
ar
X

iv
:1

80
8.

08
99

9v
1 

 [
cs

.D
L

] 
 2

7 
A

ug
 2

01
8

Harnessing Historical Corrections to build Test

Collections for Named Entity Disambiguation∗

Florian Reitz

Schloss Dagstuhl LZI, dblp group, Wadern, Germany

florian.reitz@dagstuhl.de

Abstract

Matching mentions of persons to the actual persons (the name dis-
ambiguation problem) is central for several digital library applications.
Scientists have been working on algorithms to create this matching for
decades without finding a universal solution. One problem is that test
collections for this problem are often small and specific to a certain col-
lection. In this work, we present an approach that can create large test
collections from historical metadata with minimal extra cost. We apply
this approach to the DBLP collection to generate two freely available test
collections. One collection focuses on the properties of defects and one on
the evaluation of disambiguation algorithms.

Keywords – name disambiguation, historical metadata, dblp

1 Introduction

Digital libraries store list of names which refer to real world persons (e.g., the
authors of a document). There are many applications that need a map between
these names and the real world persons they refer to. E.g., a project might want
to create author profiles which list all publications of a person. These profiles
are useful for users who are looking for works of a specific person. They are also
the basis of many approaches that try to measure the performance of researchers
and institutions. Mapping author mentions and persons is difficult. The name
itself is not well-suited to refer to a person and many metadata records provide
limited additional information such as email and institution name. Therefore,
many profiles list publications from different persons (a homonym defect) or
publications of one person are listed in different profiles (a synonym defect).
Correct author disambiguation in bibliographic data has been the subject of
intensive research for decades. For an overview on algorithmic approaches, see

∗This is a preprint of a paper accepted at TPDL 2018. The TPDL paper is available at:

https://doi.org/10.1007/978-3-030-00066-0_4

1

http://arxiv.org/abs/1808.08999v1
https://doi.org/10.1007/978-3-030-00066-0_4


the survey by Ferreira et al. [3]. For manual strategies, see the paper by Elliot[1].
New approaches are proposed every year.

Many approaches concentrate on reclustering the existing data. I.e., the
algorithm is provided with all mentions of persons and clusters these mentions
into profiles. An advantage of this approach is that potentially wrong profiles
can be ignored. The problem is that reclustering ignores disambiguation work
which has already been invested into the collection. For a living collection,
we can expect a significant amount of manual and automatic work invested in
the correctness of data. With an increasing number of open data projects, we
can expect more user participation in the disambiguation process (e.g., users
use ORCID to manage a clean publication profile). We will also see larger
collections as sharing and incorporating data will become easier. For a large
and volatile collection, reclustering might be algorithmically unfeasible. An
alternative disambiguation task is to identify profiles which are likely defective.
These profiles can then be corrected automatically or checked by staff or in a
crowd-sourcing framework. One problem of developing algorithms for this task
is the lack of suitable test collections for evaluation. Traditional test collections,
such as as the set provided by Han et al.[4] consist of mentions with the same
name without any known author profiles. This is not useful for the defect
detection task. In addition, there are the following problems: (1) Classic test
collections are small. See Müller et al.[9] for an overview. The largest collections
discussed have several 10 thousand mentions, while collections like dblp list more
than 10 million mentions. This makes classic collections unusable for runtime
evaluation. (2) Classic test collections cannot be used to study properties of
defects. A study of properties can reveal new approaches to match mentions
and persons. It can also show differences between collections which need to
be considered. Known defects can also be used as training set, e.g., for deep
learning applications. In this work, we describe two alternative test collections
which try to overcome these problems.

Creating a classic test collection is expensive, mainly because it requires
manual cleaning of author profiles. However, for a large digital library, we can
expect that a number of defects have already been corrected. We extract these
corrections from historical data and use them as examples of defective data.
Since the defects have been corrected, we also know a (partial) solution to the
defect. Based on the defects, we build two test collections. Our goal is to
provide as much contextual information for each defect as possible. One of the
collections focuses on individual defects. The other test collection focuses on the
defect detection task in a large collection itself. Harnessing historical corrections
has several advantages: (1) The collections we obtain are large compared to
traditional test collections and created with minimal additional cost. (2) Unlike
classic test collections, our approach is well-suited to study the properties of
defects. This can lead to a better understanding of quality problems and can be
used when designing new disambiguation algorithms. As defect corrections can
be triggered in may different ways, we obtain a large variety of defects. (3) The
framework we present can be used for all digital libraries that provide historical
metadata. This might provide us with specific test collections which can be

2



used to adjust algorithms to the properties of individual collections. The main
contributions of this work are:

• We present a framework to create test collections for the defect detection
task from historical data.

• We use the framework to create an open test collection based on the dblp
collection.

After discussing related work, we describe how to build test collections from
historical defect corrections (Section 3). In Section 4, we apply the framework
to dblp and discuss possible applications of the test collections.

2 Related Work

Building test collections for the name disambiguation task is difficult. The usual
approach is to select a small potion of data from a collection and clean it thor-
oughly. This requires manual work which leads to small test collections. E.g.,
the often used test collection by Han[4] consists of about 8400 mentions (which
roughly equals publications), the KISTI collection by Kang et al.[6] consists of
about 32000 mentions. For comparison, the dblp collection listed about 10 mil-
lion mentions in March 2018. For an overview, see the work of Müller et al.[9].
Most test collections consist of two sets, the challenge which is presented to the
algorithms and the solution which contains the correct clustering of mentions
into profiles. Algorithms are judged by how close they can approximate the so-
lution. E.g., for Han et al., the challenge consists of publications from authors
with common names (such as C. Chen). The authors first name is abbreviated
to increase the difficulty. Data that could not be manually disambiguated was
discarded. Most test collections provide the basic bibliographic metadata such
as title, name of coauthors and publication year. This creates compact test col-
lections but provides very little context information. E.g., the collections only
contain partial information on the coauthors because most of their publications
are not part of the test collection. This might be unfair to algorithms that use
the coauthor network to disambiguate authors.

Since manual disambiguation for test collections is expensive, there have
been several attempts to harness work which has already been invested into a
collection. Reuther[12] compared two states of dblp from different years to see if
publications had been reassigned between author profiles. Reuther gathered the
publications of these profiles for a test collection that focuses on corrections of
synonym defects. Momeni andMayr[8] build a test collection based on homonym
profiles in dblp. When dblp notices that a name is used by several authors,
the author mention is appended by a number. E.g., Wei Wang 0001, ..., Wei

Wang 0135. Momeni and Mayr build a challenge by removing the suffixes. The
full name (including suffix) is used as solution. Müller et al.[9] describe how
a test collection can be built by comparing the manual disambiguation work
of different projects. For all these approaches, the data presentation is record
based like for the classic test collections.

3



3 Extracting Test Collections from Historical

Metadata

Assume that publications for a person John Doe are listed in author profiles J.
Doe and John Doe. If that defect is uncovered, it will most likely be corrected.
Many collections attempt author disambiguation when data is added. In the
example, this did not work which indicates that this defect is not trivial which
makes it interesting for defect detection algorithms. We use the state of the
collection before the correction as challenge to see if an algorithm can detect
the presence of a problem and possibly propose a solution. Using historical
corrections has a number of advantages: (1) The corrections can come from a
number of different sources which can include defects with different properties.
E.g., for dblp, a significant amount of defects are reported by uses[11]. (2) At
the moment of the correction data was available that might not be available
today. In 2014 Shin et al. [14] reconsidered the data of Han et al. from
2005[4] and determined that more than 22% of their gold standard could not
be confirmed. In 2005 that verification was probably possible (web pages went
off line, publishers become defunct ...). We will now describe an extraction
approach for historical defects and how to build test collections on top of them.
In Section, 4 we show how this approach can be applied to the dblp bibliography
to create test collections.

3.1 Identifying Corrections in Historical Data

For our approach, we need suitable historical metadata. Locating this data
turned out to be difficult. If a project provides historical data, it is often nec-
essary need to use secondary data sources like backup files. For these data,
we cannot expect to capture every correction separately. Instead, we obtain
observations of the data. The points of observation depend on the underlying
data, e.g., the times the backups were created. If observations are far apart and
edits frequent, we might not be able to extract individual corrections. Figure
1 shows an example with edits and observations. In this case, we obtain four
states, A, . . . , D even tough there are more edits. E.g., edits 3,4 and 5 might be
merged into one observed correction. For each dataset, we need to determine
if the observation allows for reasonable correction analysis. E.g., for dblp, we
use a collection[5] that has nightly observations. This granularity allowed for
reliable correction extraction. For the Internet Movie Database (IMDB), we
obtained weekly observations1. This made interpreting the data difficult.

If there is sufficient historical data, we can extract corrections. Most digital
libraries provide interpretations of their person mentions. We call this interpre-
tation a profile. A profile contains the mentions (publications) that the digital
library thinks are created by the person represented by the profile. The interpre-
tation can be based on the name directly (as in dblp) or based on an identifier
assigned to the mention. We require that the interpretation is contained in the

1ftp://ftp.fu-berlin.de/pub/misc/movies/database/frozendata

4

ftp://ftp.fu-berlin.de/pub/misc/movies/database/frozendata


Figure 1: Observer-based framework for historical metadata.

historical metadata. I.e., we can reconstruct historical profiles. As explained
above, some profiles will be defective (i.e., they deviate from the real person’s
work list). Let t1 < t2 two time points of observation and let p〈t〉 be the set of
mentions that is assigned to profile p at time t. We can observe two types of
relations between profiles from different observations:

Definition 1 Let p1, p2 be two profiles. We call p1 reference predecessor of

p2 if ∃ m ∈ p1〈t1〉 : m ∈ p2〈t2〉. We call p2 We call p1 consistent predecessor

of p2 if p1〈t1〉 ⊆ p2〈t2〉.

There are two candidates for a defect correction:

1. A profile p has two or more reference predecessors.

2. A profile p has two or more reference successors.

In case (1), p was represented by multiple profiles before. If we assume that p
is correct now, the successors where synonyms. Similarly, in case (2) we observe
the correction of a homonym defect.

We can categorize modifications to profiles as follows:

Definition 2 Let p be a profile and t1 < t2 two time points of observation. Let

P := p1, . . . , pk be the reference predecessors of p with respect to t1 and t2. We

call P a merge group if k > 1 and ∀1 ≤ s ≤ k : ps〈t2〉 = ∅ ∨ ps = p.

Between time t1 and t2, mentions in p1, . . . , pk were reassigned to p. These
profiles, except p itself, do not have any mention left. We can consider a similar
correction for homonyms:

Definition 3 With p, t1 and t2 as above. Let P := p1, . . . , pk be the reference

successors of p with respect to t1 and t2. We call P a split group if k > 1 and

∀1 ≤ s ≤ k : ps〈t1〉 = ∅ ∨ ps = p.

For a merge, we demand that the merged profiles are no longer referenced in
the library. Similarly, we demand for a split that new profiles do not contain a
mention at t1. In addition to that, we need to consider a combination of merge
and split, a distribute. In this case, a mention is moved from one profile to
another without creating an empty profile. Distributes are different from merges
and splits as both profiles are represented before and after the correction. An
algorithm which aims to correct this defect must determine which mentions are

5



to be reassigned. If both profiles exist before the correction, the algorithm can
use their properties to determine if a mention needs reassignment. This might
be easier than detecting completely merged mentions.

Merge and split groups can combine multiple corrections. This can create
artifacts with the observation framework. Assume that there are two merge
corrections p1, p2 → p1 and p1, p3 → p1. If these operations occur between two
observations, we obtain a merge group p1, p3 → p1. If the observation occurs
between the two corrections, we obtain two merge groups. To avoid splitting
groups that are related, we group merge and split groups if they occur in direct
succession and have at least a common profile.

3.2 Structure of Test Collections

The extracted corrections can now be transformed into test collections. Clas-
sic test collections list the records of the disambiguated authors. This creates
compact collections however it provides very little context information. For our
test collections, we have the following goals:

1. The collection should allow to study the properties of defects. In particu-
lar, they should provide the context information which is commonly used
by disambiguation algorithms such as parts of the coauthor network.

2. The collection should facilitate the development of algorithms that search
for defects in an existing name reference interpretation. As opposed to
collections that aim at algorithms that completely recluster author men-
tions.

3. The collection should support a runtime-based evaluation.

4. The collection should be of manageable size.

To meet these goals, we create two collections that both differ from classic
collections: A case-based collection that lists the individual corrections as small
graphs. An embedded collection that integrates the detected defects into the
total collection. We now discuss the general structure of the two collections.

3.2.1 Case-based Collection

The case-based collection consists of isolated test cases that are directly derived
from the observed corrections. For each correction, we provide two files. One
file contains the state of the digital library directly before the correction, the
other file contains the state right after the correction. The primary purpose
of the case-based collection is to study the properties of defects. This requires
that a certain context is provided. E.g., many disambiguation algorithms use
common coauthors as evidence that there is a relation between two mentions.
Classic test collections provide this information but they give no information
about the relations between the coauthors. Consider Figure 2 with synonymous
profiles p1, p2, p3, coauthors c1, . . . , c5 and journals j1 and j2. p1 and p2 are

6



Figure 2: Relations between metadata entities as a graph.

strongly related by two common coauthors and a journal. p3 is not in a direct
relation to p1 and p2. The black solid lines represent the data available from a
classic test collection. The dashed lines represent contextual data that is not in
the test collection. c2 and c5 collaborated. However, that relation is defined by
publications outside the test collection. Studying these indirect relations might
help to develop a better disambiguation algorithm.

Obviously, we cannot provide the complete metadata context (e.g., the com-
plete coauthor graph) for each test case. To provide at least local context, we
code the test case as a graph. Consider again Figure 2. Assume that p1, . . . , p3
profiles are part of a merge group. We create a graph as follows: We add nodes
for all corrected profiles (p1, . . . , p3). We call these nodes primary nodes. We
add a node for each entity that is in relation to a primary node (e.g., the coau-
thors). The set of available entities depends on the underlying digital library.
Other entities might be conferences/journals or common topics. We then add
an edge for each known relation between these nodes. The context is provided
by the edges between the nodes that are no primary nodes. The types of re-
lations depend on the data in the digital library. The edges can be weighted
which makes it possible to convey the strength of a relation without providing
lots of information.

We encode the graphs in XML. For each edge and node, we can provide
properties in (key, value) form. The following example shows a document-type
node that has title and publication year information. A similar notation is used
for edges.

<node label="DOCUMENT" id="doc1">

<property key="year" value="1999"/>

<property key="title" value="The Ultrasonic Navigating."/>

</node>

3.2.2 Embedded Collection

The defects of the case-based collection are too small to pose a runtime challenge.
They also do not provide a full context. Some disambiguation algorithms require
a full coauthor graph[15][2] which is not available from the local context of the
individual cases. The embedded collection solved these problems. It consists of

7



two components: (1) A full copy of the collection’s metadata at a certain point,
provided as metadata records. (2) An annotation of detected defects in this
version which are corrected later. Algorithms need to process the full collection
but have also access to all data.

Since we provide the full version of the metadata, it is not possible to use a
dense observation framework. I.e., for detecting defect corrections, we need to
compare states of the collection which are some time apart (e.g., a full year).
This will create a sufficient number of defects to be annotated. However, the long
periods between the states of the data set makes overlapping corrections more
likely. Assume that we observe a distribute operation between author profiles
p1 and p2 (publications are moved between these profiles). Further assume
that profile p3 is merged into profile p1. For a dense observation framework,
there are many different ways in which these operations can be performed.
In a slightly different situation, we might have observed a distribute between
p2 and p3 and a merge of p1 into p3. For a sparse observation framework,
these corrections will most likely be merged together. This does not affect the
presence of a defect (which should be detected by the algorithm) but makes the
embedded collection unsuited to analyze individual corrections. The metadata
of the collection can be provided in any way, e.g., as metadata records. Unlike
the case-based collection, this might make importing the data easier for some
approaches. The annotations are provided as simple XML-Files. The example
below shows a small split case. doc1, doc2, p1 and p2 are identifiers taken from
the underlying collection.

<source>

<profile authorid="p1">

<signature pkey="doc1" pos="1" surface="B. Doe"/>

<signature pkey="doc2" pos="0" surface="B. Doe"/>

</profile>

</source>

<target>

<profile authorid="p1">

<signature pkey="doc1" pos="1" surface="Bob A. Doe"/>

</profile>

<profile authorid="p2">

<signature pkey="doc2" pos="0" surface="Bob B. Doe"/>

</profile>

</target>

3.3 Biases and Limitations

The test collections we present here are different from the classic test collections
as they do not provide a full gold standard. This means: (1) They provide
examples of errors but have no examples of guaranteed correct data which could
be used to detect false positives. (2) The corrections might be partial. See below
for an example. In Section 4, we will very briefly discuss scenarios in which the
collections can be used. It is important to note that these collections will not

8



replace classic test collections but complement them. E.g., to study defects or
to evaluate runtime. Apart from the evaluation method itself, our approach has
intrinsic biases which cannot be fully mitigated. In this section, we will discuss
the most relevant points. Each of these threats to validity must be considered
before undertaking a study based on historical defect corrections.

Assumption: Corrections improve data quality. We assume that a correc-
tion replaces defective data values with correct values. Obviously, there is no
guarantee for that as the changes related to the correction can also introduce
errors. The likelihood of introducing new errors depends on the data curation
process of the individual projects. Some projects use trained teams while others
rely on direct or indirect user contribution. On the other hand, user contribu-
tion might be vandalism. In any case, we will obtain a number of partially or
fully defective corrections.

Assumption: Corrections completely remove defects. A correction might
remove a defect only partially. Assume that one profile contains publications
from author A, B and C. A correction (a split) might extract the publication
of A but leave the publications of B and C behind. The original profile is still
a homonym. If we build a test collection based on partial corrections, we must
allow for a case where an algorithm finds the whole correction. This means that
there is no gold standard solution to our test collection as there is for classical
test collections. We need to define specific evaluation metrics to handle this
situation. In case of a study of defect properties, we must also consider that
some corrections are only partial.

Assumption: The corrected defects are representative of the set of all
defects. Our approach is biased by the way defects are detected in the underlying
data set. Assume that a project applies a process which is good at finding
defects with property A but can barely handle defects with property B. In this
case, defects with property A would be overrepresented and many defects with
property B would be missing. It is also possible that a project is aware of a
defect but does not fix it because it has a low priority. Again, it is unclear how
community contribution can mitigate this problem. For all studies, we must
assume that error classes exist that are significantly underrepresented.

4 Test Collections based on dblp

We apply the framework described above to the dblp bibliography2. The collec-
tions are published under an open license[10]. The dblp project gathers meta-
data for publications in computer science and related fields. In March 2018,
there were 4.1 million publications and 2 million profiles. Dblp creates nightly
backups of its data which are combined into a historical data file[5]. This file
can be used to trace modifications to the metadata records between June 1999
and March 2018.

2https://dblp.org

9

https://dblp.org


Table 1: Number of identified corrections for different observation frameworks.

observation dates split merge distribute all

2013, 2017 2.207 19,175 5,346 26,728
2015, 2017 1.536 13,393 3,968 18,897
2017, 2018 978 8,608 2,666 12,252

4.1 Application of the Framework

Dblp has two mechanisms to match author mentions with observed entities. (1)
The name itself. The name might be appended with a numeric suffix such as
Wei Wang 0050. (2) Authority records which map names to person entities.
The authority records are part of the historical data. I.e., we can track changes
to the authority data as well.

We use three different types of entities for the graphs of the case-based collec-
tion: Document, Person and Venue (journal or conference series) The primary
function of Document is to provide the standard metadata such as title and year
of publication. We model six different relations. Created/Contributed (Person
→ Document, unweighted): The person is author/editor of that document/pro-
ceedings. Co-Created/Co-Contributed (Person ↔ Person, weighted by number
of common papers): The persons are authors/editors of at least one common
paper. Created-At/Contributed-At (Person → Venue, weighted by number of
papers): The person is author of a paper that appeared at the venue / editor
of a proceedings of the venue. We decided to model editorship and authorship
separately as they might have different implications for an algorithm. Coauthor-
ship usually implies cooperation while being coeditors (e.g., of a proceedings)
can simply mean that the authors are active in the same field. Weights are
computed for the last date before the correction was observed. I.e., the weights
represent the data which would have been available to an algorithm at that time.
We provide all properties for the documents that are listed in dblp. However,
we use the most recent data instead of the data available at the point of correc-
tion. The main reason is to provide current weblinks to the publication pages
of publishers. Today, these links are mostly resolved via DOI. An algorithm
can use the links to get additional information from the web. The case-based
collection contains 138,532 merges, 16,532 splits and 55,362 distributes.

For the embedded test collection, we considered the state of dblp at the
beginning of a year. Table 1 lists the number of corrections for some combi-
nations of different dates. We do not consider states of dblp from before 2013
as the collection was small at that time and the number of possible corrections
is negligible. The number of corrections is small compared to the case-based
collection. The primary reasons are (1) short-lived defects that were introduced
to the collection and corrected between the observations are missing. (2) As
discussed above, we might merge multiple corrections into one.

10



Table 2: Comparison of abbreviation.based similarity. The table shows percent-
age of pairs which are considered similar.

consider case ignore case

project initial + last last initial + last last

DBLP merge+dist 76.51% 78.56% 77.10% 79.10%
IMDB merge+dist 46.24% 56.64% 47.15% 57.57%

4.2 Possible Applications

As stated above, both test collections do not provide full solutions of the name
disambiguation task. Therefore, classic evaluations such as cluster alignment
cannot be used to evaluate the approaches. However, the embedded collec-
tion can be used to test runtime performance and the general ability to detect
known defects in a collection. A simple evaluation strategy would be: (1) Use
classic test collections to obtain precision/recall/cluster alignment in a fully
solved scenario. (2) Check if the algorithm can handle the size of the embedded
test collection. (3) Measure how many defects in the embedded collection are
detected. This will filter out slow approaches and provide insides if the quali-
tative performance from the classic test collection translates to the embedded
collection.

The case-based collection can be used to study properties of defects. As an
example, we considered how suitable names are for simple blocking approaches.
Blocking is a preprocessing step which partitions the data set into manageable
bins. The idea is that similar names are placed in the same bin[4][7]. Some ap-
proaches use a similar idea to compute similarity between mentions[13]. Block-
ing is mostly recall-based so we can use the case-based collection to measure the
performance. We consider two variations of name-based blocking: (1) Only the
last name part is considered. E.g., from John Doe use Doe. (2) The last name
and the initial of the first name is used. Middle names are ignored. From John

A. Doe we use J. Doe. We use both approaches with and without considering
case. For merge and distribute cases, we compute how many name pairs are
placed in the same block. Table 2 shows the result for dblp, compared to results
from a test collection we built on IMDB. The data for dblp are from an older
version of the test collection which covers the period 1999-2015.

Both blocking approaches are designed with the name abbreviation problem
in mind. The approaches perform well for dblp with hit rates between 76.51%
and 79.1%. This is due to the large number of abbreviated names in academic
publications. While a hit rate of 0.791 is far from optional – of all name pairs
21% do not end in the same block – it might be acceptable. However, the results
for IMDB are much worse, indicating that blocking strategies that work well for
one project are not suited for other libraries.

11



5 Conclusion

In this work, we described how historical defect corrections can be extracted
and processed into test collections for the name disambiguation task. The col-
lections do not permit classical evaluation but provide insights into the nature
of defects and allow evaluation of aspects which have been difficult to test so
far. At the moment, it is still difficult to find usable historical data for most
collections. We hope that with an increasing number of open collections, this
problem will be solved. At that point, it will be possible to create individual
test collections. Using different collections will provide more stable algorithms
that do not depend on properties of the underlying data.

Acknowledgements

The research in this paper is funded by the Leibniz Competition, grant no.
LZI-SAW-2015-2. The author thanks Oliver Hoffmann for providing the data
on which the dblp test collection is built and Marcel R. Ackermann for helpful
discussions and suggestions.

References

[1] S. Elliot. Survey of author name disambiguation: 2004 to 2010. 2010.
obtained from http://digitalcommons.unl.edu/libphilprac/473 (ac-
cessed Apr. 2018).

[2] X. Fan, J. Wang, X. Pu, L. Zhou, and B. Lv. On Graph-Based Name
Disambiguation. J. Data and Information Quality, 2(2):10, 2011.

[3] A. A. Ferreira, M. A. Gonçalves, and A. H. F. Laender. A brief survey of
automatic methods for author name disambiguation. ACM Sigmod Record,
41(2):15–26, 2012.

[4] H. Han, H. Zha, and C. L. Giles. Name disambiguation in author citations
using a K-way spectral clustering method. In JCDL ’05: Proc. of the Joint

Conf. on Digital Libraries, Denver, CO, USA, pages 334–343. ACM, 2005.

[5] O. Hoffmann and F. Reitz. hdblp: historical data of the dblp collection,
Apr. 2018.

[6] I. Kang, P. Kim, S. Lee, H. Jung, and B. You. Construction of a large-scale
test set for author disambiguation. Inf. Process. Manage., 47(3):452–465,
2011.

[7] M. Levin, S. Krawczyk, S. Bethard, and D. Jurafsky. Citation-based boot-
strapping for large-scale author disambiguation. JASIST, 63(5):1030–1047,
2012.

12

http://digitalcommons.unl.edu/libphilprac/473


[8] F. Momeni and P. Mayr. Evaluating Co-authorship Networks in Author
Name Disambiguation for Common Names. In TPDL ’16: 20th Int. Conf.

on Theory and Practice of Digital Libraries, Hannover, Germany, volume
9819 of LNCS, pages 386–391. Springer, 2016.

[9] M. Müller, F. Reitz, and N. Roy. Data sets for author name disambiguation:
an empirical analysis and a new resource. Scientometrics, 111(3):1467–
1500, 2017.

[10] F. Reitz. Two Test Collections for the Author Name Disambiguation Prob-
lem based on DBLP, Apr. 2018.

[11] F. Reitz and O. Hoffmann. Did They Notice? - A Case-Study on the Com-
munity Contribution to Data Quality in DBLP. In TPDL ’11: Proc. of the

Int. Conf. on Theory and Practice of Digital Libraries, Berlin, Germany,
volume 6966 of LNCS, pages 204–215. Springer, 2011.

[12] P. Reuther. Namen sind wie Schall und Rauch: Ein semantisch orientierter

Ansatz zum Personal Name Matching. PhD thesis, University of Trier,
Germany, 2007.

[13] A. F. Santana, M. A. Gonçalves, A. H. F. Laender, and A. A. Ferreira. On
the combination of domain-specific heuristics for author name disambigua-
tion: the nearest cluster method. Int. J. on Digital Libraries, 16(3-4):229–
246, 2015.

[14] D. Shin, T. Kim, J. Choi, and J. Kim. Author name disambiguation using
a graph model with node splitting and merging based on bibliographic
information. Scientometrics, 100(1):15–50, 2014.

[15] C. Sun, D. Shen, Y. Kou, T. Nie, and G. Yu. Topological Features Based
Entity Disambiguation. J. Comput. Sci. Technol., 31(5):1053–1068, 2016.

13


	1 Introduction
	2 Related Work
	3 Extracting Test Collections from Historical Metadata
	3.1 Identifying Corrections in Historical Data
	3.2 Structure of Test Collections
	3.2.1 Case-based Collection
	3.2.2 Embedded Collection

	3.3 Biases and Limitations

	4 Test Collections based on dblp
	4.1 Application of the Framework
	4.2 Possible Applications

	5 Conclusion

