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Abstract. Pairing based cryptography is in a dangerous position following the breakthroughs on
discrete logarithms computations in finite fields of small characteristic. Remaining instances are built
over finite fields of large characteristic and their security relies on the fact the embedding field of the
underlying curve is relatively large. How large is debatable. The aim of our work is to sustain the claim
that the combination of degree 3 embedding and too small finite fields obviously does not provide
enough security. As a computational example, we solve the DLP on a 170-bit MNT curve, by exploiting
the pairing embedding to a 508-bit, degree-3 extension of the base field.
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1 Introduction

1.1 Pairing-based cryptography

Pairings were introduced as a constructive cryptographic tool in 2000 by Joux [29], who proposed a
one-round three participants key-exchange. Numerous protocols also based on pairings have been
developed since. Beyond efficient broadcast protocols, prominent applications include Identity-Based
Encryption [33,34,12], or short signatures [13].

The choice of appropriate curves and pairing definitions in the context of pairing-based cryp-
tography has been the topic of many research articles. An important invariant is the degree of the
embedding field, which measures the complexity of evaluating pairings, but is also related to the
security of systems (see Section 2 for more precisions). The first cryptographic setups proposed used
pairings on supersingular curves of embedding degree 2 defined over a prime field Fp, where p is
512-bit long, so that the pairing embeds into a 1024-bit finite field Fp2 . Another early curve choice
is a supersingular elliptic curve in characteristic three, defined over F397 , of embedding degree 6
(used e.g. in [13], as well as various implementation proposals, e.g. [9]). More recent proposals define
pairing-friendly ordinary curves over large characteristic fields, where constraining the embedding
degree to selected values is a desired property [40,15,18,14,24,21,8,22].

Cryptanalysis of pairings can be attempted via two distinct routes. Either attack the discrete
logarithm problem on the curve, or in the embedding field of the pairing considered. The former
approach is rarely successful, given that it is usually easy to choose curves which are large enough
to thwart O(

√
N) attacks such as parallel collision search or Pollard rho. Note however that derived
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problems such as the discrete logarithm with auxiliary inputs are much easier to handle, as shown
by [44].

Attacking pairings via the embedding field is a strategy known as the Menezes–Okamoto–
Vanstone [39] or Frey–Rück [23] attack, depending on which pairing is considered. Successful
cryptanalyses that follow this strategy have been described in small characteristic. In [28], for a
supersingular curve over F397 , the small characteristic allowed the use of the Function Field Sieve
algorithm [1], and the composite extension degree was also a very useful property. More recently,
following recent breakthroughs for discrete logarithm computation in small characteristic finite
fields [6,26], a successful attack has been reported on a supersingular curve over F21223 , with degree-4
embedding [26]. The outcome of these more recent works is that curves in small characteristic are
now definitively avoided for pairing-based cryptography.

As far as we know, there is no major record computation of discrete logarithms over pairing-
friendly curves in large characteristic using a pairing reduction in the finite field. The pairing-friendly
curves used in practice have a large embedding field of more than 1024 bits, where computing a
discrete logarithm is still very challenging. A few curves in large characteristic have comparatively
small embedding fields, and were identified as weak to this regard, although no practical computation
to date demonstrated the criticality of this weakness. This includes the so-called MNT curves defined
by Miyaji–Nakabayashi–Takano, e.g. [40, Example 1], an elliptic curve defined over a 170-bit prime
p, and of 508-bit embedding field Fp3 .

Despite the academic agreement on the fact that the pairing embedding fields for 170-bit MNT
curves in general, and the one just mentioned in particular, are too small for cryptographic use,
recent work like [2] has shown how cryptography relying on overly optimistic hardness assumptions
can linger almost indefinitely in the wild. Demonstrating a practical break is key to really phasing
out such outdated cryptographic choices. As far as we know, an MNT curve of low embedding degree
3 was never used in pairing-based cryptography, but was never attacked by a pairing reduction
either. In this article, we present our attack over the weak6 MNT curve [40, Example 1], with p of
170 bits and n = 3. We report a discrete logarithm computation in the group of points of this curve
by a pairing reduction, using only a moderate amount of computing power.

In order to attack the discrete logarithm problem in the embedding field, appropriate variants of
the Number Field Sieve must be used. The crucial point is the adequate choice of a polynomial
pair defining the Number Field Sieve setup, among the various choices proposed in the litera-
ture [30,38,31,5,7]. It is also important to arrange for the computation to take advantage of Galois
automorphisms when available, both within sieving and linear algebra. Last, some care is needed in
order to efficiently compute individual logarithms of arbitrary field elements.

This article is organized as follows. Section 2 reviews some background and notations for MNT
curves on the one hand, and the Number Field Sieve (NFS) as a general framework on the other hand.
Section 3 discusses in more detail the various possible choices of polynomial selection techniques
for NFS. Section 4 discusses the details of the discrete logarithm computation with NFS, while
Section 4.3 defines and solves an arbitrary challenge on the MNT curve.

6 already described as weak in the paper by the authors
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2 Background and notations

2.1 Using pairing embedding to break DLP

We follow e.g. [11, chap. IX]. To fix notations, pairings are defined as follows, the map being bilinear,
non-degenerate and computable in polynomial time in the size of the inputs.

e :

{
E(Fp)[`]× E(Fpn)[`]→ µ` ⊂ F∗pn

(P,Q) 7→ e(P,Q).
(1)

Here, µ` is the subgroup of `-th roots of unity, i.e. an element u ∈ µ` satisfies u` = 1 ∈ F∗pn . The
integer n is the so-called embedding degree, that is the smallest integer i for which the `-torsion is
contained in Fpi . It has a major impact on evaluating the difficulty of solving the DLP on the curve.

Let G1 be a generator of E(Fp)[`] and P in the same group, whose discrete logarithm u is sought
(so that P = [u]G1). We choose a generator G2 for E(Fpn)[`]. We observe that

e(P,G2) = e(G1, G2)
u

so that u can be recovered as the logarithm of U = e(P,G2) in base T = e(G1, G2), where both
elements belong to the subgroup of order ` of F∗pn . Note that by construction, ` = O(p), so that
the Number Field Sieve linear algebra phase has to be considered modulo `, which is a priori much
smaller than the largest prime order subgroup of F∗pn , which has size O(pφ(n)).

2.2 MNT curves

The Miyaji–Nakabayashi–Takano curves were designed in 2000 in [40] as the first example of ordinary
curves with low embedding degree n = 3, 4, or 6. The curves were presented as a weak instance
of ordinary elliptic curves that should be avoided in elliptic-curve cryptography because of the
Menezes–Okamoto–Vanstone and Frey–Rück attacks [39,23] that embed the computation of a
discrete logarithm from the group of points of the curve to the embedding field Fpn . At the 80-bit
security level which was used in the 2000’s, an elliptic curve of 160-bit prime order was considered
safe, and of at least the same security as an 1024-bit RSA modulus. However for MNT curves over
prime fields of 160 bits, the MOV and FR reduction attacks embed to finite fields of size 480, 640,
or 960 bits, none of which should be considered as having a hard enough DLP. For these three cases
and most of all for n = 3, computing a discrete logarithm in the embedding field is considerably
easier than over the elliptic curve. The conclusion of the MNT paper was to advise developers to
systematically check that the embedding degree of an elliptic curve is large enough, to avoid pairing
reduction attacks. The authors also mentioned as a constructive use of their curves the prequel
work of Kasahara, Ohgishi, and Sakai on identity-based encryption using pairings [33,34]. Some
implementations using MNT curves exist, for example the Miracl Library proposes software on an
MNT curve over a 170-bit prime, with embedding degree n = 6, providing a 80-bit security level.

Construction of MNT curves The parameters p, τ , ` (base field, trace, and number of points)
of the curve are given by polynomials of degree at most two. For n = 3, 4, or 6, these are

embedding degree n p = P (x) τ = Tr(x) #E(Fp) = p+ 1− τ
3 12x2 − 1 ±6x− 1 12x2 ∓ 6x+ 1

4 x2 + x+ 1 −x, or x+ 1 x2 + 2x+ 2 or x2 + 1

6 4x2 + 1 1± 2x x2 ∓ 2x+ 2
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embedding degree n log2 p (#E(Fp)) n log2 p (#Fpn) 80-bit security

3 170 510 no

4 170 680 no

6 170 1020 yes
Table 1. MNT curves as pairing-friendly curves in the 2000’s

To generate a curve, one needs to find an integer y of the appropriate size, such that p = P (y)
is prime and #E(Fp) is also prime, or equal to a small cofactor times a large prime. To compute
the coefficients of the curve equation, a Pell equation need to be solved.

The target curve Our target will be the MNT curve given in [40, Example 1]. We recall that the
curve parameters satisfy

y = −0x732c8cf5f983038060466

p = 12y2 − 1 = 0x26dccacc5041939206cf2b7dec50950e3c9fa4827af of 170 bits
τ = 6y − 1 where τ is the trace of the curve

#E(Fp) = p+ 1− τ = 72 · 313 · ` where ` is a 156-bit prime
` = 0xa60fd646ad409b3312c3b23ba64e082ad7b354d

The pairing embeds into the prime order ` subgroup of the cyclotomic subgroup of Fp3 , where `
divides p2 + p+ 1.

2.3 A brief overview of NFS-DL

Our target field is Fpn . NFS-DL starts by selecting two irreducible integer polynomials f and g such
that ϕ = gcd(f mod p, g mod p) is irreducible of degree n (construction of f and g is discussed in
Section 3). We use the representation Fpn = Fp[x]/(ϕ(x)). Let Kf = Q[x]/(f(x)) = Q(α), and Of be
its ring of integers. Note that because f is not necessarily monic, α might not be an algebraic integer.
Let ρf be the map from Kf to Fpn , sending α to T mod (p, ϕ(T )). We define likewise Kg = Q(β),
together with Og and ρg. This installs the (typical) commutative diagram in Figure 1.

Z[x]

Kf Kg

Fpn = Fp[x]/(ϕ(x))

ρf ρg

Fig. 1. NFS-DL diagram for Fpn

Given f and g, we choose a smoothness bound B and build factor bases Ff (resp. Fg) consisting
of prime ideals in Of (resp. Og) of norm less than B, to which we add prime ideals dividing lc(f)
(resp. lc(g)) to take into account the fact that α and β are not algebraic integers. Then, we collect
relations, that is polynomials φ(x) ∈ Z[x] such that both ideals 〈φ(α)〉 and 〈φ(β)〉 are smooth,
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namely factor completely over Ff (resp. Fg). Smoothness is related to Norm(φ(α)), and in turn to
Res(f, φ) since we have

± lc(f)deg(φ) Norm(φ(α)) = Res(f, φ).

When φ is such that the integers Res(f, φ) and Res(g, φ) are B-smooth (only prime factors below
B), we have a relation: {

φ(α)Of =
∏

q∈Ff
qvalq(φ(α)),

φ(β)Og =
∏

r∈Ff
rvalr(φ(β))

that are transformed as linear relation between virtual logarithms of ideals [47], to which are added
the so-called Schirokauer maps [46], labelled λf,i for 1 ≤ i ≤ rf where rf is the unit rank of Kf

(and the same for g).
To overcome the problem of dealing with fractional ideals instead of integral ideals, we use the

following result from [41] (see also [19]).

Proposition 1. Let f(X) =
∑d

i=0 ciX
i with coprime integer coefficients and α a root of f . Let

Jf = 〈cd, cdα+ cd−1, cdα
2 + cd−1α+ cd−2, . . . , cdα

d−1 + cd−1α
d−2 + · · ·+ c1〉.

Then 〈1, α〉Jf = (1), Jf has norm |cd|, and Jf 〈a− bα〉 is an integral ideal for integers a and b.

If φ(X) has degree k − 1, we have Norm(Jk−1f 〈φ(α)〉) = ±Res(f, φ), so that we can read off the

factorization of the integral Jk−1f 〈φ(α)〉 directly from the factorization of its norm. A relation can
now be written as:

(k − 1) vlog(Jf ) +
∑
q∈Ff

valq(φ(α)) vlog(q) +

rf∑
i=1

λf,i(φ(α)) vlog(λf,i)

≡ (k − 1) vlog(Jg) +
∑
r∈Fg

valr(φ(β)) vlog(r) +

rg∑
i=1

λg,i(φ(β)) vlog(λg,i) mod `.

We select as many φ(x) of degree at most k−1 (for k ≥ 2 and very often k = 2) as needed to find
#Ff + #Fg + rf + rg + 2 relations. Note that Jf and Jg are not always prime ideals. Nevertheless
since all their prime divisors have a grouped contribution for each relation, we may count them as
single columns. We may even replace the two columns by one, corresponding to vlog(Jf )− vlog(Jg)
(e.g. this is done in cado-nfs).

Given sufficiently many equations, the linear system in the virtual logarithms can be solved
using sparse linear algebra techniques such as the Block Wiedemann algorithm [17]. When we want
to compute the logarithm of a given target, we need to rewrite some power (or some multiple)
of the target as a multiplicative combination of the images in Fpn of the factor base ideals, and
use the precomputed data base of computed logarithms. Section 4 will briefly discusses algebraic
factorization in practice.

3 Polynomial Selection

The polynomial selection is the first step of the NFS algorithm. Polynomial selection is rather cheap,
but care is needed since the quality of the polynomial pair it outputs conditions the running time
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of the three next steps. Sections 3.1 and 3.1 below explain the two phases of polynomial selection.
In a nutshell, we first decide from which family the polynomials are chosen, and then we search
among possible solutions for “exceptionally good” polynomials. Note that because all degree n
irreducible polynomials correspond to isomorphic finite fields Fpn , we are not constrained in the
choice of Res(f, g). This degree of freedom allows to select good polynomials.

As of 2016, the available polynomial selection algorithms are:

– the Conjugation method (Conj) [5, §. 3.3], explained in Algorithm 1;
– the Generalized Joux–Lercier method (GJL) [5, §. 3.2] and [38] that produces polynomials of

unbalanced coefficient sizes (see Algorithm 2 in Appendix A);
– the Joux–Lercier–Smart–Vercauteren method (JLSV1) [30, §. 2.3], explained in Algorithm 1,

that produces two polynomials of degree n and coefficient size in O(
√
p) for both polynomials;

– the second proposition (JLSV2) of the same paper [30, §. 3.2];
– the Joux–Pierrot (JP) method for pairing-friendly curves [31] which produces polynomials

equivalent to the Conjugation method for MNT curves (Algorithm 4);
– the TNFS method of Barbulescu, Gaudry and Kleinjung [7].

Remark 1 (Non-applicable methods.). The Sarkar–Singh and Kim–Barbulescu methods [45,35] do
not apply to finite fields of prime extension degree n such as Fp3 . The TNFS method is not better
than the best above methods for our practical case study, as shown in the paper [7, §5].

Algorithm 1 presents the Conjugation method, which eventually provided the best yield. Pseudo-
code describing the other methods can be found in Appendix A.

Algorithm 1: EC:BGGM15

1 ]Polynomial selection with the Conjugation method [5, §3.3] Input: p prime and n integer
Output: f, g, ψ with f, g ∈ Z[x] irreducible and ψ = gcd(f mod p, g mod p) in Fp[x] irreducible of degree n

2 repeat
3 Select g1(x), g0(x), two polynomials with small integer coefficients, deg g1 < deg g0 = n
4 Select a(y) a quadratic, monic, irreducible polynomial over Z with small coefficients

5 until a(y) has a root y in Fp and ψ(x) = g0(x) + yg1(x) is irreducible in Fp[x]
6 f ← Resy(a(y), g0(x) + yg1(x))
7 (u, v)← a rational reconstruction of y
8 g ← vg0 + ug1
9 return (f, g, ψ)

3.1 A First Comparison

The various methods above yield polynomial pairs whose characteristics differ significantly. Table 2
gives the expected degrees and coefficient sizes. From this data, we can derive bounds on the resultants
on both sides of a relation (either using the coarse bound (deg f + deg φ)!‖f‖∞deg φ‖φ‖∞deg f , or finer
bounds such as [10, Th. 7], as used in [7, §. 3.2]). These norms should be minimized in order to
obtain the best running-time for the NFS algorithm. We obtain the plot of Figure 2 for the bit-size
of the product of norms, similar to [5, Fig. 3].

Figure 2 suggests that the GJL method yields the smallest norms for log2Q = 508. The norms
produced with the Conjugation and JLSV1 methods are not very far however so we compared more
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method deg f ‖f‖∞ deg g ‖g‖∞
GJL D + 1 ≥ n+ 1 O(log p) D ≥ n O(Q1/(D+1))

JP or Conj 2n O(log p) n O(Q1/(2n))

JLSV1 n O(Q1/(2n)) n O(Q1/(2n))

JLSV2 D ≥ n+ 1 O(Q1/(D+1)) n O(Q1/(D+1))
Table 2. Norm bound w.r.t. Q
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JP, Conj, (deg f,deg g) = (6, 3)

GJL, (deg f,deg g) = (4, 3)

JLSV1, (deg f,deg g) = (3, 3)

JLSV2, (deg f,deg g) = (4, 3)

Fig. 2. Norm bound for four polynomial selection methods for Fp3

precisely these three methods for our 170-bit parameters. This entails finding competitive polynomial
pairs for each method, and comparing their merits. Estimated bounds as well as experimental
values for the products of norms for log2Q = 508 are reported in Table 3. Results of sieving on one
slide of special-q is reported in Table 4. The algorithms and computed polynomials are given in
Appendix A. The theoretical bound ‖f‖∞ equals one bit in the Conjugation and GJL methods
whereas in practice to improve the smoothness properties of f , we have chosen a polynomial with
moderately larger coefficients, and with better α and Murphy’s E values (see [42, §5.2 eq. (5.7)] on
Murphy’s E value). The coefficient size of g selected with the GJL, Conj and JLSV1methods is a
few bits larger than the theoretical bound because we computed linear combinations of two distinct
g, and of f and the initial g in the JLSV1 case (since they are of same degree). The advantage of
the hybrid Joux–Pierrot method (Algorithm 5) in the MNT case is that g can be monic, which does
not allow for linear combinations.

method ‖f‖∞ ‖g‖∞ Norm bound f Norm bound g product

bound exp. bound exp. bound exp. bound exp. bound exp.

GJL 1 2 127 130 106 107 206 208 311 314

Conj 1 9 85 86 157 165 163 164 320 328

hybrid JP 1 12 85 85 157 168 163 164 320 331

JLSV1 85 85 85 86 163 163 163 164 326 327

JLSV2 102 – 102 – 206 – 180 – 386 –
Table 3. Norm bounds in bits for logQ = 508 and logE = 25.25: estimates based on Table 2, compared to experimental
values with our selected polynomials.
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Galois actions: For small extension degrees n ∈ {3, 4, 6} there exist families of polynomials producing
number fields with cyclic Galois groups, and an easy-to-compute automorphism [20, Prop. 1.2].
Taking polynomials from these families yields a speed-up in the sieving part as well as in the linear
algebra part for the JLSV1 and Conjugation methods. We take g = x3 − y0x2 − (y0 + 3)x− 1 for
the Conjugation method, i.e. g0 = x3 − 3x− 1 and g1 = −x2 − x in Algorithm 1. The Galois action
is σ(x) = (−x− 1)/x which is independent of the parameter y0. In that case, given the factorization
for 〈a− bα〉, we can deduce that of

σ(〈a− bα〉) = 〈a− bσ(α)〉 = − 1

α
(b− (−a− b)α).

The same holds on the f side.

Forming a database of good polynomials f . For the Conjugation method (and similarly for the
competing methods), the early steps in Algorithm 1 can be tabulated in some way, depending only
on the extension degree n (and for JLSV1, also on the size of p, but not its value): we can store a
database of f ’s with good smoothness properties (low α and high Murphy’s E values). Actually we
searched over a(y) = a2y

2 + a1y + a0, where 0 < a2 < 32, |a1| < 32 and |a0| < 512, and computed
f = Resy(a(y), x3 − yx2 − (y + 3)x− 1). Later, depending on p, we can continue Algorithm 1 for
these precomputed polynomials (test whether a has a root modulo p).

Note also that in Algorithm 1, the rational reconstruction step naturally produces several
quotients u/v, which yield several candidate polynomials g. Small linear combinations of these
polynomials can be tried, in order to improve on the Murphy’s E value.

3.2 Probing the sieving yield

To finalize the comparison between the polynomials, we compared the relation yield for small
special-q ranges sampled over the complete special-q space. Because the JLSV1 and Conjugation
methods feature balanced norms, we used similar large prime bounds (27 bits) on both sides in
both cases, and allowed two large prime on each side. In contrast, for the GJL method, we allowed
28-bit large primes on the g side, and chose q to be only on that side. The Conjugation method
(polynomial below) appeared as the best option based on the seconds/relation measure, given that
the overall yield was sufficient. Results of this test are reported on Table 4.

f = 28x6 + 16x5 − 261x4 − 322x3 + 79x2 + 152x+ 28

α(f) = −2.94
log2 ‖f‖∞= 8.33
g = 24757815186639197370442122 x3 + 40806897040253680471775183 x2

−33466548519663911639551183x− 24757815186639197370442122

α(g) = −4.16
log2 ‖g‖∞= 85.08, the optimal being 1

2 log2 p = 85
E(f, g) = 1.31 · 10−12

(2)

4 Solving DLP over Fp3

4.1 Sieving and linear algebra

We took a smoothness bound of 50× 106 on both sides; and all special-q in [50× 106, 227], on both
sides. This took roughly 660 core-days, normalized on the most common hardware used, namely

8



Method seconds/relation relations/special-q remarks

Generalized Joux–Lercier 3.48 4.96 0+3 large primes below 228

JLSV1 1.31 4.24 2+2 large primes below 227, orbits of
three special-q batched togetherConjugation 0.91 5.93

Table 4. Probed yield for special-q ranges. Cpu time on Intel Xeon E5520 (2.27GHz).

4-core Intel Xeon E5520 CPUs (2.27GHz). We collected 57070251 relations, out of which 34740801
were non duplicate. Filtering produced a 1982791 × 1982784 matrix M with weight 396558692.
Taking into account the block of 7 Schirokauer maps S, the matrix M‖S is square.

We computed 8 sequences in the Block Wiedemann algorithm, using the trick mentioned in [17,
§8], as programmed in cado-nfs (rediscovered and further analyzed in [32]). All these sequences can
be computed independently. Computation time for the 8 Krylov sequence was about 250 core-days
(Xeon E5-2650, 2.4GHz, using four 16-core nodes per sequence). Finding the linear (matrix) generator
for the matrices took 75 core-hours, parallelized over 64 cores. Building the solution costed some
more 170 core-days. We reconstructed virtual logarithms for 15196345 out of the 15206761 factor
base elements (99.9%). This was good enough to start looking for individual logarithms.

4.2 Computing individual discrete logarithms in Fp3

From the linear algebra step, we know how to compute the logarithm modulo ` of any element of
Fp3 whose lift in either Kf or Kg factors completely over the factor base. Lifting in Kf is often
convenient because norms are smaller.

The tiny case. A particular element which lifts conveniently in Kf is the common root t of both
polynomials. By construction, its lift α ∈ Kf generates a principal (fractional) ideal that factors
as J−1f (see Proposition 1) times prime ideals of norm dividing 28, namely: (α) = I22,0I

−2
2,∞I7,0I

−1
7,∞,

where I22,∞I7,∞ corresponds to Jf and the prime ideals in the right-hand side can be made explicit.

Its logarithm therefore writes as 7

log(t) = 2 vlog I2,0 − 2 vlog I2,∞ + vlog I7,0 − vlog I7,∞ +

5∑
i=1

λf,i(α) vlog(λf,i).

λf,1(α) = 0x3720106a3d368d7f731a0757b905778050ae327, λf,2(α) = 0x1dbeace7d0ec187712ae8afcd6ccdc4db06f781,

λf,3(α) = 0x9c3109f7741d625869f135706be03fc09375450, λf,4(α) = 0x1e46653b287d99c502a5c6e12ab17a3dd10988c,

λf,5(α) = 0x31628f3e0b491e622946b32f66292c1389a7427.

By construction the value log(t) above is invertible modulo `, and we can freely normalize our
virtual logarithm values so that it is equal to one.

The tame case. Elements whose lifts do not factor completely over any of the factor base but have
only moderate-size outstanding factors can be dealt with using a classical descent procedure. This
finds recursively new relations involving smaller and smaller primes, until all primes involved belong
to the factor base. Software achieving this exists, such as the las_descent program in cado-nfs.

7 The convention in cado-nfs is to take coefficients of largest degree first in the Schirokauer maps computation
z 7→ 1

`
(z`

m−1 − 1) where m = lcml prime, l|`[l : `]. Here we have m = 1.
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The general case. For computing individual logarithms of arbitrary elements, we used the boot
technique described in [27]. For each target, we compute a preimage in Z[x] represented by a
polynomial of degree at most 5 and coefficients bounded by p1/3. The norm in Kf of the preimage is
O(p2) = O(Q2/3), of approximately 340 bits. The asymptotic complexity of this step is LQ[1/3, 1.26],
and would be LQ[1/3, 1.132] with one early-abort test (see e.g. [43, §4.3] or [3, Ch. 4]). The optimal
size of largest prime factors in the decomposition is given by the formula LQ[2/3, (e2/3)1/3 ≈ 0.529],
where e = 2/3 (see [16, §4]). Applying it for log2Q = 508 gives a bound of 68 bits and a running-time
of approximately 242 tests. In practice we found very easily initial splittings where B1 is less than
64 bits, which eased the descent.

4.3 Solving the challenge

Our main use case for individual logarithm computation in Fp3 is to solve a DLP challenge on the
curve. The challenge definition procedure described in Appendix B gives:

G1 = (0x106b415d7b4a2d71659ae97440cbb20a6de42d76d69, 0x16d74a2a88e817f1821a1c40e220d34eec93e33cb83),

P = (0x15052ba45717710e6b0cbf8ed89c5c1a0a279480e26.0x8050f05a231ae1f13e56de1171c108294656052339)

From Section 2.1, we need to compute log(GT ) and log(S), where GT = e(G1, G2) and S =
e(P,G2) are given in Appendix B. We searched for randomized values GrT and Gr

′
T S which were

amenable to the descent procedure. After 32 core-hours looking in the range r ∈ [1, 64000], we
selected the following element

G52154
T = −0x21d517d51512e9− 0x95233b3af1b3c7x+ 0x8d324ebc7849bbx2

+ 0x18ff0d5ae0b52bx3 + 0x13f711fe92d63cdx4 − 0x15c778630d36920x5

whose straightforward lift in Kf has 59-bit smooth norm (resultant with f , more precisely):

0x87ac1a057df9772d1e08d4de56b3e6b5f208710437b5f92ac4a494c318c9781107e00364934e34efa87b26597771c

= 22 · 5 · 72 · 31 · 193 · 277 · 1787 · 12917 · 125789 · 142301513 · 380646221 · 2256567883

·132643203397 · 138019432565816569 · 603094914193031251 · 801060739300538627

Virtual logarithms for primes below 50 · 106 (25.57 bits) were known. The descent procedure took
13.4 hours. Once all logarithms were computed, the value of log(GT ) could be deduced:

log(GT ) = 0x8c58b66f0d8b2e99a1c0530b2649ec0c76501c3 (normalized to log t = 1).

Similarly, we selected

G35313
T S 7→ 0x457449569db669 + 0x88c32ec54242fdx− 0x2370c0f5914ba9x2

+ 0x14c7ccbafc20e2x3 + 0xde2e21c5f1a4c4x4 − 0x10b6bfd826db49cx5

whose lift in Kf has norm

−0x44dafd6ec57c91e64567fa045187100da9a98c5c509b388cb61759f345b3ce27226a5e8520be0bd4559acbd538b90

= −24 · 52 · 7 · 643 · 1483 · 2693 · 95617 · 9573331 · 33281579 · 1608560119 · 48867401441

·516931716361 · 896237937459937 · 16606283628226811 · 19530910835315983
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the largest factor having 54 bits, a very small size indeed (compared to the 68 bits predicted by
theory). The descent procedure for other primes took 10.7 hours. We found that

log(S) = 0x48a6bcf57cacca997658c98a0c196c25116a0aa (normalized to log t = 1).

We eventually found that

logG1
(P ) = 0x711d13ed75e05cc2ab2c9ec2c910a98288ec038 mod `.

5 Conclusion and future work

5.1 Consequences for pairing-based cryptography

Our work showed that the choice of embedding degree n and finite field size log pn should be done
carefully. The size of Fpn should be large enough to provide the desired level of security. We recall
these sizes for Fp3 . The recent improvement of Kim–Barbulescu [36] does not apply to Fpn where
n is prime, so Fp3 is not affected. The asymptotic complexity of the NFS algorithm for Fp3 is

exp
(
(c+ o(1))(log pn)1/3(log log pn)2/3

)
= Lp3 [1/3, (64/9)1/3]. Since there is a polynomial factor

hidden in the notation c+ o(1), taking log2 Lp3 [1/3, (64/9)1/3] does not give the exact security level
but only an approximation. We may compare our present record with previous records of same size
for prime fields Fp and quadratic fields Fp2 . Kleinjung in 2007 announced a record computation in
a prime field Fp of 530 bits (160 decimal digits) [37]. Barbulescu, Gaudry, Guillevic and Morain
in 2014 announced a record computation in Fp2 of 529 bits (160 decimal digits) [4]. We compare
the timings in Table 5. The timings of relation collection and linear algebra were not balanced in
Kleinjung record: 3.3 years compared to 14 years and moreover, this is a quite old record so it is not
really possible to compare our record with this one directly. We can compare our record with the
529-bit Fp2 record computation of 2014 [4]. Our total running-time is 15.5 times longer whereas the
finite field is 21 bit smaller.

record relation collection linear algebra individual log total

Kleinjung [37] 3.3 CPU-years 14 years few hours
530-bit field 3.2 GHz Xeon64 3.2 GHz Xeon64 3.2 GHz Xeon64 17.3 years

BGGM [4] 68 core-days = 0.19y 30.3 hours few hours 70 days
529-bit field 2.0 GHz E5-2650 NVidia GTX 680 graphic card 2.0 GHz E5-2650 = 0.2 year

this work 660 core-days = 1.81y 423 days =1.16y 2 days 1085 days
508-bit field 2.27GHz 4-core Xeon E5520 2.4 GHz Xeon E5-2650 2.27GHz 4-core Xeon E5520 = 2.97 years
Table 5. Comparison of running-time for Discrete Logarithm records in Fp, Fp2 and Fp3 of 530, 529 and 508 bits.

5.2 Future work

We have computed a DLP on an MNT curve with embedding degree 3. What are the next candidates?
We could continue the series in two directions: increasing the size of p to 600 bits, in order to
compare this new record to the previous records of the same size, in particular the Fp2 record of 600
bits [5]. We could conjecture, according to the present record and the size of the norms, that a DLP
record in Fp3 of 600 bits will be more than 15 times harder than in a 600-bit field Fp2 .
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The second direction would be to continue the series of MNT curves, with n = 4. We found an
MNT curve of embedding degree 4 in Miracl (file k4mnt.ecs). The curve was generated by Drew
Sutherland for Mike Scott a long time ago.

y = 0xf19192168b16c1315d33

p = y2 + y + 1 = 0xe3f367d542c82027f33dc5f3245769e676a5755d

` = 0x6b455e0a014f1e30eaef7300bd4bb4258290fc5

τ = y + 1 = 0xf19192168b16c1315d34

#E(Fp) = y2 + 1 = p+ 1− τ = 2 · 17 · `

Since n is a prime power, we have to adapt the Kim–Barbulescu technique (dedicated to
non-prime power n) to prime-power extension degrees. We construct Fp4 as Fp2 [x]/(ϕ(x)), where
Fp2 = Fp[s]/(h1(s)) and both h1 and ϕ are of degree 2, and ϕ has coefficients in Fp2 . As a consequence,
the polynomials f and g will have coefficients in Z[s]/(h1(s)) instead of Z. For example, one could
take

h1(s) = s2 + 2,
h2(x, t0, s) = x2 + s+ t0,

P (t0) = t20 + t0 + 1,
f = Rest0(P (t0), h2(x, t0, s)) = x4 + (2s− 1)x2 − s− 1,
g = h2(x, y, s) = x2 + s+ 0xf19192168b16c1315d33.

The major difference is that to be efficient, we have to sieve polynomials of degree 1 with coefficients
in Z[s]/(h1(s)), that is elements of the form (a0 + a1s) + (b0 + b1s)x where the ai’s and bi’s are small
rational integers, say |ai|, |bi| ≤ A. For instance, taking log2(E) = 1.1(logQ)1/3(log logQ)2/3 ≈ 28,
we obtain A = E2/(2 deg h) of 14 bits. The upper bound on the norm would be of 120 bits on f -side
and 219 bits on g-side, the total being roughly of 339 bits. This is 11 bits more than our present
record for the 508-bit n = 3 MNT curve (328 bits, Table 3), but by far much less than with any
previous technique applied to that Fp4 . Norm estimates are provided in Table 6. From a practical
point of view, we would need extensions of the work [25].

Table 6. Norm bound estimates for Fp4 of 640 bits.

method ‖f‖∞ ‖g‖∞ NBf NBg NBf +NBg

Kim-Barbulescu+hybrid JP 1 80 120 219 339

GJL 1 128 144 243 387

JLSV1 320 80 195 195 390

Sarkar-Singh, r = 2 1 107 172 222 394

JP–Conj 1 80 159 240 399

JLSV2, D = 6 (D best choice) 91 91 264 206 470

Acknowledgements. The authors are grateful to Pierrick Gaudry for his help in running the
computations.
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4. R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain. Discrete logarithms in GF(p2) — 160 digits. Announcement

on the Number Theory List, Jun 2014. https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;2ddabd4c.
1406.

5. R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain. Improving NFS for the discrete logarithm problem in
non-prime finite fields. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of Lecture
Notes in Comput. Sci., pages 129–155. Springer, Heidelberg, Apr. 2015.
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Algorithm 2: Polynomial selection with the GJL method
Input: p prime, n integer and d ≥ n integer
Output: f, g, ψ with f, g ∈ Z[x] irreducible and ψ = gcd(f mod p, g mod p) in Fp[x] irreducible of degree n

1 Choose a polynomial f(x) of degree d+ 1 with small integer coefficients which has a monic irreducible factor
ψ(x) = ψ0 + ψ1x+ · · ·+ xn of degree n modulo p

2 Reduce the following matrix using LLL

M =



p

. . .

p
ψ0 ψ1 · · · 1

. . .
. . .

. . .

ψ0 ψ1 · · · 1



degψ = nd+ 1− n

, to get LLL(M) =


g0 g1 · · · gd

∗

 .

return (f, g = g0 + g1x+ · · ·+ gdx
d, ψ)

Generalized Joux–Lercier method. The first step of Algorithm 2 is to choose a polynomial f of
degree 4 in our context. We need f to factor as a linear polynomial times a degree 3 polynomial
modulo p, hence we cannot allow for a degree two subfield, or any of the Galois groups C4, V4 or
D4. We extracted from the Magma number field database the list of irreducible polynomials of
degree 4 and Galois group A4 (of order 12), class number one and signature (0, 2) (592 polynomials)
and (4, 0) (3101 polynomials).

In step 2 of Algorithm 2, the LLL algorithm outputs four polynomials g1, g2, g3 and g4 with small
coefficients. To obtain the smallest possible coefficients, we set the LLL parameters to δ = 0.99999 and
η = 0.50001. We compute linear combinations g =

∑4
i=1 λigi with |λi|‖gi‖∞ ≤ 25 ·min1≤i≤4 ‖gi‖∞

(roughly speaking, |λi| ≤ 32) so that the size of the coefficients of g do not increase too much, while
we can obtain a polynomial g with a better Murphy’s E value.

Then we run Algorithm 2 with our modified step 2 for each polynomial f in our database and
we selected the pair with the highest Murphy’s E value. We obtained

f = x4 − 2x3 + 2x2 + 4x+ 2
α(f) = 1.2
log2 ‖f‖∞ = 2
g = 133714102332614336563681181193704960555 x3

+173818706907699496668994559342802299969 x2

+878019651910536420352249995702628405053 x
−185403948115503498471378323785210605885

α(g) = −2.1
log2 ‖g‖∞ = 129.37, the optimal being 3

4 log2 p = 127.5
E(f, g) = 5.08 · 10−13

Joux-Lercier-Smart-Vercauteren method. The Joux-Lercier-Smart-Vercauteren method, described in
Algorithm 1, is possibly the most striaghforward polynomial selection method adapted to non-prime
finite fields. It is possible to force this method to pick polynomials f within a specific family, in
order to force nice Galois properties. For example, we may use the form ψ = x3 − tx2 − (t+ 3)x− 1.

The enumeration was the largest for the JLSV1 method: we searched over 225 polynomials f in
the cyclic family x3 − t0x2 − (t0 + 3)x− 1, with a parameter t0 of 84 up to 85 bits. We kept the
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Algorithm 3: C:JLSV06

1 ] Polynomial selection with the JLSV1 method [30, §2.3] Input: p prime and n integer
Output: f, g ∈ Z[x] irreducible and ψ = gcd(f mod p, g mod p) ∈ Fp[x] irreducible of degree n

2 Select f1(x), f0(x), two polynomials with small integer coefficients, deg f1 < deg f0 = n
3 repeat
4 choose y ≈ d√pe
5 (u, v)← a rational reconstruction of y modulo p (different from y/1)
6 g ← vf0 + uf1
7 until f = f0 + yf1 and g are irreducible in Fp[x]
8 return (f, g, ψ = f mod p)

polynomials whose α value was less than −3.0. We then continued Algorithm 1 selectively for these
good precomputed polynomials. The “initial” g (say g0) produced by Algorithm 1 can be improved
by using instead any linear combination g = λf + µg0 for small λ and µ, thereby improving the
Murphy’s E value. We set |λ|, |µ| ≤ 25.

f = x3 − 30145663100857939296343446 x2 − 30145663100857939296343449 x− 1
α(f) = −3.0
log2 ‖f‖∞= 84.64
g = 30145663100857939299699540 x3 + 46845274144495980578316407 x2

−43591715158077837320782213 x− 30145663100857939299699540

α(g) = −2.8
log2 ‖g‖∞= 85.28, the optimal being 1

2 log2 p = 85
E(f, g) = 1.02 · 10−12

(3)

Conjugation and Joux–Pierrot methods. The Joux-Pierrot method produces polynomials with the
same degree and coefficient properties as the Conjugation method for MNT curves and that are
moreover monic. The polynomials constructed with the Conjugation method allow a factor two
speed-up thanks to a Galois automorphism. We propose here a hybrid variant in Algorithm 5
for pairing-friendly curves. The conjugation method, in Algorithm 1, is the one which eventually
produced the best polynomial pair.

Algorithm 4: Polynomial selection with the Joux–Pierrot method [31]

Input: p prime, p = P (x0) where P is a degree d ≥ 2 polynomial, and n integer
Output: f, g, ψ with f, g ∈ Z[x] irreducible and ψ = gcd(f mod p, g mod p) in Fp[x] irreducible of degree n

1 repeat
2 Choose g(x) = xn +R(x)− x0 with R of small degree and tiny coefficients
3 f(x)← P (xn +R(x)) // where P is the polynomial s.t. p = P (x0)

4 until f and g are irreducible
5 return (f, g, ψ = g)

For the Conjugation method as well as the hybrid method of Algorithm 5, and similarly to the
JLSV1 method, it is possible to choose polynomials g of the form ψ = x3 − tx2 − (t+ 3)x− 1 to
allow a Galois automorphism of degree 3.
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Algorithm 5: Polynomial selection, variant of Joux–Pierrot and Conjugation methods
Input: p prime, p = P (y) with degP ≥ 2 and P of tiny coefficients, and n integer
Output: f, g, ψ with f, g ∈ Z[x] irreducible and ψ = gcd(f mod p, g mod p) in Fp[x] irreducible of degree n

1 repeat
2 Select g1(x), g0(x), two polynomials with small integer coefficients, deg g1 < deg g0 = n
3 Select small integers a, b, c, d

4 ψ(x) = g0(x) +

(
a+ by

c+ dy
mod p

)
g1(x)

5 f ← ResY (P (Y ), (c+ dY )g0(x) + (a+ bY )g1(x))
6 g ← (c+ dy)g0(x) + (a+ by)g1(x) // g ≡ (c+ dy)ψ(x) mod p
7

8 until ψ(x) is irreducible in Fp[x] and f , g are irreducible in Z[x]
9 return (f, g, ψ)

In practice, in Algorithm 5 one might prefer to constrain d = 0, so that g has small leading
coefficient c. Going further and requiring c = 1 so that g is monic reduces however too much the
possibilities to find a good pair of polynomials.

The following example has been obtained with Algorithm 5, searching over all (a+ by)/c with
|a|, |b|, |c| ≤ 256.

y = −8702303353090049898316902 is the targeted MNT curve parameter
f = 108x6 + 1116x5 + 3347x4 + 2194x3 − 613x2 − 468x+ 108
g = 6x3 + 34809213412360199593267639 x2 + 34809213412360199593267621 x− 6

= 6x3 − (4y − 31)x2 − (4y − 13)x− 6
ϕ = 1

6g mod p = x3 + 151460167298404651346258165094598961506004769966481 x2

+151460167298404651346258165094598961506004769966478 x− 1

B Magma verification script

B.1 Preparation.

We first compute a generator G1 of E(Fp)[`] by taking a point G0 on the curve and multiplying it by

the cofactor
#E(Fp)

` . For simplicity, we took the smallest possible x-coordinate such that (x3 +ax+b)
is a square and took the square root y of even least significant bit (lsb). This give:

G0 = (2, 0x17b2192d9f643d079f733dd3a6a5372c469dea666ce),

G1 = (0x106b415d7b4a2d71659ae97440cbb20a6de42d76d69, 0x16d74a2a88e817f1821a1c40e220d34eec93e33cb83).

For the challenge, we took a point P on the curve whose x-coordinate is made of the 51 first decimal

digits of π, and such that its y-coordinate is of even lsb. We then get P = [
#E(Fp)

` ]P0.

P0 = (0xd6f4dcacdbe68004d7666a4d01dfa3321e33e476e6, 0x13acf67269153bf52bdaedd8fbd4272989187e77c9a),

P = (0x15052ba45717710e6b0cbf8ed89c5c1a0a279480e26, 0x8050f05a231ae1f13e56de1171c108294656052339).

Applying the FR-reduction. We first construct Fp3 as Fp(z) = Fp[x]/(x3 + x+ 1), for ease of pairing
computations. We compute a generator G2 of the order ` subgroup of E(Fp3) which is not E(Fp).
We decided to take a point whose x-coordinate is xQ = z + a with a as small as possible, such that
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x3Q + axQ + b is a square in Fp3 . Again we took the square root of even lsb. We multiplied this point
Q by the cofactor to get a generator G2 of the right order ` subgroup. Given #E(Fp) = p+ 1− τ ,

the order of E(Fp3) is p3 + 1− τ3 + 3pτ , so that G2 = [
#E(Fp3 )

`2
]Q. We compute the reduced Tate

pairing of the two generators, to get a generator GT = e(G1, G2) of the order ` subgroup of Fp3
(reduced means we perform the final exponentiation to the power (p3 − 1)/` to get a unique result).
We compute the reduced Tate pairing of our challenge and G2, to get a challenge S = e(P,G2) in
Fp3 . This process leads to

S = 0x21e33cd9b53366343bcf0d519f5a80b32e3bab8c44a z2 + 0xce97b3388642afc9d74b42a4e4e1e135a3375a437e z

+ 0x166327121ab56b7b22e28ea7f0baa731a7cf92a8348

GT = 0x14fabf0e76b0d2e77bb3767494448bd094184b65316 z2 + 0xd39926b9c80bb8c6f54970a5569e74813af5a172d6 z

+ 0x9eb16519c8bc9a34b9460aae9fbc9a2be575f82548.

Computing the individual log using NFS-DL. We change the representation of Fp3 according to
the defining polynomial described in Section 3.1. It means that we compute an isomorphism from
Fp(z) = Fp[x]/(x3 + x+ 1) to Fp(t) = Fp[x]/(ϕ(x)), where ϕ = Res(f, g) with f, g as given in 3.2.
This isomorphism can be written as follows, and gives the following values for the challenge S and
the generator GT :

z 7→ 0x1963349af2bc59b4b166ac91643384de0efdb797ebd

+ 0x2440f3d5f3e6de8039b767b132a935eb797ffd24dd1 t+ 0x287cd0b842ad6a479c0431f51e52cee08874df3fd6 t2

S = 0x11a2f1f13fa9b08703a033ee3c4321539156f865ee9

+ 0x1098c3b7280ef2cf8b091d08197de0a9ba935ff79c6 t+ 0x221205020e7729cb46166a9edfd5acb3bf59dd0a7d4 t2

GT = 0xd772111b150ec08f0ad89d987f1b037c630155608c

+ 0xf956cab6840c7e909abc29584f1aee48ccbd39d698 t+ 0x205eb5b1e09f76bf0ef85efeaa3fdcb3827d43441b3 t2

Back to the curve. We obtained

log(S) = 0x48a6bcf57cacca997658c98a0c196c25116a0aa, log(GT ) = 0x8c58b66f0d8b2e99a1c0530b2649ec0c76501c3,

so that u = log(S)/ log(GT ) = log(P ) = 0x711d13ed75e05cc2ab2c9ec2c910a98288ec038 mod `.

B.2 Code

ZZ := Integers();

x0 := -8702303353090049898316902;

t := 6*x0 - 1;

p := 12*x0^2 - 1; // this is a 170-bit prime

cofactor_E := 7^2*313;

ell := (p+1-t) div cofactor_E; // this is a 156-bit prime

cofactor_E3 := (p^3 + 1 - t^3 + 3*p*t) div ell^2;

cofactor_Fp3:=(p^3-1) div ell;

a := 818416342594888291485044088811640789053085789975506;

b := 666070443323978349780035881803413282865714842057992;

Fp := FiniteField(p,1);
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E := EllipticCurve([Fp!a, Fp!b]);

even_sqrt:=func<x| (ZZ!Eltseq(y)[1] mod 2 eq 1 select -y else y) where y is Sqrt(x)>;

SetPrintLevel("Hex");

// generator of rational subgroup

G0:=E![x,even_sqrt(x^3+a*x+b)] where x is Fp!2;

G1 := cofactor_E*G0;

printf "G1 = %o\n", ChangeUniverse(Eltseq(G1)[1..2],Integers());

// generator of subgroup over extension

// an arbitrary representation of Fp3.

Fp3<z> := ext<Fp | Polynomial([1,1,0,1])>;

Q := E(Fp3)![x,even_sqrt(x^3+a*x+b)] where x is z+2;

G2 := cofactor_E3*Q;

// generator of image subgroup

generator := ReducedTatePairing(E(Fp3) ! G1, G2, ell);

// challenge

x_P := Fp ! 314159265358979323846264338327950288419716939937510;

P0:=E![x,even_sqrt(x^3+a*x+b)]

where x is Fp!314159265358979323846264338327950288419716939937510;

P := cofactor_E*P0;

printf "P = %o\n", ChangeUniverse(Eltseq(P)[1..2],Integers());

challenge := ReducedTatePairing(E(Fp3)!P, G2, ell);

// Our chosen representation of Fp3

g0:=Polynomial([-1,-3,0,1]);

g1:=Polynomial([0,-1,-1]);

y0:=66860548332739903465896435955260897778062220455483;

Fpn:=ext<Fp | g0+y0*g1>;

Embed(Fp3,Fpn,Roots(DefiningPolynomial(Fp3),Fpn)[1][1]);

Fpn_challenge := Fpn ! challenge;

Fpn_generator := Fpn ! generator;

log_t:=1; // this is our normalization choice (for t == Fpn.1)

log_generator:=0x8C58B66F0D8B2E99A1C0530B2649EC0C76501C3; // logarithm of generator e(G1,G2)

log_challenge:=0x48A6BCF57CACCA997658C98A0C196C25116A0AA; // logarithm of challenge

printf "// checking log(challenge) w.r.t. log(basis)";

assert (Fpn_generator^log_challenge/Fpn_challenge^log_generator) ^ cofactor_Fp3 eq 1;

assert (generator^log_challenge/challenge^log_generator)^cofactor_Fp3 eq 1; // of course

assert (Fpn_generator / Fpn.1^log_generator) ^ cofactor_Fp3 eq 1;

print " OK";

printf "// back to the elliptic curve: ";

log_P := ZZ ! (GF(ell) ! log_challenge / log_generator);

assert log_challenge*G1 eq log_generator*P and log_P * G1 eq P;

print " OK";
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