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ABSTRACT

We present a stochastic formulation of a linear diffu-
sion equation (or heat equation), and in light of the po-
tential applications ranging from signal denoising to im-
age enhancement/segmentation of its nonlinear exten-
sions, we propose a more general nonlinear stochastic
diffusion. The constructed stochastic framework, in con-
trast to traditionaldeterministic approaches, unveils the
sources of of existing limitations and allows us to fur-
ther significantly improve the performance by address-
ing the key problem. Substantiating examples are pro-
vided.

1. INTRODUCTION

Research interest in scale-based analysis has significantly
grown over the last decade, and scale as an entity has
played an increasingly important role in signal and im-
age analysis. Since the ground breaking paper of
Witkin [1] who pointed out the equivalence between a
heat equation-based evolutionof a process and its smooth-
ing with a Gaussian kernel and proposed a linear scale
space analysis, several developments have taken place.
A systematic multiscale analysis framework has been
independentlyproposed by Mallat[2] using wavelet bases.
These wavelet functions with their ability to focus en-
ergy on local important features intrinsic to a signal turned
out to be well adapted to signal enhancement and
denoising [3]. The linear scale space framework orig-
inally intended as a continuous scale framework, was
hampered by its uniform filtering of signal and noise,
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and this limitation was first addressed by Perona and
Malik (P-M) [4]. Their approach relied on the sharp
features in a signal (e.g, singularities) to help improve
the performance of signal/image denoising (image seg-
mentation as well). Specifically they proposed a non-
linear Partial Differential Equation (PDE) to operate on
a noisy signal and selectively smooth (or diffuse) the
regions devoid of large gradients (i.e., where singulari-
ties as a step jump or an edge in an image are absent).1

The novelty of this approach together with the promis-
ing results achieved triggered a tremendous research ac-
tivity in computer vision and applied mathematics (see
[5] for a good review of the literature). The performance
or the expected performance of all these methods in dif-
ferent noise environments was not well understood, on
one part because the inherent nonlinearities introduced
technical difficulties, on the other the randomness was
never explicitly addressed. In [6], Pollak et. al. pro-
posed a new approach which resulted in a remarkable
robustness to a wide class of noises, in spite of which
the methodologyremained, as in all previous techniques,
fundamentally deterministic.
Our goal in this paper is to revisit the denoising prob-
lem based on nonlinear scale space diffusion and ac-
count for the inherent randomness of the noise by de-
veloping a stochastic analysis approach readily justi-
fied by stochastic differential equations[9]. This will,
as will be seen, unfold the advantages of the framework,
and unveil its limitations.

In the balance of this paper, we first formulate the prob-
lem and provide the necessary background for the sub-
sequent development. In Section 3, we provide a stochas-

1The gradient size is relative here as the additive white noise,
for example, tends to also have large gradients.



tic interpretation of the linear heat PDE and describe
its discrete implementation. In Section 4, we provide
a stochastic viewpoint of Perona-Malik’s equation, and
we in turn use the insight provided by this stochastic in-
terpretation to propose a new nonlinear equation which
we term Nonlinear Stochastic diffusion. We finally pro-
vide substantiating examples in Section 5.

2. BACKGROUND

As noted above, using the fact that a Gaussian function
is the Green’s function of a Heat equation[7], Witkin[1]
proposed to use the latter to evolve a signal to achieve
similar linear filtering of a Gaussian of variance t.
Smoothing a noisy signal f(x), where, x 2 R is thus
written as

@U(t; x)

@t
= �U(t; x); (1)

where U(t; x) denotes the signal at scale
t 2 R+, U(0; x) = f(x), and � is the Laplacian op-
erator (i.e., @2

@x2
).2U(�; �) at the finest scale is assumed

to be comprised of a signal of interest and white Gaus-
sian noise of some variance �2. In this analysis we will
focus on the class of piece-wise constant signals (i.e.
staircase step functions are of importance in many ap-
plications, and the discontinuities represent edges in 2-
D signals/images).
Using the linear heat equation as their paradigm, Per-
ona and Malik’s nonlinear filter behavior is as a Gaus-
sian lowpass filter in regions of low gradients to elimi-
nate any additive noise, and as an almost all-pass filter
in regions of high gradients to preserve the sharp fea-
tures. The corresponding evolution equation is then of
the form

U(t; x) = div (g (j r (U(t; x)) j)rU(t; x)) ; (2)

where “div” represents the divergence operator, r is
the gradient, and g(�) the function which modulates the
diffusion according to the above paradigm (i.e., posi-
tive and monotically decreasing with g(0) = 1). One

possible choice is g(v) = e�
v2

K2 where K determines
the rate of decay and thus the extent of smoothing of
U(t; x) for a given gradient size. For reasons of space
some mathematical technicalities are discussed
elsewhere [8].

2The variable t in this context represents scale instead of time.

In light of its direct impact on our proposed framework,
the P-M equation will be our primary focus, noting how-
ever, that numerous subsequent and important contri-
butions have since appeared in the literature as reported
in [5].

3. STOCHASTIC DIFFUSION

The PDE in Eq. 1 models well the diffusion of heat in
a homogeneous medium, which fundamentally stems
from the motion of particles. The inherent randomness
of this motion is well-described by a Brownian motion
Bt, and an individual outcome ! 2 
 in the prevailing
sample space, is associated to a particle. The process
Bt can then be interpreted as the distance traveled by
particle ! at time t. It is well known that such a tran-
sition density for a Brownian motion, for instance, is a

Gaussian PDF p(t; x; y) = 1
(2�t)1=2

e�
(y�x)2

2t 8 x; y 2

R; t > 0: In light of the above, a stochastic interpreta-
tion of a solution to the heat equation, if it exists, and
subject to some differentiabilityconditions, can be given
[9] as
U(t; x) = Exff(Bt)g =

Z
R

p(t; x; y)f(y)dy; (3)

where the expectation operator E(�) is taken with re-
spect to x, and p(t; x; y) being the Gaussian PDF.

3.1. A Discrete Formulation

As previouslynoted, our chief interest here is to achieve
a stochastic understanding of scale-space analysis, and
hence the importance of reexpressing the above frame-
work in the discrete scale space. Recall that the sym-
metrical random walk is well known to converge to a
Brownian motion as � ! 0 and � ! 0, with �; � re-
spectively denoting scale and distance steps. Hence, a
particle following such a trajectory will move on a 1-D
line to the right or the left with equal probability of 1/2.
Upon discretizing the spatial variable xn = x+n� and
the scale tn = n� , denoting the probability of a particle
to be at position x after n time steps, having departed
from x0, by pn(x0; x), we obtain a standard result from
3, namely the probability of a particle being at x at time
n+ 1 as � ! 0 and � ! 0,

Proposition 1. The following discrete equation,

pn+1(x0; x) = 1=2pn(x0; x� �)



+1=2pn(x0; x+ �); (4)

converges to

@pt(x0; x)

@t
=

@2pt(x0; x)

@x2
; (5)

Proof: substracting pn(x0; x) from both sides of Eq. 4,
we obtain

pn+1(x0;x)�pn(x0;x)
�

= 1
2� [pn(x0; x� �)�

2pn(x0; x) + pn(x0; x+ �)] ; (6)

we conclude the proof by letting � = �2 and � ! 0

3.1.1. Solution via Discrete Expectation

The above results are well known to probabilists and
thus not new. The solution to Eq. 5 is a Gaussian tran-
sition density function and it characterizes the evolu-
tion of a Brownian motion with t and starting at x0.
Knowing that the limiting process of a random walk is
a Brownian motion, we use this convergence to comput
the solution at any scale using the continuous solution
given in Eq. 3 . With the foregoing discretization of x
and t we denote by U(n; x) the value of the solution at
time step n� and state x we can write at step � ,

U(1; x) =
1

2
f(x� �) +

1

2
f(x+ �): (7)

More generally, we proceed to write the solution to the
linear heat equation as a discrete expectation,

U(n+ 1; x) =
1

2
U (n; x� �) +

1

2
U (n; x+ �) : (8)

Due to the underlying random walker moving to the left
and the right with probability 1=2, it is clear that the
the linear evolution will indiscriminately smooth away
sharp features along with the noise.
Recall, the P-M equation performs a gradient-based se-
lective smoothing, and using the above discussion as a
basis we provide its stochastic formulation in the next
section.

4. NONLINEAR STOCHASTIC DIFFUSION

4.1. Stochastic Perona-Malik Diffusion

The nonlinear Perona-Malik equation in Eq. 2 may be
stochastically interpreted as well, and this is particu-
larly simplified upon discretizing the scale and space

variables to lead to the following:

U((n+ 1); x) = p1;n+1(x)U(n; x+ �) +

+(1� p1;n+1(x)� p
�1;n+1(x))U(n; x) +

p
�1;n+1U(n; x� �); (9)

where

p1;n+1(x) = 1=2g (j U(n; x+ �)� U(n; x) j)

= pn+1(x; x+ �);

p
�1;n+1(x) = 1=2g(j U(n; x)� U(n; x� �) j);

and pn+1(x; x + �) = P (�n+1 = x + � j �n = x)
is the transition probability of the underlying Markov
chain. This equation is intuitively appealing in that the
random walk or the diffusion �n takes place according
to the prevailing one sided gradient at position x. At
time step n + 1, a right moving walk takes place with
probability p1;n+1(x), a left moving walk takes place
with probability p

�1;n+1(x), and the particle remains
in place with probability p0;n+1(x) = 1 � p1;n+1 �
p
�1;n+1. In contrast to the linear diffusion where the

random walk invariably takes place probability1=2, the
P-M random walk is driven by the intrinsic gradient de-
termined the features we would like to preserve.

4.2. A Bidirectionally Driven Stochastic Diffusion

As we just noted, the P-M diffusion is driven by a one-
sided gradient at any position x, which implies that no
smoothing takes place in the presence of a relatively
high gradient even if caused by noise. On the other hand,
if the gradient on both sides of a position x were con-
sidered, and knowing that a high gradient due to noise
at some given position, tends to be duplicated at the po-
sition immediately following, as illustrated on the trail-
ing edge of the noisy signal in Fig. 1. An adapted pro-
cedure would recognize that and accordingly diffuse,
while the P-M filter which relies on one sided gradi-
ent calls for a no transition state in the Markov chain,
thus preserving the singularity as displayed. Our pro-
posed technique, precisely addressing such difficulties,
is based on the ratio of the two gradients to identify such
scenarios and assign a significant probability to diffuse,
to eliminate the noise spike. This technical difficulty of
the P-M equation may further be compounded in that
the transition policy in the Markov chain may elimi-
nate true edges; since at a position x close to the lead-
ing edge, and if at position x + �, U(�; x) is close to



U(�; x + �), the probability of transition is finite, and
hence smoothing the leading edge of the step signal pro-
ceeds. This scenario happens with probabilityzero when
a two sided gradient-based transition probability is used
in the policy.
Using Markov chains �n, we can simply model these
dynamics via transitionprobabilitieswhich, as we men-
tioned, may be specified in terms of the ratio of the bidi-
rectional gradient. We denote the transition probability
by pn+1(x) = Pf�n+1 = x + �j�n = xg and defined
as

pn+1(x) =
N

D +N
; (10)

where N =j U(n; x� �)� U(n; x) j2 and
D =j U(n; x+�)�U(n; x) j2. Using the above transi-
tion probability, our newly proposed filter is thus given
by

U(n + 1; x) = U(n; x� �)� (1� pn+1(x)) +

U(n; x+ �)� pn+1(x): (11)

We should note that in the cases where the two-side gra-
dients are very small, and thus little significance can
be attached to their ratio, the motion of the particle is
based on a symmetrical random walk, i.e., with proba-
bility 1=2 moving to the right or to the left.
We can in fact prove that in the limit, this Markov chain
tends to a stochastic continuous Markov process which
in turn leads to further generalizations which are cur-
rently under investigation[8].

5. EXPERIMENTAL RESULTS

To illustrate the performance of our nonlinear filter, we
add white Gaussian noise to a staircase function whose
discontinuities represent a major challenge to a linear
filter. The SNR is less than 3dB. A performance com-
parison between the newly proposed approach and the
P-M filter is shown in Figure 1. The better performance
evident from the figure is in fact consistent in a variety
of different scenarios and different signals.
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Figure 1: A denoising comparison of staircase signals.
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