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ABSTRACT

We present a stochastic formulation of alinear diffu-
sion equation (or heat equation), and in light of the po-
tential applicationsranging from signal denoisingtoim-
age enhancement/segmentation of its nonlinear exten-
sions, we propose a more general nonlinear stochastic
diffusion. Theconstructed stochasticframework, in con-
trast to traditional deterministic approaches, unveilsthe
sources of of existing limitations and allows us to fur-
ther significantly improve the performance by address-
ing the key problem. Substantiating examples are pro-
vided.

1. INTRODUCTION

Researchinterest in scal e-based analysishassignificantly
grown over the last decade, and scale as an entity has
played an increasingly important rolein signal and im-
age analysis. Since the ground bresking paper of

Witkin [1] who pointed out the equivalence between a
heat equati on-based evol ution of aprocessanditssmooth-
ing with a Gaussian kernel and proposed a linear scale
spaceanalysis, severa devel opments havetaken place.

A systematic multiscale anaysis framework has been
independently proposed by Mallat[2] using wavel et bases.
These wavelet functionswith their ability to focus en-
ergy onlocal important featuresintrinsictoasignal turned
out to be well adapted to signal enhancement and
denoising [3]. The linear scale space framework orig-
inally intended as a continuous scale framework, was
hampered by its uniform filtering of signa and noise,
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and this limitation was first addressed by Perona and
Malik (P-M) [4]. Their approach relied on the sharp
featuresin asignal (e.g, singularities) to help improve
the performance of signal/image denoising (image seg-
mentation as well). Specifically they proposed a non-
linear Partial Differential Equation (PDE) to operateon
anoisy signa and selectively smooth (or diffuse) the
regionsdevoid of large gradients(i.e., where singul ari-
tiesas astep jump or an edgein an image are absent).!
The novelty of thisapproach together with the promis-
ing resultsachieved triggered atremendousresearch ac-
tivity in computer vision and applied mathematics (see
[5] for agoodreview of theliterature). The performance
or the expected performance of all thesemethodsin dif-
ferent noise environmentswas not well understood, on
one part because theinherent nonlinearitiesintroduced
technical difficulties, on the other the randomness was
never explicitly addressed. In [6], Pollak et. al. pro-
posed a hew approach which resulted in a remarkable
robustnessto a wide class of noises, in spite of which
themethodol ogy remained, asinall previoustechniques,
fundamentally deterministic.

Our goal in this paper isto revisit the denoising prob-
lem based on nonlinear scale space diffusion and ac-
count for the inherent randomness of the noise by de-
veloping a stochastic analysis approach readily justi-
fied by stochastic differential equations[9]. This will,
aswill be seen, unfold the advantagesof theframework,
and unveil itslimitations.

Inthe balance of thispaper, wefirst formulatethe prob-
lem and providethe necessary background for the sub-
sequent devel opment. In Section 3, we provideastochas-

! The gradient size is relative here as the additive white noise,
for example, tendsto also have large gradients.



tic interpretation of the linear heat PDE and describe
its discrete implementation. In Section 4, we provide
astochastic viewpoint of Perona-Malik’sequation, and
weinturn usetheinsight provided by thisstochasticin-
terpretationto proposeanew nonlinear equationwhich
weterm Nonlinear Stochasticdiffusion. Wefinally pro-
vide substantiating examplesin Section 5.

2. BACKGROUND

Asnoted above, using the fact that a Gaussian function
isthe Green’sfunction of aHeat equation[ 7], Witkin[1]
proposed to use the latter to evolve asignal to achieve
similar linear filtering of a Gaussian of variancet.
Smoothing anoisy signa f(z), where, z € R isthus
written as

aU(t,x)

ot

where U(t, 2 ) denotesthe signal at scale
t € RT, U(0,z) = f(x),and A isthe Laplacian op-
erator (i.e, 2)2U -, -) a the finest scale is assumed
to be comprised of asigna of interest and white Gaus-
sian noise of somevariance o2, Inthisanaysiswewill
focus on the class of piece-wise constant signals (i.e.
staircase step functions are of importance in many ap-
plications, and the discontinuitiesrepresent edgesin 2-
D signals/images).
Using the linear heat equation as their paradigm, Per-
onaand Malik’s nonlinear filter behavior is as a Gaus-
sian lowpassfilter in regions of low gradientsto elimi-
nate any additive noise, and as an almost all-passfilter
in regions of high gradients to preserve the sharp fea
tures. The corresponding evolution equation isthen of
theform

= AU(t, ), @

Ut x) = div(g(| V(U(t,2)) hVU(L,2)), (2)

where “div” represents the divergence operator, V is
the gradient, and ¢( - ) the function which modul atesthe
diffusion according to the above paradigm (i.e., posi-
tive and monotically decreasi ng with ¢(0) = 1). One

possible choiceis g(v) = e~ %7 where K determines
the rate of decay and thus the extent of smoothing of
U(t, z) for agiven gradient size. For reasons of space
some mathematical technicalities are discussed
elsewhere[8].

2The variablet in this context represents scale instead of time.

Inlight of itsdirect impact on our proposed framework,

theP-M equationwill beour primary focus, noting how-
ever, that numerous subsequent and important contri-

butionshave since appeared intheliterature asreported

in[5].

3. STOCHASTIC DIFFUSION

The PDE in Eqg. 1 models well the diffusion of hesat in
a homogeneous medium, which fundamentally stems
from the motion of particles. Theinherent randomness
of thismotion iswell-described by a Brownian maotion
B;, andanindividua outcomew € €2 intheprevailing
sample space, is associated to a particle. The process
B; can then be interpreted as the distance traveled by
particlew at time¢. It iswell known that such a tran-
sition density for a Brownian motion, for instance, isa

Y—x

2
Gaussian PDF p(t,z,y) = W@‘ . Yo,y €
R, t > 0. Inlight of the above, a stochastic interpreta-
tion of a solution to the heat equation, if it exists, and
subject to some differentiability conditions, can begiven
[9] as
Ultoe) = BASB} = [ pltee) o)y, @

where the expectation operator E(-) is taken with re-
spect to z, and p(t, z, y) being the Gaussian PDF.

3.1. A Discrete Formulation

Aspreviously noted, our chief interest hereisto achieve
astochastic understanding of scale-space anaysis, and
hence the importance of reexpressing the above frame-
work in the discrete scale space. Recall that the sym-
metrical random walk is well known to converge to a
Brownianmotionast — 0andé — 0,withr,é re-
spectively denoting scale and distance steps. Hence, a
particlefollowing such atragjectory will moveonal-D
lineto theright or theleft with equal probability of 1/2.
Upon discretizing the spatia variable z,, = x 4+ né and
thescaet,, = nr, denotingtheprobability of aparticle
to be at position = after n time steps, having departed
fromzg, by p,, (20, z), we obtainastandard result from
3, namely the prabability of aparticlebeing at = attime
n+lasr — 0andé — O,

Proposition 1. The following discrete equation,

pn—|—1($07$) = 1/2pn($07$ - 6)



convergesto

ot B ox2
Proof: substracting p..( o, « ) from both sides of Eq. 4,
we obtain

pn+1(l’07x7)——pn(l’0,l’) — % I:pn($07 T — 6)_

2pn($07 $) + pn(x07 T+ 6)] 9 (6)

we conclude the proof by lettingr = 62andé — 0 m

3.1.1. Solutionvia Discrete Expectation

The above results are well known to probabilists and
thus not new. The solutionto Eq. 5isaGaussian tran-
sition density function and it characterizes the evolu-
tion of a Brownian motion with ¢ and starting at z.
Knowing that the limiting process of arandomwalk is
aBrownian motion, we usethisconvergenceto comput
the solution at any scale using the continuous solution
giveninEq. 3. With theforegoing discretization of
and ¢ wedenoteby U(n, x) the value of the solution at
time step n7 and state » we can write at step 7,

U(e)= g fle =6k 3 fe 8. ()

More generally, we proceed to write the solutionto the
linear heat equation as a discrete expectation,

Un+1l,2)= %U(n,x—é)—l—%U(n,x—l—é). (8)

Dueto theunderlying randomwalker movingtotheleft
and the right with probability 1/2, it is clear that the
thelinear evolution will indiscriminately smooth away
sharp features along with the noise.

Recall, the P-M equation performs agradient-based se-
lective smoothing, and using the above discussion as a
basis we provide its stochastic formulation in the next
section.

4. NONLINEAR STOCHASTIC DIFFUSION

4.1. Stochastic Perona-Malik Diffusion

The nonlinear Perona-Malik equation in Eq. 2 may be
stochasticaly interpreted as well, and this is particu-
larly simplified upon discretizing the scale and space

variablesto lead to the following:

U((n+1),2) = pro+1(2)U(n, @+ 6) +
+(1 = pr+1(2) = poippr(2))U(n, 2) +

p—l,n—l—l U(n,x - 6)7 (9)
where
Piosr(z) = 1/2g(|U(n,2 +6) = U(n,z)|)
= pn-l-l(xv z+ 6)7
P-rnpr(z) = 1/2¢(| U(n,2) = U(n,z = 6) ),

al’ldpn+1($,$ + 6) = P(fn-l-l =ax+06]& = x)
is the transition probability of the underlying Markov
chain. Thisequationisintuitively appealingin that the
random walk or the diffusion &,, takes place according
to the prevailing one sided gradient at position =. At
timestep n + 1, aright moving walk takes place with
probability py ,,4+1(2), aleft moving walk takes place
with probability p_1 ,+1(z), and the particle remains
in place with probability po ,+1(2) = 1 — p1at1 —
P—1,n+1. 1N contrast to the linear diffusion where the
randomwalk invariably takesplace probability 1 /2, the
P-M randomwalk isdriven by theintrinsic gradient de-
termined the features we would like to preserve.

4.2. A Bidirectionally Driven Stochastic Diffusion

Aswe just noted, the P-M diffusionisdriven by aone-
sided gradient at any position z, which impliesthat no
smoothing takes place in the presence of arelatively
highgradient evenif caused by noise. Ontheother hand,
if the gradient on both sides of a position = were con-
sidered, and knowing that a high gradient due to noise
at some given position, tendsto be duplicated at the po-
sitionimmediately following, asillustrated on thetrail -
ing edge of thenoisy signal in Fig. 1. An adapted pro-
cedure would recognize that and accordingly diffuse,
while the P-M filter which relies on one sided gradi-
ent calls for a no transition state in the Markov chain,
thus preserving the singularity as displayed. Our pro-
posed technique, precisely addressing such difficulties,
isbased ontheratio of thetwo gradientstoidentify such
scenariosand assignasignificant probability to diffuse,
to eiminatethe noisespike. Thistechnica difficulty of
the P-M equation may further be compounded in that
the transition policy in the Markov chain may elimi-
nate true edges; since a aposition = close to the lead-
ing edge, and if at position = + 4, U(-,z) isclose to



U(-,x 4 6), the probability of transition is finite, and
hence smoothingtheleading edge of thestep signal pro-
ceeds. Thisscenario happenswith probability zero when
atwo sided gradient-based transition probability isused
in the policy.
Using Markov chains £,,, we can simply model these
dynamicsviatransition probabilitieswhich, aswemen-
tioned, may bespecified intermsof theratio of thebidi-
rectiona gradient. We denotethetransition probability
by prt1(z) = P{{41 = @ + 6|&, = 2} and defined
® N

Prti1(z) = DI (10)
where N =| U(n,z — ) — U(n,2) |* and
D =| U(n,z+6)—U(n,z) |%. Usingtheabovetransi-
tion probability, our newly proposed filter isthusgiven
by

Un,z —8) x (1 = ppa(2)) +
Un,z+ 68) X ppy1(x). (11)

Un+1l,z) =

We should hotethat inthe caseswherethetwo-sidegra-
dients are very smal, and thus little significance can
be attached to their ratio, the motion of the particle is
based on a symmetrical random walk, i.e., with proba-
bility 1/2 moving to the right or to the lft.
Wecaninfact provethat inthelimit, thisMarkov chain
tendsto astochastic continuousMarkov processwhich
in turn leads to further generalizations which are cur-
rently under investigation[§].

5. EXPERIMENTAL RESULTS

Toillustratethe performance of our nonlinear filter, we
add white Gaussian noise to a staircase function whose
discontinuities represent a mgjor challenge to a linear
filter. The SNRislessthan 3d B. A performance com-
parison between the newly proposed approach and the
P-M filterisshowninFigure 1. Thebetter performance
evident from thefigureisinfact consistentin avariety
of different scenarios and different signals.
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Figure 1: A denoising comparison of staircase signals.
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