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a b s t r a c t

In an article Cheng (2009) [3] published recently in this journal, it was shown that when
k ≥ 3, the problem of deciding whether the distinguishing chromatic number of a graph
is at most k is NP-hard. We consider the problem when k = 2. In regards to the issue
of solvability in polynomial time, we show that the problem is at least as hard as graph
automorphism, but no harder than graph isomorphism.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We consider simple undirected graphs. A nontrivial automorphism of a graph is an automorphism that is not the identity
mapping. We use the abbreviation NTA for nontrivial automorphism. A graph that has no nontrivial automorphism is said
to be asymmetric. A vertex k-coloring of graph G = (V , E) is a mapping V → {1, 2, . . . , k}. A vertex k-coloring of graph G is
proper if no two adjacent vertices of Gmap to the same color. χ(G) is the chromatic number of graph G, namely, the smallest
positive integer k such that G admits a proper vertex k-coloring.

In some of our results, we use the polynomial-time many-one reducibility (also called Karp reducibility) that is usually
used in the definition of NP-completeness (denoted ≤m) and we also use polynomial-time Turing reductions (denoted ≤T )
in some cases. For two problems A and B, if A≤m B and B≤m A (respectively, A≤T B and B≤T A), then A and B are said to be
polynomial-time many-one equivalent (respectively, polynomial-time Turing equivalent) and we write A≡m B (respectively,
A≡T B). Many-one reducibility is a special case of Turing reducibility. Furthermore, there are problems between which a
polynomial-time Turing reduction exists and there is no polynomial-time many-one reduction (see [8]); however, the only
problems known to have this property are outside NP ∪ co-NP. Since every decision problem can be trivially reduced to
its complement via a polynomial-time Turing reduction, the equivalence of the two types of reductions within NP ∪ co-NP
would imply NP = co-NP. As a result, Turing reducibility is believed to be more general than many-one reducibility within
NP ∪ co-NP, though no proof of this fact is known.

A vertex k-coloring of graph G is distinguishing if the only automorphism of G that preserves the coloring is the identity
automorphism; that is, there is no NTA that maps each vertex to a vertex of the same color. The distinguishing number of
graph G, denoted D(G), is the smallest positive integer k such that G admits a k-coloring (not necessarily proper) that is
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distinguishing. Similarly, the distinguishing chromatic number of graph G, denoted χD(G), is the smallest positive integer
k such that G admits a proper k-coloring that is distinguishing. The concept of the distinguishing number of a graph was
introduced by Albertson and Collins in [1]. Later, Collins and Trenk [4] introduced the notion of distinguishing chromatic
numbers of graphs.

The computational complexities of the problems of computing D(G) and χD(G) have been investigated in the recent past.
It was shown by Russell and Sundaram [7] that given a graph G and an integer k, deciding whether D(G) ≤ k belongs to AM,
the set of languages for which there exist Arthur and Merlin games. In a more recent paper, Arvind, Cheng, and Devanur [2]
showed that given a planar graph G and an integer k, whether D(G) ≤ k can be decided in polynomial time. Cheng [3] has
shown that given an interval graph G and an integer k, whether χD(G) ≤ k can be decided in polynomial time. In contrast to
this, Cheng [3] also established that given an arbitrary graph G and an integer k, where k ≥ 3, deciding whether χD(G) ≤ k
is NP-hard. Further, the problem remains NP-hard when k = 3 and the input graph is planar with maximum degree at most
five [3]. In regards to the problem of deciding whether χD(G) ≤ 2, given a graph G, Cheng remarked in [3] that ‘‘it will be
interesting to consider what the corresponding results are’’ for deciding whether χD(G) ≤ 2.

We show that given a connected graph G, deciding whether χD(G) ≤ 2 is polynomial-time Turing equivalent to the
problem of deciding whether a given graph H has a NTA. Thus, given an arbitrary graph G, deciding whether χD(G) ≤ 2 is
at least as hard as deciding whether a graph H has any NTA. We then show that given an arbitrary graph G, the problem of
deciding whether χD(G) ≤ 2 is no harder than deciding whether given graphs G1 and G2 are isomorphic.

Next, we introduce the definitions of some needed problems. Then, we present our main results. Finally, we conclude
with some discussion.

2. Graph automorphism and graph isomorphism

Consider the following decision problems each of which is known to be in NP, but neither of which is known to be in
P or NP-complete. Graph isomorphism has long been considered a candidate to be in NP but neither in P nor NP-complete
(Ladner [6] proved that such problems exist if P ≠ NP).

Graph Automorphism (GA)
Instance: Graph G.
Question: Does G have a nontrivial automorphism?

Graph Isomorphism (GI)
Instance: Graphs G1 and G2 .
Question: Is G1 ∼= G2?

It is known that GA≤m GI (see [5]); however, as stated in [5], ‘‘GI does not seem to be reducible to GA’’. Thus, it is possible
that GA is easier to compute than GI.

3. Results

It can be observed based on the definitions that χ(G) ≤ χD(G) and that D(G) ≤ χD(G). If G is asymmetric, then
χD(G) = χ(G). Clearly, D(G) = 1 if and only if G is asymmetric. Therefore, given graph G, deciding whether D(G) = 1
is polynomial-time Turing equivalent to GA. In contrast, given graph G, deciding whether χD(G) = 1 is trivial; G = K1 is the
only graph with χD(G) = 1. When χD(G) = 2,G is necessarily bipartite. In the remainder of the paper, we use 2-coloring to
refer to a proper 2-coloring.

Our focus is on the following problem:

Distinguishing 2-Colorability (D2C)
Instance: Graph G.
Question: Is χD(G) ≤ 2?

We first consider the problem D2C restricted to connected graphs. As previously observed, all yes instances of D2Cmust
be bipartite graphs. Note that a connected bipartite graph G has a unique bipartition and therefore (up to renaming the
colors) a unique 2-coloring; thus either every 2-coloring of G is distinguishing or none of them are. Furthermore, every
automorphism of a connected bipartite graph G = (X, Y , E) maps all vertices of X to Y and vice versa, or maps X to X and Y
to Y . If |X | ≠ |Y | then only the latter type of automorphism is possible.

Consequently, D2C for connected graphs is polynomial-time many-one equivalent to the problem: Given a connected
bipartite graph G and a 2-coloring c of G, is c a distinguishing coloring? Thus, since a given coloring c of graph G is not
distinguishing if and only if there is a NTA ofG that preserves c , the complement ofD2C restricted to connected graphs seems
closely related to GA. The next theorem shows that those two problems are in fact polynomial-time many-one equivalent.

In the remainder of the paper, we refer to the complement of D2C restricted to connected graphs as CC:

Complement of D2C on connected graphs (CC)
Instance: Connected graph G.
Question: Is χD(G) ≰ 2?
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Theorem 1. Problems CC and GA are polynomial-time many-one equivalent.

Proof. First, we show that GA≤m CC.
Since a graphhas aNTA if and only if its complement has aNTA, and the complement of a disconnected graph is connected,

we may assume that the given instance G = (V , E) of GA is connected.
If G = K1,G is a no instance of GA andwe can easily construct a no instance G′ of CC. Otherwise, let G′

= (V ′
= V ∪E, E ′)

be the graph obtained from G by subdividing each edge of G once. We note that for an edge xy of G, we use xy to refer to the
edge of G as well as the vertex of G′ that subdivides the edge xy of G. Clearly, G′ is connected and bipartite, and every vertex
in E has degree 2. In order to complete the reduction from GA to CC, we prove that G has a NTA if and only if χD(G′) ≰ 2.

If all the vertices of V ′ have degree 2 then G is a chordless cycle of length ≥ 3 and therefore has a NTA. In this case, for
every 2-coloring of G′, the vertices in V are mapped to one color, the vertices in E are mapped to the other color, and also
there is a NTA of G′ that preserves the coloring. Therefore, G has a NTA and χD(G′) ≰ 2.

In the remaining case, one color class of G′ consists entirely of degree 2 vertices (vertices in E) and the other color class
(vertices in V ) contains a vertex of degree ≠ 2. Thus, every NTA of G′ must map V to V and E to E.

First, we show that if f : V → V is a NTA ofG, then for every 2-coloring ofG′ there exists aNTA f ′
: V ′

→ V ′ that preserves
the coloring of G′ (and hence χD(G′) ≰ 2). Note that as G′ is connected, it is enough to consider a particular 2-coloring of G′.

Suppose f : V → V is a NTA of G. Define f ′
: V ′

→ V ′ where

f ′(x) =


f (x) if x ∈ V
f (y)f (z) if x = yz ∈ E.

We now show that f ′ is an NTA that preserves every 2-coloring of G′. Since f is an automorphism, f ′ is a bijection. To see
that f ′ is an automorphism, observe that:

uv ∈ E ′
⇔ u ∈ V and v ∈ E and v = uw for some w ∈ V (or vice versa)
⇔ f ′(u) = f (u) ∈ V and f ′(v) = f (u)f (w)

⇔ f ′(u)f ′(v) ∈ E ′ since f ′(v) corresponds to an element of Ethat is incident with f ′(u) in G.

Since G′ is a connected bipartite graph, it has a unique 2-coloring, and that 2-coloring is preserved by f ′ since f ′ maps V to
V and E to E. Finally, as f is a NTA of G, f ′ is a NTA of G′.

Next, we show that if χD(G′) ≰ 2, then G has a NTA. Suppose χD(G′) ≰ 2. Let c be the unique 2-coloring of G′ and let
f ′

: V ′
→ V ′ be a NTA of G′ that preserves c . Define f : V → V such that f (x) = f ′(x) for all x ∈ V . Since f ′ preserves c , it

maps V to V and E to E. As f ′ is a NTA of G′, the V to V mapping of f is a NTA of G.
This completes the proof of GA≤m CC.
We now prove the reduction in the other direction, that is, CC≤m GA. Let G = (X, Y , E) be a connected bipartite graph

that is not K1 or K2. (K1 and K2 are no instances of CC and any connected non-bipartite graph G is a yes instance of CC. In
these cases, we can construct G′ accordingly.) Note that G has a unique 2-coloring with color classes X and Y . Define

G′
=


G = (X, Y , E) if |X | ≠ |Y |

(X ′, Y ′, E ′) otherwise

where a, b, c ∉ X ∪ Y and

X ′
= X ∪ {b}

Y ′
= Y ∪ {a, c}

E ′
= E ∪ {ax | x ∈ X} ∪ {ab, bc}.

We prove that χD(G) ≰ 2 if and only if G′ has a NTA.
Suppose χD(G) ≰ 2. Then there exists a NTA f of G that preserves the unique 2-coloring of G. In the case that G′

= G, f
is also a NTA of G′. In the case that G′

≠ G define the mapping f ′
: X ′

∪ Y ′
→ X ′

∪ Y ′ where

f ′(x) =


f (x) if x ∈ X ∪ Y
x if x ∈ {a, b, c}.

It is easily seen that f ′ is a NTA of G′.
Now suppose f is a NTA of G′

= (X ′, Y ′, E ′). Since |X ′
| ≠ |Y ′

| and G′ is connected, f preserves the unique 2-coloring of
G′. Further, f (a) = a, f (b) = b, and f (c) = c by the vertex degrees, the connectedness of G, and the fact that G ≁= K2. Thus,
f maps X to X and Y to Y and therefore f restricted to G is a NTA of G that preserves the unique 2-coloring of G. Therefore,
χD(G) ≰ 2 and the proof of the theorem is complete. �

The following proposition allows us to analyze the complexity of problem D2C for graphs that are not necessarily
connected. We again use the fact that a connected bipartite graph has a unique (up to renaming the colors) 2-coloring.
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Proposition 1. Let G be a graph. χD(G) ≤ 2 if and only if
• G is bipartite and
• for every component C of G:

– χD(C) ≤ 2,
– C is isomorphic to at most one other component of G, and
– if C is isomorphic to some other component of G then C is asymmetric.

Proof. The proposition clearly holds when G = K1. Therefore, we now assume G has at least two vertices.
⇒ Suppose that χD(G) ≤ 2. Then, G is bipartite by an earlier observation. By the definition of χD, there is a 2-coloring c

of G that is distinguishing.
Let C be a component of G. It is clear that c restricted to C is a distinguishing coloring or else we contradict the choice

of c.
Suppose that C1 = (X1, Y1, E1), C2 = (X2, Y2, E2), and C3 = (X3, Y3, E3) are three distinct isomorphic components of G

and that there are isomorphisms mapping X1 to X2 and X2 to X3. No matter how the vertices of C1, C2, and C3 are 2-colored,
two of X1, X2, X3 will be in the same color class. Therefore, for every 2-coloring of G, there is an NTA that preserves the
coloring (specifically, an automorphism thatmaps the two Xi’s that are in the same color class to one another), contradicting
that χD(G) ≤ 2. Thus, each component can be isomorphic to at most one other component.

Suppose that C = (XC , YC , EC ) is isomorphic to another component C ′
= (XC ′ , YC ′ , EC ′) and that some isomorphism f

maps XC to XC ′ . If C is not asymmetric, then it has a NTA g , and every NTA of C maps XC to YC and vice versa, or else we
contradict that c is distinguishing. But, now there are two isomorphisms from C to C ′, namely, f and g ◦ f , one of which
preserves c , a contradiction.

⇐ Let bipartite graph G, with components C1, C2, . . . , Ck, satisfy the conditions. Suppose χD(G) ≰ 2. Then, for every
2-coloring ofG, there is a NTA that preserves the coloring. Let c be a 2-coloring of G in which isomorphic pairs of components
C1 = (X1, Y1, E1) and C2 = (X2, Y2, E2) are colored such that if there is an isomorphism mapping X1 to X2 then X1 and X2
have opposite colors in c . Now, every NTA swaps colors within a single component and/or swaps colors in an isomorphic
pair of components but, in any case, c is not preserved, which is a contradiction. �

Corollary 1. D2C≤T GI.

Proof. By Proposition 1, an algorithm for D2C can be constructed from algorithms for CC,GI, and GA. Since CC≤m GA
(Theorem 1) and GA≤m GI, the result follows. �

Corollary 2. D2C ∈ coNP.

Proof. The fact that CC ∈ NP follows from Theorem 1. This observation, combinedwith the negation of Proposition 1, shows
that the complement of D2C has an NP certificate. �

4. Discussion

Combining Theorem 1, Corollary 1, and the observation that CC≤T D2C, we have GA≡m CC≤T D2C≤T GI. That is, D2C is
at least as hard as GA and no harder than GI, in terms of Turing reductions.

Our results imply that CC ∈ NP and D2C ∈ co-NP. In addition, a direct consequence of Corollary 1 is that for a graph
G belonging to a class C such that the isomorphism problem can be solved in polynomial time for C, deciding whether
χD(G) ≤ 2 can be done in polynomial time.

A question that arises from Theorem 1 and Corollary 1 is: is problem D2C polynomial-time Turing equivalent to GA or to
GI, or does its Turing degree lie in between those of problems GA and GI?
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