, 8) for the ring 
(1, (1 +fiY2) 

of integers of K= Q(G). If dr 1 (mod4), then 
is also a basis for the ring of integers, where d= d’s’, 

with d’ squarefree. Given (a, /3), in polynomial time we can compute d’. 
A similar technique will work for dss 2, 3, or 0 (mod 4). By iterating this 
procedure and performing the appropriate gcd computations, there is a 
dete~inistic polynomial time Turing reduction of Sq(d) to determining the 
basis for the ring of integers of a quadratic extension of Q(d). 

Recently the reduction has been shown to be more general (Lenstra, 
1987). More precisely: 

THEOREM 9 (Lenstra). The problem of determining a basis for the ring of 
integers of an algebraic extension of Q is deterministic polynomial time 
Turing equivalent to the problem of computing Sq. 
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This result is based on the work of Ford, Zassenhaus, and others. 
Finally we have a lower bound on the complexity of computing 0(n). Let 

x,, . . . . x, be a set of vertices of Zk which span Rk. Thus n > k. We can view 
the {xi} as vertices of a polyhedra. One question of interest is whether 
there is a smaller “similar” (similar in the high school geometry sense of 
sides being in the same ratio) polyhedra still on the integer lattice. The 
cases of two, three, and four dimensions were solved by Cremona and 
Landau (1987). Surprisingly, both two and four dimensions have 
polynomial time algorithms, while the problem in three dimensions 
provides a lower bound for computing O(n). 

THEOREM 10 (Cremona and Landau). Let xl, . . . . x, be a set of vertices 
of Z 3 which span R3. Let Xi = xi - x,, and let xi. xi mean the usual dot 
product of vectors. Then the polygon defined by x,, . . . . x, can be shrunk iff 
gcd,(x* .X2, -‘cz .X3, . . . . X,.X,, X3 ..f,, X, .X4, . . . . X, ..f,) is divisible by a 
nontrivial square in Z. The maximal shrinkage d can be computed in the time 
it takes to compute the square part of n=gcd,(x, .X2, .fz .X,, . . . . X,.X,, 
X3.23, x3.x,, . ..) X,.X,). 

Let k be odd and greater than 3. Let xi, . . . . x, be a set of vertices in Zk 
which span Rk. If n = gcd,( {xi. x, 11~ i < j < m } ), then the figure spanned 
by the (xi} can be shrunk only if n is divisible by a square (Cremona and 
Landau, 1987). It is not known if this necessary condition is sufficient. 
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