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We propose a general method called convolution-variation separation (CVS) to enable efficient optical imaging
calculations without sacrificing accuracy when simulating images for a wide range of process variations. The
CVS method is derived from first principles using a series expansion, which consists of a set of predetermined basis
functions weighted by a set of predetermined expansion coefficients. The basis functions are independent of the
process variations and thus may be computed and stored in advance, while the expansion coefficients depend only
on the process variations. Optical image simulations for defocus and aberration variations with applications in
robust inverse lithography technology and lens aberration metrology have demonstrated the main concept of
the CVS method. © 2013 Optical Society of America
OCIS codes: (110.5220) Photolithography; (110.4980) Partial coherence in imaging; (110.1758) Computational

imaging.
http://dx.doi.org/10.1364/OL.38.002168

Process variations, such as defocus and lens aberrations,
always exist in real lithography processes [1]. Thus, fast
and accurate lithography simulation considering process
variations, especially the optical ones, is highly desirable.
For optical imaging in Hopkins’ theory, it is rather expen-
sive to calculate the four-dimensional transmission cross
coefficient (TCC) and integrals [2–4]. Although the sum-
of-coherent-systems (SOCS) method [5] and the optimal
coherent approximation [6] achieve a significant speedup
by eigenanalyzing the TCC and neglecting small eigenval-
ues, the TCC kernels are usually obtained under the
nominal (best) process condition. For a different process
condition, a simulator may have to repeat the costly
eigendecomposition and mask-kernel convolutions.
In this Letter, we propose a general methodology called

convolution-variation separation (CVS) to speed up varia-
tional image simulations without sacrificing accuracy. The
optical image I�x; v� generated by a partially coherent
imaging system is represented by a bilinear form [7]

I�x; v� �
ZZ

t�x − x1; x − x2; v�o�x1�o��x2�dx1dx2; (1)

where x is the two-dimensional (2D) spatial coordinate,
v is a vector representing a combination of multiple proc-
ess parameters, o�x� is the mask transmittance function,
� denotes complex conjugation, and

t�x1; x2; v� � s�x1 − x2�p�x1; v�p��x2; v� (2)

is called the double-impulse response (DIR) function [7],
whose Fourier transform is the familiar TCC. Here
s�x1; x2� is the mutual intensity function of the source,
and p�x; v� is the point spread function (PSF) of the
optical system with process variations.
A physical quantity dependent on both a spatial coordi-

nate and other parameters can be represented by a sum
of multiple series expansion terms, with each term con-
sisting of one function dependent only upon the spatial

coordinate and another function dependent only upon
the other parameters. Such a method of separation of var-
iables has been employed in a variety of applications
[8]. In the present context, the PSF function with process
variations in Eq. (2) may be expanded into a series,

p�x; v� �
X
m

am�v�pm�x�; (3)

where the mth basis PSF pm�x� is dependent only on x,
while the mth expansion coefficient am�v� is dependent
only on v. When such a variable-separated PSF is substi-
tuted into Eq. (2), we obtain a variable-separated DIR.
Alternatively, the DIR itself may be expanded as

t�x1; x2; v� �
X
m

cm�v�tm�x1; x2�; (4)

with a suitably chosen set of linearly independent basis
functions fcm�v�g, which are usually orthogonal polyno-
mials or simply powers of the variation variables, while
for each m, tm�x1; x2� is the variable-separation counter-
part of cm�v�, called the mth basis DIR function. Each
tm�x1; x2� may be singular-value decomposed (SVD) as

tm�x1; x2� �
X
n

μmnϕmnφ
�
mn; (5)

where μm1 ≥ μm2 ≥ … > 0 are singular values, and
fϕmn�x�g and fφmn�x�g are the corresponding left and right
singular vectors. Consequently, we have the following for
the image intensity I�x; v� under process variations:

I�x; v� �
X
m

cm�v�Im�x�; (6)

Im�x� �
X
n

μmn�ϕmn ⊗ o�x���φmn ⊗ o�x���; (7)
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where Im�x� is called themth basis image that is indepen-
dent of process variations, and⊗ denotes 2D convolution.
When all fcm�v�g are all real valued, the basis DIR
functions tm�x1; x2� are all Hermitian, and fϕmng and
fφmng coincide, so the number of necessary convolutions
is cut in half, and the intensity reduces to the familiar
form as a sum of squares [9,10]. In practical numerical cal-
culations, the physical quantities become matrices and
vectors, and the series expansions are truncated. Fortu-
nately, their rapid convergence enables good approxima-
tion with a relatively small number of terms.
The significance of Eqs. (6) and (7) is that the fixed

mask-kernel convolutions are fully separated from the
variable process parameters and can be precomputed,
so that optical images under a large range of process var-
iations can be quickly calculated. This is the fundamental
rationale behind the CVS methodology [11]. If L is the
number of discrete sampling points of process variations,
the conventional approaches need to generate and use L
sets of process models. Let T�1� denote the computa-
tional complexity (computing time) for simulating one
sampling point of process variations, and let T�L� be
the total computational complexity for simulating L sam-
pling points of process variations; then the following for-
mula holds true for all conventional approaches:

T�L� � T�1� × L: (8)

Let T0 denote the computational complexity of convolu-
tions obtaining all the basis images Im�x� in Eq. (7), and
let δT denote the extra complexity for summing up the
series in Eq. (6). It is usually the case that δT ≪ T0
and T0 ≈ T�1� × �M � 1�, where M is the truncation or-
der of Eq. (6). Using the method of CVS, the total com-
plexity for simulating one sampling point of process
variations is TCVS�1� � T0 � δT , whereas the cost for
simulating L sampling points of process variations would
be

TCVS�L� � T0 � δT × L: (9)

The superior scalability of CVS is apparent when
L > M � 1.
Our first example demonstrating the CVS method is in

the robust inverse lithography technology (ILT) [12]. For
a clearer demonstration, we consider only the variations
of defocus h. By simply choosing cm�v� in Eq. (6) as
the mth power of h, we may approximate a defocused
image as the familiar truncated Taylor series I�x; h� �
ΣM
m�0h

mIm�x�, and the mth basis image Im�x� can be
efficiently calculated by Eq. (7) or by a fitting approach
[13,14]. This Taylor expansion serves as a good example
for the general CVS method, as it clearly demonstrates
the spirit of separating the basis images from the variation
coefficients. For an essentially real-valued mask, the basis
images for odd defocus terms vanish [13], and it suffices to
set the truncation order as M � 4 for image errors on the
order of 10−4.
We formulate the robust ILT problem as

ô�argmin
o

�XL
k�1

�ζ�hk��‖sig�I�x;hk��− ~o‖22���ηR�o�
�
; (10)

where ô is the optimized mask, ~o is the desired pattern,
ζ�·� is the density of a prescribed distribution of defocus,
fI�x; hk�g are the images corresponding to L sampled
defocus values fhkg, R�o� is a quadratic regularization
term with a weight η to promote mask manufacturability,
sig�·� is a sigmoid function modeling the resist effect, and
‖ · ‖2 is the L2 norm. Equation (10) may be solved by an
optimization algorithm [15], in which the forward lithog-
raphy simulation is iterated many times and each itera-
tion requires calculating a total of L defocused images.

We performed robust ILT simulations for a desired pat-
tern with critical dimension (CD) of 45 nm. As shown in
Fig. 1(a), the desired pattern is commonly encountered
in the design of static random-access memory (SRAM)
circuits. The pattern had a size of 401 × 401 pixels with
a pixel size of 2.5 nm. The partially coherent illumination
source was set as annular with σout∕σin � 0.8∕0.6, a
wavelength of 193 nm, and an NA of 1.35. The steepest-
descent algorithm was used to solve Eq. (10), with the
regularization weight η � 0.02. We adopted two focus
blur functions to model focus variations [16]. One is a
Gaussian distribution ζ1�h� � exp�−h2∕2σ2� with σ �
20 nm to characterize the stage vibration, and the other
is a modified Lorentzian function ζ2�h� � Γ2∕�Γ2 � j2hj2�
with Γ � 30 nm to represent the laser bandwidth. By
sampling from −80 to 80 nm at each 2 nm, we obtained
a set of L � 81 defocus points for each defocus distribu-
tion. As shown in Figs. 1(b) and 1(c), the optimized mask
patterns differ for different defocus distributions, and
are dramatically different from that under the nominal
condition as shown in Fig. 1(d). This correlates the high
sensitivity of ILT solutions to changes in parameters
and process assumptions. It is particularly interesting to
note that subresolution assist features (SRAFs) were
generated in Figs. 1(b) and 1(c) but not in Fig. 1(d). One
reason might be that a defocused image has a lower
image intensity compared to an in-focus image, and thus
SRAFs tend to be produced to increase the light passing
through and to compensate for the loss of intensity.
Figure 2 depicts the edge placement error (EPE) and the
corresponding exposure-defocus (E-D) trees by setting
the EPE errors to within �10% of the CD targets. As
expected, the optimized mask patterns by the robust ILT
achieve smaller overall EPEs and improved E-D windows
compared to that optimized for the nominal condition
only. This is because the robust ILT further considers
the process variations. The robust ILT benefits greatly
from the CVS method for efficient simulations. With
L � 81 defocus sampling points in each ILT iteration,
the runtime was T�L� � 415 s for the conventional
approach, while it reduced to only TCVS�L� � 15.43 s
when using the CVS method. These simulations were

(d)(c)(b)(a)

Fig. 1. (a) Desired SRAM pattern, and the optimized mask
patterns obtained after 100 iterations under (b) defocus varia-
tion with a Gaussian distribution, (c) defocus variation with a
modified Lorentzian distribution, and (d) nominal condition.
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conducted with running MATLAB codes on an HPZ800
Workstation with 3.46 GHz Opteron processors.
Our second example demonstrating the CVS method is

an efficient simulation of imaging under lens aberrations.
We consider Zernike coefficients up to the Kth-order,
so v � Z � �Z1; Z2;…; ZK �T is a K × 1 vector represent-
ing process variations. Under small aberrations, the
aberration-induced intensity may be approximated by a
Z-power series truncated to the first-order,

I�x;Z� � I0�x� � I1�x� � I0�x� �
XK
k�1

ZkI
�k�
lin �x�; (11)

where I0�x� is called the aberration-free basis image, and
I�k�lin �x� represents the linearly aberrated basis images.
Equation (11) is in CVS form, as the Zernike coefficients
are separated from their corresponding basis images. For
a given mask at a given defocus, all these basis images
can be precomputed and stored in advance, according
to Eq. (7). This has motivated us to develop a method
for small aberration metrology in partially coherent sys-
tems by using a single defocused intensity measurement
I�x;Z�, in which the basis image I�k�lin �x� is defined as the
aberration sensitivity for the kth Zernike order, and is
used for reconstructing the corresponding Zernike
coefficient.
Figure 3 depicts one of the image intensity simulation

results for a binary mask pattern as shown in Fig. 3(a).
The induced aberration is shown in Fig. 4(a) by choosing
Zernike coefficients Z2 to Z37 randomly from the range
[−15mλ, 15 mλ], which leads to a total aberration ranging
from −60 to 60 mλ. The partially coherent illumination
source was set as quadrupole with σout∕σin � 0.8∕0.4∕45°,
a wavelength of 193 nm, an NA of 0.8, and a defocus of
180 nm. As shown in Fig. 3, the normalized intensity error
is on the order of 10−4, which indicates a good accuracy of
image calculations for small aberrations. Figure 4 depicts
the wavefront reconstructed from the measured Zernike
coefficients up to the 37th order, showing a satisfactory
accuracy on the order of 2 mλ for wavefront metrology.
However, this accuracy degrades when the aberration
becomes larger; i.e., the reconstructed aberration error
is more than 2 mλ when the aberration surpasses 60 mλ.
To improve the accuracy, we need to consider further the
higher Zernike cross terms, such as the quadratic terms
[17,18], by truncating the Z-power series to a higher order.
In conclusion, a general CVS formulism is proposed for

efficient simulations of imaging under process variations.
The CVS advantage is clearly demonstrated in examples

of robust ILT and aberration metrology, and is expected
to strengthen in applications with more process variables.
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Fig. 2. (a) EPEs and (b) E-D trees of the optimized mask pat-
terns obtained, respectively, under the nominal condition and
defocus variations with the Gaussian and the modified Lorent-
zian distributions.
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Fig. 3. Binary mask pattern and image intensity results under
the aberration shown in Fig. 4(a).
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Fig. 4. Example of aberration reconstruction. (a) Unknown
aberration and (b) reconstructed aberration, and (c) wavefront
error.
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