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1 Introduction

Recall the earlier definition of intelligence as doing the right thing at the right time, as judged by an outside human
observer. As a key facilitator of intelligence, knowledge can then be defined as background information or general
understanding (of a variety of domains) that enhances the ability to act intelligently, where domains include the
natural, social, and even virtual worlds, as well as mathematics, music, art, etc. A knowledge representation is
an encoding of this information or understanding in a particular substrate, such as a set of if-then rules, a semantic
network, conditional probability tables, a Venn diagram, a mind map, or the axioms of formal logic. Thus, patterns
(a.k.a. relationships among primitive elements) within the substrate correspond to patterns in the target domain. The
relationships between the patterns (e.g., how each promotes or inhibits others) are key determinants of intelligence.

Neural networks (both natural and artificial) are the focal substrate of this chapter, with the key question being how
patterns of both neural connectivity and activity encode knowledge. Many of the substrates listed above have such
strong roots in natural language that their knowledge content is completely transparent. For example, we can easily
translate a mind map or a set of logical axioms into an explicit natural language description of knowledge content,
such as the combination of air masses from Canada, the desert Southwest and the Gulf of Mexico facilitate tornado
formation in the Midwest.

Unfortunately, deciphering the knowledge content of a neural network requires much more work; in many cases, the
salient information does not map nicely to natural language, or, when it does, the apparent concepts of import lack the
crisp definitions preferred by philosophers and GOFAI knowledge engineers. Instead, a neural pattern might encode a
large, and vague, set of preconditions that embodies a complex definition with a slew of exceptions. The interactions
between these patterns produce highly intelligent behavior, but reduction of that behavior to the primitive patterns
fails to produce the normal satisfaction that one gets from, for example, decomposing the description of a play into its
characters, plot, conflicts, resolutions, etc.

A good deal of philosophical quicksand surrounds the concept of knowledge, with distinctions often drawn between
simple pieces of data, such as a random 10-digit number, and data that connects to other information, such as a
10-digit number that happens to be your brother’s phone number, or the population size of China. The data acquires
significance or meaning via these connections; and only via these links can the data contribute to reproducible behavior.
Hence knowledge, as a key contributor to doing the right thing, needs these ties to distinguish it from untethered (and
essentially meaningless) data. Furthermore, doing may constitute actual physical or subconscious mental activity -
in which case the knowledge is often termed procedural - or explicit cognitive events - wherein the knowledge is
declarative.

In a physical system (e.g. animal, robot, smart room, etc.) controlled by a neural network, patterns of neural ac-
tivity acquire meaning (a.k.a. semantics) via connections to the external world, the system’s physical body, or other
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neural activity patterns. These connections, manifest as temporal correlations that the brain becomes wired to sus-
tain, facilitate recreation or re-presentation, since the occurrence of one pattern helps invoke another. Causality (in
terms of causes preceding effects) plays no specific role: a sensory situation may precede the neural pattern that rep-
resents it, just as a neural pattern may precede a body’s motor sequence. Alternatively, a neural pattern may predict
an impending sensory experience; or the pattern, experience and motor sequence may co-form as part of the looping
brain-body-world interaction. Correlation, not purported causality, is crucial; and patterns lacking it may have short-
term behavioral significance but little representational import. This correlational view of representation paves the way
for formal tools, such as information theory, to help clarify network functionality.

Intertwined with this level of representation is another: synaptic networks and their ability to stimulate neural interac-
tions. The complex matrix of synaptic strengths forms attractors in the landscape of neural activity patterns such that
some patterns (and temporal sequences of patterns) become much more probable than others. Thus, the synapses rep-
resent the firing patterns, which represent knowledge. Since neural activity affects synaptic strength via learning, the
relationships quickly become circular, thus precluding a straightforward linear interpretation of this representational
hierarchy. However, the review of each factor in (relative) isolation has obvious explanatory merit, so this chapter
treats each of these representation forms separately.

2 Representations in Firing Patterns

Any thorough discussion of firing patterns as representations begins with the atomic components of a pattern, which,
like so many other aspects of intelligence, remain controversial. At the level of an individual neuron, there is con-
siderable debate as to the fundamental carrier of information, with the two main candidates being the firing time of a
neuron versus its overall firing rate, as thoroughly explained in [10].

Firing-rate coding implies that the information encoded in a neuron is due to the average number of spikes that it emits
per time period, e.g. per second. Spike-timing code does not refer to the absolute time point when a neuron spikes,
rather a relative temporal delay: the phase (of some ambient oscillation) at which a neuron spikes (or possibly begins
to emit spikes). These background oscillations stem from a large population of neurons that simultaneously fire, thus
exciting or inhibiting downstream neighbors. More generally, a spike-timing code looks at a spike train starting at
some reference time, 0, (e.g. the peak of a particular background oscillation) and attributes information to the exact
times (after 0) at which spikes occur, whereas a rate code only counts the total number of spikes and divides by the
duration of the spike train.

Instead of delving deeply into this debate, it suffices for our current purposes to view the two codes as more-or-less
equivalent, using a slightly simplified version of the argument in [9]. Consider the situation in Figure 1 in which
two neurons, 1 and 2, are affected by the same inhibitory oscillation (drawn as a sine curve in the figure), but due to
different levels of excitation, neuron 1 is able to overcome inhibition and begin emitting spikes at a phase (P1) when
inhibition is higher than during phase P2, where neuron 2 overcomes inhibition. A similar, but inverse, argument holds
for an excitatory oscillating input.

The dashed lines indicate time windows during which the neuron’s excitation dominates inhibition, and thus the neuron
emits spikes. From the figure, it is clear that neuron 1 is emitting spikes over larger windows (A and B), than is neuron
2 (with windows C and D). Thus, if we average over the complete time window (here composed of 3 inhibitory cycles),
neuron 1 would be spiking more often (A + B > C + D) and would thus have a higher calculated firing rate than neuron
2. This appears to be a relatively monotonic progression in that the higher up on the inhibitory curve a neuron begins
to fire (i.e. the phase at which it fires), the higher will be its firing rate.

So in this fairly simple sense, the spike-time code (expressed as the phase at which the neuron overcomes inhibition)
correlates with the rate code. So although spike timing appears to play a key role in synaptic tuning via STDP (as
explained earlier), the useful information in a relative spike time seems no different (nor more significant) than that
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Figure 1: Illustration of two neurons that begin firing (i.e. overcome inhibition) at different phases of the inhibitory
cycle.

encoded by a firing rate. Though this explanation certainly does not resolve the debate (and surely irks those who
champion the importance of spike timing), it justifies ignoring it for the time being and simplifying the analysis of
neural representation to that of the collective firing rates of neurons. Furthermore, I will follow a good deal of the
neuroscience and connectionism literature by abstracting the state of any neuron to a binary, on-off, value. Since
neurons are never completely dormant, the distinction between on and off is typically characterized by being above or
below some normal firing rate, respectively.

2.1 The Syntax of Neural Information

Given a population of neurons, each of whose individual information content is now assumed to be a single bit (on or
off), the next important issue is how this collection represents a particular piece of information or concept C (using
the term very loosely). Does the network encode C using one or just a few neurons, or does it employs hundreds,
thousands or even millions of them? This is the distinction between local and distributed coding.

In their extreme forms, they dictate that if a collection of n neurons are used to store information, then a local coding
scheme would use each of the n cells to represent a single concept, while the distributed code would use a sizeable
fraction of all n neurons (and the synapses between them) to represent every concept. Thus, in the latter case, each
concept is distributed over many nodes, and an entire suite of concepts shares space in the neurons and synapses of a
single network.

A further distinction between sparsely- and fully-distributed codes is also commonly drawn. A sparse code uses only
a few of the nodes, per concept, and is thus semi-local (another frequently-used term), while a fully distributed scheme
uses a large number of neurons per concept, with n

2 being the optimal number for representing the most concepts.

To understand this optimality, consider that the number of different concepts using exactly k nodes (i.e. k neurons are
on for each concept) that can be represented in an n-node network is

(n
k

)
, which has a maximum at k = n

2 .
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Figure 2.1 portrays these three representational forms: local, semi-local/sparsely distributed and fully distributed. Cells
that perform local coding are often refered to as grandmother cells, meaning that individual cells represent specific
concepts such as bicycle, ice cream or grandmother.

The number of distinct patterns that can (theoretically) be stored in an n-neuron network (for n = 20) is summarized
below:

• Local:
(n

1

)
= n patterns

• Sparsely Distributed:
(n

k

)
= n!

(n−k)!k! patterns. n = 20, k= 3→ 1140 patterns

• Fully Distributed:
(n

n
2

)
= n!

( n
2 !)2 patterns. n = 20→ 184756 patterns

Local
Fully

Distributed

Grandma!!

Semi-Local or
Sparsely Distributed

Figure 2: Rough sketch of three general coding schemes used in neural networks. Red neurons are considered active
(and blue inactive) when the concept is being processed.

As discussed below, these capacities derive purely from the nature of binary codes. For distributed representations,
the theoretical values are several orders of magnitude greater than the practical storage limits of neural networks.

2.2 Pattern Completion in Distributed Memories

The mathematics of distributed representations always sounds so impressive. In fact, one could load all 184756
patterns into a 20-node network, and get a unique signature of on/off neurons for each. But most of them could never
be unambiguously retrieved from the network based on partial information. So you could put all 184756 patterns in
but only get a few of them out.

Distributed memories typically operate in an associative, content addressable manner, meaning that memories are
indexed and cued by portions of themselves (or of other, related memories). Retrieval works by presenting the network
with a partial pattern or cue, which is then completed via the exchange of signals between the nodes (as in the Hopfield
networks described in a later chapter). Memory retrieval is simply distributed pattern completion.

So, indeed, with n bits, one can represent 2n different patterns - but not at the same time nor in the same place! In an n-
node, fully connected, distributed-coded neural network, multiple patterns need to be stored across the n(n−1)

2 weights
such that they can be retrieved and displayed on the same set of n neurons. The presence of a quadratic number of
weights does help, but n(n−1)

2 is still much less than 2n for n larger than 15 or 20, so the naive representational promise
of distributed coding is completely unrealistic when the 2n (or any significant fraction thereof) patterns must share
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space. To get a quantitative feel for the ubiquity of pattern interference in distributed memories, see the discussion of
k-m predictability in Appendix (appendix label).

2.2.1 Sequential Pattern Retrieval

In a single-pattern completion task, a partial pattern cues the rest of the pattern. In sequential pattern retrieval, one
complete pattern cues the next pattern, which, in turn, cues the next pattern. In theory, the network can complete the
entire sequence when given only the first pattern.

Sequence retrieval also illustrates the differences between local and distributed coding. In the former, each sequence
element corresponds to a single neuron, which provides an excitatory link to the neuron representing the next item in
the sequence. The key advantage of this representation is that n linearly-interlinked concepts are easily incorporated
into an n-neuron network with only n-1 links. The key disadvantage is fault tolerance: if any of the neurons, n*, in the
sequence is damaged, all concepts represented by downstream neurons from n* cannot be cued for recall and are thus
inaccessible.

Conversely, for a sequence of items stored in a distributed rmanner, a faulty neuron may have little adverse effect,
since each concept is coded by a combination of many neurons. Unfortunately, to pack all of those distributed codes
into the same network can quickly lead to ambiguities during retrieval, due to overlap (i.e. interference) between the
patterns. Thus, a single concept would have several, not one unique, successor pattern.

2.3 Connecting Patterns: The Semantics of Neural Information

The most intuitive way to add meaning to neural patterns is to ground them in reality by finding correlations between
external events (such as the lightning bolts of Figure 3) and combinations of active neurons, termed cell assemblies
by Donald Hebb [5]. These neural activity patterns can later serve as stand ins or representations for the actual event.
These correlations arise by learning and may require several exposures to similar events before they consistently evoke
the same activity pattern.

Sameness is an elusive relationship in these situations; for mammals and their large brains, two neural states at two
different times are surely never identical due to the ever-changing nature of complex natural neural networks. However,
two states can probably be very similar, and more similar to each other than to any other states, for example. To further
complicate the issue, the complete brain state - which takes into account all of the brain’s neurons - reflects many more
sensory and proprioceptive factors than, for example, the sight of a lightning bolt. Whether one sees lightning while
sitting indoors versus running down the street will surely impact the complete mental state. Even though the lightning
concept could evoke the same cell assembly in both cases, the complete brain states could differ significantly. For
example, the neural effects of fear could be widespread in the running scenario but not in the indoor setting. Regardless
of the unavoidable philosophical quicksand related to mental states and their meanings, the general fact that certain
mental states do seem to correlate with particular sensory experiences provides some solid footing for explorations
into the pattern-processing functions of the brain.

Once neural correlates of world events exist, they can become linked to one another via synaptic ties between the
respective cell assemblies, as roughly depicted in Figure 4. This allows the presence of one event, such as lightning,
to evoke the thought of another event, e.g., thunder, prior to or in the complete absence of that event.

When cell assemblies include many intra-group synapses among the neurons, pattern completion becomes possible.
Thus, as shown in Figure 5, when a partial sensory experience, such as an occluded view of a lightning cloud, stim-
ulates part of the assembly, the internal synapses quickly activate the rest of the assembly, thus putting the brain into
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Figure 3: One of the brain’s key functions is to form correlations between real-world events and brain states. Repeated
exposures to the event may be required to form a consistent correlation, as shown by the sequence of action-brain-state
pairs.

Figure 4: Another important brain function is to achieve correlations between brain states whose association has some
utility for the organism. These states may or may not correlate with external events.
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it’s normal lightning-viewing state, from which it can predict normal lightning successors, such as thunder, and plan
normal lightning-response actions, such as running for cover.

Figure 5: Another key function of brain is to complete partial patterns, thus putting the brain into a similar state to that
achieved by a more complete sensory input, and allowing the brain to predict similar consequences and plan similar
responses.

Although two events in the world are never truly identical, living organisms often need to treat them so. Otherwise,
the appropriate responses learned from prior experience could never be reused in similar situations, since the organism
would never recognize the similarity. To fully exploit the advantages of a learned association between a stimulus and
a response, an organism must have the ability to generalize across stimuli. Thus, at some level of mental processing,
two similar stimuli should evoke approximately the same cell assembly, which could then evoke the same predictions
or actions associated with that general class of stimuli.

For example, if a small child learns that small, dark, short-haired dogs are dangerous (due to the unfortunate accident
of stepping on one’s leg), he may also begin to watch his step around small, light, long-haired dogs as well. The child
thus exhibits a general cautious behavior around all small dogs based on one experience. So in terms of the sensory
preconditions for that behavior, the child simplifies considerably, ignoring most of the significant differences between
dog species, and mapping all small-dog experiences to a tread lightly behavior. In psychological or connectionist
terminology, the child has categorized these animals into a group that most adult observers would call small dogs,
and then the child chooses the same behavior in response to all members of that group. The categorization may be
purely implicit, as only the child’s actions reveal the underlying generalization; he cannot consciously contemplate
nor discuss it with anyone.

Figure 6 depicts this general mechanism, known as sparsification, which has the character of a reductive process in
that many different events or neural patterns reduce to a single pattern, thus requiring a sparser population of neurons
in the downstream assembly to capture a given concept.

Conversely, the process of orthogonalization, shown in Figure 7, accentuates the differences between world events
or upstream cell assemblies. Thus, even if two stimuli overlap significantly, the brain may map each to a different
response. Much of the detailed knowledge of expertise would seem to involve orthogonalization, as small differences
in problem contexts may invoke vastly diverse actions by an expert, who notices salient discrepencies that a novice
might overlook. In the case of the canine-wary child, orthogonalization means differentiating small dogs that are
playful from those that are angry.
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Figure 6: Sketch of the basic neural process of sparsification, wherein the same cellular assembly is invoked either
by different external events or different (prior) mental states. In short, differences are reduced by further mental
processing. In these diagrams, as in the brain, primitive visual processing begins in the back of the head, with higher-
level patterns forming toward the front.

Together, these pattern-processing activities facilitate intelligent behavior. Correlations between neural assemblies
and world states not only enable organisms to recognize familiar situations, but also to think about those contexts
when not actually in them. This ability to reason about situations other than those of the immediate sensory present
constitute somewhat of a breakthrough in mental evolution, according to Deacon [3]; it supports complex faculties
such as general symbolic reasoning and language usage.

Pattern association and completion are often touted as the hallmarks of human intelligence [2]. They are tasks that we
still do much better than computers. Additionally, a good deal of our intellectual prowess stems from sparsification
and orthogonalization. The former allows us to generalize over similar situations, and the latter preserves our ability to
tailor special behaviors for specific contexts. An interesting combination of the two is topological mapping, wherein
similar situations elicit comparable (though not identical) responses via a correlation between one neural space (e.g.
sensory) and another (e.g. motor). The structural backdrop for mammalian intelligence is a mixture of sparsifying,
topological and orthogonalizing circuits.

This characterization of neural representation in terms of pattern grouping and separation boils down to what (Nobel
laureate) Gerald Edelman and (renowned neuroscientist) Giulio Tononi call differences that make a difference: distinct
neural patterns that have distinct effects upon thought and action [4]. They compare the human brain and visual
system to a digital camera. Both can accept megapixel inputs spanning an astronomical pattern space, but only the
brain has the ability to differentially process a huge number of them; the camera treats most of them identically. Thus,
although both systems can receive and handle an extraordinary number of data points, the brain, via its elaborate and
nuanced scheme for consistently linking those input patterns to internal states and actions, exhibits more sophisticated
intelligence.

Clearly, the brain’s circuitry is more extensive than the camera’s, but this alone gives little ground for claiming that the
brain has more knowledge. After all, newborn infants have more neural connections than adults, but no more (arguably
less) visual intelligence than today’s cameras. It is the ability of the brain’s synaptic network to create correlations
among a huge number of patterns that produces intelligence. In this mature state of pattern matchmaker, the brain’s
neural networks embody a high level of knowledge that clearly separates us from the vast majority of our machines.
That difference, however, is diminishing.
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Figure 7: Sketch of the basic neural process of orthogonalization, wherein markedly different cellular assemblies are
invoked by similar world events or similar (prior) mental states. In short, differences are accentuated by further mental
processing.

Figure 8: Sketch of the basic neural process of topological mapping across three different spaces: one of external
stimuli and two of neural patterns (in different areas of the brain).
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2.4 Hierarchical Cluster Analysis

The degree to which an ANN properly balances sparsification, orthogonalization and topological mapping to best
represent a domain (and most judiciously link differences to differences) is a very important characteristic - one that
ANN researchers like to gauge, either formally or informally. Quantitatively, one can measure the correlation between
input patterns and output patterns, or between inputs and the activation state(s) of any hidden neuron(s). This single
correlation/covariance value provides a global assessment of the ANNs understanding of a domain, but a finer grained
assessment also has virtue, particularly in more complex networks that generate several categories and employ multiple
responses.

The hierarchical cluster plot, a very popular connectionist tool, provides a very detailed, but easily understandable,
overview of the implicit categories formed by an ANN. It displays each input case (C) in a graphic which shows the
other input cases that the ANN treats most similarly to C. The behavioral basis for this similarity judgement can vary,
but it often involves the patterns of activation of the hidden or output layers.

Consider the 6 cases in Table 1, each of which indicates the hidden-layer activation pattern produced by a hypothetical
ANN upon receiving that case as input (where most of the detailed features, given as input to the ANN, are omitted
from the table). Based solely on these activation patterns, we can hierarchically cluster the 6 cases to determine if, for
example, the network treats dogs and cats in a distinctively different manner.

Animal Name Hidden-Layer Activation Pattern
Cat Felix 11000011
Dog Max 00111100
Cat Samantha 10001011
Dog Fido 00011101
Cat Tabby 11011001
Dog Bruno 10110101

Table 1: Portions of a data set and its treatment by a hypothetical 3-layered ANN with 8 hidden nodes. Each data
instance presumably includes several descriptive features that serve as inputs to the ANN. For this example, the hidden-
layer activation patterns that the ANN produces for each case are of interest, as these form the basis for hierarchical
clustering.

A wide array of hierarchical clustering algorithms exist; this section makes no attempt to summarize them. We merely
employ the following basic approach:

Begin with N items, each of which includes a tag, which in this example is the hidden-layer activation pattern
that it evokes.

Encapsulate each item in a singleton cluster and form the cluster set, C, consisting of all these clusters.

Repeat until size(C) = 1

Find the two clusters, c1 and c2, in C that are closest, using distance metric D.

Form cluster c3 as the union of c1 and c2; it becomes their parent on the hierarchical tree.

Add c3 to C.

Remove c1 and c2 from C

In this algorithm, the distance metric D is simply the average hamming distance between the tags of any pair of
elements in c1 and c2:
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D(c1,c2) =
1

M1M2
∑

x∈c1
∑

y∈c2

dham(tag(x), tag(y)) (1)

where M1 and M2 are the sizes of c1 and c2, respectively. Applying this algorithm to the dog-and-cat data set yields the
cluster hierarchy (also known as a dendogram) of Figure 9. In the first few rounds of clustering, the tight similarities
between the tags of, respectively, Fido and Max, and Samantha and Felix, trigger those early groupings. Bruno and
Tabby are then found to be closer to those new clusters than to each other, so they link to their respective 2-element
clusters at the next level of the hierarchy. Finally, at the top, the dog and cat clusters link up.

Bruno
10110101

Fido
00011101

Max
00111100

Tabby
11011001

Felix
11000011

Samantha
10001011

Figure 9: A dendogram for the dog-and-cat data set, using a) the hidden-layer activation pattern (displayed below each
animal’s name) as the basis for similarity assessments, and b) the distance metric of equation 1.

The important information in this dendogram is that the ANN is treating dogs more similarly to each other than to
cats, and vice versa. Thus, the ANN implicitly knows something about the difference between these two species, as
reflected in the behavior of it’s hidden layer.

In large ANN applications - where the training method may be supervised, unsupervised or even reinforced - the
dendogram can reveal intricate distinctions in the complex decision making performed by an ANN. In many cases,
the diagrams indicate the learning algorithm’s uncanny ability to form many-leveled hierarchical categorizations that
closely (or exactly) parallel a human’s approach to carving up the world. They are proof that, indeed, the ANN has
learned some very significant knowledge about the data set (and how to react to it), but without that information
being in any convenient human-readable form. We have to look hard to see it, and cluster analysis with dendogram
visualization is a fine tool for this type of detective work.

3 Representations in Synaptic Matrices

Synaptic networks house the potential to create neural activation patterns, with particular combinations of strong and
weak, excitatory and inhibitory, immediate and delayed, connections providing a strong bias as to which patterns form,
and which ones cling together in temporal sequences. Just as genetic material, when placed in the proper environment,
produces the organism that it represents, a synaptic configuration, when properly stimulated (by, for example, an
oscillating background) can produce the neural firing patterns that it represents.

This synaptic perspective enables neurons to be interpreted as detectors of features or combinations thereof. The con-
cept embodied in these preferred features may map nicely to standard mathematical or natural-language expressions,
such as a man wearing a bright shirt and dark pants, or, as is often the case, they map to very complex concepts

11



which can only be expressed by very long descriptions (i.e., not easily compressible) or to concepts so diffuse that no
expressions in natural language cover them.

When features are just dimensions in a multi-dimensional space - and individuals are points in that space - then
straightforward geometric analysis produces a description of a neuron’s detected concept based on its input weights.

Consider a simple neuron, z, as depicted in Figure 10, which accepts weighted inputs from neurons x and y, with
weights wx and wy, respectively. As shown, z has a step activation function with threshold tz.

Since the sum of the weighted inputs will only exceed tz, thus causing z to fire, under certain conditions (i.e. certain
combinations of x and y values), neuron z essentially functions as a detector for those conditions. One very important
step in understanding the knowledge content of ANNs is the determination of what various neurons have evolved or
learned to detect. In the example of Figure 10, a simple algebraic analysis reveals these conditions and their geometric
semantics.

To simplify the discussion, let us assume the following values: wx = 2, wy = 5, and tz = 1, as shown in the lower
network of Figure 10. This means that z will fire if and only if:

2x+5y≥ 1 (2)

At this point, we can already get a feel for what z detects: x-y pairs where the sum of twice x and five times y is greater
than or equal to 1. To visualize this, we can solve for y in equation 2 to yield:

y≥−2
5

x+
1
5

(3)

We can then draw the corresponding border (line) and region (upper side of that line) denoted by equation 3 in the
cartesian plane, as shown in the lower left graph of Figure 10. This border separates positive from negative instances of
the concept detected by neuron z. The bottom right of Figure 10 shows several of these positive and negative instances,
all of which can be separated by this single line, derived directly from the firing conditions of neuron z. In this sense,
neuron z cleanly separates the positive and negative instances of a concept, with no error.

Working backwards, we can receive a collection of positive and negative concept instances (i.e. a data set) and search
for a line that separates them - there will either be none or an infinite number of such lines. If a line is found, its
equation can easily be converted into an activation precondition (as in equation 2), from which the weights wx and
wy, along with the threshold tz, can be found. Thus, a simple 3-node neural network can be built to detect the concept
embodied in the data set.

In cases where a separating line exists, the data is said to be linearly separable. This concept extends from the
cartesian plane to any k-dimensional space, where linear separability entails that a hyperplane of k-1 dimensions can
cleanly separate the k-dimensional points of the data set. Of course, in k-dimensional space, the detector neuron z
would have k input neurons, but the activation function would have the same form:

x1w1 + x2w2 + · · ·+ xkwk ≥ tz (4)

In general, a data set is linearly separable if and only if (iff) a neural network with one output neuron and a single layer
of input neurons (whose sum of weighted activation values are fed to the output neuron) can serve as a perfect detector
for the positive instances of that data set.
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Figure 10: (Top Left) A simple neural network with 2 inputs and one output node. (Top Right) The step activation
function for the output node, z. (Middle) An instantiation of this network with real values for the weights and threshold.
(Bottom Left) The border (line) and region (area above the line filled in with small dots) represented by the network
and expressed by equation 3. (Bottom Right) The separation of positive and negative instances of the concept detected
by neuron z.
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Interestingly enough, a data set need not be large nor exceptionally complex to be non-linearly separable. For example,
as shown in Figure 11, simple boolean functions of two variables can evade linear separability. Whereas AND and OR
are linearly separable, XOR is not.

To build an ANN detector for XOR, one needs a network with 3-layers: input, middle and output, as shown at the top
of Figure 12. The middle layer consists of AND nodes that detect each of the two precise instances of XOR, while the
output layer computes the OR of the middle-layer outputs. Clearly, this is not a very satisfying example of a general
solution, since each of the 2 instances requires special treatment, i.e. a dedicated detector is required for each.

Building detectors for more complex functions, by hand, can be an arduous process, but if several lines can be drawn
to separate the data into positive and negative instances, then a straightforward procedure using multiple layers does
the job, as detailed in Appendix (appendix reference). However, the tedious nature of this process indicates why all
serious ANN users employ automated learning algorithms to train their networks, i.e. to find the proper connection
weights.

3.1 Sidebar: Sigmoids and Fuzzy Borders

The form of the output neuron’s activation function will not help to bend the border line to separate the data. Rather,
a more complex function such as a sigmoid only adds a grey region on each side of the border line: an area in which
positive and negative instances are difficult to differentiate. This is illustrated in Figure 13. Clearly, any netz value that
pushes the sigmoid upward (toward the red region or beyond) is a better candidate for concept membership than one
that maps to the base of the sigmoid slope(yellow), but a precise border for concept membership, as in the case of a
step function, is absent.

(END OF SIDEBAR)

In well-trained ANNs, the salient concepts (embodied in detector-neuron behavior), whether easily comprehensible to
humans or not, work together with the concepts embodied by other detectors to achieve an effective overall function-
ality. Unfortunately, reductionist attempts to explain that functionality in terms of sequences of neural firings can be
extremely difficult, because the meanings of those firings (in terms of the concepts detected by the neurons that fire)
can be complex or diffuse.

There is no simple solution to this problem, but one can get a sense for a detectors preferred concept by examining
the weights on all incoming connections. As shown in Figure 14, if the input patterns are faces, then the weights for
a hidden-layer neuron can be projected back onto the plane of the input image (with pixel intensity corresponding to
weight strength, relative to the other input weights to the same neuron). The resulting image gives a visual summary of
the face that most strongly excites the detector neuron. This technique is commonly used in explaining the workings
of the immediate downstream layer to the input layer of an ANN. When the input data is not of a visual form, such
as acoustic- or infrared-sensor data, then the visualizations of preferred concepts are equally easy to produce in visual
graphic form (using the same process as above) but typically harder for humans to interpret.

A classic example of this decoding process for face-recognition ANNs is found in [1], where interesting, almost eerie,
facial holons are the preferred stimuli of hidden-layer neurons. These holons have no direct resemblance to any of the
input faces, but appear to contain a potpourri of features from several of the original faces. One look at these holons
provides convincing evidence that the concepts embedded in automatically-trained ANNs have few counterparts in
natural language.
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Figure 11: (Left) Cartesian plots of 3 standard boolean functions, where True = +1 and False = -1. (Right) Simple ANN
detectors for the 4-element data sets for AND and OR. The borders (lines) corresponding to the activation conditions
for these ANNs are drawn as long, double-arrowed lines on the cartesian plots. Since XOR is not linearly separable,
no simple ANN detector exists; a multi-layer network is needed.
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Figure 13: An illustration of the imprecision of class membership decisions incurred by the use of a sigmoidal activa-
tion function in a detector neuron. (Top Left) A basic sigmoidal curve with a multi-colored bar paralleling the upward
slope. This bar color-codes the strength of class membership (where yellow is low and red is high) for a given netz
value. (Top Right) The detector neuron, z, with an unspecified activation function but a threshold of 3. (Bottom) A
crisp separation (given by the orange line) versus a fuzzy differentiation (given by the region between the yellow and
red lines) produced in the cartesian plane as a result of a step activation function versus a sigmoidal activation function
for z. In the case of the sigmoidal, the threshold of 3 is the netz value that maps to the middle of the upward slope of
the curve (in the top left diagram).
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Figure 14: Deciphering the preferred input of a particular hidden node, B. (Top) Sketch of a neural network used for
facial recognition. The weights on incoming connections to neuron B indicate those features of the image toward
which B is most sensitive. (Bottom) Based on the incoming weights, a dream face for neuron B can be constructed,
i.e. a face that would cause node B to fire strongly.
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3.2 Principle Component Analysis

By properly tuning synaptic weights, a neural network can achieve an intelligent balance between orthogonalization
and sparsification. In fact, Hebbian Learning can produce networks that realize a simple version of principle compo-
nent analysis: they differentiatiate (orthogonalize) along the high variance component(s) and abstract (sparsify) along
the rest. Thus, the network, as a pattern detector/classifier, separates input patterns based on the features that have the
most variance in the sample population; and these are often considered the most significant features in a classification
task. For example, when organizing a group of people to perform a complex task composed of many diverse subtasks
- such as playing a team sport, giving a concert, or planning the economy of a large city - the manager normally over-
looks low-variance features of individuals, such as the age of junior-high band members, and focuses on high-variance
properties, such as the particular instrument a teenager plays. These sources of diversity are normally the salient pieces
in the organizational puzzle.

Formally, the principle components of a data set are vectors that capture the highest amounts of variance in that data.
If the data set has two attributes, student age and instrument tone (for the junior-high band members), then we expect
little variance in age but considerable variance in tone. The principle component vector of this data will then have a
large bias (reflected in a large vector-component value) toward tone, with a much smaller value for age.

One very significant discovery of ANN research is the following:

If (a) the values of a data set are scaled (to a common range for each feature such as [0, 1]) and
normalized by subtracting the mean vector from each element, (b) the modified data values are fed into
a single output neuron, z, and (c) the incoming weights to z are modified by general Hebbian means
(wherein the correlation between input values and z’s activation level have a direct influence upon weight
change), then z’s input-weight vector will approach the principle component of the data set.

An important detail is the simple mathematical fact that the border between regions carved out by a single output
neuron is perpendicular to the weight vector. This is easily shown by the following derivation:

xwx + ywy ≥ tz↔ y≥−wx

wy
x+

tz
wy

(5)

This defines a region1 whose borderline has the slope −wx
wy

. Then, any vector with slope +
wy
wx

is perpendicular to that

border. Since neuron z’s incoming-weight vector is 〈wx,wy〉, it has slope +
wy
wx

and is therefore perpendicular to the
borderline. This implies that the border will separate the data set based on those factors with highest variance.

Consider the general significance of this property in the context of another simple example. In Figure 15, the instances
of a hypothetical data set consist of two attributes: gray-scale color and size. Further, assume that the instances either
involve mice or elephants. Since both mice and elephants are often gray in color, their gray-scale values will be similar,
whereas their sizes will differ considerably, as the upper plot in the figure partially indicates - the actual difference is
5 or 6 orders of magnitude.

First, scale each feature value to lie within a small range, such as [0, 1]. Next, compute the average vector, which is
the vector of the independent averages of each scaled feature (color and size) across the full data set; it is depicted as
a dark diamond in Figure 15. Next, normalize each scaled data point by subtracting this average from it. This yields
scaled, normalized data points, shown at the bottom of the figure.

1Of course, if wy is a negative value, then our derivation would involve a switch of the inequality, but the slope and location of the border line
remains the same
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Now, assume that a simple output neuron (z) with two inputs (x and y), one coding for size and the other for gray-scale
color, were trained on this data. Postponing (for a moment) the details, if this training involved Hebbian learning,
then the input-weight vector for z would become tuned to something akin to the nearly-horizontal, green arrow at
the bottom of Figure 15. This vector contains a large x component and a small y component - not because elephant
sizes are so large, but because the variance in size between mice and elephants is so much larger than the variance in
color. Remember that we’ve already subtracted out the average vector, so if all animals in the data set were large (i.e.,
elephant sized), then our normalized x values would be small.

Since the borderline vector (for the concept detected by z) is perpendicular to z’s weight vector (as explained earlier),
it resembles the nearly-vertical, orange arrow at the bottom of Figure 15. This border separates positive from negative
examples of z’s concept, and the groups that it most clearly differentiates are small animals (e.g., mice) and large ones
(e.g., elephants). That is, the neuron will only fire on data points from one of those categories, not both. It detects the
most significant difference in the data set: the principle component.

If the data set consisted solely of African elephants (the largest species of land animal), then the weight variance
would be greatly reduced, compared to the mice-elephant scenario. This would reduce the extreme horizontality of
the weight vector, thus reducing the verticality of the borderline, possibly to a level at which neuron z would appear
to primarily differentiate between light and dark animals. If the variances in color and size were of similar magnitude,
then the borderline (perpendicular to the weight vector, determined by Hebbian Learning) might only differentiate
between concepts that, to a human observer, seem useless, such as very large, light-gray animals versus moderately
large, dark-gray animals.

To see how Hebbian Learning nudges weight vectors in the direction of the principal component, consider a quanti-
tative version of the mice-elephant scenario. First, all inputs to an ANN should be scaled to within the same range,
such as [0, 1] or [-1, 1] to insure that each feature has an equal opportunity to affect the behavior of the network, both
during and after learning.

Assume an initial data set (size, gray-scale) consisting of the six raw data points shown in Table 2. The data points are
then scaled and normalized, as described in the figure. The values in the rightmost column are then fed into an ANN
with 2 inputs (one for size and one for color) and one output.

Animal Raw Data Scaled Data Normalized Data
Mouse (0.05, 60) (0, 0.6) (-0.27, -0.04)
Mouse (0.04, 62) (0, 0.62 (-0.27, -0.02)
Mouse (0.06, 68) (0, 0.68) (-0.27, 0.04

Elephant (5400, 61) (0.54, 0.61) (0.27, -0.03)
Elephant (5250, 66) (0.53, 0.66) (0.26, 0.03)
Elephant (5300, 69) (0.53, 0.69) (0.26, 0.05)

Table 2: A hypothetical data set consisting of 3 mice and 3 elephants, with features being size (in kg) and gray-scale
color (in the range 0 (black) to 100 (white)). The data are first scaled to the ranges (0, 10,000), for size, and (0,100),
for color. They are then normalized by subtracting the average vector (0.2700, 0.64).

Assume that the initial weight on both connections is a small positive value, 0.1. Also assume that the activation
function for the output node is straightforward linear scaling: the activation level directly equals the sum of weighted
inputs. Finally, assume the following Hebbian learning rule:

4wi = λxiy (6)

where xi is the activation level of the ith input node, y is the activation level of the output node, wi is the weight on the
arc from the ith input to the output node, and λ is the learning rate, which we assume to be 0.2.
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Figure 15: (Above) A sketch of hypothetical data points taken from mice and elephants, where each point consists
of size and color attributes. No scale is specified, although it would have to be logarithmic to capture the huge
discrepancy in size. The average data point/vector (dark diamond) appears in the middle. (Below) After scaling and
then subtracting the average vector from each data point, the plots of these scaled, normalized data points straddle the
x and y axes. When a simple neural network is trained (using Hebbian Learning) on these normalized data points,
the weight vector of the ANNs output node would show a strong bias toward size, since it has the highest variance.
This produces a very horizontal weight vector, and thus a very vertical borderline to separate the positive and negative
instances of the concept detected by the output neuron.
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As shown in Table 3, the changes to the weight between xsize and the output are much larger than those from xcolor.
Hence, after one round of batch learning - No weights actually change until after each data point has been processed
and its recommended change is recorded - their will be an increase in wsize that is nearly 20 times larger than the
increase in wcolor. After several rounds of learning, wsize will completely dominate the detector’s weight vector.

Why did this dominance occur? In looking at the data of Figure 3, note the order-of-magnitude difference in the
absolute values of the scaled, normalized size values compared to those of the color values. Remember that this no
longer reflects any bias stemming from the fact that elephants are so large; it arises solely due to the large variance
in size between mice and elephants compared to the small variance in color between the two animal species. This
variance imbalance entails that the size value will dominate the color value during each of the 6 runs of the ANN.
Hence, the output value will have the same sign and general magnitude as the size input. Since the Hebbian learning
rule multiples these two values (along with λ ), and since they have the same sign, the weight change will be positive.

Conversely, the color input may or may not match the sign of the output, incurring positive and negative weight
changes with nearly equal probability. Furthermore, the small magnitude of the color value will restrict the size of
those weight changes. Hence, wcolor will change in small increments, both positive and negative, whereas wsize will
change in larger increments, all positive.

Input (Size, Color) Output δwsize δwcolor

(-0.27, -0.04) -0.031 +0.0017 +0.0002
(-0.27, -0.02) -0.029 +0.0016 +0.0001
(-0.27, 0.04) -0.023 +0.0012 -0.0002
(0.27, -0.03) +0.024 +0.0013 -0.0001
(0.26, 0.03) +0.029 +0.0015 +0.0002
(0.26, 0.05) +0.031 +0.0016 +0.0003

Sum weight change: +0.0089 +0.0005

Table 3: The result of training a 2-input, 1-output ANN on the scaled, normalized data of Table 2, using a simple
Hebbian learning rule. It is assumed that the training is done in batch mode such that none of the weight changes are
applied to the network until each data point has been processed.

The general implications of this rather specific technical detail are very significant:

If the detectors of a network modify their input-weight vectors according to basic Hebbian princi-
ples, then, after training, the activation levels of detectors can be used to differentiate the input patterns
along the dimensions of highest variance. Hence, those detectors will differentiate between objects (or
situations) that are most distinct relative to the space of feature values observed in the training data.

As an example, if an ANN is trained on human and cat faces, then it would probably learn to fire (an output) on only
one or the other species, not both - certainly a sensible way to partition the data set. Conversely, if the ANN were only
trained on human faces, then the separation would occur along another dimension (or combination thereof) of high
variance, such as male versus female, black versus caucasian, or maybe happy versus angry. The beauty lies in the fact
that the ANN figures out the proper combination of discriminating factors, even if that combination evades concise
formulation in human language.

4 Neuroarchitectures to Realize Effective Distributed Coding

As described above, the often-touted memory-capacity advantages of distributed coding are frequently exaggerated in
the context of associative neural networks, due to content-addressable functionality typically desired of such systems.
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However, organisms derive substantial benefits from distributed codes in terms of generalization (derived from pattern
sparsification).

Figure 16 abstractly illustrates this fundamental advantage of a distributed code. Assume that an organism’s flight
response is driven by a single motor neuron, X, at the bottom of the figure. Tuned to trigger on the firing pattern
101110 of its upstream neighbors, X will probably also trigger on similar patterns, such as 101100 and 001110, which
involve many of the same active neighbors. This makes great, life-preserving, sense. A gazelle that only flees from
tigers with exactly 7 stripes cannot expect to live very long. The ability to generalize/sparsify sensory patterns such
that many map to the same successful behavior(s) is paramount to adaptation, intelligence, and, ultimately, survival.

X

1 1 001
1

Run!!

101110 ≈ 101100 ≈ 001110 

Figure 16: Illustration of a distributed code (and several similar codes) that stimulates a motor neuron.

Distributed coding in networks of simple neurons provides this flexibility as a by-product. Via synaptic change, neu-
rons become tuned to fire on particular combinations of afferent stimuli, but not necessarily those exact combinations.
As long as the net input to the neuron exceeds a threshold, it fires. So as long as the network uses distributed coding,
and the detector neuron maintains a threshold that prevents it from firing on all-too-sparse input patterns, the detector
should easily generalize over many dense distributed codes and thus fire in many (similar) situations. This is a huge
advantage of distributed memory systems composed of simple nodes joined by plastic links.

So the use of distributed codes involves tradeoffs, and a key question is whether a neural system can somehow avoid
their pattern-corrupting dangers while still taking advantage of their generalizing power? The brain appears to have
found a way.

First of all, note that the distributed afferent patterns on the dendrites of Figure 16 do not necessarily originate from a
pattern-associating layer. These afferents neurons may have very little influence upon one another. Although advan-
tages of incorporating them in such a layer would include the ability to complete partial patterns, a) the disadvantages
of interference and memory corruption could quickly override the positive effects, and b) neuron X may not require a
completed afferent pattern to fire; anything reasonably close to the original pattern, that it has learned to detect , may
work fine.

In short, the brain may exploit dense, distributed codes at various sites without having to store (and thus retrieve
from partial patterns) many of them within a common sub-population of neurons. The brain may reserve associative
memories for only relatively sparsely coded information.

But clearly humans (and other animals) have complex memories that a) involve thousands, if not millions, of neurons,
and b) are retrievable from partial instantiations of themselves. How might this work?

Three brain regions, cerebellum, basal ganglia and hippocampus, all give some hints of a solution, as recognized by
Marr [6, 7] and later elaborated by Rolls and Treves [11]. Each of these areas contains an entry-level layer of neurons
that exhibit very competitive interactions: when active, they either directly, or via interneurons, inhibit their neighbors.
This leads to very sparse coding at these entry layers, since only a relatively small subset of neurons can be active at
the same time. However, fan-in to these layers can still be high (as it is in the basal ganglia and hippocampus). Thus,
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a dense distributed code in the space of afferents compresses to a sparse code within the competitive layer.

If this competitive layer then feeds into an associative network, the latter will only be expected to store and recall
sparse codes, which, as we have seen above, can be achieved with little interference. This is precisely the case in the
hippocampus, where the dentate gyrus serves as a competitive layer which then sends afferents to CA3, which, with
its high degree of internal (recurrent) connections, appears optimally designed for associative pattern processing.

Figure 17 illustrates this basic combination of layers. Dense distributed codes are detected by neurons in the competi-
tive layer, with ample flexibility to generalize across similar dense codes - just as the neurons of artificial competitive
networks often fire on all vectors in the neighborhood of their prototype. Competition leads to sparse coding, since
only a few neurons are active at any one time, and these sparse patterns are sent to the associative layer, which uses
Hebbian learning to strengthen the synapses between co-active cells.
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Figure 17: Using a competitive layer to sparsify dense distributed codes, which are then sent further to an associative
layer.

Thus, the sparsification of one layer by another normally involves an expansion in layer size, a concept known as
expansion recoding. As detailed in Appendix ??, a sparse layer needs many orders of magnitude more neurons than an
upstream dense-coding layer, if the former is to faithfully detect patterns in the latter. Figure 18 portrays this general
topology, which is evident in both the hippocampus and cerebellum [11].

4.1 Pattern Processing with Dense Distributed Codes

Figure 17 shows how a sparsely-coding competitive layer can serve as an interface between a densely-coded and a
sparsely-coded region, the latter of which can then perform associations with reduced interference. However, as men-
tioned above, densely-coded regions may also require pattern-completing functionality. Since interference becomes
a major problem with densely-coded layer coding, equipping that layer with a thick network of recurrent excitatory
connections seems impractical. Alternatively, if the dense layer can transfer its partial patterns to a sparse layer, which
performs relatively interference-free pattern completion, then recurrent links from the sparse to the dense layer could
reinstate the complete dense pattern. This basic architecture appears in Figure 19, where dense coding occurs in a
weakly associative layer, i.e. one containing a relatively low number of intra-layer excitatory connections 2 .

2A justification that sparse coding reduces inference appears in Appendix (appendix reference)
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Figure 18: Basic illustration of expansion recoding between a densely-coded layer and sparsely-coded, competitive
layer, with considerably more neurons.

Consider a dense pattern, Pd , presented to the upper layer of Figure 19. Assume that Pd consists of two component
patterns, C1 (the 4 active neurons on the left) and C2 (the 3 active neurons on the right). Competitive layers often
learn to detect recurring subpatterns, so if C1 and C2 are frequent components of dense patterns, then such dedicated
detectors (the two filled orange circles in the competitive layer) can easily emerge. These, in turn, send low-fanout
afferents to the lower associative layer, which processes sparse codes produced by the competitive layer. In the figure,
low fanout is represented as a 1-1 correspondence between the two layers.

In the lower associative layer, a high level of internal recurrent connections facilitates the synaptic coupling of coactive
neurons via standard Hebbian learning. Thus, the two active nodes (dark green nodes in the bottom layer), which
essentially represent C1 and C2, become linked such that either can stimulate the other, where strong linkage is denoted
by the thick, dotted blue lines between two neurons in Figure 19.

To complete this circuit, neurons of the strong association layer must link back to neurons representing the individual
parts of C1 and C2. Thus, when either of these fire, they can activate C1 or C2 in its entirety. These inter-layer feedback
links are drawn as dotted red lines in Figure 19.

With all of these layers and links in place, completion of a densely-coded pattern proceeds as follows. Assume that
a sizeable portion of C1 enters the upper layer. This can fire the detector for C1 in the competitive layer, which then
sends strong excitation to its corresponding neuron (which also represents C1) in the strong association layer. There,
the neuron for C1 activates the neuron for C2, and now both neurons send feedback excitation to the upper-layer
neurons that constitute the complete versions of C1 and C2.

Figure 21 depicts this recall of a densely-coded pattern, while Figure 20 displays the circuitry need to store the pattern
Pd in the 3-layered network. The important additional feature in this figure is the tuning of recurrent connections from
the sparse lower (As) to the dense upper (Ad) associative layer. This involves Hebbian learning driven by coactivity
between the Ad neurons constituting C1 and C2; and the As neurons that represent each of those components.

This relatively elegant solution (believed to be employed by the brain, as discussed below) appears too good to be true.
After all, why should pattern-processing problems at one level be solved by a pattern processor at a different level?
How can all of the patterns in Ad be stored (and thus remembered) in As? This latter question is particularly difficult to
answer in the brain, since the region that most strongly corresponds to As, CA3 of the Hippocampus, has many orders
of magnitude fewer neurons than the standard Ad , which is the neocortex.

Clearly, As cannot store all of Ad’s possible patterns. However, if the patterns of Ad are biased such that they often
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consist of common subpatterns, then a) a competitive layer can detect these subpatterns, and b) a smaller, but more
densely interconnected associative layer can store links between these subpatterns. The key lies in the biased, strictly
non-random, nature of the pattern set; and living organisms inhabit a world chock full of these biasing regularities
(a.k.a. invariants). Most humans are not capable of remembering a large corpus of random patterns, but gifted individ-
uals or those with some training in memory techniques, can easily remember large collections of meaningful patterns,
in the sense that they consist of subpatterns that occur in everyday life.

Interestingly enough, patterns with common subpatterns are those most likely to cause interference in a distributed
memory. Hence, the basic repetitive nature of our sensory world may have forced evolution to design network memory
systems involving multiple layers of well-segregated competitive and associative functionalities.
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Figure 19: Illustration of the use of stacked competitive and associative layers to support pattern completion in dis-
tributed layers that use dense codes. The upper associative layer is weak due to the low number of internal excitatory
connections, while the lower associative layer is much stronger. Subpatterns in the dense codes of the upper layer
are detected in the competitive layer, which sends its sparse patterns to the lower associative layer, which can then
complete sparse partial patterns. Recurrent links from the lower to the upper associative layer enable single neurons
in the former to activate neuron assemblies in the latter.

4.2 Cortical-Hippocampal Interactions

In the mammalian brain, the interaction between cortex and hippocampus (see Figure 22) is believed to involve a
re-presentation of densely-coded cortical patterns as sparsely-coded sequences in CA3, a hippocampal region with
a very high level of intra-layer recurrence. The dentate gyrus (DG) serves as the competitive-layer entry point to
the hippocampus. This, along with the general pattern of convergent collaterals from the primary cortical areas to
the entorhinal cortex (EC) - the cortical gateway to the hippocampus - indicates that dense distributed codes in the
neocortex are greatly sparsified within the hippocampus.
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Figure 20: Storage (i.e. learning) of a dense distributed pattern (Pd) in a weakly associative layer (top green) with
the help of a competitive layer (middle orange) and a strong, sparsely-coded associative layer (bottom green). Filled
circles denote active neurons, and the numbers in each filled neuron indicate the time step at which they become
active. (Left) After the complete pattern is entered into the weaker associative layer, Ad , signals feed forward to the
competitive layer, where winner nodes have their active afferent synapses strengthened (thick dotted blue lines) by
Hebbian learning. The winners send their signals to corresponding neurons in the lower associative layer, As. (Right)
The synapses between coactive neurons in As become strengthened by Hebbian mechanisms (thick dotted blue lines).
In addition, feedback collaterals from As to Ad (thick red dotted lines) are strengthened when their presynaptic and
postsynaptic neurons are active, thus binding Ps, the sparse representation of Pd in As to Pd in Ad . On the right, some
connections from the left are removed for ease of readability.
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Figure 21: Pattern completion in a densely coded distributed layer (top green) with the help of a competitive layer
(middle orange), combined with a sparsely coded associative layer (bottom green), as in Figure 19. Filled circles
denote active neurons, and the numbers in each filled neuron indicate the time step at which they become active. (Left)
The partial pattern (P*) enters the top layer, Ad , at time 1. This stimulates a detector for the leftmost partial pattern in
the competitive layer at time 2. The competitive node then directly stimulates its counterpart in the lower association
network , As at time 3. (Right) At time 4, the simple two-node pattern is completed in As due to previously-learned
connections between these 2 neurons, which then send excitatory signals back to those neurons of Ad that consitute the
complete pattern (P). These feedback signals combined with the few recurrent synapses in Ad stimulate the remainder
of P’s neurons to activation at time 5.
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Figure 22: Overview of the hippocampus and its relationship to the cortex, which, for the purposes of this section, is
divided into the primary cortex and EC, which serves as the gateway to (and from) the hippocampus for the rest of the
cortex. The sizes of each area give a very rough indication of relative sizes between the different brain regions. For
example, CA3 contains fewer neurons than DG and CA1 and is much smaller than the primary cortex.

29



Return signals from CA3 to the cortex - through CA1, the subiculum and EC - allow the completion of dense codes
in the primary cortex after their corresponding sparse codes have been completed in CA3. After many instances of
CA3-assisted retrieval, a cortical pattern may become self-completing as the weaker associative capabilities of the
cortex eventually permit Hebbian learning between the various detailed components of the dense pattern.

One often-cited theory [8] posits that CA3 utilizes high recurrence and a high learning rate to quickly learn abstract
(hence sparse) patterns, while the cortex must rely on a much slower learning rate and lower recurrence. Thus, CA3
learns a sparse pattern quickly and then gradually offloads a denser version to the cortex via repeated recall, some of
which may occur during sleep and dreaming.

4.3 3rd-Order Emergence in the Brain

To review, the brain has evolved a topological structure - present in several areas - that performs expansion recoding. In
general, this helps reduce interference between activation patterns. When the expansion recoding level pipes its outputs
to a second, sparse-coding, associative layer, (As), and when that layer can feed back to the densely-coding entry level
(Ad), the resulting circuit enables Ad to gradually tune its synapses to become an effective pattern-processing machine.
For the patterns that it has learned, Ad no longer needs help carrying out the duties of a content-addressable memory:
it can complete partial patterns.

Essentially, an associational network relies upon 2nd-order emergence to learn and reproduce patterns, but doing
so accurately becomes difficult when patterns begin to interfere with one another. One can argue that 3rd-order
emergence, as supported by a multi-leveled topology such as the cortico-hippocampal loop, solves the problem: the
sparse patterns learned in CA3 have the power to recreate their corresponding dense patterns in the cortex. A key role
of the hippocampus is producing these correlations between sparse CA3 patterns and denser cortical patterns. In other
words, the hippocampus builds representations of cortical patterns, and these CA3 patterns generate their cortical
counterparts by priming a 2nd-order emergent process. During waking hours, this re-creation is aided by sensory
input, but during dreaming, the sparse patterns mange quite well on their own, though their cortical correlates tend to
be noisy.

The hippocampus directly nurtures 3rd-order emergence by combining two 2nd-order emergent layers into a complex
circuit. Many brain regions build correlations between neural populations, but CA3 appears to be one of the most
prolific pattern-learning areas. A layer with so many recurrent connections should produce very strong internal corre-
lations, and these are a much better basis for high inter-layer correlation. Consequently, the hippocampus is the queen
of the neural match makers.

5 The Vital Context of Neural Representation

Analogies between computers and brains frequent the science literature, although less so now than in AI’s adolescence.
Some significant differences between the two, such as the parallel-versus serial nature of their computations, have
blurred (with the ubiquity of parallel computing). But others cannot be ignored. As discussed in an earlier chapter,
the hardware-software distinction appears to have no direct counterpart in the brain, since the code run by neurons is
fully distributed across the brain and intimately tied to the synapses, which, as physical components of neural circuitry,
would seem to mirror hardware (although their dynamic nature might earn them the label of softwire). So you cannot
just pull the code out of a brain and transfer it to another. But if not the code, what about the data? What about the
knowledge, the representations?

As this chapter shows, the data is no less engrained in the neural hardware than the program is. A neural activation
pattern make little sense outside of the brain, but it gets even worse. In a GOFAI system, a chunk of information, such
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as a logical axiom, can be passed among different modules via an internal operation that typically involves copying
its bit-representation into different locations; and each module interprets those bits the same way. In a neural system,
transfer by copying is rare. Instead, one k-bit pattern in region R1 may correlate with an m-bit pattern in region
R2 such that the 2 patterns essentially represent one another. The presence of one will, in some contexts, lead to
the emergence of the other. However, any attempt at directly imposing the k-bit pattern into R2 and expecting it to
mean the same thing (or anything) there seems as likely as tossing vials of DNA onto a floor and expecting them
to square dance together. Even internally, the meanings of activation patterns are entirely location dependent; they
require re-interpretation at every level. Neural networks don’t store knowledge; they embody it.

Science programs (and science fiction movies) often tease the imagination with projections of future technologies that
can copy all thoughts from a brain and load them into another brain, whether natural or artificial, thus producing a
mental clone. Though the process of recoding a hundred trillion synapses is mind-boggling enough, it would not, in
all likelihood, yield anything close to a cognitive copy. The patterns (and attractors in synaptic space that promote
them) derive little meaning from their basic structure, but from their relationships to one another and (most relevant to
cloning claims) the body and world. Brain, body and world are so tightly intertwined that isolated cerebral activation
patterns reveal only an inkling of the actual knowledge and intelligence of the agent itself.
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