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Abstract. In this work, we are concerned with the detection of multiple
objects in an image. We demonstrate that typically applied objectives
have the structure of a random field model, but that the energies re-
sulting from non-maximal suppression terms lead to the maximization
of a submodular function. This is in general a difficult problem to solve,
which is made worse by the very large size of the output space. We make
use of an optimal approximation result for this form of problem by em-
ploying a greedy algorithm that finds one detection at a time. We show
that we can adopt a branch-and-bound strategy that efficiently explores
the space of all subwindows to optimally detect single objects while in-
corporating pairwise energies resulting from previous detections. This
leads to a series of inter-related branch-and-bound optimizations, which
we characterize by several new theoretical results. We then show empir-
ically that optimal branch-and-bound efficiency gains can be achieved
by a simple strategy of reusing priority queues from previous detections,
resulting in speedups of up to a factor of three on the PASCAL VOC
data set as compared with serial application of branch-and-bound.

1 Introduction

Non-maximal suppression has been employed in many settings in vision and
image processing. In image processing, objectives for edge and corner detec-
tion have been specified in terms of the eigenvalues of a matrix containing local
oriented image statistics [12], while more recently general objectives for object
detection have been trained discriminatively [28, 5, 21, 2, 4, 3, 9]. Often, an objec-
tive function specifies a property of interest in image coordinates, but it is the
arg maximum of the objective rather than scalar values that is of importance.
From this perspective, an ideal objective would place all its mass on the true
location and give zero output elsewhere. In practice, this is rarely the case, and
the function output consists instead of hills and valleys characterizing interme-
diate belief in the fitness of a given location. Discriminative training of detection
models can lead to the need for non-maximal suppression as more confident de-
tections will have higher peaks than less confident ones. Without non-maximal
suppression the next best-scoring detections will almost certainly be located on
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the upper slope of the peak corresponding with the most confident detection,
while other peaks may be ignored entirely. One may interpret this as maximizing
the log-likelihood of the detections assuming that they are independent, while
in fact there is a strong spatial dependence on the scores of the output.

Here, we interpret commonly applied non-maximal suppression strategies as
the maximization of a random-field model in which energies describing the joint
distribution of detections are included. This insight enables us to characterize in
general terms the maximization problem, and to make use of existing theoretical
results on maximizing submodular (minimizing supermodular) functions. As a
result, we can adopt an efficient optimization strategy with strong approximation
guarantees. This is of particular interest as maximizing a submodular function is
in general NP-hard. The resulting optimization problem can be solved by a series
of inter-related optimizations. Here, we follow Lampert et al. and approach the
optimization using a branch-and-bound strategy that enables fast detections of
typically tens of milliseconds on a standard desktop machine [19].

The branch-and-bound strategy we consider here is a best first search that
makes use of a priority queue to manage which regions of the space of detections
to explore. Furthermore, the inter-related optimizations resulting from branch-
and-bound have a very benign structure in that each problem can use interme-
diate results stored in the priority queue by the previous optimization. We show
empirically that, while reuse of these results does not always give an optimal
increase in speed, that there is a very simple strategy for the selective reuse
of intermediate results that does give optimal empirical performance. This is
further illuminated by several theoretical results that motivate the strategy.

1.1 Related Work

Viola and Jones developed one of the best studied and widely used generic
detection algorithms [28]. A key step in their algorithm can be interpreted as non-
maximal suppression, in which they cluster highly overlapping detections and
represent clusters by only one detection. Thus, peaks in the detection landscape
are compressed to a single detection, suppressing other output.

A key question in such strategies is which metric to use when suppressing
detections that are too close. A common approach in the recent object detection
literature (e.g. [8, 26, 27]) is to make use of a detection specific overlap measure,
such as the one used in the PASCAL VOC object detection challenge [7]. It has
been noted that this overlap measure has several favorable properties compared
to other measure such as invariance to scale and translation [13].

Desai et al. have taken an interesting approach in which the joint distribution
between object detections is modeled linearly given features capturing statistics
of the joint distribution of objects [6]. The model is trained discriminatively, but
without approximation guarantees due to the greedy optimization employed in
a cutting plane training algorithm. Their subproblem shares key characteristics
with our random field characterization of non-maximal suppression, and the
explicit characterization of a tractable family of models is a key contribution of
the present work.
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The approaches cited above largely work by employing sliding windows or
other window subsampling strategies, but alternatively, variants on Hough trans-
form detections have also been used. Leibe et al. proposed a widely adopted
model in which visual words vote for an object center [24]. Gall and Lempitsky
have developed a state of the art detection framework using Hough forests [9].
Lehmann et al. have recently presented a line of work that extends these models
to efficient detection [22, 23] where the second citation uses branch-and-bound
for optimization of detection. The present work in contrast is agnostic to the
exact model employed, and the branch-and-bound framework we employ has
been applied to several variants of non-linear models that cannot be represented
using Hough transforms [20].

Barinova et al. have proposed a principled method of non-maximal suppres-
sion that can be interpreted as an explicit approximation to a full probabilistic
model [1]. Their work is to our knowledge the first to couple approximation re-
sults for the maximization of submodular functions with object detection. Their
work, however, is (i) restricted to models for which one can build a Hough image
whereas the class of functions for which we can design a practical bound is more
general, and (ii) their approach is restricted to very low dimensional detection
parametrizations because Hough images are expensive to build for more than a
few dimensions. Such an approach additionally must recompute a Hough image
after each detection, while the proposed non-maximal suppression model can
reuse the same data-structures (such as integral images [28, 20]) for subsequent
detections.

Maximization of a submodular function with monotonic properties is com-
mon to many problems in computer science, from robotics [14] to social network
analysis [16] and sensor networks [11, 18], and has been studied extensively in
the operations research literature (a toolbox by Andreas Krause contains many
of the algorithms developed there [17]). Branch and bound has been employed
to find optimal solutions to the (in general) NP-hard problem [10], but has not,
to our knowledge, been applied to greedy optimization of supermodular func-
tions with optimal approximation guarantees, as in this work. The variety of
problems that share the same structure promises that analogous optimization
approaches to that proposed in this work may have wider application across
computer science domains.

2 The Energy

We consider a very general class of joint energy functions that contains both an
appearance model of the object class of interest, as well as terms incorporating
beliefs about the joint distribution of object detections. These latter terms may
be the result of a learning procedure, a prior over the joint positions of objects [6],
or a set of constraints chosen a priori to disallow detections that have high
overlap. We consider energies of the form

max
y

∑
i

〈f, φ(x, yi)〉H −Ω(y). (1)
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Here we consider Ω that factorizes into pairwise terms as well as higher order
terms

Ω(y) =
∑
ij

Ω(yi, yj) +
∑
c∈C

Ωc(yc)︸ ︷︷ ︸
higher order terms

(2)

where x is an image, yi is an object detection,1 y is a collection of detections,
φ is a joint kernel map, f is a function living in the RKHS defined by φ, Ω is
a penalization term for detections that overlap too closely, and c ∈ C is a clique
in the set of cliques contributing to the energy. In principle, higher order terms
that are supermodular (see Section 3) do not affect the anaylsis in this paper.
For simplicity, we will not treat them explicitly in the sequel.

We note that this form of energy for the detection of multiple objects may
occur in diverse settings, such as object detection test time inference, detection
cascades, and inference for cutting plane training of structured output learn-
ing [2, 15].

3 Minimization of a Supermodular Function

Many optimization approaches to random field models, such as graph cuts, rely
on the submodularity of a function to be minimized. In the context of image
segmentation, this is reflected in a general principle that neighboring pixels are
likely to share the same label. Non-maximal suppression, however, enforces the
exact opposite effect: neighboring detections are likely to have different labels,
at least when the appearance term indicates an object is likely to be present in
the vicinity.

In particular Equation (1) is the maximization of a submodular (minimiza-
tion of a supermodular) function. Submodularity holds for a set function if for
any two subsets of detections, A and B such that

A ⊂ B (3)

the following holds

f(A ∪ {y})− f(A) ≥ f(B ∪ {y})− f(B). (4)

This is easy to show as

f(A ∪ {y})− f(A) = 〈f, φ(x, y)〉H −
∑
i∈A

Ω(yi, y) (5)

〈f, φ(x, y)〉H −
∑
i∈A

Ω(yi, y) ≥ 〈f, φ(x, y)〉H −
∑
i∈B

Ω(yi, y) (6)

0 ≥ −
∑

i∈B\A

Ω(yi, y). (7)

1 In the sequel we pay particular attention to detections parametrized by bounding
boxes.



Branch and Bound Strategies for Non-maximal Suppression 5

Supermodular higher order terms in Equation (2) will be negated, resulting in
submodularity. Equation (1) is therefore very difficult to optimize globally for
multiple detections as maximizing a submodular (minimizing a supermodular)
function is in general NP hard.

As our proposed optimization methodology is based on branch-and-bound,
the practical constraints of its application to global optimization are key. Branch
and bound ceases to be efficient due to curse of dimensionality for approximately
6 or more dimensions. While a bounding box provides a low (four) dimensional
parametrization for single object detection, joint optimization of even two boxes
leads to a combinatoric explosion of the complexity of the algorithm and is
infeasible already for relatively small images. However, as has been exploited
by Barinova et al. [1], strong theoretical results about the maximization of sub-
modular functions indicates that a greedy approach gives optimal approximation
guarantees for submodular energies [25]. Consequently, our optimization strategy
will be to find the best detection without taking into account the non-maximal
suppression terms, and then iteratively find subsequent detections, taking into
account non-maximal suppression terms only with previously selected detections.
The next section addresses the specific implications of this approach for branch
and bound strategies, in particular how the structure of the problem can be
exploited to improve the computational efficiency of subsequent detections.

4 Branch and Bound Implementations

Efficient subwindow search (ESS) is a branch and bound framework for object
detection that works by storing sets of windows in a priority queue [19, 20]. Sets
of windows are specified by intervals indicating the minimum and maximum
coordinates of the four sides of the bounding box, and are ordered by an upper
bound on the maximum score of any window within the set. This upper bound,
f̂ , must satisfy two properties in order to guarantee the optimality of the result:

f̂(Y ) ≥ f(y) ∀y ∈ Y (8)

f̂({y}) = f(y) (9)

where Y is a set of bounding boxes specified by intervals for the sides of the box,
and y is an individual window. The first property states that the upper bound is
a true bound, while the second states that the score for a set containing exactly
one window should be the true score of the window. Given these properties,
when a state containing only one window is dequeued, we are guaranteed that
this window has the maximal score of all windows in the image.

As we are pursuing a greedy optimization strategy, we wish to be able to
compute upper bounds of the augmented quality function that contains both
the unary terms, and the pairwise non-maximal suppression terms. Here, we
discuss how to do so for a class of pairwise terms that are monotonic functions
of the ratio of the areas of intersection and union of the two windows [7]

Ω(yi, yj) = g

(
Area(yi ∩ yj)
Area(yi ∪ yj)

)
(10)
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where g is any non-negative monotonic function. Consequently, for the kth de-
tection we require an upper bound for

〈f, φ(x, yk)〉H −
k−1∑
i=1

Ω(yi, yk) (11)

where detections are ordered by their selection by the greedy optimization strat-
egy. We may do so by taking the sum of two bounds, that of the unary terms, the
construction of which is discussed for a number of linear and non-linear function
classes in [20], and that of the non-maximal suppression term. The bound on
the non-maximal suppression terms can be computed as

max
y∈Y

− g

(
Area(yi ∩ y)
Area(yi ∪ y)

)
≤ −g

(
miny∈Y Area(yi ∩ y)
maxy∈Y Area(yi ∪ y)

)
(12)

≤ −g

(
miny∈Y Area(yi ∩ y)

(maxy∈Y Area(y)) + Area(yi)− (miny∈Y Area(yi ∩ y))

)
(13)

The computation of the bounds for area of overlap require only constant time
given sets of windows specified by intervals.

A key property of greedy optimization of bounds of this form is that the
objective for subsequent detections differs only by the subtraction of one addi-
tional Ω term. Since Ω is non-negative, this means that any valid bound for an
earlier detection remains a valid upper bound for a subsequent detection (Equa-
tion (8)). This suggests that the computation required to find an earlier detection
may be leveraged to more efficiently discover subsequent detections by keeping
the priority queue expanded by an earlier detection. We also note, however, that
Equation (9) may be violated if we simply continue the ESS branch-and-bound
procedure without modification. This is because a state may be pushed into
the priority queue containing only one window, but that does not consider non-
maximal suppression terms resulting from detections discovered after that state
was pushed into the queue. We can account for this by modifying the ESS al-
gorithm in two ways: (i) we augment a state in the priority queue to store not
only the upper bound and intervals specifying the set of bounding boxes, but
also to store the number of previous detections considered in the computation
of the upper bound, and (ii) we modify the termination criterion to check that
the number of detections used for computation of the upper bound is equal to
the number of detections found up to that point. If not, the bound is recalcu-
lated using all previous detections, and the state is re-inserted into the queue.
We make a further assumption on the form of g for the purposes of subsequent
analysis:

g(x) =

{
0 if x < γ

∞ otherwise
(14)

where γ is a threshold on the overlap score (e.g. 0.5) above which multiple
detections are disallowed. This results in the same non-maximal suppression
criterion as used in recent state of the art detection strategies [8, 26, 27].
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Fig. 1. Mapping of the selection of an optimal strategy to a shortest path problem. The
resulting graph is constructed here for four detections. Horizontal moves correspond
to keeping an existing priority queue for a subsequent detection, while diagonal moves
correspond to resetting the priority queue to the root node containing the set of all
bounding boxes. Cij corresponds to the cost of computing the jth detection using the
priority queue carried on from the ith detection. C0j corresponds to the cost when
resetting the priority queue prior to computing the jth detection. All edges pointing
towards a given node have the same cost. This construction demonstrates that the
complexity of computing the optimal strategy given the branch-and-bound costs are
O(n2) for n detections (see text). These costs are not known at test time, but we show
empirically that optimal strategies have a very simple form (Section 6).

With these modifications, we can define a family of branch-and-bound strate-
gies for multiple object detections. For each subsequent detection, a strategy may
either reset the priority queue to contain a single state containing all possible
windows in an image, or it may use a priority queue expanded from a previous
detection (Figure 1). Each of these strategies will result in the same set of de-
tections. Consequently, the goal is to determine a strategy or subset of strategies
that reduces the expected computation time2 of all detections. We fix the num-
ber of detections to 10 in this work and note that a strong pattern is apparent
in the empirically observed computation times indicating that results are likely
to generalize to other numbers of detections in real data.

5 Theoretical Results

Branch and bound can be characterized as a best-first search strategy over a
DAG whose nodes are isomorphic to a Hasse diagram with direction assigned
by set inclusion. We use the notation Y to indicate the maximal (root) element
of the Hasse diagram containing all possible windows, Y to indicate a set of
2 We use here the number of dequeuing operations required as a platform independent

measure of the computation time. We note in particular that the bound computa-
tion is constant for the family of Ω considered here, making this a natural unit of
measurement.
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windows (Y ⊂ Y, |Y | > 1), and y to indicate an individual window (y ∈ Y). In
practice, a subset of possible edges are considered corresponding to those such
that Y can be represented by intervals. Furthermore, we consider a deterministic
rule for splitting Y into two subsets following [19]. We denote the set of nodes
visited by the best-first search from the root node with an upper-bound f̂ as
Sf̂ ⊂ P(Y), where P(Y) denotes the power set of Y.

Theorem 1. For valid upper bounds f̂1 and f̂2,

f̂1(Y ) ≥ f̂2(Y ) ∀Y =⇒ Sf̂2
⊆ Sf̂1

(15)

Proof. Best first search expands all nodes with upper bound greater than the
value of the true detection f(y∗). f̂2(Y ) ≥ f(y∗) =⇒ f̂1(Y ) ≥ f(y∗), but there
may be additional Y for which f̂2(Y ) < f(y∗) ∧ f̂1(Y ) ≥ f(y∗).

Corollary 1. Sf̂k
⊆ Sf̂i

, where k > i and f̂k is a bounding function for the
greedy optimization subproblem corresponding to detection k.

Corollary 1 implies that there is a strict ordering of the number of nodes ex-
panded by different objectives. As any priority queue expanded up to the point
of an earlier detection will contain elements computed with a lose upper bound,
we conclude that there is a potential computational advantage to resetting the
priority queue to the root node for a subsequent detection. However, we also note
that if the values of the function change only slightly, there will be a compu-
tational overhead to expanding the same nodes over again. Consequently, there
may instead be a computational advantage to keeping an existing priority queue.

Stated simply, if we reset the queue to the root node we may have to re-
expand nodes that had already been expanded in the previous round. If we
don’t reset the queue, we may have to go through a large number of nodes
that have been expanded, but violate the non-maximal suppression condition in
Equation (14).

Theorem 2. The number of nodes to be re-expanded on reset of a queue for
detection k is upper bounded by the sum of nodes expanded by other strategies
up to that point.

Proof. Nodes that have been previously expanded in round i can be categorized
as belonging to one of two groups: (i) those for which f̂i(Y ) ≥ f(y∗) ∧ f̂k(Y ) ≥
f(y∗) and (ii) those for which f̂i(Y ) ≥ f(y∗) ∧ f̂k(Y ) < f(y∗). All nodes in the
first case will be expanded by both strategies, while nodes in the second case
will be expanded by the previous detections, but not by the current detection.

The proof of Theorem 2 also indicates that in subsequent rounds after a reset,
the marginal number of nodes to be expanded is strictly ordered, the older the
priority queue, the more nodes will need to be expanded. This implies that once
a priority queue has been reset and expanded until a subsequent detection is
found, it will be superior to keep using that priority queue rather than one
expanded from a previous set of detections.
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These theoretical results indicate that for n detections, there are at most 2n−1

possible strategies of interest: for each detection after the first, we may either
keep the existing priority queue with all expanded states, or we may reset the
queue to the root node. If we were to know ahead of time all costs associated with
a given choice, we could use a single-source shortest path algorithm to determine
the optimal strategy. Figure 1 shows a mapping of the problem to a graph for
four detections. As the graph is a DAG, the complexity of this procedure isO(V ),
where V is the number of vertices. For our graph construction, V = n(n+1)

2 +2 =
O(n2) resulting in an overall complexity of O(n2) for n detections. This allows us
post hoc to efficiently determine the optimal strategies in our empirical analysis.

This result unfortunately does not allow us to determine the lowest cost ap-
proach without precomputing all costs. Possible approaches would be to compute
the empirical costs of these strategies for a sample of data, or to use a branch-
and-bound strategy in the shortest path algorithm to avoid computing all edge
costs. However, we show in Section 6 that all optimal strategies selected by this
analysis on the PASCAL VOC data set have a simple form. This form consists
of resetting the queue for a fixed number of initial detections, and then keeping
the resulting priority queue without any resets for all subsequent detections. In
practice, this indicates that only n − 1 of the possible 2n−1 strategies are of
interest.

6 Empirical Results

We present results for a modified implementation of the publicly available ESS
code described in [20]. We use the feature extraction and trained models down-
loaded from the author’s webpage. All results are reported on the test set of the
PASCAL VOC 2007 data set [7], with a different objective trained for each of
the 20 classes. Figure 2 shows the number of splits required for several selected
classes, as well as the average across all classes for varying values of γ (Equa-
tion (14)). Figure 3 shows the number of splits conditioned on the presence or
absence of the class of interest averaged across all classes. Table 1 shows statis-
tics of the optimal strategy found by a shortest path search. For all classes, the
optimal strategy consists of resetting the priority queue to the root node for a
number of initial detections followed by re-using the existing priority queue for
all subsequent detections. Table 2 shows the ratio of the amount of computation
required by two simple strategies compared to the optimal strategy.

Table 1. Statistics of the number of resets to the root node required by optimal
strategies. Statistics are reported across classes.

γ = 0.25 γ = 0.50 γ = 0.75

min 3 2 1
median 4 3 2

max 4 4 3
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Table 2. Ratios of the amount of computation required by two simple strategies to
the optimal strategy. The first, näıve strategy consists of resetting the priority queue
to the root node at each subsequent detection. The second strategy consists of keeping
a single priority queue for all detections without any resets to the root node. Statistics
are reported across classes.

γ = 0.25 all reset no reset

min 1.36 1.17
median 1.48 1.22

max 1.94 1.28

γ = 0.50 all reset no reset

min 1.38 1.16
median 1.52 1.20

max 2.19 1.28

γ = 0.75 all reset no reset

min 1.59 1.14
median 2.04 1.16

max 3.15 1.20

7 Discussion

Several broad conclusions can be drawn from the experiments reported in Sec-
tion 6. The first, and most important for practical application of branch-and-
bound to object detection with non-maximal suppression, is that there is a
regime in which resetting the priority queue is more efficient than keeping an
existing queue. However, after a few detections, ranging from one to four de-
pending on the class of interest (Table 1), it is better to keep an existing priority
queue for all subsequent detections. The proof of Theorem 2 indicates that more
recently reset priority queues are always preferable to older queues. This has
advantages, both in terms of the simplicity of the set of useful strategies, as well
as in terms of reducing memory usage.

Varying behaviors were found when using differing values for γ. In general,
the lower the value of γ (more strict non-maximal suppression) the more likely
resetting the priority queue is beneficial. As γ increases from 0.25 to 0.75 the
median number of resets taken by the optimal strategy for a given class decreases
from 4 to 2. This makes intuitive sense as lower values of γ result in strictly higher
numbers of nodes in the search graph that will be suppressed in subsequent
branch-and-bound optimizations. A large number of expanded nodes around a
peak will result in wasted computation as they are subsequently pruned by non-
maximal suppression. Conversely, the higher the overlap threshold (less strict
non-maximal suppression), the more likely keeping the existing priority queue is
helpful.

Conditioning on the class label does not seem to show a large difference in
the average number of splits per detection (Figure 3). This supports the idea
that strategies may be fixed ahead of time.

The marginal cost of the first detection after resetting the priority queue to
the root node is not strictly increasing (see e.g. Figure 2(d)), but is empirically
observed to do so for many classes, and in the average performance across all
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(c) Aeroplane, γ = 0.75
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(f) Cat, γ = 0.75
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(i) Train, γ = 0.75
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(l) All classes, γ = 0.75

Fig. 2. Number of splits per subsequent detection when resetting the priority queue
at different detections vs. keeping an existing priority queue. x-axis: detection number,
y-axis: average number of splits across all images in the VOC2007 test set.
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(c) +, γ = 0.75
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(d) −, γ = 0.25
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(e) −, γ = 0.50
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(f) −, γ = 0.75

Fig. 3. Number of splits per subsequent detection when resetting the priority queue
at different detections vs. keeping an existing priority queue. x-axis: detection number,
y-axis: average number of splits across all images and classes in the VOC2007 test
set conditioned on the presence or absence of an object of interest (denoted + and −,
respectively).

classes (Figures 2(j)-2(l)). This result is in line with Theorem 2 which says
that the upper bound on subsequent detections is increasing. This is especially
apparent after the first few detections.

Finally, Table 2 indicates that of the simple strategies consisting of either
always resetting the priority queue or never resetting the priority queue, it is
preferable to never reset the priority queue. Our experiments showed that the
amount of required computation for 10 detections was higher for each class and
overlap threshold when using the resetting strategy than the simple strategy of
always keeping the same priority queue.

8 Conclusions

Commonly applied non-maximal suppression strategies can be interpreted as
optimization of a random field model in which non-maximal suppression is cap-
tured by pairwise terms encoding the joint distribution of object detection. We
have shown in this work how to adapt a branch-and-bound strategy to opti-
mize jointly over multiple detections with non-maximal suppression terms. An
optimal approximation result allowed us to frame this as the subsequent ap-
plication of inter-related branch-and-bound optimizations, enabling us to reuse
computations across multiple detections. It is possible to frame the search for
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a computationally optimal strategy as a shortest path problem on a DAG with
O(n2) vertices, resulting in efficient post hoc computation of the optimal strate-
gies. We have observed that these strategies have a very simple form: although
every length n − 1 bit string encodes a valid strategy resulting in 2n−1 possi-
ble strategies, all empirically optimal strategies consisted of first resetting the
priority queue for a small number of detections, followed by keeping an exist-
ing priority queue. Furthermore, simply keeping a single priority queue for all
detections resulted in only a modest increase in the total amount of required
computation over the optimal strategy. This indicates that simple strategies can
significantly improve computational performance over the näıve application of
branch-and-bound in serial.
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