
Differential geometry-based solvation and electrolyte
transport models for biomolecular modeling: a review.

Guo Wei Wei∗ Nathan A. Baker†

December 2, 2014

Abstract

This chapter reviews the differential geometry-based solvation and electrolyte transport for
biomolecular solvation that have been developed over the past decade. A key component of
these methods is the differential geometry of surfaces theory, as applied to the solvent-solute
boundary. In these approaches, the solvent-solute boundary is determined by a variational
principle that determines the major physical observables of interest, for example, biomolecular
surface area, enclosed volume, electrostatic potential, ion density, electron density, etc. Re-
cently, differential geometry theory has been used to define the surfaces that separate the mi-
croscopic (solute) domains for biomolecules from the macroscopic (solvent) domains. In these
approaches, the microscopic domains are modeled with atomistic or quantum mechanical de-
scriptions, while continuum mechanics models (including fluid mechanics, elastic mechanics,
and continuum electrostatics) are applied to the macroscopic domains. This multiphysics de-
scription is integrated through an energy functional formalism and the resulting Euler-Lagrange
equation is employed to derive a variety of governing partial differential equations for different
solvation and transport processes; e.g., the Laplace-Beltrami equation for the solvent-solute in-
terface, Poisson or Poisson-Boltzmann equations for electrostatic potentials, the Nernst-Planck
equation for ion densities, and the Kohn-Sham equation for solute electron density. Extensive
validation of these models has been carried out over hundreds of molecules, including proteins
and ion channels, and the experimental data have been compared in terms of solvation ener-
gies, voltage-current curves, and density distributions. We also propose a new quantum model
for electrolyte transport.
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I Background

Solvation is an elementary process in nature and is particularly essential to biology. Physically,
the solvation process can be described by a variety of interactions, such as electrostatic, dipolar,
induced dipolar, and van der Waals, between the solvent and solute. Due to the ubiquitous nature
of electrostatics and the aqueous environment common to most biomolecular systems, molecular
solvation and electrostatics analysis is significantly important to research in chemistry, biophysics,
and medicine. Such analyses can be classified into two general types: 1) quantitative analysis
for thermodynamic or kinetic observables and 2) qualitative analysis for general characteristics of
biomolecular solvation.

In general, implicit solvent models describe the solvent as a dielectric continuum, while the so-
lute molecule is modeled with an atomistic description.2–7 There are many two-scale implicit sol-
vent models available for electrostatic analysis of solvation, including generalized Born (GB),8–18

polarizable continuum19–25 and Poisson-Boltzmann (PB) models.3,4,26–29 GB methods are fast
heuristic models for approximating polar solvation energies. PB methods can be formally de-
rived from basic statistical mechanics theories for electrolyte solutions30–32 and therefore offer the
promise of robust models for computing the polar solvation energy.9,33,34 In many solvation anal-
yses, the total solvation energy is decomposed into polar and nopolar contributions. Although
there are many ways to perform this decomposition, many approaches model the nonpolar en-
ergy contributions in two stages: the work of displacing solvent when adding a hard-sphere solute
to solution and the dispersive nonpolar interactions between the solute atoms and surrounding
solvent.

One of the primary quantitative applications of implicit solvent methods in computational bi-
ology and chemistry research has involved the calculation of thermodynamic properties. Implicit
solvent methods offer the advantage of “pre-equilibrating” the solvent and mobile ions, thus effec-
tively pre-computing the solvent contribution to the configuration integral or partition function for a
system.6 Such pre-equilibration is particularly evident in molecular mechanics/Poisson-Boltzmann
surface area (MM/PBSA) models35–39 that combine implicit solvent approaches with molecular
mechanics models to evaluate biomolecule-ligand binding free energies from an ensemble of
biomolecular structures. The calculation and assignment of protein titration states is another
important application of implicit solvent methodology.40–43,43–51 Such methods have been used
to interpret experimental titration curves, decompose residue contributions to protein-protein and
protein-ligand binding energetics, examine structural/functional consequences of RNA nucleotide
protonation, as well as several other applications. Another application area for implicit solvent
methods is in the evaluation of biomolecular dynamics, where implicit solvent models generally are
used to provide solvation forces for molecular Langevin dynamics,52–57 Brownian dynamics,58–61

or continuum diffusion62–66 simulations. A major qualitative use of implicit solvent methods in
experimental work is the visualization and qualitative analysis of electrostatic potentials on and
around biomolecular surfaces.67–70 Visualization of electrostatic potentials was popularized by the
availability of software, such as Grasp,68 and is now a standard procedure for analyzing biomolecu-
lar structures with thousands of examples available in the literature, including ligand-receptor bind-
ing and drug design, protein-nucleic acid complexes, protein-protein interactions, macromolecular
assembly, and enzymatic mechanism analysis, among others. More complete descriptions of the
solvation process, solvation models, and various applications of solvation methods also can be
found in the literature.71–73 Typically, solvation models are tested against experimental data for
solvation free energies, titration and redox behaviors, or spectroscopic measures of local electric
fields. However, solvation models can also provide insight into molecular properties which cannot
be directly measured experimentally, including solute surface area and enclosed volume, electro-



static potential, and nonpolar solvation behavior. The properties derived from solvation models
are used in a variety of applications, including pH and pKa estimation, titration analysis, stability
analysis, visualization, docking, and drug and protein design. In addition, sophisticated models for
non-equilibrium processes, such as Brownian dynamics, molecular dynamics, kinetic models, and
multiscale models, may have a solvation model as a basic component.74–76

II Differential geometry-based solvation models

Most implicit solvent models require a definition of the solvent density and/or dielectric coeffi-
cient profile around the solute molecule. Often, these definitions take the form of analytic func-
tions18,77,78 or discrete boundary surfaces dividing the solute-solvent regions of the problem do-
main. The van der Waals surface, solvent accessible surface,79 and molecular surface (MS)80

are typically used for this purpose and have found many successful applications in biomolecular
modeling.81–88 Physical properties calculated from implicit solvent models are very sensitive to
the definition of the dielectric profile;89–92 however, many of these popular profile definitions are
ad hoc divisions of the solute and solvent regions of the problem domain based on assumptions
about molecular geometry rather than minimization of solute-solvent energetic interactions.

Geometric analysis, which combines differential geometry (DG) and differential equations,
has had a tremendous impact in signal and image processing, data analysis, surface construc-
tion,93–100 and surface smoothing.101 Geometric partial differential equations (PDEs),102 particu-
larly mean curvature flows, are popular tools in applied mathematics. Computational techniques
using the level set theory were devised by Osher and Sethian99,103,104 and have been further
developed and applied by many others.105–107 An alternative approach is to minimize the mean
curvature or energy functional of the hypersurface function in the framework of the Mumford-Shah
variational functional,108 and the Euler-Lagrange formulation of surface variation developed by
Chan and coworkers, and others.104,109–113 Wei introduced some of the first high-order geometric
PDEs for image analysis114 and, with coworker Jia, also presented the first geometric PDE-based
high-pass filters by coupling two nonlinear PDEs.115 Recently, this approach has been generalized
to a more general formalism, the PDE transform, for image and surface analysis,116–118 including
biomolecular surface generation.119

Geometric PDEs and DG theories of surfaces provide a natural and simple description for a
solvent-solute interface. In 2005, Wei and his collaborators, including Michael Feig, pioneered
the use of curvature-controlled PDEs for molecular surface construction and solvation analysis.120

In 2006, based on DG, Wei and coworkers introduced the first variational solvent-solute interface:
the minimal molecular surface (MMS), for molecular surface representation.121–123 With a constant
surface tension, the minimization of surface free energy is equivalent to the minimization of surface
area, which can be implemented via the mean curvature flow, or the Laplace-Beltrami flow, and
gives rise to the MMS. The MMS approach has been used to calculate both solvation energies
and electrostatics.1,123 Potential-driven geometric flows, which admit non-curvature-driven terms,
have also been proposed for biomolecular surface construction.124 While our approaches were
employed by many others125–128 for molecular surface analysis, our curvature-controlled PDEs
and the geometric flow-based MMS model proposed in 2005120,121,123,124 are, to our knowledge,
the first of their kind for biomolecular surface and electrostatics/solvation modeling.

Our DG theory of the solvent-solute interface can be extend into a full solvation model by in-
corporating a variational formulation of the PB theory129,130 as well as a model of nonpolar solute-
solvent interactions1 following a similar approach by Dzubiella, Swanson, and McCammon.131

We have implemented our DG-based solvation models in the Eulerian formulation, where the so-
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Figure 1: An illustration of differential geometric based solvation models. The minimum curvature
is mapped on the Laplace-Beltrami surface of protein penicillopepsin (PDB ID 2web).



lute boundary is embedded in the three-dimensional (3D) Euclidean space so evaluation of the
electrostatic potential can be carried out directly.71 We have also implemented our DG-based
solvation models in the Lagrangian formulation72 (see Fig. 1) wherein the solvent-solute interface
is extracted as a sharp surface and subsequently used in solving the PB equation for the elec-
trostatic potential. To account for solute response to solvent polarization, we recently introduced
a quantum mechanical (QM) treatment of solute charges to our DG-based solvation models us-
ing density functional theory (DFT).132 Most recently, Wei and coworkers have taken a different
treatment of non-electrostatic interactions between the solvent and solute in the DG based sol-
vation models so that the resulting total energy functional and PB equations are consistent with
more detailed descriptions of solvent densities at equilibrium.75,76 This multiscale approach self-
consistently computes the solute charge density distribution which simultaneously minimizes both
the DFT energy as well as the solvation energy contributions. The resulting model significantly
extends the applicability of our solvation model to a broad class of molecules without the need for
force-field parametrized charge terms. The resulting differential geometry implicit solvent model
has been tested extensively and shows excellent performance when compared with experimental
and explicit solvent reference datasets.1,71,72,75,132–136

As mentioned above, a parallel line of research has been carried out by Dzubiella, Hansen,
McCammon, and Li. Early work by Dzubiella and Hansen demonstrated the importance of the self-
consistent treatment of polar and nonpolar interactions in solvation models.137,138 These obser-
vations were then incorporated into a self-consistent variational framework for polar and non-polar
solvation behavior by Dzubiella, Swanson, and McCammon131,139 which shared many common
elements with our earlier geometric flow approach but included an additional term to represent
nonpolar energetic contributions from surface curvature. Li and co-workers then developed sev-
eral mathematical methods for this variational framework based on level-set methods and related
approaches140–142 which they demonstrated and tested on a variety of systems.143–145 Unlike our
Eulerian representation,71 level-set methods typically give rise to models with sharp solvent-solute
interfaces.

An immediate consequence of our models is that the surfaces generated are free of trouble-
some geometric singularities that commonly occur in conventional solvent-accessible and solvent-
excluded surfaces146,147 and impact computational stability of methods (see Fig. 2 for a smooth
surface profile). Addition, without using ad hoc molecular surfaces, both our solvation models
and the models of Dzubiella et al. significantly reduce the number of free parameters that users
must “fit” or adjust in applications to real-world systems.136 Our recent work shows that physical
parameters; i.e., pressure and surface tension, obtained from experimental data can be directly
employed in our DG-based solvation models to achieve an accurate prediction of solvation en-
ergy.135

In this chapter, we review a number of DG-based models. Initially, we discuss solvation mod-
els, i.e, nonpolar and polar solvation models at equilibrium. To improve the accuracy and make our
models robust, quantum mechanics is applied to the solute’s electron structure. As an important
extension, we also consider DG-based models for the dynamical processes at non-equilibrium
settings, including applied external electrical field gradients and inhomogeneous solvent concen-
tration across membrane proteins.

II.A Nonpolar solvation model

As discussed above, solvation free energy is typically divided into two contributions: polar and
nonpolar components. In one popular description, polar portion refers to electrostatic contributions
while the nonpolar component includes all other effects. Scaled particle theory (SPT) is often



used to describe the hard-sphere interactions between the solute and the solvent by including the
surface free energy and mechanical work of creating a cavity of the solute size in the solvent.148,149

The SPT model can be used in combination with other solute-solvent nonpolar interactions;
e.g.:71,74,131,150

GNP = γA+ pV +

∫
Ωs

Udr, r ∈ R3, (1)

where the first two terms are from SPT and the last term is the free energy due to solvent-solute
interactions. Here, A and V are the surface area and volume of the solute, respectively; γ is the
surface tension; p is the hydrodynamic pressure; U denotes the solvent-solute non-electrostatic
interactions; and Ωs is the solvent domain.

In our earlier work, we have shown that the surface area in Eq. 1 can be evaluated via a two-
dimensional (2D) integral for arbitrarily shaped molecules.123,124 For variation purposes, the total
free functional must be set up as a 3D integral in R3. To this end, we take advantage of geometric
measure theory by considering the mean surface area74 and the coarea formula:151

A =

∫ 1

0

∫
S−1(c)

⋂
Ω
dσdc =

∫
Ω
|∇S(r)|dr, r ∈ R3, (2)

where Ω denotes the whole computational domain and 0 ≤ S ≤ 1 is a hypersurface or simple
surface function that characterizes the solute domain and embeds the 2D surface in R3; 1 − S
characterizes the solvent domain.71 Using the function S, the volume in Eq. 1 can be defined as:

V =

∫
Ωm

dr =

∫
Ω
S(r)dr, (3)

where Ωm is the solute domain. Note that Ωs ∩ Ωm is not empty because the surface function S
is a smooth function, which leads to overlap between Ωs and Ωm domains. The last term in Eq. 1
can be written in terms of S as: ∫

Ωs

Udr =

∫
Ω

(1− S(r))Udr. (4)

Therefore, we have the following nonpolar solvation free energy functional:1,71,74

GNP [S] =
∫
{γ|∇S|+ pS + (1− S)U} dr (5)

which is in an appropriate form for variational analysis.
It is important to understand the nature of the solvent-solute non-electrostatic interaction, U .

Assume that the aqueous environment has multiple species labeled by α, and their interactions
with each solute atom near the interface can be given by:

U =
∑
α

ραUα (6)

=
∑
α

ρα(r)
∑
j

Uαj(r) (7)

where ρα(r) is the density of αth solution component, which may be charged or uncharged, and
Uαj is an interaction potential between the jth atom of the solute and the αth component of the
solvent. For water that is free of other species, ρα(r) is the water molecule density. In our earlier



work,71,72 we represented solvent-solute interactions using the Lennard-Jones potential. The full
Lennard-Jones potential is singular and can cause computational difficulties;71 however, Zhao has
proposed a way to improve the integration stability in a realistic setting for proteins.127 However,
further mathematical algorithms are needed for this class of problems. The Weeks-Chandler-
Anderson (WCA) decomposition of the potential, which separates the attractive and repulsive
components,152 was also found to provide a good account of the attractive dispersion interaction
in our earlier work.71,72

The interaction potential U can be further modified to consider additional interactions, such as
steric effects153 and alternate descriptions of van der Waals interactions.

The Euler-Lagrange equation is used in our variational approach. By variation of the energy
functional with respect to S, we arrive at an elliptic equation

∇ ·
(
γ
∇S
|∇S|

)
− p+ U = 0, (8)

where ∇ ·
(
γ ∇S|∇S|

)
is a mean curvature term as the surface tension γ is treated as a constant.

A standard computational procedure used in our earlier work121,123,124 involves converting Eq. 8
into a parabolic equation by introducing an artificial time variable:

∂S

∂t
= |∇S|

[
∇ ·
(
γ
∇S
|∇S|

)
+ VNP

]
(9)

where VNP = −p + U is a potential-driving term for the time-dependent problem. Equation 9 is a
generalized Laplace-Beltrami equation whose solution leads to the minimization of the nonpolar
solvation free energy with respect to the surface function S.

The accuracy of the nonpolar solvation model performance is crucial to the success of other
expanded versions of the differential geometry formalism. In particular, as the electrostatic ef-
fect and its associated approximation error are excluded, the major factor impacting the nonpolar
solvation model is the solvent-solute boundary, which is governed by the DG-based formalism.
Therefore, the nonpolar model provides the most direct and essential validation of the DG-based
models. In our recent work,1 the DG-based nonpolar solvation (DG-NP) model was tested using
a large number of nonpolar compounds. Table 1 presents a small portion of our results1 com-
pared with an explicit nonpolar model154 and experimental data.155 The solvation free energy is
decomposed into repulsive and attractive parts, showing dramatic cancellations. The predicted
total nonpolar solvation energies are in good agreement with experimental measurements. More
extensive validation of our DG-NP model can be found in an earlier paper.1

II.B Incorporating polar solvation with a Poisson-Boltzmann model

Most biomolecules are either charged or highly polarized; therefore, electrostatic interactions are
indispensable in their theoretical description. The energy of electrostatic interactions can be mod-
eled by a number of theoretical approaches, including Poisson-Boltzmann (PB) theory,3,4,26,27

polarizable continuum theory,20,156 and the generalized Born approximation.8,9 In our work, we
incorporate PB theory for the polar solvation free energy and optimize the electrostatic solvation
energy in our variational procedure.

Using the surface function S and electrostatic potential Φ, a PB model for the polar solvation
free energy can be expressed by:71,74

Gpolar =

∫ {
S
[
−εm

2
|∇Φ|2 + Φ %

]
+ (1− S)

[
−εs

2
|∇Φ|2 − kBT

∑
α

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1

)]}
dr,(10)
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Figure 2: An illustration of the one-dimensional projection of the profiles of S and 1 − S functions
along the x-axis.

Figure 3: The final isosurfaces of a nonpolar compound projected with the corresponding van der
Waals (vdW) potential for glycerol triacetate.1



where εs and εm are the dielectric constants of the solvent and solute, respectively, and % repre-
sents the fixed charge density of the solute. The charge density is often modeled by a point charge
approximation % =

∑
j Qjδ(r−rj), with Qj denoting the partial charge of the jth atom in the solute.

kB is the Boltzmann constant; T is the temperature; ρα0 denotes the reference bulk concentration
of the αth solvent species; and qα denotes the charge valence of the αth solvent species, which
is zero for an uncharged solvent component. In Eq. 10, the form of the Boltzmann distribution75 is
different from that featured in our earlier work.71,74

ρα = ρα0e
− qαΦ+Uα−µα0

kBT (11)

with µα0 being a relative reference chemical potential that reflects differences in the equilibrium

activities of the different chemical species, and thus their concentrations. The extra term e
− Uα
kBT in

Eq. 11 describes the solvent-solute interactions near the interface beyond those implicitly repre-

sented by S. Therefore, e−
Uα
kBT provides a non-electrostatic correction to the charge density near

the interface.
The resulting total free energy functional for the full solvation system was first proposed in

2012:75

GPB
total[S,Φ] =

∫ {
γ|∇S|+ pS + S

[
−εm

2
|∇Φ|2 + Φ %

]
+(1− S)

[
−εs

2
|∇Φ|2 − kBT

∑
α

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1

)]}
dr.

(12)

Note that the energy functional (Eq. 12) differs from that in our earlier work71,74 and that of Dzu-
biella et al.131,139 not only in terms of the Boltzmann distribution, but also in the solvent-solute
interactions (1 − S)U , which is omitted in the present form. As shown in Section III, the present
form is consistent with the DG-based Poisson-Nernst-Planck (PNP) theory at equilibrium. The
DG-based PNP model offers a more detailed description of solvent densities based on fundamen-
tal laws of physics. As a result, the formalism of the DG-based full solvation model should agree
with that of the DG-based PNP model at equilibrium.

The total solvation free energy in Eq. 12 is expressed as a functional of the surface function S
and electrostatic potential Φ. Therefore, the total solvation free energy functional can be minimized
with respect to S and Φ via the variational principle. Variation with respect to S leads to:

−∇ ·
(
γ
∇S
|∇S|

)
+ p− εm

2
|∇Φ|2 + Φ %+

εs
2
|∇Φ|2 + kBT

∑
α

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1

)
= 0. (13)

Using the same procedure discussed earlier, we construct the following generalized Laplace-
Beltrami equation:

∂S

∂t
= |∇S|

[
∇ ·
(
γ
∇S
|∇S|

)
+ VPB

]
, (14)

where the potential driven term is given by

VPB = −p+
εm
2
|∇Φ|2 − Φ %− εs

2
|∇Φ|2 − kBT

∑
α

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1

)
. (15)



As in the nonpolar case, solving the generalized Laplace-Beltrami equation (14) generates the
solvent-solute interface through the function S. Variation with respect to Φ gives the generalized
PB (GPB) equation:

−∇ · (ε(S)∇Φ) = S%+ (1− S)
∑
α

qαρα0e
− qαΦ+Uα−µα0

kBT , (16)

where ε(S) = (1 − S)εs + Sεm is the generalized permittivity function. As shown in our earlier
work,71,74 ε(S) is a smooth dielectric function gradually varying from εm to εs. Thus, the solution
procedure of the GPB equation avoids many numerical difficulties of solving elliptic equations with
discontinuous coefficients157–161 in the standard PB equation.

Equations 14 and 16 are solved for the surface function S and electrostatic potential Φ, re-
spectively. These coupled “Laplace-Beltrami and Poisson-Boltzmann” equations are the govern-
ing equation for the DG-based solvation model in the Eulerian representation. The Lagrangian
representation of the DG-based solvation model has also been derived.72 Both the Eulerian and
Lagrangian solvation models have been shown71,72 to be essentially equivalent and provide very
good predictions of solvation energies for a diverse range of compounds.

II.C Improving Poisson-Boltzmann model charge distributions with quantum me-
chanics

While our earlier DG-based solvation models resolved the problem of ad hoc solute-solvent bound-
aries, they depended on existing force field parameters for atomic partial charge and radius as-
signments. Most force field models are parametrized for a certain class of molecules or materials
which often limits their transferability and applicability. In particular, fixed partial charges do not
account for charge rearrangement during the solvation process.162–164 Therefore, a quantum sol-
vation model that can self-consistently update the charge density of the solute molecule during
solvation offers the promise of improving the accuracy and transferability of our DG-based solva-
tion model.

A quantum mechanical formulation of solute charge density can be pursued in a number of
ways. The most accurate treatment is the one that uses quantum mechanical first principle or ab
initio approaches. However, the ab initio calculation of the electronic structure of a macromolecule
is currently prohibitively expensive due to the large number of degrees of freedom. A variety of
elegant theories and algorithms have been developed in the literature to reduce the dimensionality
of this many-body problem.165–172 In earlier work from the Wei group, a density functional the-
ory (DFT) treatment of solute electron distributions was incorporated into our DG-based solvation
model.132 In this work, we review the basic formulation and present an improved DG-DFT model
for solvation analysis. Our goal is to construct a DG-DFT based solvation model that will signif-
icantly improve the accuracy of existing solvation models and still be orders of magnitude faster
than explicit solvent models.

DFT uses functionals of single-electron distributions to represent multi-electron properties so
that the total dimensionality is dramatically reduced. To combine DFT with our DG-based solvation
formulation, we define the kinetic energy functional as:

Gkin[n] =
∑
j

∫
S(r)

~2

2m
|∇ψj(r)|2dr (17)

where n is the total electron density, m(r) is the position-dependent electron mass, ~ = h
2π with h

being the Planck constant, and ψj(r) are the Kohn-Sham orbitals. The total electron density n is



obtained by:
n(r) =

∑
i

|ψi|2, (18)

where the summation is over all of the Kohn-Sham orbitals.
In the absence of external potentials, the electrostatic potential energy of nuclei and elec-

trons can be represented by the Coulombic interactions among the electrons and nuclei. There
are three groups of electrostatic interactions: interactions between nuclei, interactions between
electrons and nuclei, and interactions between electrons. Following the Born-Oppenheimer ap-
proximation, we neglect nuclei interactions in our DG-based model. Using Coulomb’s law, the
repulsive interaction between electrons can be expressed as the Hartree term:

Uee[n] =
1

2

∫
e2
Cn(r)n(r′)

ε(r)|r− r′|
dr′, (19)

where eC is the unit charge of an electron; ε(r) is the position-dependent electric permittivity; and
r and r′ are positions of two interacting electrons. Equation 19 Uee[n] involves nonlinear functions
of the electron density n which implies the need for iterative numerical variational methods, even in
the absence of solvent density. The attractive interactions between electrons and nuclei are given
by:

Uen[n] = −
∑
I

e2
Cn(r)ZI

ε(r)|r−RI |
(20)

where ZI is the charge of the nucleus. The total potential energy functional is then given by

Gpotential =

∫
Ω
S(r) (Uee[n] + Une[n] + EXC[n]) dr, (21)

where the last term, EXC, is the exchange-correlation potential, which approximates the many-
particle interactions in the solute molecule.

Intuitively, it appears that the total free energy functional for the DG-based model is the simple
summation of the polar, nonpolar, kinetic, and potential energy. However, such a summation will
lead to double counting because of the coupling among different energy terms. For example,
the electrostatic energy depends on the charge density, which, in turn, depends on the kinetic
and potential energies of electrons. Additionally, the electrostatic potential serves as a variable in
the polar energy functional and also serves as a known input in the potential energy of electrons
through solution of the Poisson equation in vacuum (ε = 1)

−∇2φv(r) = ρvtotal(r), (22)

where φv is the electrostatic potential in vacuum and ρvtotal = nv +nn with nv(r) being the electron
density in vacuum and nn the density of nuclei. The solution of the Poisson equation in vacuum
is:

φv(r) =

∫
eCnv(r

′)

|r− r′|
dr′ −

∑
I

eCZI
|r−RI |

. (23)

Of note, the solution to Eq. 23 is the exact total Coulombic potential of the electron-electron and
electron-nucleus interactions. Therefore, we do not need to include Uee[n] and Uen[n] terms in the
total free energy functional.



Based on the preceding discussions, we propose a total free energy functional for solutes at
equilibrium:

GDFT−PB
total [S, φ, n] =

∫
Ω

{
γ|∇S(r)|+ pS(r) + S(r)

[
ρtotalφ−

1

2
εm|∇φ|2

]
+(1− S(r))

[
−εs

2
|∇Φ|2 − kBT

∑
α

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1

)]

+ S(r)

∑
j

~2

2m
|∇ψj |2 + EXC[n]

 dr, (24)

where the first row is the nonpolar energy functional; the second row is the electrostatic energy
functional; and the last row is the electronic energy functional, which is confined to the solute re-
gion by S(r). As already discussed, the term ρtotal = nv + nn also contributes to the Coulombic
potentials of the electron-electron and electron-nucleus interactions. This total free energy func-
tional provides a starting point for the derivation of governing equations for the DG-based solvation
models, as well as the basis for evaluation of solvation free energies.

The governing equations for the DG-based solvation model with quantum mechanical charge
distributions are determined by the calculus of variations. As before, variation of Eq. 24 with
respect to the electrostatic potential φ gives the generalized Poisson-Boltzmann (GPB) equa-
tion:71,74

−∇ · (ε(S)∇φ) = Sρtotal + (1− S)

Nc∑
α=1

ρα0qαe
− qαΦ+Uα−µα0

kBT , (25)

where the dielectric function is defined as before: ε(S) = (1−S)εs+Sεm. In a solvent without salt,
the GPB equation is simplified to be the Poisson equation:

−∇ · (ε(S)∇φ) = Sρtotal. (26)

This equation and Eq. 25 are similar to the model described in the previous section (Sec. II.B).
However, in the present multiscale model, the charge source ρtotal is determined by solving the
Kohn-Sham equations rather than by the fixed charges ρm =

∑
j Qjδ(r− rj).

Variation of Eq. 24 with respect to the surface function S gives a Laplace-Beltrami equa-
tion:71,74,123,124

∂S

∂t
= |∇S|

[
∇ ·
(
γ
∇S
|∇S|

)
+ VDFT−PB

]
, (27)

where

VDFT−PB = −p+
1

2
εm|∇φ|2 −

1

2
εs|∇Φ|2 − kBT

Nc∑
α=1

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1

)
− ρtotalΦ−

∑
j

~2

2m
|∇ψj |2 − EXC[n] (28)

The electronic potentials in the last row of this equation have relatively small contributions to
VDFT−PB at equilibrium due to the fact that they essentially are confined inside the solute molecular
domain. Note that Eq. 27 has the same structure as the potential-driven geometric flow equation
defined in the models presented in earlier in this chapter. As t→∞, the initial profile of S evolves
into a steady-state solution, which offers an optimal surface function S.



Finally, to derive the equation for the electronic wavefunction, we minimize the energy func-
tional with respect to the wavefunction ψ∗j (r), subject to the Lagrange multiplier

(
∑

iEi

(
δij −

∫
Sψi(r)ψ∗j (r)dr

)
) for the orthogonality of wavefunctions to arrive at the Kohn-Sham

equation (
− ~2

2m
∇2 + Ueff

)
ψj = Ejψj , with Ueff(r) = qΦ + VXC[n], (29)

where the Lagrange multiplier constants Ei can be interpreted as energy expectation values,
VXC[n] = dEXC[n]

dn , and qφ is the potential contribution from Coulombic interactions. These electro-
static interactions can be calculated by the GPB equation (27) with a given total charge density.
Eq. 29 does not directly depend on the solvent characteristic function S, so existing DFT packages
can be used in our computations with minor modifications.

To integrate our continuum model with standard DFT algorithms, Wei and co-workers introduce
the reaction field potential ΦRF = Φ − Φ0 with Φ0 being the solution of the Poisson equation
in homogeneous media.132 The reaction field potential is the electric potential induced by the
polarized solvent and its incorporation leads to the following effective energy function

Ueff(r) = qΦ + VXC[n] = qΦRF + U0
eff(r) (30)

where U0
eff(r) = qΦ0 + VXC[n] is the traditional Kohn-Sham potential available in most DFT algo-

rithms. The reaction field potential also appears in the Hamiltonian of the solute in the quantum
calculation173–175 and can be obtained from the electrostatic computation in the framework of the
continuum models developed above. In summary, the inclusion of quantum mechanical charge
distributions in the DG-based continuum model involves two components: 1) the classical elec-
trostatic problem of determining the solvent reaction field potential with the quantum mechanically
calculated charge density and 2) the quantum mechanical problem of calculating the electron
charge density with fixed nucleus charges in the presence of the reaction field potential. To carry
out these computations, an intuitive, self-consistent, iterative procedure can be constructed to
solve the quantum equations for the electron distribution and the continuum electrostatic equa-
tions for the reaction field potential.20,173–176

After solving the Kohn-Sham equation, the QM-based charge density can be incorporated into
the solvation model in two different ways. Our preferred approach is to apply the continuous QM
charge density directly to the PB equation as a source term. However, it is also possible to fit
the QM charge density into atomic point charges or multipoles for use as the source term.177–179

This second approach is most useful when the DG-DFT scheme is used in conjunction with other
molecular simulation approaches, such as MM-PBSA or docking.

III Differential geometry-based electrolyte transport models

It is well-known that implicit solvent models use both discrete and continuum representations of
molecular systems to reduce the number of degrees of freedom; this philosophy and methodology
of implicit solvent models can be extended to more general multiscale formulations. A variety of
DG-based multiscale models have been introduced in an earlier paper of Wei.74 Theory for the dif-
ferential geometry of surfaces provides a natural means to separate the microscopic solute domain
from the macroscopic solvent domain so that appropriate physical laws are applied to applicable
domains. This portion of the chapter focuses specifically on the extension of the equilibrium elec-
trostatics models described above to non-equilibrium transport problems which are relevant to a



variety of chemical and biological systems, such as molecular motors, ion channels, fuel cells and
nanofluidics, with chemically or biologically relevant behavior that occurs far from equilibrium.74–76

Another class of DG-based multiscale models involves the dynamics and transport of ion chan-
nels, transmembrane transporters and nanofluidics. In new multiscale models developed by the
Wei group, the total energy functionals are modified with additional chemical energies to account
for spatially inhomogeneous ion density distribution and charge fluxes due to applied external field
gradients and inhomogeneous solvent concentrations across membranes. The Nernst-Planck
equation is constructed using Fick’s law via a generalized chemical potential governed by the vari-
ational principle. Together with the Laplace-Beltrami equation for the surface function and Poisson
equation for electrostatic potential, the resulting DG-based PNP theory reduces to our PB theory at
equilibrium.75 The PNP equation has been thoroughly studied in the biophysical literature;180–187

however, a DG-based formulation of the PNP offers many of the advantages that DG-based sol-
vation models described above provide: elimination of several ad hoc parameters from the model
and a framework in which to incorporate more complicated solution phenomena such as strong
correlations between ions and confinement-induced ion steric effects. Additionally, compared with
conventional PNP models,180–187 the DG-based PNP models include nonpolar solvation free en-
ergy and thus can be used to predict the full solvation energy against experimental data, in addition
to the usual current-voltage curves.75

III.A A differential geometry-based Poisson-Nernst-Planck model

The GPB and Laplace-Beltrami models discussed in the previous section were obtained from a
variational principle applied to equilibrium systems. For chemical and biological systems far from
equilibrium, it is necessary to incorporate additional equations (e.g., the Nernst-Planck equation)
to describe the dynamics of charged particles. Various DG-based Nernst-Planck equations have
derived from mass conservation laws in earlier work by Wei and co-workers.74,75 We outline the
basic derivation here. For simplicity in derivation, we assume that the flow stream velocity vanishes
(|v| = 0) and we omit the chemical reactions in our present discussion.

The chemical potential contribution to the free energy consists a homogeneous reference term
and the entropy of mixing:188

Gchem =

∫ ∑
α

{(
µ0
α − µα0

)
ρα + kBTραln

ρα
ρα0
− kBT (ρα − ρα0)

}
dr, (31)

where µ0
α is the reference chemical potential of the αth species at which the associated ion con-

centration is ρ0α in a homogeneous system (e.g., Φ = Uα = µα0 = 0). Here, kBTραln ρα
ρα0

is the
entropy of mixing, and −kBT (ρα − ρα0) is a relative osmotic term.189 The chemical potential of
species α can be obtained by variation with respect to ρα:

δGchem

δρα
⇒ µchem

α = µ0
α − µα0 + kBT ln

ρα
ρα0

. (32)

Note that at equilibrium, µchem
α 6= 0 and ρα 6= ρα0 because of possible external electrical potentials,

charged solutes, solvent-solute interactions, and charged species interactions. This chemical
potential energy term can be combined with the polar and and nonpolar contributions discussed



in the previous sections to give a total system free energy of

GPNP
total [S,Φ, {ρα}] =

∫
{γ|∇S|+ pS + (1− S)U

+S
[
−εm

2
|∇Φ|2 + Φ %

]
+ (1− S)

[
−εs

2
|∇Φ|2 + Φ

∑
α

ραqα

]

+(1− S)
∑
α

[(
µ0
α − µα0

)
ρα + kBTραln

ρα
ρα0
− kBT (ρα − ρα0) + λαρα

]}
dr, (33)

where λα is a Lagrange multiplier, which is required to ensure appropriate physical properties at
equilibrium.188 In this functional, the first row is the nonpolar solvation free energy contribution, the
second row is the polar solvation free energy contribution, and the third row is chemical potential
energy contribution. A unique aspect of this PNP formulation is the inclusion of nonpolar solvation
free energy contribution to the functional (see Eq. 1).

While electrostatic interactions provide a strong driving force for many biomolecular phenom-
ena, they are not the only source of ion-ion and ion-solute interactions. In the heterogeneous
environment where biomolecules interact with a range of aqueous ions, counterions, and other
solvent molecules, electrostatic interactions often manifest themselves in a variety of different
forms related to polarization, hyperpolarization, vibrational and rotational averages, screening ef-
fects, etc. For example, size effects have been shown to play an important role in macromolecular
interactions.134,190–194 Another important effect is the change of ion-water interactions due to ge-
ometric confinement, which is commonly believed to result in channel selectivity for sodium and/or
potassium ions.134 In past papers by Wei and co-workers, these types of interactions are called
“non-electrostatic interactions” or “generalized correlations”75,134 and are incorporated into the
DG-based models by modifying Eqs. 6 and 7:

U =
∑
α

ραUα

Uα =
∑
j

Uαj(r) +
∑
β

Uαβ(r), (34)

where the subscript β runs over all solvent components, including ions and water. In general, we
denote Uα as any possible non-electrostatic interactions in the system. The inclusion of these
non-electrostatic interactions does not change the derivation or the form of other expressions
presented in the preceding section. The total free energy functional (Eq. 33) is a function of the
surface function S, electrostatic potential Φ, and the ion concentration ρα. The governing equations
for the system are derived using the variational principle.

We first derive the generalized Poisson equation by the variation of the total free energy func-
tional with respect to the electrostatic potential Φ. The resulting generalized Poisson equation
is:

−∇ · (ε(S)∇Φ) = S%+ (1− S)
∑
α

ραqα, (35)

where ε(S) = (1−S)εs+Sεm is an interface-dependent dielectric profile. The generalized Poisson
equation (Eq. 35) involves the surface function S and the densities of ions ρα, which are to be
determined. Variation with respect to the ion density ρα leads to the relative generalized potential
µgen
α

δGPNP
total

δρα
⇒ µgen

α = µ0
α − µα0 + kBT ln

ρα
ρα0

+ qαΦ + Uα + λα = µchem
α + qαΦ + Uα + λα. (36)



We require µgen
α , rather than µchem

α , to vanish at equilibrium. Therefore, we require:

λα = −µ0
α

ρα = ρα0e
− qαΦ+Uα−µα0

kBT . (37)

Using these relations, the relative generalized chemical potential µgen
α can be rewritten as:

µgen
α = kBT ln

ρα
ρα0

+ qαΦ + Uα − µα0. (38)

Wei and co-workers derived a similar quantity from a slightly different perspective in an earlier
paper.195 Note that this chemical potential consists of contributions from the entropy of mixing,
electrostatic potential, solvent-solute interaction, and the position-independent reference chemical
potential. For many biomolecular transport problems, diffusion is the major mechanism for trans-
port and relaxation to equilibrium. By Fick’s first law, the diffusive ion flux is Jα = −Dαρα∇µgen

α
kBT

with
Dα being the diffusion coefficient of species α. The diffusion equation for the mass conservation
of species α at the absence of steam velocity is ∂ρα

∂t = −∇ · Jα, which results in the generalized
Nernst-Planck equation:

∂ρα
∂t

= ∇ ·
[
Dα

(
∇ρα +

ρα
kBT

∇(qαΦ + Uα)

)]
, (39)

where qαΦ +Uα is a form of the mean field potential. In the absence of solvent-solute interactions,
Eq. 39 reduces to the standard Nernst-Planck equation.

Using the Euler-Lagrange equation, one can derive an elliptic equation for the surface function
S and, introducing an artificial time as discussed earlier in this chapter, this can be transformed
into a parabolic equation:

∂S

∂t
= |∇S|

[
∇ ·
(
γ
∇S
|∇S|

)
+ VPNP

]
, (40)

where the driving term is

VPNP = −p+ U +
εm
2
|∇Φ|2 − Φ %− εs

2
|∇Φ|2 + Φ

∑
α

ραqα (41)

+
∑
α

[
kBT

(
ραln

ρα
ρα0
− ρα + ρα0

)
− µα0ρα

]
.

Equations 39, 35, and 40 form a coupled system of equations describing the surface function
S, charge concentrations ρα, and electrostatic potential Φ. This coupled system differs from the
original PNP equations through the coupling of the surface definition are to charge concentrations
and electrostatics. We call this DG-based system the “Laplace-Beltrami Poisson-Nernst-Planck”
(LB-PNP) model.

In general, the total free energy functional of the DG-based PNP model in Eq. 33 differs from
that of the DG-based PB model in Eq. 12. The difference also exists between the surface-driven
term VPNP in the charge transport model and VBP in the solvation model. Moreover, ρα in the
charge transport model is determined by the Nernst-Planck equation (39) rather than the Boltz-
mann factor. However, if the charge flux is zero for the electrodiffusion system, the PNP model is
known to be equivalent to the PB model.196 Note that at equilibrium, the relative generalized po-
tential vanishes everywhere, and the result is the equilibrium constraint given in Eq. 37. Therefore,
by using the equilibrium constraint, the total free energy functional in Eq. 33 becomes:75

GPNP
total −→ GPB

total, as ρα −→ ρα0e
− qαΦ+Uα−µα0

kBT . (42)



This relationship shows that, under the equilibrium assumption, the total free energy functional for
the charge transport model reduces to the equilibrium solvation model presented earlier (Eq. 12).
Furthermore, for the surface-driven functions of the generalized LB equation, it is easy to show75

that under the equilibrium constraint, one has:

VPNP −→ VBP, as ρα −→ ρα0e
− qαΦ+Uα−µα0

kBT . (43)

This consistency between the DG-based PNP and PB models is a crucial aspect of this non-
equilibrium theory of charge transport. Numerical simulations in Wei’s group have confirmed this
consistency.75

III.B Quantum mechanical charge distributions in the Poisson-Nernst-Planck model

As with the equilibrium solvation models introduced earlier, it is also possible to incorporate quan-
tum mechanical effects into the non-equilibrium transport model. Our motivation is to account for
non-equilibrium ion fluxes and induced response in the electronic structure of the solute or mem-
brane protein. To this end, we combine our DG-based DFT model with our DG-based PNP model
as illustrated in Fig. 4 to develop a free energy functional and derive the associated governing
equations.

The free energy functional is a combination of four models (nonpolar, PB, PNP, and DFT) in
a manner which avoids energetic double-counting. Four variables are used (S,Φ, {ρα}, and n) to
minimize the total energy. The resulting free energy functional has the form:

GDFT−PNP
total [S,Φ, {ρα}, n] =

∫
{γ|∇S|+ pS + (1− S)U

+S
[
−εm

2
|∇Φ|2 + ρtotalΦ

]
+ (1− S)

[
−εs

2
|∇Φ|2 + Φ

∑
α

ραqα

]

+(1− S)
∑
α

[(
µ0
α − µα0

)
ρα + kBTραln

ρα
ρα0
− kBT (ρα − ρα0) + λαρα

]

+ S

∑
j

~2

2m
|∇ψj |2 + EXC[n]

 dr, (44)

where the first row is the nonpolar solvation energy functional, the second row is electrostatic
energy density of solvation, the third row is the chemical energy functional of solvent ions, and
the last row is the energy density of solute electrons in the DFT representation, as explained
in earlier sections. Note that this coupled form places some restrictions on the potential U : in
particular, care must be taken to avoid double-counting dispersive and repulsive interactions that
are already accounted for in the quantum mechanical treatment. Using this function, the derivation
of governing equations is straightforward. For the sake of completeness, we discuss all of the
governing equations of this new model (as follows).

As before, variation of the total free energy functional with respect to the electrostatic potential
Φ gives rise to the generalized Poisson equation:

−∇ · (ε(S)∇Φ) = Sρtotal + (1− S)
∑
α

ραqα, (45)

where ε(S) = (1 − S)εs + Sεm is an interface-dependent dielectric profile. The charge sources in
Eq. 45 are the total charge density ρtotal of the solute molecule and the ionic density

∑
α ραqα of



Table 1: Solvation energies calculated with the differential geometry nonpolar solvation model for
a set of 11 alkanes in comparison with an explicit solvent model.154 Errors are computed with
respect to experimental data.155

Rep. part (kcal/mol) Att. part (kcal/mol) Total (kcal/mol) Error (kcal/mol)
Compound DG-NP Explicit DG-NP Explicit DG-NP Explicit DG-NP Explicit
methane 4.71 5.72 -2.73 -3.31 1.98 2.41 -0.02 0.41
ethane 6.65 8.07 -4.75 -5.44 1.90 2.63 0.07 0.80
butane 10.30 10.10 -8.18 -7.21 2.12 2.89 0.04 0.81

propane 8.50 12.19 -6.45 -8.98 2.04 3.21 0.08 1.25
pentane 12.19 14.22 -9.82 -10.77 2.37 3.45 0.04 1.12
hexane 14.03 16.17 -11.54 -12.38 2.50 3.78 0.01 1.30

isobutane 10.14 11.91 -7.97 -8.88 2.16 3.03 -0.36 0.51
2-methylbutane 11.73 13.64 -9.35 -10.13 2.38 3.51 0.00 1.13

neopentane 11.81 13.62 -9.20 -10.39 2.61 3.23 0.11 0.73
cyclopentane 10.60 12.79 -9.43 -9.99 1.17 2.80 -0.03 1.60
cyclohexane 12.05 14.00 -10.78 -11.66 1.27 2.34 0.04 1.11

Quantum 

Atomistic 
 

Continuum Continuum Continuum 

Figure 4: An illustration of the differential geometry-based DFT-PNP model for ion channels.



aqueous species. The former is determined by DFT, while the latter is estimated by the Nernst-
Planck theory. At equilibrium (37), the generalized Poisson equation (45) reduces to the GPB
equation given in Eq. 25.

The procedure for deriving the Nernst-Planck equation is the same as discussed in the previ-
ous section. We first carry out the variation with respect to ρα to obtain the relative generalized
potential. Next, Fick’s laws of diffusion are employed to construct the generalized Nernst-Planck
equation:

∂ρα
∂t

= ∇ ·
[
Dα

(
∇ρα +

ρα
kBT

∇(qαΦ + Uα)

)]
. (46)

Formally, this equation has the same form as the generalized Nernst-Planck equation in the last
section. However, to evaluate Uα, possible effects stemming from the quantum mechanical repre-
sentation of the electronic structure must be considered.

As discussed previously, variation with respect to the surface function S leads to a generalized
Laplace-Beltrami equation after the introduction of an artificial time:

∂S

∂t
= |∇S|

[
∇ ·
(
γ
∇S
|∇S|

)
+ VDFT−PNP

]
, (47)

where the potential driving term is given by

VDFT−PNP = −p+ U +
εm
2
|∇Φ|2 − Φ %− εs

2
|∇Φ|2 + Φ

∑
α

ραqα

+
∑
α

[
kBT

(
ραln

ρα
ρα0
− ρα + ρα0

)
− µα0ρα

]
−
∑
j

~2

2m
|∇ψj |2 − EXC[n].

At equilibrium (Eq. 37) VDFT−PNP becomes VDFT−PB. Eq. 47 is coupled to all other quantities,
Φ, ρα and n. Fast solutions to this type of equation remains an active research issue.71,124,197

In the present multiscale DFT formalism, the governing Kohn-Sham equation is obtained via
the minimization of the energy functional with respect to ψ∗j (r), subject to the Lagrange multiplier

(
∑

iEi

(
δij −

∫
Sψi(r)ψ∗j (r)dr

)
),(
− ~2

2m
∇2 + qΦ + VXC[n]

)
ψj = Ejψj . (48)

Although the Kohn-Sham equation does not explicitly involve the surface function and ion densities,
the electrostatic potential energy qΦ is calculated by the GPB equation (45) which is coupled with
solvent charge density and surface function. As such, electronic response to ion fluxes in the ion
channel is included in the present model.

Equations 45, 46, 47, and 48 form a complete set of governing equations which are strongly
coupled to each other. Therefore, these equations can be solved by nonlinear iterative proce-
dures133,134,198 and efficient second-order algorithms.1,71,72,132

IV Concluding remarks

Geometric analysis, which combines differential geometry (DG) with partial differential equations
(PDEs), has generated great successes in the physical sciences and engineering. In the past



decade, DG-based solvation models have been introduced for biomolecular modeling. This new
methodology has been tested over hundreds of molecular test cases, ranging from nonpolar
molecules to large proteins. Our DG-based solvation models use the differential geometry of sur-
faces theory as a natural means to separate microscopic domains for biomolecules from macro-
scopic domains for solvents and to couple continuum descriptions with discrete atomistic or quan-
tum representations. The goal of our DG-based formalism is to achieve an accurate prediction of
essential physical observables while efficiently reducing the dimensionality of complex biomolecu-
lar systems. An important technique used in our approach is the construction of total free energy
functionals for various biomolecular systems, which enables us to put various scales into an equal
footing. Variational principles are applied to the total energy functional to derive coupled governing
PDEs for biomolecular systems.

This chapter has focused on equilibrium and non-equilibrium models of electrolyte solutions
around biomolecules. However, the Wei group has also extended this formalism to the multiscale
modeling of other systems and biological processes. One class of multiscale models developed
in the Wei group is a DG-based quantum treatment of proton transport.133,134 Proton transport
underpins the molecular mechanisms in a variety of systems, including transmembrane ATPases
as well as other proton pumps and translocators.199 The significant quantum effects in proton
permeation require quantum mechanical models, while the large number of degrees of freedom
demands a multiscale treatment.200,201 In the multiscale approach developed by the Wei group,
a new DFT is formulated based on Boltzmann statistics, rather than Fermi-Dirac statistics, for
protons in the solvent while treating water molecules as a dielectric continuum. The membrane
protein is described in atomistic detail and densities of other ions in the solvent are approximated
via Boltzmann distributions, following an approach introduced in our earlier Poisson-Boltzmann-
Nernst-Planck theory.195 The resulting multiscale proton model provides excellent predictions of
experimental current-voltage relationships.133,134 Another class of DG-based multiscale models
has been proposed by Wei et al. for alternative MM and/or continuum elasticity (CE) description
of solute molecules, as well as continuum fluid mechanics formulation of the solvent.74–76,202 The
idea is to endow the DG-based multiscale paradigm with the ability to handle excessively large
macromolecules by elasticity description, manage conformational changes with MM, and deal
with macromolecular-flow interaction via fluid mechanics. The theory of continuum elasticity with
atomic rigidity (CEWAR) also has been introduced202 and treats the molecular shear modulus as a
continuous function of atomic rigidity. Thus, the dynamic complexity of integrating time-dependent
governing equations for a macromolecular system is separated from the static complexity of de-
termining the flexibility at given time step. In CEWAR, the more time-consuming dynamics is
approximated using continuum elasticity theory while the less-time-consuming static analysis is
pursued with atomic description. A recent multidomain formulation by Wei and co-workers allows
each different part of a macromolecule to have a different physical description.76 Efficient geomet-
ric modeling strategies associated with DG-based multiscale models have been developed in both
Lagrangian-Eulerian203,204 and Eulerian representations.205 Algorithms for curvature evaluation
and volumetric and surface meshing have been developed for organelles, subcellular structures,
and multiprotein complexes203 and have been combined with electrostatic analysis for the predic-
tion of protein-ligand binding sites.205
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