University of Alberta

Proof-Set Search

by

Martin Muller

Technical Report TR 01-09
May 2001

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta
Edmonton, Alberta, Canada

Abstract

Victor Allis’ proof-number search is a powerful best-firse¢ search
method which can solve games by repeatedly expanding apnogitig node
in the game tree. A well-known problem of proof-number shdecthat it
does not account for the effect of transpositions. If thedeauilds a di-
rected acyclic graph instead of a tree, the same node canumgecbmore
than once, leading to incorrect proof and disproof numb¥érkile there are
exact methods for computing proof numbers in DAG’s, theytateslow to
be practical.

Proof-set search (PS& a new search method which uses a similar value
propagation scheme as proof-number search, but backs apagrad disproof
setsinstead of numbers. While the sets computed by proof-setis@ae not
guaranteed to be of minimal size, they do provide provalgiitér bounds
than is possible with proof numbers.

The generalizatiomproof-set search with (P,D)-truncated node sets
PSSp p provides a well-controlled tradeoff between memory reguients
and solution quality. Both proof-number search and prafsearch are
shown to be special cases B5Sp p. Both PSS and’.SSp,p can utilize
heuristic initialization of leaf node costs, as has beemgpsed in the case of
proof-number search by Allis.

1 Proof Sets and Proof Numbers

Victor Allis’ proof-number search (PN$}] is a well-known game tree search al-
gorithm, which has been successfully applied to games ssichranect-four, qubic
and gomoku. In contrast to many other methods, PNS does ngdue a minimax
value based on heuristic position evaluations; ratheitdsto find a proof or dis-
proof of a partial boolean predicafé defined on a subset of game positions. The
usual predicate i€anWin(p) but predicates representing other goals such as the
tactical capture of some playing piece can also be used wathfmumber search.

Proof-number search is a best-first method for expandingreegeee. It com-
putes proof and disproof numbers in order to finghast-proving nodewhich will
be expanded next in the tree search. Search continueshentdot is either proven
or disproven.

There is a simple bottom-up backup scheme for computingfprambers,
which is correct for trees. However, many game-playing pots use a transposi-
tion table to detect identical positions reached by difieraove sequences. Such
a table changes the search graph from a tree to a directelicagsaph (DAG) or
even a directed cyclic graph (DCG). If the same backup metiogroof numbers
is used on a DAG, it fails to compute the correct proof andispnumbers, since
the same node can be counted more that once along differdrs. phe new al-

gorithm of proof-set search (PS$ designed to reduce this problem and thereby
improve the search performance on game graphs containing trenspositions.
The outline of the paper is as follows: the introduction domés with a short
description of proof-number search on game trees and ontddecyclic graphs,
and with an example that illustrates the problems of pragfiber computation in
DAG's. Section 2 describes the new method of proof-set eartd characterizes
it by a theorem establishing its dominance over PNS on theedaAG. On the
other hand, counterexamples show that even PSS cannotsabgtact a smallest
proof set. Section 3 describes the algorithmic aspects 8fiR#hose areas where
it differs from PNS. Section 4 introduces the data structira K -truncated node
set defines the generalization of PSSR&S with (P,D)-truncated node seis
PSSpp, characterizes both PNS and PSS as special cageS.®# p, and proves
a generalized dominance theorem/o$.Sp p over PNS. Section 5 describes how
to use a heuristic initialization of leaf node costs in PS8 Bi$.Sp . Section 6
closes with a discussion of future work, including the esien of PSS to cyclic
game graphs and potential applications of PSS.

1.1 Proof-number Search in a Tree

This introductory section describes the basic procedunerobf-number search.
For detailed explanations and algorithms, see [1]. Prawiper search (PNS)
grows a game tree by incrementally expandingn@st-proving nodat the fron-
tier. Nodes in a proof tree can have three possible statesen disproven and
unproven Search continues as long as the status of the rooth@soven After
each expansion, a leaf evaluation predic@tis applied to each new node, to see
whether it is defined in the corresponding game positioneff, yhe new node can
be evaluated aproven (P = true)or disproven (P = false)while if P does not
apply, the node status becomegproven Proofs and disproofs are propagated to
interior nodes by using proof numbers. Interior nodes aogem by finding groof
treeor disproven by finding disproof tree A proof trees for a noder is a subtree
of the game tree with following properties:

1. ris the root ofs.
2. In all leaf nodes o, the predicatd” is well-defined and evaluates to true.

3. If n is an AND node irs, thenall of its successor nodes in the game tree are
also contained iB.

Analogous properties hold for a disproof treef r:

1. r is the root ofs.

2. In all leaf nodes o, the predicatd” is well-defined and evaluates to false.

3. If n is an OR node i, thenall of its successor nodes in the game tree are
also contained is.

PNS maintains proof and disproof numbers for each node imsedeee, and
updates them after each expansion. These numbers can hgéted as the size
of a minimal proof or disproof set: a smallest set of curngmthproven terminal
nodes of the tree with the property that (dis)proving all @®dh that set would
create a (dis)proof tree for the root node. An impossibls)oof is represented
by an infinite (dis)proof number.

Proof and disproof numbers are used to seletiost-proving nodéo expand
next. They are computed by a simple backup scheme. Eacthseader stores
a proof numbempn(n) and a disproof numbefn(n). For anunprovenfrontier
(or leaf) noden, setpn(n) = dn(n) = 1. A provenfrontier node is assigned
pn(n) = 0,dn(n) = oo, while adisprovemnode obtaingn(n) = oo, dn(n) = 0.
For non-frontier or interior nodes, let the children of a Badben,y, ..., nx. The
backup rules for proof and disproof numbers are as followsaad AND node, the
proof number is computed as the sum of the proof numbers ofhifiéren. In an
OR node, the proof number becomes the minimum among the proubers of
all children.

AND node:pn(n) = pn(nq) + pn(ng) + ...+ pn(ng)
OR nodepn(n) = min(pn(ni), pn(ng), ..., pn(ng))

Disproof numbers are computed by taking sums at OR nodes amdhanat
AND nodes.

OR nodedn(n) = dn(ny) + dn(ng) + ...+ dn(ng)

AND node:dn(n) = min(dn(ny), dn(nz), ..., dn(ng))

The most-proving node to expand next can be found by travgrsie graph
from the root to a frontier node, selecting a child with ideatproof number at OR
nodes and a child with identical disproof number at AND nodé$er expanding
a node, proof and disproof numbers of that node must be regtadpand changes
propagate upwards in the tree.

1.1.1 Heuiristic Initialization of Proof Numbers

Proof numbers can be viewed as a lower bound on the work redjtir prove a
node. The standard algorithm assigns the same estimat@@&&akth unproven leaf

3

node. However, game-specific knowledge can be used to mralftitrent initial
estimates. Allis [1] proposes to use a heuristic initici@ah (n) for the proof and
disproof numbers of new frontier nodes Such a heuristic initialization can be
viewed as a heuristic lower bound estimate of the work reglio prove:. Using
the constant function(n) = 1 yields the standard algorithm.

1.2 Proof-number Search in a Directed Acyclic Graph

The basic algorithm for proof-number search on a tree cam ladsused for di-
rected acyclic game graphs (DAG) with some small modificegtidHowever, proof
numbers can overestimate the size of proof sets. Therdferalgorithm cannot al-
ways find a minimal proof set, and it can fail to identify a mpsbving node, even
though such a node always exists even in a DAG [6, 1]. Thewalg example

shows how tree backup in a DAG overestimates proof numbers.

O AND node

D OR node

Figure 1: Overestimating proof numbers in a DAG

Example 1 Consider a DAG with an AND nodé at the top and 4 OR nodes
B,C, D, F as children. Furthermore, leB, C' and D have the same single child
F, and letE’s two children beF” and .

The proof numbers of the leavésand GG are initialized to 1. The proof num-
bers ofB ... F are also all equal to 1 since these are OR nodes, which obitein t
minimum proof number of their children, and they all have édcWith proof num-
ber 1 but no child with proof number 0. The proof numbera$ greatly overesti-
mated by the tree-backup schemeagA) = pn(B)+pn(C)+pn(D)+pn(E) =
4. The true value opn(A) is 1, since proving the single frontier nodé proves
A, but F' is counted four times by the algorithm. The example caneasilex-
tended, to make the difference between true and computees/atbitrarily large,
by adding further nodes at the OR level which are only coretetd A above and
to F" below. If such a DAG occurs as part of a larger problem, theresttmate
of A’s proof number can be very costly. It can greatly delay theassion of the

4

sub-DAG below4, and lead the search into different parts of the DAG for a long
time, even thouglt' is a very good candidate node. Expandifigould lead to a
quick proof ofF" and therebyA. This may be by far the fastest - or even the only -
way to solve the overall problem.

To overcome the problem of overestimation, Schijf [6, 7] Daseloped exact
methods for computing proof numbers in DAG’s and identifya most-proving
node. Unfortunately, these methods seem to have a huge tatiomal overhead
and have turned out to be impractical even in tests on smellldc-Toe game
DAG’s. The new method obroof-set searclmeported here lies in between proof-
number search and Schijf’s exact method, both in terms ofpbexity and solution
quality. Furthermore, by usirtguncated node setthe tradeoff between informed-
ness and memory overhead of proof-set search can be cedtpicisely.

2 Proof-Set Search

Proof-set searchor PSS is a new search method which uses the simple children-
to-parents propagation scheme for DAG’s. Instead of usingfmumbers, which
are an upper bound on the size of the minimal proof sets in a [J2&5 backs

up proof setdirectly. While the sets selected by PSS cannot be guachtdeee
minimal, they provide provably tighter bounds than is pbkswith proof numbers
only. This can lead to a better node selection and therebystoaler (dis)proof
DAG being generated. The prize for better approximatiorh& more memory
and time per expansion step is needed to store and propagaiaf nodes instead

of numbers.

2.1 Backup Algorithm for Proof Sets

The algorithms for proof-set search are similar to the onepfoof-number search
[1]. Each search nodestores both a proof setet(n) and a disproof setset(n).
For unproven frontier nodes, setet(n) = dset(n) = {n}. An impossible
(dis)proof is indicated by a set of infinite size, represdrig the symbof } ... A
proved frontier node is assignedet(n) = 0, dset(n) = {}., while a disproved
node obtaingset(n) = {}«,dset(n) = (). For interior nodes:, with children
n, ..., ng, the backup rules for proof and disproof sets are as folldavan AND
node, the proof set is defined to be t@on of the proof sets of all children. In
an OR node, the proof set is the minimal set among the prosfdedll children,
computed by a function set-min according to some total andesf node sets.

AND node:pset(n) = pset(ny) U pset(ng) U . ..U pset(ny)

5

OR nodepset(n) = set-mir(pset(ny), pset(ng), ..., pset(ng))

Disproof sets are backed up analogously, taking minima irDANMdes and
unions in OR nodes.

OR nodedset(n) = dset(nq) U dset(ng) U. ..U dset(ny)
AND node:dset(n) = set-min(dset(ny), dset(ns), . .., dset(ny))

The following rules define a simple total order on node setschvis close to
the spirit of the original PNS:

1. A smaller set is always preferred to a larger one.

2. To break ties between sets of the same size, first definalaotatering of
single nodes. For example, the ordering given by a depthifagtrsal of the
DAG, the order of node expansion, or even the memory addriessode
can be chosen.

As notation, letr; < ns if ny precedes; in the chosen total order on single
nodes. Sort each set= {n, ..., n;} suchthat; < ny < ...< ng. Thenatotal
ordering of sets of nodes can be defined as follows:

1. s1 < sqif [s1] < |sal.

2. 51 < s9if |s1] = |s2] ands; precedess, in lexicographical ordering. In
other words, given two sorted sets of equal size= {n,...,n;} and
sy ={my,...,myi}, 51 < sy iffthereisani, 1 < ¢ < k, suchthat; = m;
forall 5,1 < j <4, andn; < m;.

The function set-min is obtained from this ordering by sejtset-mira, b) =
a & a < b. Another possible ordering, using node evaluation as aisteur
measure of proof effort [1], is given in Section 5. Set opera are extended
to {}., in the natural way, by U {}.. = {}. and set-mifs, {}..) = s for all
finite setss, and by{ }.. U {}« = {}= and set-mif{ }..,{}=) = {} -

Example 2 See Figure 2. Assume that the nodes of Example 1 are ordered

B < (C < D < F < F <, and that tie-breaks among sets of the same size are
resolved by a lexicographical ordering of the sorted listelements, so that for
example{F, £, D} = {D,FE,F} < {D, F,G}. Then the computation of proof
and disproof sets proceeds as follows:

1. pset(F) = dset(F) = {I'}, pset(G) = dset(G) = {G}.

pset={F}
dset={F} (A)

(O ANDunode

|:| OR node

pset={F}
dset={F}

pset={F},
dset={F}

pset={F}
dset={F,G}

pset={F} pset={G}
dset={F} dset={G}

Figure 2: Computing proof and disproof sets in a DAG

2. pset(B) = set-miripset(F)) = {F}. dset(B) = J(dset(F)) = {F}.

3. In the same wayset(C') = pset(D) = {F'} anddset(C) = dset(D) =
{F}-

4. pset(E) = setmif{F},{G}) = {F} anddset(E) = {F} U {G} =
{F,G}.

5. pset(A) = U(pset(B), pset(C), pset(D), pset(F)) = {F'}.
6. dset(A) = set-mirfdset(B) ...dset(F)) = set-mif{ '}, {I,G}) = {I'}.

By using proof sets instead of proof numbers, the root'sfsebhas cardinality
1, whereas the proof number computed by PNS was 4. So with gets) the
promising node is likely to be expanded much earlier.

2.2 ldentifying a Most-Promising Node

In proof-number search on treesest-proving nodelways exists, and it can
easily be identified. (Dis)proving a most-proving node r@ehi(dis)proof number
of the root by at least one.

Schijf [6] proves the existence of a most-proving node in a@Alowever,
it is not easy to identify such a node. Schijf develops theécmby correct but
impractically slow algorithms to identify a most-provingate. On the other hand,
since PSS uses a locally greedy heuristic to select a mirdgetalt can not always
identify a most-proving node. However, PSS computesast-promising node
(mpn)which lies in the intersection of the proof and disproof sstsmputed for the
root node by an efficient PNS-like backup scheme. The folhowtheorem states
that such a most-promising node always exists.

Theorem 1 Given a DAGG/, compute proof and disproof sets using PSS. Then for
each unproven node, the intersection of proof and disproof sgtet (n)Ndset(n),
iS nonempty.

The induction proof follows the lines of the analogous tle@ofor proof num-
bers in [6]:

1. The theorem holds for all unproven leaf nodesincepset(n) = dset(n) =

{n}.

2. Letn be an unproven AND node with unproven childdeny, . .., ng}, k >
0. Assume the induction hypothesis holds for all these childietr; be a
node such thatset(n) = dset(n;). Sincepset(n;) N dset(n;) is nonempty
by the induction assumption, letbe a node in the intersection. Thenc
dset(n) and sincepset(n) 2 pset(n;), it follows thatz € pset(n).

3. The proof for OR nodes is obtained by interchanging thesolfpset and
dset in step 2.

2.3 Dominance of Proof-Set Search over Proof-Number Search

As a more informed search method, proof-set search donsinai@of-number
search in the following sense:

Theorem 2 For each node: in a DAG G, the size of the proof (disproof) set com-
puted by PSS is less than, or equal to the proof (disprooffxaurafn computed
by proof-number search af.

|pset(n)| < pn(n)
|dset(n)| < dn(n)

We omit a proof here, since Theorem 2 is a special case of thhe general
Theorem 6, which will be proven in Section 5.

Note that the result holds only for PSS and PNS operating ersédime DAG.
The theorem cannot compare nodes in the two different DAGigware gen-
erated when PNS and PSS respectively are used as the algdoitbelect most-
promising nodes for expansion. Since these two DAG's aregeed by different
mechanisms, their shape and their node sets may be comypdétetent, and are
therefore not comparable.

2.4 Proof-Set Search Does Not Always Select a Smallest Prcgxt

As mentioned in Section 2.2, PSS uses a locally greedy hieudsselect a mini-
mum set among all unproven children. A local method canneags choose a set
that will perform best when taking unions with other setshar up in the DAG.
In the worst case, PSS can do no better than PNS. In the folfptsio examples,
PSS fails to find a smallest proof set.

pset = {F,GHLJ} (A)

(O ANDnode

[:] OR node

pset = {F,G,H} E pset = {I.J}

pset = {F,G,H} (D) (E) pset={LI}

Figure 3: PSS fails to find a smallest proof set

Example 3 In Figure 3, it is easy to see thdtt', G, H } is the minimal proof set
for the rootA. This set is necessary to prove nadewhich in turn is needed to
prove B, which is required to provel. On the other hand, provinfy also proves
the only other child ofd4, nodeC, so a complete proof of is obtained by proving
{F,G,H}.

At nodeC’, PSS’ locally greedy selection is the wrong choice: givengioof
sets ofC’s children, pset(D) = {F,G, H} andpset(F) = {I,.J}, PSS selects
the smaller se{/, ./} as the minimal proof set faf’. Because of this choice, the
proof set ofA becomepset(A) = pset(B) U pset(C) = {F,G, H,I,J}, which
is almost twice as large as the optimum.

Example 4 The ratio between the real optimum and the set computed by &8S
be made arbitrarily large by repeating a similar construeti In Figure 4, the DAG
of Figure 3 has been extended to the top and right by nodes 7. {F,G, H}

is still a smallest proof set for nodé. Applying the same argument as above for
nodesS — T — U — A, it can be seen thdtF, G, H } is also a smallest proof set for
nodeS. However, as in Example 3 PSS computes a proof set of sizeffimede
A, and therefore selects the right branch at nddewith a four-element proof set
{W, X,Y,Z}. The proof set backed up to the root contains all nine leafesod
whereas the smallest set has only three nodes. Repeatirgptisgruction: times
yields a DAG for which PSS computes a proof set of &iZé 4 1 containing all
leaf nodes, while the size of the smallest proof set is 3.

9

O AND node

D OR node

Figure 4: Example 4: extending Example 3

When computing proof sets incrementally, it is possibleaketthe proof sets
of other siblings into account for the minimum selection.ct8s 5.2 discusses
such a variation of the algorithm, which tries to improve likelihood of selecting
a set that works together well with sets from other siblings.

3 Algorithmic Aspects of Proof-Set Search

This section describes some algorithmic aspects of prebgesarch, especially in
areas where it differs from proof-number search, such as¢tection of a most-
promising node, different resource requirements and theesentation of sets of
nodes. It also discusses the problem of multiple updateseosame node. This
problem already exists in PNS, but is more severe for PS® siecupdate cost per
node is larger.

3.1 Selecting a Most-Promising Node

Selecting a most-promising node in proof-set search iemety simple. Since

PSS represents proof and disproof sets directly, it is noessary to traverse the
DAG as in PNS. Theorem 1 guarantees that the intersectioroof pnd disproof

sets of the root is nonempty, and any node in the interse@iansuitable most-

promising node.

10

3.2 Ancestor Updating Algorithm

This subsection discusses some problems of value propagatDAG'’s. It ap-
plies to proof-number search as well as PSS. An ancestotingddgorithm must
update all children of a node before the node itself can bepeoed. In a tree, a
simple bottom-up computation suffices. On the other extrema directeccyclic
graph (DCG) a ‘right’ ordering of nodes does not exist beeaniscyclic depen-
dencies. Special methods have been developed for proob@usearch in DCG’s
[2], but it is unclear how they relate to PSS. This is a topicfidure research, see
the discussion in Section 6.1.

In a DAG, the right order of updates can be assured by a toprabsorting
of nodes. However, dynamically maintaining such a sortetfiomay be expen-
sive, and in practice it may be preferable to accept multiplgates of some nodes
instead.

The simplest updating algorithm for DAG’s, modeled afteattfor trees, starts
with the just developed nodapn then adds its predecessors to a queue [6]. For
node sets, such an algorithm can be written as follows:

Updat eAncest or Set s(npn)

{ ListOf<Node> updateQ = [npn]; // start with just expanded npn
whi |l e (updateQ NonEnpty())
{

node = updateQ Pop(); // extract first node from queue
NodeSet ol dPS = node->PS(), ol dDS = node->DS() ;
node- >Set Pr oof AndDi sproof Sets(); // backup from children
if ((oldPS == node->PS()) && (ol dDS == node->DS()))
{} // unchanged, no need to propagate
el se // update parents

updat eQ Uni on(node- >Parents());

/] append new parents to the end of the queue

}
} /] Updat eAncestor Sets

In the general case, this method does not guarantee a perflectof updates.
Some nodes might be updated more than once, as the followamyEe shows.

Example 5 In the DAG of Figure 5, there is a direct move froi- D, but there is
also a longer patit — B — C' — D between the same nodes. Assume that parents
of a node are added to the queue in left-to-right order. Thi¢aeraipdatingD, A

is appended to the queue befare so A will be updated first. However, this is a
useless update, sinceis also an ancestor of’ via B. After updating”' and B,

A is re-added to the queue and updated once more.

11

(O ANDnode

I:l OR node

Figure 5: Queue update algorithm causes multiple updatéseafame node

As the example shows, the queue backup algorithm can causiplmupdates
of nodes in a DAG, which slows down the computation. Theretagechoices:
either accept the inefficiency caused by multiple updatéise$ame node, or keep
the nodes sorted in a priority queue, using a topologicdirepof the DAG. This
can be accomplished by an algorithm suchTapologicalOrder in [5, p.137],
which enumerates nodes from the root downwards. We haveatdtnplemented
such an ordering method. It is unclear whether an efficiecreimental version of
the algorithm exists, which can update the ordering aften@@de expansion. The
problem is at least as hard as cycle detection in directeghgrasince computing
an ordering is possible exactly for cycle-free graphs, dredlgorithm must be
able to complain if no ordering is possible because of a cycle

3.2.1 A Sufficient Condition for Optimality of the Queue Baclkup Algorithm

The ancestor relation defines a partial ordering of the nadéise DAG. If this
partial order has a special structure, the optimality ofgheue backup algorithmis
assured. Aank function- [8, p.99] on a partially ordered set is a function mapping
elements to integers such thay) = r(z) + 1 whenever coverse (immediately
follows z) in the partial order. In our case, that means tha) = r(n) + 1 for

all childrenc of a noden. For example, for all the DAG’s in Figures 1 - 4 a rank
function exists, while for the DAG in Figure 5 there is none.

Lemma 1 Consider the partially ordered s€t((, Anc) given by the nodes in
a DAG G and the ancestor relationine on . If a rank functionr exists for
P(G, Anc), then the queue backup algorithm is optimal: it compute$ eale
value at most once.

Proof of Lemma 1: The queue backup algorithm processes rindesger of
their rank: ifz is inserted into the queue befayethenr(z) > r(y). Actually, the

12

following stronger statement will be proven: At each stagéhe algorithm, the
ranks of nodes in the queue are in monotonically decreagier @and assume at
most two distinct values andv — 1. In other words, if the queug= [n, ..., ng]
containst > 0 elements, then there existsl < j < k, such that(n;) = r(n;)
for1 <i<jandr(n;) =r(n)—1forj+ 1 <i < k. Itis easy to see that this
property is an invariant maintained by the algorithm: lity, the queue contains
only a single element. Removing the elementf rankr(n;) from the head of the
gueue maintains the invariant. The only nodes appendee tertth of the queue by
the algorithm are parents ef;, which all have rank (n;) — 1 by definition ofr.

Examples of games for which a rank function exists are a¢hehere a move
adds exactly one stone to the game state and does not remytbéngn such as
Othello (except for forced pass moves), connect-4, quinimyaku or Tic-Tac-Toe.
The number of stones on the board is a rank function for posstin such games. In
contrast, games with loops such as chess, shogi or Go do weghank function,
unless the whole move history is taken into account for dedja position.

3.2.2 Comparing the Ancestor Updating Algorithms of PNS and®SS

Both PNS and PSS can stop propagating values to ancestoreass a hode’s
value does not change. However, updates in PSS are certpimopgagate all the
way to the root, since the root’s proof and disproof sets aiorthe just expanded
mpn which is no longer a leaf node. Usually, PSS will have to updaore ances-
tors than PNS, since it distinguishes between sets of the s&ra with different
elements. However, because of transpositions, the ogpcesse can also happen.
If a node which is already contained in a proof set is re-adaledg a new path,
the proof number increases but the proof set remains unelng

4 Truncated Node Sets for Proof-Set Search

This section describestauncated node sedata type with bounded memory re-
quirements per set, and uses it in the algoritAfSpe p, PSS with (P,D)-truncated
node sets. We prove theorems that characterize both PNSShd$Pextreme cases
of PSSRD .

Set union and assignment operations on large node sets@easxe, both in
terms of memory and computation time. The new data strudueK-truncated
node seprovides a compromise between the two extremes of using d@euamd
using a node set of unbounded size. A truncated node sesstbneostk’ nodes
explicitly. In addition, it stores an upper bound on the @#eset size, in the same
sense that proof numbers represent an upper bound on thef pimf sets. In this

13

sense, proof numbers can be regarded as O-truncated nggde/kih store only a
bound but no elements.

Definition 1 Let K be a nonnegative integer, and let set-min be a functhomgit-

ing the minimum of two sets based on a total order of node&’-thuncated node
sets is a pair (rep(s), bound(s)), whererep(s) is a set of nodes of cardinality
at mostK andbound(s) is a nonnegative integer. In addition, a node set has the
following properties:

e bound(s) < K & |rep(s)| = bound(s)
o bound(s) > K & |rep(s)| = K

Definition 2 The operations of minimum selection and set union for trtegta
node sets are defined as follows:

o bound(a U b) = bound(a) + bound(b) — |rep(a) N rep(b)

e rep(aUb) = z, where x is the smallegt-element subset ot p(a) U rep(b)
according to set-min.

o min(a,b) = a < bound(a) < bound(b) Vv (bound(a) = bound(b) N set —
min(rep(a), rep(b)) = rep(a))

In other words:

e Minimum selection: If the bounds of two sets are differdrg, et with the
smaller bound is the minimum. Otherwise, the explicitlyespnted parts of
the sets are compared as if they were unbounded sets.

e Setunion: The truncated set union computes the union okiie#ly repre-
sented sets, and stores the fikSelements according to some total ordering
of nodes, plus the best-possible bound for the size of tloauni

e Initialization by a single element: A truncated node sés initialized to
store a single node as follows: s = ({n},1) if K > 0, s = ({}, 1) if
K =0.

Example 6 Let K = 8, let nodes be represented by letters ordered alphabeticall
let S1 = {147D7E77I{7 I(,L,M,Q}lgg, SS9 = {C’,D,EUP’7 I{7]\47 P,Q}lg. For
each truncated setll elements are given explicitly, and the subscript represent
the bound on the set size; represents a set of at most 16 elements, including
the eight listed. The truncated set unionU sy = {A,C, D, E, F, H, K, L}54is
computed by truncatingep(sy) U rep(sz) = {A,C, D, E, F,H, K, L, M, P,Q}

14

to the smallestk = 8 elements. The bound on the set union size is computed
by adding the bounds, then subtracting the double-couriegdents inep(s;) N
rep(sg), 16 +13 — 5 = 24.

As before, infinite size set§}.. are added along with rules for computing
minima and unions involving such sets.

4.1 Some Properties of Truncated Node Sets

The next lemma formalizes the intuitively clear fact thagkx truncation thresh-
olds result in tighter bounds for set unions.

Lemma 2 Given two integerdd > I, and sets of nodes . ..s,, compute both
the K —truncated and thd.—truncated union ofs; U s, U ... U s,, using the
truncated set method with the same node ordering and the saqmesnce of two-
set union operations. Then the bound on fhetruncated union is smaller-or-
equal than that on thé —truncated union. Furthermore, the explicitly represented
set of thel.—truncated union is a subset of the explicitly representddose¢he

K —truncated union.

The proof is straightforward from the definition of truncatget union and is
omitted here to save space. It is worth noting that sincectiting sets loses in-
formation, some properties of the usual set union operatoa lost. For example,
the absorption law U« = « does no longer hold, since two sets that look identical
may contain different nonrepresented nodes.

Example 7 In the extreme case of O-truncated sets, computing the atedcset
union is equivalent to adding the bounds for both sets, g4t {}5s = { }10.

Example 8 Leta = a; = a3 = {A, B}5 be 2-truncated sets. Then it would be
wrong to setz; U ay = @, since the two sets might contain up to three different
elements. The correct resultds U a; = {A, B}sy15-2 = {A, B}s.

4.2 Proof-Set Search with Truncated Node Sets

Given two integerd” and D, the algorithmproof-set search with (P,D)-truncated
node setsPSSp p, is obtained from standard PSS by replacing all proof setfis wi
P-truncated node sets, and all disproof sets viitfiruncated node sets.

15

4.2.1 Selecting a Most-Promising Node

Selection of a most-promising node in PSS relies on TheoreshSection 2.2,
which guarantees that for each unproven nadgset(n) N dset(n) # 0. With
truncated node sets, a most-promising node may not alwaigaibd immediately,
since all the elements in the intersection might have be¢mffwby truncation.
The algorithm for selecting a most-promising node with tated node sets is an
intermediate form of the respective algorithms in PNS anf.PS

Select MPN() // find nost-prom sing node with truncated node sets

{
node = root; nmpn = N L;
while (IslnteriorNode(node))
{

/1 CommonNode(a,b) returns NIL if no common node
/1 is found in rep(a) and rep(b).
npn = CommonNode(pset (node), dset(node));
if (mpn !'= NIL) // found a node in intersection, done
return npn;
Set Type t = "disproof’ if 'node’ is AND node,
"proof’ if 'node’ is OR node;
node = child with sane set of type t as node;

}

return node; // reached a | eaf node, done.
} // Select VPN

4.2.2 Characterizing PSS and PNS as Special Casesio$ Sp,p

Theorem 3 PSS, « is the same algorithm as standard PSS.
Theorem 4 PSS is the same algorithm as proof-number search.

The proofs follow immediately from the facts that artruncated node set is
an ordinary untruncated node set arfttauncated node set is equivalent to a proof
number. Two other special cases are interesting, and mayrefiate parameter
choices if search behavior is highly biased towards onlyfsor only disproofs:
PSS..,0 combines proof sets with disproof numbers, whit¢ S, ., uses proof
numbers together with disproof sets.

A nice property ofPSSp p is that if P < oo andD < oo, then the required
memory remains bounded by a constant factor of what PNS wmdan the same
DAG.

16

4.2.3 Dominance Theorem of PSS with Truncated Node Sets

Theorem 5 Let G be a DAG and le? > 0 and D > 0 be integers. Then at each
noden € G, the size bounds for proof and disproof sets compute.®§r p are
smaller-or-equal to the proof and disproof numbers compbiePNS.

bound(pset(n)) < pn(n)
bound(dset(n)) < dn(n)

The proof is by induction: the theorem holds for single nod@es! remains true
when taking truncated set unions or selecting minima irriot@odes.

1. The theorem holds for all proven, disproven and unproeai hodes by
definition of PSSp,p and PNS.

2. Assuméound(pset(n;)) < pn(n;) for all childrenn; of noden.
3. Set union: By Definition 2,

bound(pset(n)) = bound(pset(ny) U ... U pset(ng))

< bound(pset(ny)) + ...+ bound(pset(ny))
<pn(ny)+ ...+ pn(ng) = pn(n).
4. Minimum selection: By definition,
pn(n) = min(pn(ny),...,pn(ng)) and
bound(pset(n)) = min(bound(pset(ny)), ..., bound(pset(ny))).

Assume the minimal proof number is achieved in negleThen
pn(n) = pn(n;) > bound(pset(n;)
> min(bound(pset(ny)), ..., bound(pset(ny))) = bound(pset(n)).
5. The proof for disproof sets is the same as for proof sets.

Theorem 5 generalizes Theorem 2 of Section 2.3, which déthitie extreme
casePSS. . Asin Theorem 2, the dominance holds only when comparing the
computation of the algorithms on the same DAG It does not hold, and is not
even meaningful, for the different DAG’s generated by usin§Sr p and PNS
respectively to generate the DAG.

17

5 Using PSS with a Heuristic Leaf Evaluation Function

In analogy to the refinement of PNS described in Section 1RSIS can utilize
a heuristic node initialization functioh for new frontier nodes. For simplicity,
we will use the same function symbilfor both the proof and the disproof case.
In practice, two different initialization functions willdbused, since proofs and
disproofs are opposite goals.

For a node set = {ni,...,n;}, define the heuristic weight bi(s) =
> h(n;), and seti({}.) = co. In PSS, modify the minimum selection among
sets as follows: set-misy, s2) = sy if h(s1) < h(sz). If h(s1) = h(sg), break the
tie according to a secondary criterion such as lexicogiEglordering. Combining
heuristic initialization with truncated node sets is alstatively straightforward
and will be described in Section 5.1.

Theorem 6 Let G be a DAG, and let a positive heuristic leaf node initialipati
function be defined for each game position represented by a node Further-
more, extend: to sets of nodes by(s) = 3" ., h(n). Then for each unproven
noden € G, the evaluation of the proof (disproof) sets computed byiB&Ss-or-
equal the proof (disproof) number afcomputed by PNS with the same leaf node
initialization functionh.

Proof: by induction.

1. The theorem holds for all leaf nodessincepset(n) = dset(n) = {n} and
h(pset(n)) = h(dset(n)) = h(n) = pn(n) = dn(n).

2. Letn be an unproven AND node with (unproven) childfen , . . ., ny }. As-
sume that the induction hypothesis holds for all childrep(pset(n;)) <

pn(n;).
h(pset(n)) = h(pset(ny) Upset(nz) U...U pset(ng))
< h(pset(ny)) + h(pset(ny)) + ...+ h(pset(ng))
< pn(ny) + pn(n2) + ...+ pn(ng) = pn(n).
3. Letn be an OR node with childrefn,,...,n;}, and again assume the

induction hypothesis holds for the children.

h(pset(n)) = min(h(pset(ny)), h(pset(ng)), ..., h(pset(ng)))

18

< min(pn(ny), pn(ng),...,pn(ng)) = pn(n).

4. The claim for disproof sets is proved by swapping the ANDhwhe OR
case in steps 2 and 3.

Setting(n) = 1 for all » results in another proof of Theorem 2 in Section 2.3,
since for every set, h(s) =3, c, 1 = |s]|.
5.1 Combining Truncated Node Sets with Heuristic Leaf Evalation
Functions

The two generalizations of PSS by truncated node sets anistieleaf initializa-
tion can be combined by reinterpreting the bound on the setas a bound on the
set evaluation: The bound of a union of two sets is then defigédund(a Ub) =
bound(a) + bound(b) — 3", crh(z), I = rep(a) N rep(b).

Example 9 Given the following nodes, with their heuristic evaluatisntten as

a subscript: 410, Bys, C7, D1g, Fis, F39. Consider a 4-truncated node set repre-
sentation, with the subscript of the whole set showing ta@ation bound for the
whole set. Examples of exactly representable setsare Ajg U Bis U C7 =
{C7, A0, Bis}sp and sy = Ao U Dig U Fig = {Aro, Dig, Fig}asa. Taking
the union leads to set truncation; U s; = {C7, Ayg, Bis, Dis}es. Different
sets may share the same truncated set but have differendboufor example,
51 U {Bis, Dis, Fag}70 = {C7, A1o, Bis, Dig}sr.

The following lemma and theorem are easy generalizatiorieeofma 2 and
Theorem 5 respectively. Proofs are omitted for lack of space

Lemma3 Let K > I > 0 be integers, let; be (untruncated) node sets, and
let 2 be a heuristic node evaluation function. Compute fhruncated set union
ug and thelL-truncated set uniom;, using a set ordering based dn the same
secondary sorting criterion, and the same sequence of eévossion operations.
Thenbound(ur) < bound(ur,).

Theorem 7 Let K be an integer, let: be a heuristic node evaluation function,
and letG be a DAG. For each node ¢ G, compute proof and disproof sets
using PSSk x, and compute proof and disproof numbers using PNS with node
initialization by k. Then for each unproven noden G,

bound(pset(n)) < pn(n)

bound(dset(n)) < dn(n).

19

5.2 Favoring Nodes From a Given Set

Assume a most-promising OR nodds expanded by PSS, and that before the ex-
pansion, the proof set of the root already contains otheesdd= {pi,...,px}.
When computing the new minimal proof sets after expandinigis probably bet-

ter to choose nodes which are already containef,igince they will not increase
the size of sets further up in the DAG. The node evaluatiorbeamodified to dis-
count such nodes by a factard < ¢ < 1: h/(2) = eh(z) if 2 € P,h/(2) = h(x)

if v & P.

A problem with this approach is that the evaluation of nodes $®comes
context-dependent. Also, care should be taken to alwayerpaeproven node:
with h(z) = 0 over an unproven but completely discounted ngaeth 4 (y) # 0
buth’(y) = 0.

Example 10 In the DAG on the left side of Figure 6, nodéis the only most-
promising node and is expanded next. The figure on the rigiwslthe situation
at the time of recomputing the proof set@fafter the expansion. (Proof sets of
nodeD and below are not affected by expandirig

e pset(A) = {C,F,G,H}

dset(A) = {C} O AND node

D OR node
pset(B) = {F.G,H} pset(C) = {C} pset(C) =?
dset(B) = {F} dset(C) = {C} dset(C) = {E,F}
pset(D) = {F,G,H} pset(E) = {E}
dset(D) = {F} @ dset(E) = {E}

Figure 6: Discounting existing nodes

At nodeC, standard PSS would select the small proof{get as its minimal
proof set. However, the modified algorithm would discouatalues of, G and
H, since they are contained in the proof set of the rdotand therefore select
D over FE. This way, the proof set of shrinks because of the expansion gf
pset(A) ={F,G, H}.

6 Future Work and Summary

Future work on PSS includes extending it to cyclic game gsapid testing it in a
variety of applications.

20

6.1 PSS for Directed Cyclic Graphs (DCG)

Directed cyclic graphs, or DCG’s, cause problems for prioa$ed search proce-
dures because of cyclical dependencies, often cajtagh history interactionn
this context. Breuker et al. develop one solution to thisopgm with theirbase-
twin algorithm[2].

It is presently unknown whether PSS is well-defined and hawoiks on gen-
eral DCG’s. It seems necessary to adapt the update and @topagules, since
now the same node can appear both as leaf and as interior nade DCG. A
promising sign is that PSS has no trouble solving the follmvexample, taken
from Figure 5 of [7]:

O AND node

I:‘ OR node

Figure 7: Directed cyclic graph with cycté — F' — C'

Example 11 C” is a transposition of ', leading to a cycl€’ — F — C'. Let's treat
the graph as a DAG and update proof sets, assuming nodes @eesal alphabeti-
cally for minimum selection. Initiallyset (C”) = {C'} = {C'}, pset(E) = {E},
pset(F) = {C}, pset(C) = min(pset(L), pset(C)) = {C}, pset(D) = {C},
pset(B) = pset(C) U pset(D) = {C}, pset(A) = {C}. After provingF,
pset(E) = 0, pset(C') = min(pset(E), pset(C)) = (. NowC' is proved, and
can be propagated through the DCG, leading successivelyaofg of F', D, B
and A.

6.2 Applications of PSS

Applications should lead to a better understanding of PS#®ih theory and prac-
tice. A first test on Tic-Tac-Toe resulted in PSS growing a 19#&ller DAG than
PNS, with 1114 nodes against PNS’ 1237 to disprove that &=-Tobe is a win for
the first player. However, Tic-Tac-Toe is hardly a challemgiest case, and large
gains cannot be expected here.

21

The original motivation to develop PSS came from a reportijd somdsume
shogi(shogi mating) problems are hard for proof-number baseoratgns because
of transpositions. In first experiments with PSS in this doméne method proved
viable on moderately large DAG’s with up to several hundresitisand nodes when
using truncated node sets with= D = 20. Preliminary results seem to indicate
a correlation between the frequency of transpositions hagérformance of PSS.
However, a proper study remains as future work.

Another promising application area are subproblems in #regof Go, such
as life and death puzzles or tactical capturing problemsh Bbogi and Go provide
a rich and very challenging set of test cases.

6.3 More Research Topics

Investigate the performance of the queue backup methodVhat is the average
and worst-case performance of the queue backup method fenedif types
of DAG’s? Is it sufficient for the DAG’s encountered in prae® Are there
DAG's for which the performance is unacceptably bad?

Find necessary conditions for optimality of queue backupLemma 1 in Section
3.2.1 proves that the existence of a rank function for thesiwe relation is
sufficient to ensure the optimality of the queue backup édligor. Are there
other, more general sufficient conditions? What are necgssmditions
for optimality? Such a criterion might be based on charaatey forbidden
subgraphs, such as the one in Figure 5.

Efficient data structures for large node setsA straightforward implementation of
node sets by sorted lists is easy to program, but slow foelaegs. Are there
applications where it is essential to deal with large setd,iso, are there
more efficient data structures?

Choice of truncation values Which values ofP and DD provide a good tradeoff
between memory and accuracy B855p »? How are the values related to
the problem type? Is it beneficial to dynamically ad&pand D during the
search, or use different values in different regions of tA&D

Multi-level schemes Are schemes such as?-search [3] effective for PSS?

6.4 Summary

Proof-set searchor PSS is a new search method which addresses the problems
caused by overestimating the size of the minimal proof s&AG’s. Like PNS,
PSS uses the simple children-to-parents propagation sef@AG'’s, but unlike

22

PNS, it backs up proof sets instead of proof numbers. Thecsetputed by PSS
provide better approximations than is possible with onlggfrnumbers on the
same DAG. However, more memory and more computation is metdstore and
manipulate node sets instead of numbers. The trade-offdegtwhe advantages of
a more focused search and the disadvantages of using morergnpen node and a
more expensive backup procedure need further investigafimce overestimating
proof numbers in a DAG can lead search into a completely wiiregtion for a
long time, any improvement in the node expansion strategyosentially achieve
large savings in search efficiency, especially on hard grobl

References

[1] L.V. Allis. Searching for Solutions in Games and Artificial Intelligen®hD
thesis, University of Limburg, Maastricht, 1994.

[2] D. M. Breuker, H. J. Van den Herik, J. W. H. M. Uiterwijk, dri_. V. Allis. A
solution to the GHI problem for best-first seardbecture Notes in Computer
Sciencel558:25-49, 1999.

[3] D.M. Breuker, J.W.H.M. Uiterwijk, and H.J. van den Herikhe pn?-search
algorithm. Technical Report CS 99-04, Department of Comp8tience, Uni-
versiteit Maastricht, Maastricht, 1999. To appear in Advesin Computer
Chess 9 (eds. H.J. van den Herik and B. Monien).

[4] A. Kishimoto. Seminar presentation. ETL, 1999.
[5] J.A. McHugh. Algorithmic Graph TheoryPrentice-Hall, 1990.

[6] M. Schijf. Proof-number search and transpositions. tdesthesis, University
of Leiden, 1993.

[7] M. Schijf, L.V. Allis, and J.W.H.M. Uiterwijk. Proof-nmber search and trans-
positions.ICCA Journal 17(2):63—74, 1994.

[8] R. Stanley. Enumerative Combinatorics Vol. INumber 49 in Cambridge
Studies in Advanced Mathematics. Cambridge Universitg&£r&997.

23

