
INFORMATION AND COMPUTATION 78, 246-253 (1988)

Some Remarks on Computing the Square Parts
of Integers

SUSAN LANDAU*

Mathematics Department, Wesleyan University,
Middletown, Connecticut 06457

Let n be a positive integer, and suppose n = n pp’ is its prime factorization. Let
0(n) = n pp- ‘, so that n/0(n) is the largest squarefree factor of n. We show that 0
is deterministic polynomial time Turing reducible to cp, the Euler function. We also
show that Q is reducible to I, the Carmichael function. We survey other recent work
on computing the square part of an integer and give upper and lower bounds on
the complexity of solving the problem. 0 1988 Academic Press, Inc.

1. INTRODUCTION

Integer factorization has intrigued mathematicians for centuries and
computer scientists for over a decade. The problem seems quite hard, and
that may be because it requires more than polynomial time. At this point
no one knows. A useful approach is to study subproblems, in the hope that
that will give an insight into the main question.

We say that a number is squarefree if it is not divisible by any square of
a natural number except 1. We suggest that testing squarefreeness, and
computing the square part of an integer is an appropriate question. In
particular, in the analogous situation for polynomials, a polynomial time
solution for determining the square part of a polynomial was known long
before a polynomial time algorithm for factorization. We begin our study
of computing square parts of integers by surveying some related work.

Suppose n is a positive integer with prime factorization n p:. Let q(n)
be the usual Euler phi-function, with

cp(n)=n ppP’(p;- 1).

Also let

n(n)=lcm(p’;lP’(p, - I), pF-l(pk- 1))

* This work was performed while the author was visiting Yale University, and was partially
supported by a Wesleyan University Project Grant.

246
0890-5401/88 $3.00
Copyright 0 1988 by Academic Press. Inc
All rights of reproduction in any form reserved

COMPUTING THE SQUARE PARTS OF INTEGERS 241

be the Carmichael function, and let

l’(n) = lcm(p, - 1, pk - 1).

Computing q(n) is deterministic polynomial time reducible to fac-
torization. Miller showed that under the extended Riemann hypothesis
(ERH), factoring is deterministic polynomial time reducible to cp (Miller,
1976). Long, and others, later showed that without any ERH assumption,
factoring is random polynomial time reducible to cp (Long, 1981). The
same is true for 1 and 1’. (The ERH reduction is due to Miller, the random
polynomial time reduction to Long. See (Miller, 1976, pp. 315-316) for a
discussion of the ERH.)

Another number theoretic function of interest is a(n), which is the sum of
the divisors of n; thus

0,+1-l
a(n) = n pi

pi-1 .

Bach, Miller, and Shallit (1986) showed that factorization is random
polynomial time reducible to computing a(n); clearly o(n) is deterministic
polynomial time reducible to factoring.

If one considers the question of determining the squarefree part of a
polynomial, the algorithm is very simple. Let f(x) be the polynomial in
question, and let f’(x) be its derivative. If gk(x)If(x), but gk+‘(x) If(x),
then gk-’ I gcd(f’(x), f(x)), while gk(x) 1 gcd(f’(x), f(x)). Thus f(x)/
gcd(f’(x), f(x)) is the largest squarefree factor of f(x). By analogy we
define

e(n) = n py 1,

so that n/O(n) is the largest squarefree factor of n. Another function of
interest is the decision function:

if n is squarefree
otherwise.

Clearly O(n) = 1 iff O’(n) = 1. Restricting our attention to deterministic
polynomial time Turing reductions, let f G, g mean that we can compute f
in deterministic polynomial time given an oracle for g. Woll (1987) was the
first to observe any reduction regarding squarefreeness; she showed:

THEOREM 1 (Woll). 8’ G, cp.

We extend this result to show that:

248 SUSAN LANDAU

THEOREM 2. 8g, cp.

THEOREM 3. tl<,i.

Despite the fact that factorization is ERH and random polynomial time
reducible to A’, the same reduction which shows that 8 <, cp and 8 <, A
does not show that 8 <r A.‘. We discuss this in greater detail later.

2. MAIN RESULT

Let n be a positive integer, and suppose n py’ is its prime factorization.
Then p(n) = n p”- ‘(p, - 1). This means that the

where ei is 1 or 0 according to whether or not pi 1 q - 1 for some prime q
dividing n. It is the second part which makes things difficult; the first part
of the gcd is exactly 0(n). Suppose we let

r = n/gcd(n, q(n)) = fl p,! -Q.

Notice that r is never 1, since if pmax is the largest prime divisor of n,
there will be no other prime divisor pi of n with pmax (pi - 1. It is this idea
which we exploit to create a reduction from 8 to cp. To show that 8 6, cp,
we will compute a special factorization of n, one in which the primes which
appear to power 1 are grouped together, those which appear to power 2
are grouped together, etc. Let u[i] be the product of primes which appear
to power i in n; then n can be written uniquely as

with the u[i] pairwise relatively prime and squarefree. For example,
6732 = 187 x 6’= (11 x 17) x (2 x 3)2. We present an algorithm (see Fig. l),
and prove correctness.

CLAIM. Squarepart works correctly.

Proof We prove this by induction. For n = 1, 2, it is clear.
Suppose true for all k <n. Now if gcd(cp(n), n) = 1, then n is squarefree,

and the algorithm halts on line 4 with o[l] =n and u[i] = 1 for i=2,
Llog n_l. Certainly it works correctly. So suppose that k = gcd(rp(n), n) # 1.

Then

COMPUTING THE SQUARE PARTS OF INTEGERS 249

!Squarepart(n)
input: n: an integer;
output: vector v of length Llog n J such that v[i] is squarefree for each i, the
v[i] are pairwise relatively prime, and n = l-j (v[i])i;

(1) BEGIN
(2) FOR i= 1 TO LlognJ DO v[i] +- 1;
(3) k + gcd(cp(n), n);
(4) IF k = 1 THEN u[1] t n, RETURN
(5) ELSE BEGIN
(6) v c squarepart(
(7) r t n/k;

(8) FOR i= 1 TO Llognl DO:
(9) BEGIN

(10) temp + gcd(r, v[i]);
(11) v[i] t o[i]/temp;

(12) o[i+l]cu[i+l].temp;

(13) r + rltemp;

(14) END
(15) v[l]+-u[l].r;
(16) END;
(17) END.

FIGURE 1.

where e, is 1 or 0 according to whether or not pi 1 q - 1 for some prime q
dividing n. By induction we can assume that the vector u returned on line 6
is correct. Now

Note that if pmax is the largest prime dividing n, then there is no prime pi
such that pmax 1 pi - 1. Thus r # 1.

By our induction assumption, k = n (v[i])i, with the u[i] squarefree
and pairwise relatively prime. Also n = k .r. Thus if p is a prime which
divides both k and r, then p should appear to one higher power in the vec-
tor decomposition for n than it does in the one for k. This is accomplished
by the calculations in lines (11 b(13). Any prime factor of n which appears
in r but not in k is accounted for in line (15). Such a factor will have
exponent 1 in n. 1

CLAIM. Assuming the call on cp takes constant time, there is a constant c
such that c log3 n is an upperbound on the running time of Squarepart(

250 SUSAN LANDAU

Proof Let c be a constant such that k =gcd(cp(n), n), r =n/k, temp<
gcd(r, k), k/temp and temp. r can all be computed in less than (c/5) log2(n)
steps. Let T(n) be the running time for Squarepart(

Certainly the claim is true for n = 2. Assume it holds for all k < n. Lines
(l)-(5) take less than (c/5) log’n steps. Line (6) takes T(k) steps, with
k < n/2. Line (7) takes no more (c/5) log’ n steps. Next consider lines
(8)-(14): the loop is iterated t = Llog n J times. Each of lines (lo)-(13) take
no more than (c/5) log’ n steps. Actually we can do better. Let us consider
line (10) in detail. Iterating line (10) will take no more than

(c/5)(10g2u[1]+10g~u[2]+- ... +log2u[t])

steps, which is less than

(c/5)(logu[1]+logu[2]+ ... +logu[t])2

steps. Since k = JJ u[ili, the above expression is no bigger than (c/5)
(log2 k), and thus line (10) takes no more than (c/5) log* k steps. Lines
(1 1)-(13) are similar. Therefore lines (8 t(14) take no more than
(4c/5) log2 n steps. Then

T(n) < (c/5) log’ n + T(k) + (4c/5) log* n

<c log2 n + c log3(n/2)

= c(log2 n + (log n - 1)3)

<clog3 n. 1

Let Sq(n) be the function which returns the vector u[i] described above.

LEMMA 4. Sq and 8 are deterministic polynomial time Turing reducible to
one another.

Proof 0(n) = n (u[i])‘- ‘, thus Sq <,8. The reverse is equally easy to
show. Let Ok(n) = 0(0(. . (e(n). . .)) applied k times. Then u[l] = n/O(n),
1421 = 6+)/O*(n), u[log n] = elogn- 1 (n)/eloB”(n). Since log n calls of
0(n) are allowed, the reduction is polynomial time. 1

This completes the proof of Theorem 2. But we should note that the
algorithm Squarepart uses very little of the power of cp to compute the
decomposition.

THEOREM 5. Let f(n) be any function from Z to Z such that tf n is not
squarefree, then gcd(f (n), n) # 1, n. Then 8 <, f Assuming the call on f
takes constant time, there is a constant c such that c log4 n is an upperbound
on the running time of Squarepart(

COMPUTING THESQUARE PARTSOFINTEGERS 251

ProoJ: Substitute f(n) for q(n) in line 4 of the algorithm. We use two
facts to show 8 <r cp: (1) that gcd(cp(n), n) is neither 1 nor n whenever n is
divisible by a nontrivial square, and (2) that r is squarefree. In general, we
may have to call Squarepart as well as Squarepark(Thus an upper
bound on the running time is O(log4 n) steps. 1

COROLLARY 6. 8 <t A. The time bound is the same as the one established
for v(n).

Proof If p21n, then pi l(n), and thus gcd(l(n), n) # 1. Since l(n) =
lcm(pyl-‘pi - 1, p;k- lpk - 1) <n, we know that gcd(A(n), n) #n. The
time bound is the same since the only change is that l(n) is substituted for
q(n) in line 3 of the program. 1

We also have the following two lemmas.

LEMMA 7. 1’<,1.

Proof: This comes from the previous corollary and the fact that A’(n) =
4nP(n)). I

We let f d g@ h mean that f is deterministic polynomial time reducible
to an oracle for both g and h.

LEMMA 8. A<,8@1’.

Proof: We know that A(n) = lcm(pyl-‘(pi - l), p$-‘(pk - 1)) =
lcm(n py’- l, pi - 1, pk - 1). But the first term is just O(n),
and lcm(a, b, c) = lcm(a, lcm(b, c)), Thus we have A(n) = lcm(O(n),
lcm(p,- 1, pk - 1)) = lcm(O(n), l’(n)). 1

It is easy to see that the reduction of algorithm Squarepart does not
show O(n) < L’(n), since there can be a prime p with p*I n and yet
gcd(l’(n), n) = 1; that is, A’ is insensitive to the exponents of the primes
appearing in n. The fact is that A’(n) is a unusual function; under ERH
factorization is deterministic polynomial time reducible to it, yet we have
not been able to reduce e(n) to it. Its power in factorization comes from the
fact that it is a multiple of p - 1, for a prime factor p of n (Bach and
Shallit, 1985). Both q(n) and l(n) share this characteristic;which is why
factorization is (ERH and random) polynomial time reducible to the two
functions. But q(n) and A(n) also have the characteristic that if p*)n for
some prime p, then the gcd of the function with n is nontrivial. The
function A’(n) does not. For this reason we believe that I’ is a weaker
function than cp or 2, and we suspect that 0 is not reducible to 1’. We pose
the following:

252 SUSAN LANDAU

Open Question 1. What is the relationship among ~0, 1, and A’? Is
fp<,A’? Is A<,,‘?

Open Question 2. What is the relationship between 8 and A’? We con-
jecture that 1’ “does not help” to compute 8, by which we mean: if 0 <(h’,
then B is in polynomial time. (Note that conjecture implies that if ERH
holds then 8 is in P.)

3. UPPER AND LOWER BOUNDS FOR 0(n)

How hard is it to compute 0? Theorems 2, 3, and 4 give an upper bound
for computing A. This is the first deterministic reduction we know for f?
other than the obvious one of integer factorization. Yet if we consider
e(pq), for p and q primes, the function 8 gives us virtually no information.
It would seem that 8 should be a weaker function than factorization, and
that the upper bound proved in this paper is too generous.

There is a connection between computing the basis for a ring of algebraic
integers and computing the greatest square divisor of an integer. Several
researchers have noted that given an irreducible quadratic polynomial f
over Q, and an integral basis for the ring of integers defined by f, it is easy
to find the squarefree part of the dis~~minant off: This is simply because if
Q(s) is a quadratic extension of Q with d squarefree, then a basis for the
ring of integers of that extension is:

if d= 1 (mod 4)

L,/;i if d s 2 or 3 (mod 4).

Thus suppose we are given a polynomial x2-d over Z, and a basis
(a, 8) for the ring
(1, (1 +fiY2)

of integers of K= Q(G). If dr 1 (mod4), then
is also a basis for the ring of integers, where d= d’s’,

with d’ squarefree. Given (a, /3), in polynomial time we can compute d’.
A similar technique will work for dss 2, 3, or 0 (mod 4). By iterating this
procedure and performing the appropriate gcd computations, there is a
dete~inistic polynomial time Turing reduction of Sq(d) to determining the
basis for the ring of integers of a quadratic extension of Q(d).

Recently the reduction has been shown to be more general (Lenstra,
1987). More precisely:

THEOREM 9 (Lenstra). The problem of determining a basis for the ring of
integers of an algebraic extension of Q is deterministic polynomial time
Turing equivalent to the problem of computing Sq.

COMPUTINGTHESQUARE PARTSOFINTEGERS 253

This result is based on the work of Ford, Zassenhaus, and others.
Finally we have a lower bound on the complexity of computing 0(n). Let

x,, x, be a set of vertices of Zk which span Rk. Thus n > k. We can view
the {xi} as vertices of a polyhedra. One question of interest is whether
there is a smaller “similar” (similar in the high school geometry sense of
sides being in the same ratio) polyhedra still on the integer lattice. The
cases of two, three, and four dimensions were solved by Cremona and
Landau (1987). Surprisingly, both two and four dimensions have
polynomial time algorithms, while the problem in three dimensions
provides a lower bound for computing O(n).

THEOREM 10 (Cremona and Landau). Let xl, x, be a set of vertices
of Z 3 which span R3. Let Xi = xi - x,, and let xi. xi mean the usual dot
product of vectors. Then the polygon defined by x,, x, can be shrunk iff
gcd,(x* .X2, -‘cz .X3, X,.X,, X3 ..f,, X, .X4, X, ..f,) is divisible by a
nontrivial square in Z. The maximal shrinkage d can be computed in the time
it takes to compute the square part of n=gcd,(x, .X2, .fz .X,, X,.X,,
X3.23, x3.x,, . ..) X,.X,).

Let k be odd and greater than 3. Let xi, x, be a set of vertices in Zk
which span Rk. If n = gcd,({xi. x, 11~ i < j < m }), then the figure spanned
by the (xi} can be shrunk only if n is divisible by a square (Cremona and
Landau, 1987). It is not known if this necessary condition is sufficient.

RECEIVED October 19, 1987; ACCEPTED December 8, 1987

REFERENCES

BABAI, L. (1987), personal communication.
BACH, E., MILLER, G., AND SHALLIT, J. (1986), Sums of divisors, perfect numbers and

factoring, SIAM J. Comput. 15, 1143-l 154.
BACH, E., AND SHALLIT, J. (1985), Factoring with cyclotomic polynomials, in “Proceedings,

26th IEEE Symposium on Foundations of Computer Science, 1985,” pp. 443-450.
CREMONA, J., AND LANDAU, S. (1987), “Shrinking Lattice Polyhedra,” Tech. Report 87-05,

Wesleyan University.
LENSTRA, H. (1987), Lectures at Bonn Workshop on Foundations of Computing, Bonn.
LONG, D. (1981), “Random Equivalence of Factorization and Computation of Orders,” Tech.

Report No. 284, Princeton University.
MILLER, G. (1976), Riemann’s hypothesis and tests for primality, J. Compur. Sysfem Sci. 13,

3m317.
WOLL, H. (1987), Reductions among number theoretic problems, Inform. and Comput. 72,

167-179.

