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INCREMENTAL IDENTIFICATION OF TRANSPORT
COEFFICIENTS IN CONVECTION-DIFFUSION SYSTEMS*

MAKA KARALASHVILIT, SVEN GROS!, ADEL MHAMDI', ARNOLD REUSKEN}, AND
WOLFGANG MARQUARDTT

Abstract. In this paper, an incremental approach for the identification of a model for trans-
port coefficients in convection-diffusion systems on the basis of high-resolution measurement data is
presented. The transport is represented by a convection term with known convective velocity and
by a diffusion term with an unknown, generally state-dependent transport coefficient. The identifi-
cation of the transport model for this transport coefficient constitutes an ill-posed nonlinear inverse
problem. We present a novel decomposition approach in which this inverse problem is split into
a sequence of inverse subproblems. In the first identification step of this incremental approach a
source is estimated by solving an affine-linear inverse problem by means of the conjugate gradient
method. In the second identification step a nonlinear inverse problem has to be solved to reconstruct
a transport coefficient. A Newton-type method using the conjugate gradient method in its inner
iteration is used to solve this nonlinear inverse problem of coefficient estimation. Finally, in the
third identification step a transport model structure is proposed and identified on the basis of the
model-free transport coefficient reconstructed in the two previous steps. The ill-posedness of each
inverse problem is examined by using artificially perturbed transient simulation data and appropri-
ate regularization techniques. The identification methodology is illustrated for a three-dimensional
convection-diffusion equation which has its origin in the modeling and simulation of energy transport
in a laminar wavy film flow.
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1. Introduction. Let Q C R3 be a computational domain, with boundary parts
00 = 'p UT'y, where the indices D and N indicate the Dirichlet and Neumann parts
of the boundary, respectively. We consider the convection-diffusion equation

(1.1a) %—!—V-(puw)—V-(aVu):O in Q x (to,ty]

with initial and boundary conditions

U(X7 to) = uO(X)’ X e Qa

(1.1b) u(x,t) = gp(x,t), (x,t) € Tp x [to, t],
%(X’t) = gN(th)a (X,t) € FN X [to,tf].

The scalar state variable u(x,t) represents, e.g., specific enthalpy in case of energy
transport or mass density in case of mass transport. p(x,t) stands for the density
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of the fluid. The vector field w(x,t) € R? represents velocity and is assumed to be
known. The scalar function a(-) denotes the unknown, in general state-dependent,
transport coefficient.

The transport coefficient describes complicated transport phenomena, for which
a multitude of competing candidate model structures can be formulated on the basis
of different assumptions and theories. Experimental data should be used to estimate
parameters that occur in these candidate models and to discriminate between the
competing candidate models using some reasonable measure of model validity.

The identification of transport coefficients from appropriate measurement data,
such as temperature or concentration, belongs to the class of ill-posed inverse prob-
lems. Many studies on the estimation of transport coefficients are available. A well-
established technique for the identification of transport coefficients, as a function of
states and time, relies on an optimization-based formulation which is used in the
framework of a coefficient inverse problem [2, 14]. In this approach, the reconstruc-
tion of the transport coefficient in model (1.1) uses suitable transient measurement
data um (x,1), (x,t) € Q x [to, ty]. It is often assumed that the initial and boundary
conditions of the problem are known. Much literature is available on the subject (see
[3, 11, 28] and the references therein); the treatment, however, is typically restricted
to one or two space dimensions. Furthermore, these studies do not aim at the re-
construction of a suitable transport model (structure and parameters) for transport
coefficients.

In the so-called simultaneous approach, problem (1.1) for the identification of
a model (structure and parameters) for the transport coefficient is solved for each
model candidate. This leads to a large number of complex estimation problems. As
a consequence, the discrimination between competing transport model candidates re-
quires high computational effort. Furthermore, if a model candidate for the transport
coefficient contains uncertainty or structural errors, this approach often yields biased
or poor estimates [29]. Often satisfactory results can be achieved only if the correct
model structure for the transport coefficient is known. In the present work, in con-
trast, we use a fundamentally different, so-called incremental approach [22] for the
identification of a structured model for the transport coefficient.

In the incremental identification approach, incremental modeling interplays with
the incremental identification. In incremental modeling, the structure of a model to
be identified is refined step by step by specifying submodels gradually in a sequence of
successive refinement levels. Consequently, decision making during the modeling pro-
cess is more transparent. The incremental identification of a model reflects the steps
of incremental modeling straightforwardly by splitting up the identification problem
into a sequence of subproblems. The discrimination between the candidate models
turns out to become more flexible as the replacement of a submodel on a certain
model refinement level affects only the submodels on the following levels. Often, this
strategy results in substantially less computational effort. The incremental strategy
already proved to be an efficient and robust alternative for the mechanistic modeling
of kinetic phenomena in multiphase systems [23], the reconstruction of diffusion coeffi-
cients in liquids [6], and the identification of complex reaction kinetics in homogeneous
systems [9].

In this paper, we present and investigate the incremental method of modeling
and identification for the class of inverse transport coefficient problems described by
(1.1). The application of the incremental approach to this class of problems is new.
As a first step in the analysis of this technique we show by means of simulated data
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that a time- and space-dependent transport coefficient can be reconstructed without
using any a priori knowledge on its functional representation. We assume in this
paper, that the model structure for the parametric model of the transport coefficient
is known. The incremental identification technique, however, can be directly applied
for the case when the model structure is unknown and has to be determined from
the data and prior knowledge on candidate model structures. Furthermore, in case of
different model candidates for the transport coefficient, the additional procedure of
model discrimination does not affect the overall technique described in this paper. We
analyze this identification approach and show that the method yields good results even
in the case of noisy measurement data. These results indicate that the incremental
approach is a promising method for this class of identification problems.

The paper is organized as follows. The incremental approach of modeling and
identification of transport phenomena is presented in section 2. The optimization-
based formulations for the inverse problems arising in the three steps of the iden-
tification procedure are given in section 3. We also describe the solution strategies
used to solve the inverse problems arising in the first two steps of the incremen-
tal identification procedure. In section 4 we present results of extensive numeri-
cal experiments for the identification of a model for the transport coefficient in a
three-dimensional convection-diffusion problem of type (1.1). This model problem is
motivated by research on energy transport in wavy films, using effective transport
coefficients [8, 12, 30]. Section 5 contains some conclusions and remarks concerning
future work.

2. Incremental modeling and identification. The key idea of the incremen-
tal approach is the gradual refinement of the model structure during identification,
reflecting the incremental steps which are common in model development. The main
steps of model development and their relation to incremental model identification are
outlined in the following.

2.1. Incremental modeling. Incremental modeling aims at a generic and struc-
tured process for the development of model equations [22, 23]. The starting point is
the formulation of the balance equations. The balance equation for a scalar state
u(x, t), that denotes the specific quantity conserved, is given by

dpu

— +V-j=0.

ar TV
Here, j is the flux vector, which governs the rate of transfer of the conserved physical
quantity. This vector consists of a convective and diffusive part:

j=puw +a.
The use of the continuity equation leads to the convection-diffusion equation
ou 1 .
(2.1) model B: E—i—w-Vu:—fV-q in Q x (to,ty].
P

At this decision level no additional assumptions are made about the potentially un-
certain constitutive relation for the diffusive flux vector q.

On the next decision level, the model is refined by specifying a functional form
of the flux q. Often a constitutive relation is used, for example, Fourier’s law in heat
transfer or Fick’s law in mass transfer, which can be, e.g., cast as

(2.2) model F: q=—aVu in Q x (to,ts]
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with an unknown transport coefficient a. In empirical approaches one usually distin-
guishes different transport mechanisms, namely, transport by turbulent or molecular
mechanisms, with or without convection [10]. Accordingly, the transport coeflicient in
(2.2) is represented as a sum of two contributions—the known molecular part a,,o1, the
molecular transport coefficient corresponding to molecular transport (e.g., heat con-
duction in the fluid) and the unknown remaining part a,, (X, t) capturing the remaining
transport effects (e.g., due to turbulence or other transport enhancing effects). In the
following, we call a,,(x,t) the enhanced transport coefficient. Thus,

(2.3) a(x,t) = amol + aw(x,t), (x,t) € Q x [to, tf].

In the final step of the incremental modeling procedure, a further refinement level
is added by specifying a constitutive relation for the enhanced transport coefficient to
close the model. We formulate it in a generic way,

(2.4) model T ayw(x,t) = fu(u(x,t),x,t,0),

to correlate a,, with the state u and model parameters § € R"™.

2.2. Incremental identification. The incremental identification directly fol-
lows the steps of model development [23]. We assume throughout that appropriate
transient measurement data at sufficiently high resolution in space x and time ¢ are
available. A schematic picture of the procedure is given in Figure 1.

We rewrite the balance equation (2.1) as

ou

(2.5) a—l—w-Vu:F in Q x (to,ty]
with
(26) F(Xv t) =-V- q(xﬂt)7 (Xa t) € x (t07tf]'

Here, we have assumed for simplicity a constant density normalized to p = 1. In the
first step of the incremental identification procedure, the (artificial) source F(x,t)
is estimated, as a function of space and time, from the balance equation (2.5) with
proper initial and boundary conditions, on the basis of suitable measurements u,, (x, t)
of the state u(x,t). This is a typical example of a source inverse problem [2].

The incremental identification at the next level uses the estimated source F(x,¢
as model-based measurement data together with the transient measurements w,, (x,
to reconstruct the transport coefficient a,,(x,t). Hence, accounting for (2.2), (2.3)
and (2.6), a,(x,t) has to be estimated from the equation

)
)

)

(2.7 —V - ((@mo1 + @) Vu) = —F in Q x (o, 5],

which corresponds to a coefficient inverse problem [2].

In the third step of the identification procedure the reconstructed coefficient
aw(x,t) is correlated with states as in (2.4) by solving a parameter estimation prob-
lem. Different model candidates involving the state u and model parameters 6 can
be considered here. The measurement data are used to estimate parameters for each
candidate model. The best model is selected by carrying out a model discrimination
between candidates using some measure of model validity [29].

In this paper, we focus on the inverse problems that arise in the first two steps of
the incremental identification approach. In the third identification step we estimate
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F1c. 1. Incremental modeling and identification of transport phenomena.

model parameters in a model structure for the transport coefficient which is assumed
to be known, thus restricting ourselves to the estimation of one given model for the
transport coefficient.

For the numerical treatment of the source inverse problem in the first step it is
very convenient to consider a variant of (2.5) which uses the expression (2.7) for the
transport coefficient. This leads to

(2.8) F(x,t) =V - (amaVu(x,t)) + Fy(x,1), (x,t) € QX (to,ty].

As a result, instead of F(x,t) it suffices to estimate the enhanced part F,(x,t) of
the source term on the basis of transient measurement data u,,(x,t) (cf. Figure 1).
Consequently, in the first step of the identification procedure one has to reconstruct
the source term F,(x,t) in the convection-diffusion equation

ou

(2.9a) model B: 5 +w-Vu—-V-(amaVu) =F, inQx (to,t]

with initial and boundary conditions

u(x,to) = up(x), x € Q,

(2.9b) u(x,t) = gp(x,t), (x,t) € Tp x [to, ],
%(x,t) =gn(x,1), (x,t) € T x [to, L4]-

Compared to (2.5), we now have a convection-diffusion problem instead of a pure
convection problem. Due to the diffusion part, the numerical treatment becomes
easier. Furthermore, for u we can now use the same boundary conditions as in (1.1b).

In the second step of the incremental identification procedure, one has to deter-
mine the coefficient a,,(x,t) in the diffusion equation (cf. Figure 1)

(2.10a) model F: — V- (a,Vu') = -F! inQ
with boundary conditions

ut(X):gE(X), XEFD7
(2.10b) ¢
M () =gh(x), xeTy.
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Here, for a space- and time-dependent function £(x,t) we have introduced the notation
& (x) = &(x,t), (x,t) € Q X [to,tf] to decouple the function values in time instants.
In (2.10) we thus have a steady-state diffusion problem for each given t € [to, /]

In the third step of the identification procedure, the reconstructed coefficients
al,(x) at selected times t € [to,tf] are correlated with states u’(x) and parameters 6
in the parametric model (cf. Figure 1):

(2.11) model T al (x) = fu(u'(x),x,t,0), 6cR"

We briefly compare the incremental identification approach to the established
simultaneous identification approach. For this purpose, we insert the relation (2.4)
into the flux model and insert the result into the convection-diffusion equation (1.1a),

(2.12a) model BFT: % +w-Vu-V-(f(u(x,t),x,t,0)Vu) =0
in Q x (to,ty]
with initial and boundary conditions
u(x,ty) = up(x), x€Q,
(2.12b) u(x,t) = gp(x,t), (x,t) € T'p x [to,ts],

%(x,t) =gn(x,t), (x,t) €n X [to,ty].

While the incremental approach decomposes the identification process for the trans-
port coefficient in three steps, in the simultaneous approach the models for the flux
(e.g., (2.2)) and for the transport coefficient (e.g., (2.4)) are collected in one equation
(2.12b). Hence, all the assumptions made during the modeling will simultaneously
influence the identification. Due to this, the level of uncertainty of the simultaneous
problem (2.12) has increased, leading to a higher risk of poor estimates.

A further advantage of the incremental approach is that for known velocity w(x, t)
and molecular transport coefficient amor, it suffices to reconstruct the source F,(x,t)
at the first level and the enhanced transport coefficients al,(x) at the second level only
once. The complexity of the selection of suitable candidate models for the transport
coefficient affects the third (final) level only, thus allowing for a more systematic
identification of the best-suited model structure.

Compared to the simultaneous problem (2.12), where a nonlinear coefficient in-
verse problem in space and time has to be solved, the incremental identification pro-
cedure has advantages from the optimization point of view. The reconstruction of the
source in the first step results in a dynamic optimization problem, which is affine-
linear in the unknown. The latter property implies that (compared to a strongly
nonlinear case) relatively simple and efficient optimization methods can be applied.
In the second step of the identification procedure, we have to deal with a nonlin-
ear coefficient inverse problem which, however, is of steady-state type for each given
time ¢; see (2.10). In this sense the incremental approach decouples dynamics and
nonlinearity, which has advantages for the numerical treatment of nonlinear inverse
problems for evolution equations in three space dimensions. Furthermore, the combi-
natorial problem of identifying a suitable model structure for the transport coefficient
is decoupled from the problem of inversion of differential equations.

The estimation problems arising in the first two steps of the incremental approach
are typical inverse problems, ill-posed by nature. This raises, however, the question
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of error propagation through the sequence of inverse problems. This issue is studied
for the illustrative model problem in section 4.

3. Formulation and solution of the inverse problems. The inverse prob-
lems resulting in the three incremental steps are formulated as optimization problems
and solved with state-of-the-art methods [1, 2, 14].

3.1. Problem formulations. In the first step of the incremental identification
procedure, the source F), should minimize the quadratic objective functional

(3.1) J1(Fy) = %/t ' /Q [u(x, t; Fy) — um(x,1)]* dxdt

with suitable transient measurement data u,, (x, t), (x,t) € Qx[to, tf]. Here u(x,t; Fy,)
is the solution of the direct problem (2.9) with known initial and boundary conditions
ug, gp and gy, respectively.

Similarly, the second identification step concerns the estimation of the enhanced
transport coefficients af (x) as a functions of space x at selected times ¢ € [to,tf],
using the previously estimated source F (x) and the measurement data uf,(x). The

optimization-based formulation of this coefficient inverse problem consists of the min-
imization of the objective functional

(3.2) Tafat) = 5 [ [ al) =, (0] ax

Here u'(x; al,) denotes the solution of the direct problem (2.10) for given al, .

Finally, in the third identification step, a least-squares problem is posed such that
parameters § € R™ in the model f(u’(x),x,t,60) (cf. (2.11)) minimize the objective
functional

63 BUE60.xE0) =5 Y [ o)~ S x ) dx,

where af,(x) represents the reconstructed transport coefficient at times ¢ € [to, ty].

This estimation problem depends strongly on the availability of candidate models
f(+). In cases where no reasonable (structured) model can be formulated (i.e., the
model structure is unknown), a general parameterization capable of approximating
functions from a sufficiently large class should be introduced for the transport coeffi-
cients a!, and the model parameters 6 should be estimated by means of data-driven
techniques [20]. In case of available (structured) model candidates, e.g., from physical
considerations or a priori knowledge, the parameters 6 are to be estimated for each
candidate model. Subsequently, the adequacy of the different candidates has to be
quantified with the use of model discrimination approaches in order to choose the best
model for the transport coefficient [29].

3.2. Numerical optimization strategies. For the solution of the optimization
problem in the first step of the incremental approach, the conjugate gradient method
is used [15, 24]. The optimization problem in the second step is solved by means
of an inexact Newton-type method, which is an appropriate technique for a large
class of nonlinear inverse problems [14]. In this paper, regularization is introduced
only via the fixed spatial and temporal discretization and by means of a suitable
stopping criterion for the optimization algorithms. Hence, for a given discretization,
the number of optimization iterations serves as the only regularization parameter [14].
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Either the heuristic L-curve method [19] or the discrepancy principle [14] is used to
determine an appropriate value of this parameter.

The realization of the two optimization strategies used for the solution of the
inverse problems within the first two steps of the incremental identification procedure
requires two nontrivial values: the direction of descent of the objective functional and
the length of descent along that direction. In the following subsections we will briefly
sketch these issues. For the derivation of the arising adjoint and sensitivity problems
see, e.g., [1, 2].

Finally, for the solution of the unconstrained minimization problem (3.3) in the
third step of the incremental identification procedure, we use standard solution tech-
niques for least-squares problems [24]. In our case study (cf. section 4), we only
consider a single model candidate for the transport coefficient, hence implicitly as-
suming that the model structure is known.

3.2.1. Estimation of the source F,(x,t). For the minimization of the ob-
jective functional (3.1) with constraints (2.9), the conjugate gradient (CG) method
is used [1, 15, 17, 24]. Here, the unknown function is sequentially updated during
the iteration process starting from some initial guess by moving along a (conjugate)
descent direction ﬁ';j with an optimal step length u™ at optimization iteration n with

(3.4) Frtl = Fr -y Er
Each new descent direction F” in (3.4) is calculated according to

(3.5) En =VJ(F?) +4"Fnt

with VJi(F) the gradient of the objective functional (3.1) and 4™ the conjugate
coefficient. It can be shown (e.g., [1]) that this gradient satisfies

(36) v‘]l(Fle) = %1 in 2 x [thtf]v
where the adjoint variable ¢; is the solution of the adjoint problem

dp1

(3.7a) 5 W - Vo1 — amolApr = [u(Fy)) — wy] in QX [to,tr),
wl(x,tf):O, XEQ,
%(x,t):a (x,t) € Ty x [to, tf].

with u(F}y) the solution of the direct problem (2.9). In contrast to this direct problem,
we now have a condition at final time t;. Going backward in time (by introducing a
new time variable ¢y —t), (3.7) shows exactly the same structure as the direct problem
(2.9), only with different initial and boundary conditions.

The step length p™ in (3.4) is obtained by solving a one-dimensional minimization
problem resulting in

(tm = u(F), S1(F)

(3.8) p" = .
s ()

2
H
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Here, we assumed H to be a given (Hilbert) space; S is the solution of the sensitivity
problem given by

(398,) % +w- VS — amoiAST = F,LL in Q x (to,tf],
S1(x,t0) =0, x€Q,
(39b) SI(X7 t) = 07 (X7 t) c FD X [thtf]a

25,
on

This partial differential equation has exactly the same structure as the corresponding
direct problem (2.9), only the initial and boundary conditions are different.

Thus, the CG algorithm for minimizing J; requires the solution of three very
similar problems in every iteration, namely, the direct, the adjoint, and the sensitivity
problem. However, due to the linearity of the involved equations only two problems—
the adjoint (3.7) and the sensitivity (3.9) problem—have to be solved [17].

(x,t) =0, (x,t) € Tn X [to,tf].

3.2.2. Estimation of the transport coefficients af (x). For the minimiza-
tion of the objective functional (3.2) with constraints (2.10) a Newton-type method is
used. The basic idea of the truncated Newton-CGNE method is the computation of a
regularized approximation of the linearized problem by an inner iteration, namely, a
CG method [18]. The termination criterion used for the CG (inner) iteration relates
this method to the general class of inexact Newton methods [18, 24]. The sequential
update formula for the unknown functions a!, at selected times t € [to, ;] during the
Newton (outer) iterations k =1,2,... is given by

(3.10) alftt = alk 4 2

with the update ™, the result of the n,th CG iteration. In analogy to (3.4), the
descent direction and step length are required for the sequential update of this quantity
within each CG iteration.

The descent direction al;" at given time ¢ and CG iteration n and the step length
a™ are obtained from formulas similar to (3.5), (3.8) [18]. The only difference consists
in replacing V.J;(F) in (3.5) by the adjoint variable ¢}, which is the solution of the
adjoint problem

(3.11a) V- (@Vh) = [ut (s als®) — ul, ()] in ©,
oh(x) =0, x€eTlp,
(3.11b) 9ot
P2(x) =0, xeTy.

on

Here, u'(x;al;") denotes the solution of the corresponding direct problem (2.10) for a
given time ¢ and value of a’;"(x). This problem has the same structure as the direct
problem (2.10).

The step length o™ is calculated by replacing Sp in (3.8) with the solution Si at
time t of the sensitivity problem

(3.12a) —V - (ay"VSs) =V - (ah"Vu') inQ,
Sé(X):O, XeFDv
(3.12b) 9S4

on (X):O7 x €I'y.



10 KARALASHVILI, GROS, MHAMDI, REUSKEN, AND MARQUARDT

This equation has the same structure as the corresponding direct problem. Note,
however, that apart from the different boundary conditions one also has a specific
right-hand side in this sensitivity equation, which arises due to the nonlinearity of the
coefficient inverse problem.

In the truncated Newton-CGNE method, one has to solve an adjoint and a sen-
sitivity problems in each CG iteration for the determination of the descent direction
and the step length, respectively. Due to the nonlinearity of the estimation problem,
however, the direct problem (2.10) has to be solved in each Newton iteration.

3.2.3. Solution of the underlying PDE problems. All direct, sensitivity,
and adjoint problems to be solved as part of the numerical optimization strategies
described above are of either elliptic or parabolic (convection-diffusion) type. Hence,
similar numerical techniques can be employed for their solution.

The solutions of all three-dimensional problems are calculated by means of the
software package DROPS [13]. DROPS is based on multilevel nested grids and con-
forming finite element discretization, methods. For time discretization, a standard
one-step A-method is used. For the space discretization, piecewise linear finite ele-
ments on a tetrahedral grid are employed. The resulting discrete systems of linear
equations are solved by suitable Krylov subspace methods. In case of the convection-
diffusion equations (i.e., (2.9), (3.7), (3.9)) we use a preconditioned generalized min-
imal residuals (GMRES) method. For the diffusion problems (i.e., (2.10), (3.11),
(3.12)) a preconditioned CG method is applied [27]. For the simulations presented in
this paper the SSOR method is used for preconditioning. Other options, for example,
multigrid solvers, are available in DROPS. In this paper we do not study the perfor-
mance of these solvers for the direct, the sensitivity and the adjoint problems. We
use a fixed (quasi-uniform) mesh for discretization and prescribe a tolerance to which
the resulting linear systems are solved.

4. Illustrative case study. In this section, the incremental approach is illus-
trated for a problem motivated by the identification of energy transport in laminar
wavy film flows. The complex dynamics of the nonlinear surface waves typically
present in film flows [16, 25] renders a direct transient simulation in three dimensions
numerically very complicated and computationally expensive. Therefore, manageable
approximate descriptions, yet accurately modeling the underlying transport processes,
have gained increasing importance in the engineering literature to support the design
of technical systems [8]. A possible simplified model is as follows. To reduce the
problem complexity, the three-dimensional time-varying domain Qy corresponding
to the liquid phase is mapped to a three-dimensional time-invariant waveless domain
Q:=(0,L;) x (0, Ly) x (0, L,) C R3. This reduction is compensated by the introduc-
tion of a space- and time-dependent effective transport coeflicient a.q(x,t) [8, 12, 30]
to capture all wave-induced transport effects in this flat film geometry.

Such a flat film model is considered in the remainder. It consists of a convection-
diffusion system which describes energy transport in a single component fluid on the
flat (rectangular) domain 2 with boundary I' = 9Q with parts I' = T';;, UT 011 UT 5y U
T',. defined as

Tin ={(z,y,2) €T : =0} C'p — the inflow boundary,
Twanr = {(z,y,2) €T : y=0} CTp — the wall boundary,
Touwt ={(z,y,2) €T: =L} CTx — the outflow boundary,
[, =T\ (T UTwau UTou) C T'y — the remaining boundaries.
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The state variable in (1.1) is now u(x,t) = ¢T'(x,t) with the temperature T'(x,t) and
heat capacity c¢. Whereas for the transport coefficient a(x,t) = paes(x,t) applies,
with the effective thermal diffusivity aes(x,t) and density p. We assume ¢ and p to
be constants. The unit cube = (0, 1)3[mm3] is considered as computational domain
for simplicity of presentation and to avoid possible numerical complications due to
anisotropy effects. x corresponds to the flow direction of the falling film and y is
the direction along the film thickness. The velocity w(x,t) is given by a Nusselt
profile, i.e., w(x,t) = 4.2857(2y — y*) [26]. The initial condition is a constant, i.e.,
T(x,0) = 15°C,x € Q. The known Dirichlet boundary conditions are chosen as
follows. The inflow temperature has a linear profile in y and drops from 15°C to 0°C
along the y axis over time, i.e.,

(4.1&) Tin(X, t) = —30yt 4 15, (X, t) el x [to,tf].

The wall temperature has a nonlinear profile in  and increases from 15°C to 65°C
along the x axis over time, i.e.,

(4.1b) Topant(x,) = 100 (1 — cos (gm)> t4+15, (%) € Duant X [to, /]

At the Neumann boundaries 'y, and I', a zero diffusive flux condition is used, i.e.,

(4.1c) g—:(x,t) =0, (x,t)€ (Lou UT,) X [to,ts].

The effective thermal diffusivity aeg is chosen to have a sinusoidal pattern over
the space coordinate in the flow direction of the falling film (i.e., the z-direction). The
wavy pattern is assumed to be time-dependent, such that the waves travel along the
a-direction starting from a constant value at the inflow boundary I';,, (i.e., z = 0 mm).
They propagate along the y- and z-directions with a larger gradient in the y-direction
(film thickness) starting from a constant value at the wall boundary I'yay (ie., y =
0 mm) and with a relatively small gradient in the z-direction:

(4.2a) et (X, ) = Amol + aw(X, 1),

(4.2b) aw(x,t) =5 <1.1+35/ <sin (m:+5t0) +x+f§>),

(x,y,2,t) € Q x [to, t5].

The material properties of the fluid are lumped in the known constant molecular
thermal diffusivity amel = 0.35‘“%,“2, whereas the remaining part of the effective ther-
mal diffusivity aeg(x, t) represents the unknown wavy thermal diffusivity a,(x,t), the
transport coefficient capturing the wave-induced effects in the flat film model.

In this setting, a model fy(x,t,6) (cf. (2.4)) for the “true” wavy thermal diffu-
sivity a.,(x,t) in (4.2b) can be formulated as

(4.3) fw(x,t,0) =5 (91 + oy (sin (32 + I4t) + 0.22 + I522))
(@, y,2,t) € Qx [to, ty],0 € R?,

where the vector § = (¢1,...,95) represents the vector of model parameters. A
comparison of (4.2b) and (4.3) reveals the true underlying value 6°* to be

(4.4) 0°* = (1.1,0.2,7,0.02,0.1).
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To generate high-quality temperature simulation data the nonlinear direct prob-
lem (2.12) with the “true” effective thermal diffusivity given in (4.2) is solved on a
uniform fine grid with the spatial discretization consisting of 48 x 48 x 38 intervals
in z,y, and z directions, respectively. This yields a space discretization with 89,856
unknowns and 525,312 tetrahedra.

For the solution of the inverse problems in the first two steps as well as for the
solution of the parameter estimation problem in the third step of the incremental
identification, we use the temperature data 7T, on the coarser grid of resolution 24 x
24 x 19 intervals in z,y and z directions, respectively, to avoid the so-called inverse
crime [21].

In the first step of the incremental identification procedure, we use the implicit
Euler scheme with time step 7 = 0.01s and apply 50 time steps starting from the initial
time to = 0 s (i.e., ty = 0.5 s). For the initial approximation in the optimization
procedure, due to the lack of better information, we choose F?(x,t) = 0, (x,t) €
) x [0s,0.55].

In the second step of the incremental identification procedure, the same boundary
conditions (4.1) are used. The time interval [0s, 0.5s] is subdivided in 50 time steps and
the estimation of the wavy thermal diffusivity is carried out separately for each point
in time. The initial time ¢y = Os is a singular point, because the initial temperature is
constant and no reconstruction is possible, since the coefficient is not uniquely defined
in this case (cf. (2.9)).

W

wavy thermal diffusivity a [rmm2/s)

05

¥ [mm]

i [mm)

Fic. 2. Initial approzimation for the wavy thermal diffusivity af[,o at t = 0.01 s and constant
z = 0.5 mm.

As expected, the choice of a suitable initial vector for the optimization method
is much more important for the nonlinear optimization problem in the second iden-
tification step than for the linear one in the first step. In our experiment, we use the
constant

(4.5) ab? =55

as initial guess for the wavy thermal diffusivity in the first time step ¢ = 0.01 s (cf.
Figure 2). This initial guess is very different from the true solution, but coincides with
the inflow (z = 0 mm) and wall (y = 0 mm) boundary conditions I'p. According to its
boundary conditions (3.11b), the solution of the adjoint problem (3.11) is always zero
along these boundaries. As a consequence, no improvement can be gained during the
iteration process of the truncated Newton-CGNE method, since the search direction
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Fic. 3. FEstimated source Fy, at different times for constant z = 0.5 mm with unperturbed
measurements for nopt = 200.

within the CG (inner) iteration will not be updated [2, 17]. Subsequently, an update
also is not possible in the Newton (outer) iteration by (3.10). Hence, with such a
choice of the initial guess we exclude the boundaries from the estimation where no
information can be gained.

In the third step, the estimated functions af,(x) at time instants ¢ € [0.01 s,0.5 s],
are used as model-based measurement data to estimate the model parameters 6 € R?
of the model (4.3) by solving the least-squares problem (3.3). The initial guess 6° =
(0.5,0.5,0.5,0.5,0.5) is chosen in all of our computations.

Estimation results with error-free measurements will be considered first. Subse-
quently the estimation with artificially perturbed measurements will be analyzed.

4.1. Estimation with error-free measurements. The snapshots of the source
estimates F"°P!(x,t) in the first step of the incremental identification procedure are
presented in Figure 3. In our observation, the convergence in the result was achieved
after nopt = 200 optimization iterations. During the optimization the initial approx-
imation at the boundaries T';;, (x = 0 mm) and T'yey (y = 0 mm) could not be
improved, since the optimality condition VJi(F,,) = 0 is achieved along these bound-
aries. This follows directly from the boundary conditions (3.7b) of the corresponding
adjoint problem (3.7) and the expression (3.6).

The estimation of the wavy thermal diffusivities a!,(x) at times ¢ € [0.01s,0.5]
in the second step of the incremental approach, uses the estimated source F;,?%0(x) at
iteration nopt = 200 and the temperature T}, (x) at given time ¢. We choose (4.5) as
the initial approximation at time ¢ = 0.01 s. In contrast, already computed estimates
at time instants ¢ > 0.01 s are used as initial guesses for times (¢ 4+ 7). Note, that the
initial value for time ¢ = 0.01 s restores the information lost at the inflow and wall
boundaries at which the source Fy,(x,t) could not be reconstructed in the first step.

The estimates of the wavy thermal diffusivity for z = 0.5 mm at selected times
are shown in Figure 4(a), whereas Figure 4(b) shows contour lines of the differences
between the exact and the estimated quantities. The estimates in these figures have
been obtained as follows. At time ¢ = 0.01 s, 100 Newton iterations were applied.
The analysis of the results for later times ¢ > 0.01 s shows that the solution converges
already in five Newton iterations. Moreover, it is possible to reduce the number of
the inner iterations remarkably, because very good initial values are available at later
times. A closer look at the results reveals that, independent of time, the estimation
quality decreases in the z-direction (i.e., the direction of flow) by approaching the
outflow boundary Ty, (i.e., 2 = 1 mm). This can be observed in Figure 5, where
the estimates are presented exemplarily for ¢ = 0.01 s as a functions of y for x €
{0.2,0.5,1} mm and z = 0.5 mm. The development of the estimates for different
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Fic. 4. (a) Estimated (meshed surface) and exact (shaded surface) wavy thermal diffusivities
al,, and (b) deviation between ezact and estimated wavy thermal diffusivities al, at different times.

numbers of Newton iterations nopt is shown in the figures, too. The reason for this
distortion is that at the outflow boundary T',,; the estimation quality of the source
F,, in the previous step is impaired by the lack of information as at this boundary;
due to convection, not enough information is available for the reconstruction of the
unknown function from the data.

The estimates of the wavy thermal diffusivity at different numbers of Newton
iterations nopt as a function of z for y € {0.2,0.5,1} mm and z = 0.5 mm at times ¢t =

g
E =
o 10] 10 10
H e
2 — -
3 8 P 8 8
£
3 P
E s 6 : LN
2 v
z
g 4 4 4
[ 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8
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F1G. 5. Estimated wavy thermal diffusivity al, at different Newton iterations nopt, time t =
0.01 s, different x, and constant z = 0.5 mm.
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{0.01,0.4}s are presented in Figure 6. Because of the very good initial approximation,
at large times (e.g., for t = 0.4 s in the figure) convergence is achieved for nopt < 5.

In the third identification step the model parameters § € R are estimated using
the reconstructed transport coefficients af (x) at times ¢t € [0.01 s,0.5 s] and the
proposed model fy(x,t,6) (cf. (4.3)). known constant value, we present the results of
model estimation without its influence. Figure 7(a) shows the deviations between the
reconstructed wavy thermal diffusivities al,(x) and the optimal solution fy (x,t,6%)
for selected times ¢ € {0.01,0.4} s. A high reconstruction quality is achieved. The
resulting optimal value for the model parameter vector

(4.6) 0* = (1.12,1.05, 3.12,0.02, 0.06)

is in a good agreement with the exact value 6¢* in (4.4). In Figure 7(b) the estimation
results for constant y = 0.5 mm and z = 0.5 mm at different identification steps
of an incremental approach are presented together with the “true” wavy thermal
diffusivity a!,(x) (cf. (4.2b)) and their initial guesses for a detailed comparison. There
is an obvious bias which can be attributed to error propagation in the incremental
identification procedure [5]. This bias can be easily eliminated by a final simultaneous

step which converges quickly due to very good initial values [9].

4.2. Estimation in the presence of measurement errors. In this section,
we perturb the measured temperature T, by an artificial measurement error w. The
values of w are generated from a zero mean normal distribution with variance one.
We compute the perturbed temperature Trn by

T, =1 +ow
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Fia. 7. (a) Deviation between the wavy thermal diffusivity estimated in the second step and
the model f. estimated in the third step of the incremental approach, and (b) true wavy thermal
diffusivity, estimated wavy thermal diffusivity al, in the second step and estimated model f, in the
third step of the incremental approach at different times for constant y = 0.5 mm and z = 0.5 mm.

with o being the standard deviation of the measurement error. The parameter o
is used to control the amount of error added to the exact data. We take the value
o = 0.1 in the following simulation experiments.

In the presence of measurement errors, an increasing number of iterations eventu-
ally leads to poorer estimation quality due to the undesirable effect that measurement
errors are resolved. Therefore, a compromise between the residual and the solution
norm has to be established by an appropriate regularization [19]. Besides the (fixed)
regularizing effect of time and space discretization, the number of optimization itera-
tions is used as a regularization parameter. An appropriate value for this parameter
can be obtained by the L-curve, which is a parameterized plot of the residual against
a smoothing norm of the solution.

The results of source term estimation will be presented first. The L-curve method
suggested nopt = 100 as a reasonable choice of the regularization parameter for the
given value of o. The snapshots of the regularized optimal estimates F°P!(x,t) are
shown in Figure 8 for constant z = 0.5 mm. Due to the errors in the measurements,
the estimates are no longer smooth, but the qualitative behavior is the same as for
the case without measurement noise (cf. Figure 3). This can be observed in detail
in Figure 9, where the results of the estimation F'°P!(x,t) obtained with perturbed
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Fic. 8. Estimated source Fy, at different times for constant z = 0.5 mm with perturbed mea-
surements (o = 0.1) for nopt = 100.

data is compared to the estimates F2%°(x,t) obtained with exact data in the previous
section.

The regularization parameter can be determined alternatively using the discrep-
ancy principle [14]. Here the knowledge of the error’s magnitude is used to propose
the stopping condition for the objective functional: the iteration is stopped when the
residual approximately equals the error level o. Using (3.1), we get the condition

(47) Jl(FZUL) < Kl(tf — to)VO’,

where V' is the volume of 2 and k; > 1. For a value of k; = 1.01 the optimal number
of iterations is nopt = 16 for a given error ¢ = 0.1. The estimate obtained at this
point is smoother, however overregularized, whereas the one suggested by the L-curve
method shows oscillations but is closer to the estimations obtained with unperturbed
data. Therefore, we took the estimates obtained by the L-curve principle in the next
identification step.

For the estimation of the wavy thermal diffusivities al,(x) at times ¢ € [0.01 s, 0.5 s],
the regularized optimal solution F%"°P*(x) and the measurement data T% are used
in the corresponding direct problem (2.10) for a given time ¢. We apply the L-curve
and the discrepancy principle to find the optimal value for the number of Newton
iterations in the truncated Newton-CGNE method. The stopping condition for the
Newton iteration based on the discrepancy principle is

(48) JQ(GZ’)k) < koVo.
In experiments we tried different values of ko > 1 and always observed that the

estimates obtained by the discrepancy principle are smoother but still overregularized,

t=0.01s t=0.03s t=04s

250 80
200 60
u® 150 40

100 20

08 1 ] 0.2 04 0.6 08 1 ] 0.2 04
x [mm]

estimation with Tm+<m) estimation with Tm

Fi1Gc. 9. Estimated source Fy, with unperturbed measurements for nopt = 200 and perturbed
measurements for o = 0.1 for (nopt = 100) at different times.
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whereas those suggested by the L-curve method contain oscillations but are closer to
the exact quantity. The same result has been observed for source estimation in the
first step for the example considered. A good understanding of the regularizing effects
of the CG method is well developed for linear problems [19], whereas a practical
understanding of the regularizing effect for the truncated Newton-CGNE method
is rather speculative [18]. Nevertheless, the choice of an appropriate value for the
regularization parameter is rather problem dependent and relies to a large extent on
user experience. In Figure 10, the optimal regularized estimates for the chosen noise
level 0 = 0.1 obtained from the L-curve method are presented as a function of z for
z = 0.5 mm and different values of y at selected times. Due to the reasons stated
above in the noisefree case, we see again, that estimation quality decreases near the
outflow at x = 1 mm. Here, in contrast to the noisefree case, the estimates computed
for t = 0.01 have been used as initial approximations for later times t > 0.01 s.

Finally, to estimate the model parameters # € R® in the model fy(x,t,6) (cf.
(4.3)) the regularized optimal solutions af*°P*(x) at times ¢ € [0.01 s,0.5 s] are used.
In Figure 11(a) the deviations between the optimal regularized wavy thermal diffu-
sivity from the second step and the optimal, estimated model fy(x,¢,6*) in the third
step are presented for selected times. The resulted optimal value of the parameter
vector amounts to

(4.9) 6* = (1.15,1.08,3.17,0.09, 0.08).

In Figure 11(b) the estimations at different identification steps are presented once
more together with the true wavy thermal diffusivity af,(x) (cf. (4.2a)) for constant
y = 0.5 mm and z = 0.5 mm and selected times. The estimation quality has decreased
compared to the noisefree case above; however, a quite good reconstruction has been
achieved.

Remark 1. For numerical validation of the incremental identification method we
postulated a model of the form (4.3) to generate temperature simulation data. In such
a setting a simultaneous approach can be applied, in which the unknown parameter
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Fia. 11. (a) Deviation between the reqularized wavy thermal diffusivity estimated in the second
step and the model f., estimated in the third step of the incremental approach at different times
for the noise level o = 0.1. (b) True wavy thermal diffusivity, reqularized wavy thermal diffusivity
af,,m)pt in the second step and estimated model f, in the third step of the incremental approach at
different times for constant y = 0.5 mm and z = 0.5 mm for the noise level c = 0.1.

vector € R is estimated using the model in (2.12) and temperature data T}, (x,t)
for the function u(x,t) therein. This, however, results in an optimization problem
of huge complexity. We do not know of any literature in which the simultaneous
approach has been applied successfully to this type of three-dimensional inverse prob-
lem. Furthermore, we emphasize that in a practical setting the model structure is
mostly not known and thus a simultaneous approach is not easily applicable. Due to
these difficulties related to the simultaneous approach a fair comparison between the
incremental and the simultaneous approach is a difficult issue and will not be treated
in this paper.

5. Conclusions. A novel method for the incremental identification of transport
models for transport coefficients in convection-diffusion systems is presented. The
simultaneous model is split into three hierarchically structured submodels. The iden-
tification problems in the first two steps (levels) have to be solved only once. The
model for the transport coefficient has to be estimated in the third step.

The approach is illustrated for the identification of a model for an effective thermal
diffusivity in a three-dimensional convection-diffusion problem which is similar to a
flat film model used to investigate energy transport in laminar wavy film flows. The
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first step of the incremental identification is rather easy to handle due to the linearity
of the corresponding source inverse problem. The results obtained with a CG method
at this level are quite satisfactory both for errorfree and noisy measurements. The
second step of the identification is far more complex due to the strong nonlinearity and
high degree of ill-posedness of the coefficient inverse problem that has to be solved.
The truncated Newton-CGNE method, belonging to the class of inexact Newton-
type methods, is used to solve this problem as it is known to be very suitable for
such nonlinear inverse problems [14]. For good results one needs, however, an initial
approximation which is sufficiently close to the solution. Finally, in the third step,
a single model for the effective thermal diffusivity is considered and the parameter
estimation for it is carried out. The interplay between the three steps both with and
without measurement errors is investigated by means of an illustrative case study.

We have, for the first time, successfully applied the concept of incremental model
identification to a complicated transport problem in three dimensions. We did not
address the model discrimination issue in the third step of the incremental approach,
where the best model is chosen from a set of candidate models by discriminating
between the candidates using some reasonable model fit criterion [29].

Future work will address the following issues in addition to model discrimination
in the third step. Robust regularization techniques will be studied in more detail.
Besides the number of iterations, the discretization in space and time has a regu-
larizing effect which needs to be properly exploited in an appropriate discretization
framework. Furthermore, ill-posedness can be handled by adding a (Tikhonov) regu-
larization term to the corresponding objective functional [14]. The interplay between
such a regularization on the level of the problem with those regularizing effects in
the numerical method, has to be analyzed carefully (see, e.g., [4, 7]). A further issue
is a better theoretical understanding of the error propagation through the sequence
of inverse problems in the incremental approach similar to [5]. Finally, in this paper
we do not present a detailed comparison with the simultaneous approach (as in [5]),
which is also a topic of current research.
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