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In this work, we improve on existing results on the relationship between proof systems
obtained from conflict-driven clause-learning SAT solvers and general resolution. Previous
contributions such as those by Beame et al. (2004), Hertel et al. (2008), and Buss
et al. (2008) demonstrated that variations on conflict-driven clause-learning SAT solvers
corresponded to proof systems as powerful as general resolution. However, the models
used in these studies required either an extra degree of non-determinism or a preprocess-
ing step that is not utilized by state-of-the-art SAT solvers in practice. In this paper, we
prove that conflict-driven clause-learning SAT solvers yield proof systems that indeed p-
simulate general resolution without the need for any additional techniques. Moreover, we
show that our result can be generalized to certain other practical variations of the solvers,
which are based on different learning schemes and restart policies.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that conflict-driven clause-learning (CDCL) SAT solvers (e.g., [27,21,11]) and their original ancestor, the
DPLL algorithm [9], can be interpreted as resolution-based proof systems [5]. For each unsatisfiable formula, these solvers
can be viewed as engines that produce refutation proofs. One central question in this research direction is whether proof
systems implemented by CDCL SAT solvers have enough freedom to generate a proof that is at most polynomially longer
than the shortest general resolution proof for every unsatisfiable formula. The answer to this theoretical question could have
important practical implications on the efficiency of CDCL SAT solvers.

There is much previous work on this subject that demonstrates the strength of variations on CDCL SAT solvers. However,
equivalence with respect to general resolution has yet to be proven for CDCL SAT solvers as they are practiced today. In [5],
Beame et al. showed that a proof system based on a more general variation of CDCL SAT solvers was as powerful as general
resolution. The proof presented, however, requires the solver to make decisions to negate the values of some variables that
are already implied by unit resolution. This modification introduces an extra degree of non-determinism “that would be
very hard to exploit in practice" [15]. Hertel et al. [15] proved a slightly weaker result that clause-learning solvers effectively
p-simulate general resolution. This approach allows them to introduce a preprocessing step to transform the CNF into one
(with some new variables) that can be efficiently solved by a more practical model of solvers (the model used in [15] is
based on the one developed by Van Gelder in [29]). Buss et al. [7] also took a similar approach by modifying the input CNF
and introducing some new variables to show that a generalized variation of the clause-learning algorithm, which allows
decision making past conflicts, can effectively p-simulate general resolution.

In this work, which extends our previous work in [25], we show that CDCL SAT solvers, without any extra modifications,
can be as powerful as general resolution, given the right heuristics. In particular, we prove that proof systems implemented
by CDCL SAT solvers, which utilize unit resolution, clause learning, and restarting, p-simulate general resolution. First, we
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show that this result holds for any solvers utilizing an asserting clause-learning scheme. Then, we generalize our main
result to show that certain variations of CDCL SAT solvers also correspond to proof systems that are as powerful as general
resolution. In particular, we identify a class of non-asserting clause-learning schemes and a class of restart policies that still
allow the solvers to achieve their full potential. Our proofs do not utilize a preprocessing step or require the solvers to make
decisions on an implied literal or past a conflict. This result implies that CDCL SAT solvers in their current form and some
of its variations are capable of producing proofs that are as “short” as any resolution proof, given appropriate branching
heuristic and restart policy.

The proof of our main result is made possible by the help of two important concepts, namely 1-empowerment [24] and
1-provability, which we will define later in this paper. Together, they allow us to more accurately capture the power of
CDCL SAT solvers. In particular, we use these two notions to characterize the set of clauses that CDCL SAT solvers can learn.
Contrary to previous attempts in [5,15,7], we do not force the solver to simulate the derivation of every single clause in the
given refutation proof (which may not be possible without some modifications to the solvers). Instead, we guide the solver
to go after clauses that satisfy these properties, thus avoiding the need to introduce such modifications.

The rest of the paper is organized as follows. In the next section, we discuss basic notations and definitions. In Section 3,
we present our model of CDCL SAT solvers and a proof system associated with it. Then, in Section 4, we present some
results, which provide insights into the power of CDCL SAT solvers and allow us to prove the main result. Next, in Section 5,
we present our main result, which applies to any clause-learning SAT solvers that learn asserting clauses. In Section 6, we
generalize the main result to cover certain non-asserting learning schemes and restart policies that have been studied in
the past. Finally, we discuss related work in Section 7 and conclude in Section 8.

2. Preliminaries

In this section, we review some basic notations related to propositional logic and proof systems. If � and α are two
Boolean formulas and � is a literal, we write � |� α to mean that � entails α, and write � �1 � to mean that literal � can
be derived from � using unit resolution. Furthermore, we may treat a clause as the set of literals in the clause and a CNF
formula as the set of clauses it contains.

2.1. Proof systems

A proof system is a language for expressing proofs that can be verified in time polynomial in the size of the proof [8]. In
this work, we are concerned only with proof systems based on propositional resolution [26]. The resolution between clauses
α ∨ x and β ∨ ¬x is the derivation of clause α ∨ β (i.e., the resolvent). In this case, x is called the resolved variable. To make
our analysis as related to practical SAT solvers as possible, the weakening rule (see usage in [6], for example), which allows
introduction of arbitrary literals into existing clauses, is not permitted here.

Definition 1. A resolution proof (or resolution derivation) of the clause Ck from the CNF � is a sequence of clauses Π =
C1, C2, . . . , Ck where each clause Ci is either in � or is a resolvent of clauses preceding Ci .

We will also treat a resolution proof as the set of clauses in it. The size of a proof is the number of clauses in it.
A resolution proof of the empty clause (i.e., false) is called a refutation proof. For the purposes of this work, a proof system
can be viewed as the set containing all refutation proofs allowed by the system. The notion of p-simulation, which was
introduced in [8], is used to compare the power of two proof systems. The definition presented here is obtained from [15].

Definition 2 (P-simulation). Proof system S p-simulates proof system T , if, for every unsatisfiable formula �, the shortest
refutation proof of � in S is at most polynomially longer than the shortest refutation proof of � in T .

Intuitively, if proof system S p-simulates proof system T , it means that S is unrestricted enough to express proofs that
are as short as those expressible in T . As in other work (such as [5] and [15]), we will relax the notion of p-simulation to
allow the size of the simulating proof to depend on the size of the input formula. This relaxation is necessary if one wishes
to relate any theoretical result to practical CDCL SAT solvers, because every such solver must read the input formula and,
therefore, cannot solve any problem in time less than linear in the size of the input. Note that if we only consider CNF
formulas whose shortest refutation proof is at least linear in the size of the formula, then notion of p-simulation used here
essentially becomes identical to the original definition of p-simulation [8].

As far as resolution proofs are concerned, general resolution, which allows any resolution operation to be performed, is
the most powerful proof system. Other resolution proof systems that are known to be less powerful (i.e., do not p-simulate
general resolution) include tree-like resolution, linear resolution, and regular resolution (see Section 2.3 of [5] for a review).
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Input : CNF formula �

Output: A solution of � or unsat if � is not satisfiable

D ← 〈〉 // decision literals1
Γ ← true // learned clauses2
while true do3

if S = (�,Γ, D) is 1-inconsistent then4
// there is a conflict.
if D = 〈〉 then5

return unsat6
end7
α ← a conflict clause of S8
m ← the assertion level of α9
D ← Dm // the first m decisions10
Γ ← Γ ∧ α11

else12
// there is no conflict.
if time to restart then13

D ← 〈〉14
S ← (�,Γ, D)15

end16
Choose a literal � such that S �1 � and S �1 ¬�17
if � = null then18

return D // satisfiable19
end20
D ← D, �21

end22
end23

Algorithm 1: CLR: Clause-learning SAT solver with restarts.

3. Conflict-driven clause-learning SAT solvers as proof systems

3.1. Conflict-driven clause-learning SAT solvers

In this section, we describe a model of CDCL SAT solvers. Included in our model are the following techniques: unit
resolution [9], clause-learning [20,30], restarting [14], and non-chronological backtracking [20,4] (i.e., far-backtracking as
termed by [28]). Algorithm 1 shows a pseudocode of a typical conflict-driven clause-learning SAT solver with restarts, which
we will refer to as CLR (for Clause Learning with Restarts) from now on. We will first provide a high-level description of
the algorithm before giving formal definitions of its different components.

This algorithm is based on making variable assignments called decisions. It starts with an empty decision sequence D
and an empty set of learned clauses Γ (lines 1–2). It then iterates until it either proves the satisfiability or unsatisfiability
of the input CNF. In each iteration, the conjunction of the input CNF �, learned clauses Γ , and decisions D are checked
for inconsistency using unit resolution (line 4). If unit resolution finds an inconsistency, the algorithm does one of two
things:

• If the decision sequence is empty, the CNF � must be unsatisfiable and the algorithm terminates (line 6).
• If the decision sequence is not empty, a clause α is generated and a level m is computed based on α. The algorithm

then erases all decisions made after level m, adds α to Γ , and moves on to the next iteration (lines 8–11).1

If unit resolution detects no inconsistency, the solver has an option of restarting, which amounts to resetting the deci-
sion sequence to the empty sequence (line 14). After that, the solver makes a decision by selecting a literal � whose
value is not currently implied or falsified by unit resolution, and adds it to the decision sequence (line 21). If no such
literal is found, the algorithm terminates having proved satisfiability (line 19). We will now provide the missing defini-
tions.

• A decision sequence is an ordered set of literals D = 〈�1, . . . , �k〉. Each literal �i is called the decision at level i. We write
Dm to denote the subsequence 〈�1, . . . , �m〉 (with D0 = 〈〉).

• A CLR state S is a tuple (�,Γ, D), where � and Γ are CNFs such that � |� Γ , and D is a decision sequence. We will
write Sk to denote the CLR state (�,Γ, Dk).

1 The clause α is known as a conflict clause and m as the backtrack level. We will define them formally later.
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• A CNF � is 1-inconsistent iff � �1 false. It is 1-consistent otherwise. A CLR state (�,Γ, D) is 1-inconsistent (1-consistent)
iff � ∧ Γ ∧ D is 1-inconsistent (1-consistent). It is normal for an unsatisfiable CNF to be 1-consistent.

• Given a CLR state S = (�,Γ, D), we write S �1 � if � ∧ Γ ∧ D �1 � and write S �1 � if � ∧ Γ ∧ D �1 �. A literal � is
implied by state S = (�,Γ, D) at level k iff k is the smallest integer for which Sk �1 �. We say that the implication level of
literals � and ¬� is k in this case.

• A state S = (�,Γ, 〈�1, . . . , �k〉) is normal iff for all 1 � i � k, Si−1 is 1-consistent, Si−1 
�1 �i and Si−1 
�1 ¬�i .

The notion of normal states prohibits CLR from (1) making a decision in the presence of a conflict and (2) making a
decision on a variable that is already assigned a value. By construction, the state S on lines 4 and 15 of Algorithm 1 is
always normal. Therefore, from now on, we will assume that every CLR state is normal.

We are now ready to define the last two notions used in Algorithm 1: conflict clause and assertion level. Conventionally,
the notion of conflict clause is usually defined in terms of a cut in an implication graph [30,5]. An implication graph is a
graph that captures the implication relationship between current variable assignments. Each node in the graph corresponds
to a literal currently assigned to true (by decision or by unit resolution). A directed edge from �′ to � exists iff ¬�′ appears
in the unit clause that implies � (i.e., the assignment �′ = true directly contributes to the implication � = true). For a more
complete definition of implication graph, see [30], for example.

The results that we will present in this work do not depend on the notion of implication graph, which is just one way of
deriving conflict clauses. In what follows, we present a definition of conflict clauses in a more general sense. This definition
focuses on the logical semantics of conflict clause and closely follows the graphical definition in [30] and [5].

Definition 3 (Conflict clause). Let S = (�,Γ, D) be a 1-inconsistent CLR state. A clause α = �1 ∨ · · · ∨ �m is a conflict clause
of state S iff:

1. � ∧ Γ ∧ ¬α �1 false. That is, we can show that α is implied by � ∧ Γ using just unit resolution.
2. For each literal �i , S �1 ¬�i . That is, each literal ¬�i is a decision or an implication discovered by unit resolution in

state S .

The assertion level of a conflict clause is defined to be the second largest implication level of any literal in the clause
with respect to the 1-inconsistent CLR state at the time the clause is derived. If every literal in the clause has the same
implication level, the assertion level is defined to be zero.

In [5], it was shown (in their Proposition 4) that every conflict clause obtained from a cut on an implication graph (or a
conflict graph, to be more precise) can be derived from the current knowledge base (� ∧ Γ ) using what is known as trivial
resolution derivation, which captures the kind of resolution performed by virtually all CDCL SAT solvers [5]. A trivial resolution
derivation is a resolution derivation in which:

1. Every resolution step (except the very first) is performed between the last resolvent and a clause in the knowledge
base.

2. The resolved variables are all distinct.

Our definition of conflict clause is independent of the notion of implication graph and is slightly more general (for example,
it encompasses unconventional clauses derived in [2]). Nevertheless, we will later show that all of the conflict clauses that
we care to learn can still be “derived” using trivial resolution derivation. We present this claim formally in Proposition 4.

Every 1-inconsistent CLR state has at least one conflict clause associated with it. The following proposition states this
result, which ensures that the execution of line 8 of Algorithm 1 will always succeed.

Proposition 1. A CLR state S = (�,Γ, D) with |D| > 0 is 1-inconsistent iff it has a conflict clause.

Proof. (→) If S = (�,Γ, D) is 1-inconsistent then the clause ¬D (the negations of the current decisions) is a conflict clause
for S . (←) Let a conflict clause C of S = (�,Γ, D) be given. By the definition of conflict clause, �∧Γ ∧ D �1 ¬C . Moreover,
by the same definition, we have � ∧ Γ ∧ ¬C �1 false. Hence, S is 1-inconsistent. �

This completes our description of CLR.

3.2. Clause-learning schemes

CLR can employ various learning schemes to derive conflict clauses (line 8). In our context, it is sufficient to view a
learning scheme as a function that produces a conflict clause for every 1-inconsistent CLR state. While Algorithm 1 allows
any learning scheme to be used, in practice, CDCL SAT solvers insist on learning conflict clauses that contain exactly one
literal falsified at the last level.
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Definition 4 (Asserting clause). A conflict clause α of a CLR state S = (�,Γ, D) is an asserting clause iff it has exactly one
literal � with implication level |D|. The literal � is called the asserted literal of α.

One nice property of asserting clauses is that they are guaranteed to produce new implications as soon as the solver
backtracks to their assertion levels. In the following sections (Sections 4, 5), we will first present results based on a certain
class of learning schemes that always produce asserting clauses. We refer to these learning schemes as asserting learning
schemes. Later, in Section 6, we will discuss generalized results, which apply to some non-asserting learning schemes as well.

Given a learning scheme LS, we use CLRLS to denote the SAT algorithm obtained by applying L S on line 8 of Algorithm 1.
We use CLR to denote the algorithm with any learning scheme.

3.3. Non-determinism in CLR

Given a learning scheme LS, the only sources of non-determinism remaining in CLRLS are the branching heuristic and
the restart policy.

In this work, we utilize the notion of extended branching sequence (introduced in [5]) to capture these two sources of
non-determinism. An extended branching sequence (or just branching sequence, for short) is simply a sequence of literals and
special symbol R that is used to control decision making and restarting in CLR. For example, σ = 〈x,¬y,R,¬x〉 indicates
that the first decision should be x = true, the second decision should be y = false, then the solver should restart, and set
x = false next (unit resolution and conflict analysis are applied normally between these steps). Given such a sequence σ ,
CLR(�,σ ) refers to the CLR state attained after executing CLR on the CNF � according to the decisions and restarting
points specified in σ (i.e., the choices on lines 13 and 21 should be made based on the next element in the sequence).
While not necessary, we assume for simplicity that the solver skips any decision in σ if its variable is already set to the
value of the decision. This is different from branching on assigned variables (as done in [5]), which allows the solver to set
variables to values opposite to what have already been assigned.

After CLR makes some decisions, its state may be 1-inconsistent (line 4). In this case, the algorithm will keep executing
lines 5–11 until its state becomes 1-consistent, at which point it is ready to make another decision or restart. For simplicity,
we insist that CLR(�,σ ) always refer to the state at the end of this process, which is 1-consistent (unless the knowledge
base already contains the empty clause). Moreover, we use the notation KB(CLR(�,σ )) to refer to the knowledge base
(original and learned clauses) of the CLR state CLR(�,σ ).

3.4. CLR as a proof system

Conflict-driven clause-learning SAT solvers can be viewed as a proof system that contains all refutation proofs obtainable
by executing the solvers according to some decision heuristic and restart policy. If we view each conflict clause as the
result of a resolution derivation, we can combine these derivations into a refutation proof once the solvers finish solving
an unsatisfiable problem. In particular, if a given execution of CLR on an unsatisfiable problem produces conflict clauses
C1, . . . , Ck , we know that Σ = �∧C1 ∧· · ·∧Ck is 1-inconsistent (this is how the algorithm terminates). Let each clause Ci be
derived using resolution derivation πi (from original and previously learned clauses), and τ be the unit resolution derivation
of false from Σ , then Π = π1, . . . ,πk, τ is the refutation proof generated by this execution. For the purpose of this work,
each πi can be viewed as a trivial resolution derivation, whose size is at most linear in the number of CNF variables. We
will later justify this claim in Proposition 4. In the following definition, which defines a proof system implemented by
Algorithm 1, we overload the notation CLR to refer to both the SAT algorithm and the proof system.

Definition 5. Given a learning scheme LS, proof system CLRLS consists of all refutation proofs that can be generated by
Algorithm 1 and learning scheme LS.

The main result of this work will show that, for all asserting learning schemes LS, CLRLS p-simulates general resolution.
Note that the size of the unit refutation τ at the end of the proof (see above) is always at most linear in the number of
variables. Since this part of the refutation proof can only contribute a linear factor and in general will be much smaller than
the rest of the proof (i.e., the derivations of learned clauses), we omit it from our future discussion and proofs for simplicity.

To help formalize our discussion later, we present a definition of a clause-learning resolution derivation induced by an
extended branching sequence.

Definition 6. Let C1, C2, . . . , Ck be the conflict clauses produced by executing CLRLS on CNF � according to branching
sequence σ , and let Si be the 1-inconsistent CLR state during the execution for which Ci is a conflict clause. Moreover, let
Πi be a trivial resolution derivation of clause Ci from KB(Si) (the knowledge base at the time Ci was derived), then we say
that σ induces a resolution derivation DERLS(�,σ ) = Π1,Π2, . . . ,Πk .

This notion captures the resolution proof produced, by CDCL SAT solvers, as a result of executing a certain branching se-
quence. Note that, according to this definition, the derivation induced by a branching sequence may not form one connected
resolution derivation. To give an example, consider the following CNF:

� = (a ∨ b ∨ c), (a ∨ ¬c ∨ d), (¬c ∨ e), (¬d ∨ ¬e), (e ∨ c ∨ f ), (¬ f ∨ g), (¬ f ∨ h), (¬g ∨ ¬h),
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Fig. 1. (Left) A trivial resolution derivations of (a ∨ ¬c). (Right) A trivial resolution derivation of (¬ f ).

and the branching sequence σ = 〈¬a,¬b,¬e〉. Let 1stUIP be the first UIP learning scheme [30]. We will now show the
resolution derivation produced by executing CLR1stUIP on � according to σ .

The solver begins by setting a = false, followed by b = false. At this point, unit resolution will be able to detect a conflict
(using the clauses on the first line) and CLR1stUIP will derive (a ∨ ¬c) as the conflict clause. Fig. 1 (left) shows a trivial
resolution derivation of this clause.

After that, the solver will undo b = true and assert this clause. According to σ , the solver now sets e = false as the next
decision. This decision will lead to another conflict (using the clauses on the second row). From this, 1stUIP will derive (¬ f )
as the conflict clause. Fig. 1 (right) shows a trivial resolution derivation of this clause. Overall, the resolution derivation
produced is

DER1stUIP(�,σ ) = (¬d ∨ ¬e), (¬c ∨ e), (¬c ∨ ¬d), (¬c ∨ d ∨ a), (a ∨ ¬c),

(¬g ∨ ¬h), (¬ f ∨ h), (¬g ∨ ¬ f ), (¬ f ∨ g), (¬ f ).

4. Ingredients for the main result

In this section, we present three results that will be utilized in the proof of the main result. These results, which provide
insights on the power of CLR, are made possible by two important concepts: 1-empowerment and 1-provability. These
concepts allow us to formalize the ability of CLR to simulate general resolution. We first give definitions of these notions
before presenting the results. The first notion, 1-empowerment, is the ability of a clause to allow unit resolution to see a
new implication. We present here a slightly modified definition of the one presented in [24].

Definition 7 (1-Empowerment). (See [24].) Let α ⇒ � be a clause where � is some literal and α is a conjunction of literals.
The clause is 1-empowering with respect to CNF � iff

1. � |� (α ⇒ �): the clause is implied by �.
2. � ∧ α is 1-consistent: asserting α does not result in a conflict that is detectable by unit resolution.
3. � ∧ α 
�1 �: the literal � cannot be derived from � ∧ α using unit resolution.

In this case, � is called an empowering literal of the clause. On the other hand, a clause implied by � that contains no
empowering literal is said to be absorbed by �.2

A clause implied by � is 1-empowering if it allows unit resolution to derive a new implication that would be impossible
to derive without the clause. For example, consider � = (a∨b∨c)∧(a∨b∨¬c)∧(a∨¬b∨c)∧(a∨¬b∨¬c)∧(¬c∨d)∧(c∨e).
The clause (a ∨ b) is 1-empowering with respect to � because unit resolution cannot derive a from � ∧ ¬b. On the other
hand, (d ∨ e), which is implied by �, is not 1-empowering (i.e., is absorbed), because unit resolution can already derive e
from � ∧ ¬d and derive d from � ∧ ¬e. Note that if clause C subsumes clause C ′ (i.e., C ⊆ C ′), then C ′ is absorbed by C .
Moreover, adding more clauses to the knowledge base may make a 1-empowering clause become absorbed but can never
make an absorbed clause become 1-empowering. Every asserting clause is 1-empowering with respect to the knowledge
base at the time of its derivation with its asserted literal as an empowering literal [24].

The second key notion, called 1-provability, is related to the difficulty of showing that a clause is entailed by a CNF.

Definition 8 (1-Provability). Given a CNF �, clause C is 1-provable with respect to � iff � ∧ ¬C �1 false.

If a clause is 1-provable with respect to a given CNF, then we can show that it is implied by the CNF using only unit
resolution. For example, consider � defined above. The clauses (a∨b) and (a) are both implied by �. In this case, the clause
(a ∨ b) is 1-provable with respect to �, because unit resolution is sufficient to derive a contradiction after we assert the

2 This terminology, “absorbed”, was introduced in [1].
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negation of the clause on top of �. However, this is not the case for (a). Thus, the clause (a) is not 1-provable with respect
to �. Notice that, according to Definition 3, every conflict clause is 1-provable with respect to the knowledge base at the
time of its derivation. Moreover, a 1-provable clause still remains 1-provable after any clause is added to the knowledge
base.3

We are now ready to present the results. The first key result states that, in every refutation proof of a 1-consistent CNF,
there is always a clause that is both 1-empowering and 1-provable with respect to the CNF.

Proposition 2. Let � be an unsatisfiable CNF that is 1-consistent and Π be a refutation proof of �. There exists a clause C ∈ Π such
that C is 1-empowering and 1-provable with respect to �.

The proof of this proposition is accomplished with the help of the following two lemmas.

Lemma 1. Let C1 = α ∨ �, C2 = β ∨ ¬� be two clauses implied by �. Suppose C1 and C2 are not 1-empowering with respect to �.
Then, α ∨ β is 1-provable with respect to �.

Proof. Let C = α ∨ β . If asserting ¬α or ¬β result in a 1-inconsistent CNF, C must be trivially 1-provable. Otherwise, since
both C1, C2 are implied by � and are not 1-empowering, we know that � ∧ ¬α �1 � and � ∧ ¬β �1 ¬�. Therefore, unit
resolution must be able to derive both � and ¬� from � ∧ ¬C = � ∧ ¬α ∧ ¬β . Therefore, C is 1-provable with respect
to �. �
Lemma 2. Every resolution derivation of a clause that is not 1-provable with respect to � from � must contain a clause which is both
1-provable and 1-empowering with respect to �.

Proof. Let Π = C1, . . . , Cn be the derivation and Ci be the first clause in Π that is not 1-provable with respect to � (i may
be equal to n). Clearly, Ci must be the resolvent of two 1-provable clauses C j, Ck for some j,k < i. Assume for the sake of
contradiction that C j, Ck are both not 1-empowering. Lemma 1 implies that Ci must be 1-provable, which is a contradiction.
Hence, either C j or Ck must be both 1-provable and 1-empowering. �
Proof of Proposition 2. The empty clause is not 1-provable with respect to �, because � is 1-consistent. Lemma 2 im-
plies that the refutation proof Π , which derives the empty clause, must contain a clause that is both 1-empowering and
1-provable. �

The set of clauses which are both 1-empowering and 1-provable plays an important role in our main proof. In the next
result, we show that CLR with any asserting learning scheme can absorb such clauses while producing a resolution proof
of polynomial size. This result essentially states that, given any 1-empowering and 1-provable clause C , we can force CLR
with an asserting learning scheme to efficiently derive clauses that, together with the original knowledge base, allow unit
resolution to see any implication that C may allow us to derive (i.e., render C useless, as far as unit resolution is concerned).

Proposition 3. Let � be a CNF with n variables and C be a clause that is 1-empowering and 1-provable with respect to �. For any
asserting learning scheme AS, there exists an extended branching sequence σ such that the following holds:

1. KB(CLRAS(�,σ )) absorbs C .
2. |DERAS(�,σ )| ∈ O (n4).

Proof. Let C = (α ∨ �) be the clause under consideration and � be an empowering literal. Moreover, let δ be an extended
branching sequence consisting of the literals in ¬α in any order. Since C is 1-empowering, the CLR state right after asserting
δ must be 1-consistent. At this point, because C is 1-empowering, � must not be implied by unit resolution. Moreover, ¬�

cannot be implied by unit resolution either, otherwise the current state must be 1-inconsistent (because C is 1-provable).
This would be a contradiction to the fact that C is 1-empowering. Hence, CLR can select ¬� as the next decision. Asserting
δ and ¬� falsifies C by construction. Since C is 1-provable with respect to the current knowledge base, these assertions
must result in a 1-inconsistent CLR state S .

Let D be the asserting clause derived by AS from S . If � ∧ D absorbs C , we are done. Otherwise, we add D to the
knowledge base and let the solver take care of any conflict until the CLR state on line 4 of Algorithm 1 becomes 1-
consistent. There are at most n conflicts that the solver may need to go through here, because every time a conflict is dealt
with, the algorithm backtracks by at least one level. Hence, by Proposition 4, the total size of resolution proof produced is
in O (n2). Once the solver is in a 1-consistent state, we restart, and repeat this whole process. We will now argue that this
can only be repeated O (n) times.

3 The concept of 1-provability is not new as it is indeed the underlying principle of the resolution proof verification method proposed in [13].
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Every asserting clause learned in the process must generate at least one new implication (i.e., its asserted literal) under
a subset of δ. In every iteration, at least one more literal that was implied at the conflict level will now be implied by the
time that δ is asserted. Because C remains 1-empowering and 1-provable in every iteration, a conflict only happens after
¬� is asserted (thus, after δ is asserted). This implies that, in our proof, once a literal becomes an asserted literal of some
asserting clause, it will never be assigned at any future conflict level again. Thus, each literal can only become an asserted
literal (of any clause) only once in this whole process.

Since there are only n variables, this can be repeated at most O (n) times before the empowering literal (�) itself is
implied by the assertion of some asserting clause. Whenever that happens, it means that � no longer is an empowering
literal of C . At this point, the proof produced so far has size in O (n3). In order to completely absorb C , we need to repeat
this whole process for each empowering literal of C . Since there are � n literals in any clause, the total size of the proof is
clearly in O (n4). �

This result shows that any 1-empowering and 1-provable clause can be efficiently absorbed by CLR with asserting
clauses. So, we will call such a clause CLR-easy with respect to �.

The next result states that every 1-empowering conflict clause can always be derived using a trivial resolution derivation
from the original and learned clauses at the time of the conflict.

Proposition 4. Let S = (�,Γ, D) be a 1-inconsistent CLR state and C be a conflict clause of S that is 1-empowering with respect to
� ∧ Γ . There exists a trivial resolution proof of some C ′ ⊆ C from � ∧ Γ .

Proof. Let C = (α ∨ �) and � be its empowering literal. Let σ be a branching sequence consisting of the literals of ¬α (in
any order) followed by ¬�. Let DEC be the decision learning scheme (as defined based on implication graph in Section 2
of [30]). In this scheme, conflict clauses contain only literals of decision variables.

Asserting σ will result in a conflict and DEC will derive an asserting clause C ′ which consists entirely of the negations
of decision literals. Since the decisions in δ are all negations of literals in C , we have C ′ ⊆ C . Since DEC is a learning scheme
based on implication graph, Proposition 4 of [5] implies that every conflict clause produced by it, C ′ in particular, can be
derived using a trivial resolution proof. �

This result can be viewed as a variation of Proposition 4 of [5] for our definition of conflict clauses and 1-empowering
clauses. Since all resolved variables are distinct in a trivial resolution proof, the size of the proof has to be in O (n), where
n is the number of variables of �. This result is important as it shows that every learning scheme that always derives
1-empowering clauses (including any schemes yet to be conceived) can essentially be “implemented” with the kind of res-
olution derivation already employed by CDCL SAT solvers. Since every asserting clause is 1-empowering, this result applies
to all asserting learning schemes as well.

5. Main result

In this section, we present our main result, which shows that the proof system implemented by CDCL SAT solvers p-
simulates general resolution.

Theorem 1. CLR with any asserting learning scheme p-simulates general resolution.

In practice, the first UIP learning scheme [21,30] (denoted 1stUIP below), is by far the most popular asserting learning
scheme.

Corollary 1. CLR1stUIP p-simulates general resolution.

We now present the proof of Theorem 1. In contrast to the proofs presented in [5,15], and [7], we do not try to simulate
the derivation of every clause in the given resolution proof. Instead, we force CLR to go after CLR-easy clauses only.

Proof of Theorem 1. Suppose AS is an asserting learning scheme. Given a CNF � with n variables and any refutation proof
Π of �, we will construct an extended branching sequence σ that will induce CLRAS to derive the empty clause and
generate a proof of size O (n4|Π |).

In each iteration, consider Σ = � ∧ Γ , the current knowledge base of CLRAS . We may assume that Σ is 1-consistent.
From Proposition 2, we can always find a clause C in Π that is CLR-easy with respect to Σ . Since we are using an asserting
learning scheme, Proposition 3 tells us that the solver can absorb such a clause while generating a proof whose size is in
O (n4). After absorbing C , we force the solver to restart. Let Σ now denote the updated knowledge base. Since Π is still a
refutation proof of Σ , we can still find another CLR-easy clause as long as Σ is still 1-consistent. We repeat this process
until Σ is 1-inconsistent, at which point CLR terminates on line 6 of Algorithm 1. In each iteration, we absorb at least one
clause in Π (no absorbed clause can become 1-empowering after we add more clauses to the knowledge base). Hence, by
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Fig. 2. A refutation proof of �. Each resolvent has two incoming edges from its resolved clauses (original clauses have no incoming edges). Each edge is
annotated with the resolved literal of the corresponding resolved clause.

Proposition 3, we know that each iteration produces a proof whose length is at most in O (n4). Therefore, we can use CLRAS

to produce a refutation proof of � with size O (n4|Π |). �
The next result shows that not only can we construct a CLR refutation proof with size polynomial in the size of any

resolution proof, but the construction process can be carried out in polytime as well.

Theorem 2. The extended branching sequence required for the simulation in Theorem 1 can be constructed in time polynomial in the
sizes of the given refutation proof and of the given CNF.

It suffices to show that finding a CLR-easy clause in any given refutation proof (with respect to any 1-consistent CNF)
can be done in polytime. For each clause Ci in the proof, checking if Ci is 1-provable only requires asserting ¬Ci and closing
the knowledge base under unit resolution. This can be achieved in time linear in the size of the CNF. Checking whether a
literal is an empowering literal of a clause can be performed by asserting the negations of the other literals in the clause
and see whether unit resolution can detect a conflict or derive the remaining literal from the knowledge base or not. This
process, whose time complexity is linear in the size of the CNF, needs to be repeated for each literal in the clause. Therefore,
the overall time complexity for finding a CLR-easy clause is still polynomial in the sizes of the proof and of the CNF.

5.1. Example

We now show an example of the simulation described in the proof of Theorem 1. Consider the following unsatisfiable
CNF:

� = (¬a ∨ e), (¬c ∨ ¬e), (a ∨ ¬c ∨ d), (¬b ∨ ¬d), (c ∨ ¬e), (¬a ∨ b),

(a ∨ ¬b), (a ∨ c ∨ f ), (a ∨ c ∨ ¬ f ), (b ∨ ¬d), (a ∨ ¬b ∨ f ), (a ∨ ¬b ∨ ¬ f ).

Fig. 2 shows a refutation proof of �. Alternatively, we can write this proof as

Π = (¬a ∨ e), (¬c ∨ ¬e), (¬a ∨ ¬c), (a ∨ ¬c ∨ d), (¬c ∨ d),

(¬b ∨ ¬d), (¬b ∨ ¬c), (c ∨ ¬e), (¬a ∨ c), (¬a ∨ ¬b), (¬a ∨ b),

(¬a), (b ∨ ¬d), (b ∨ ¬c), (a ∨ c ∨ f ), (a ∨ c ∨ ¬ f ), (a ∨ c), (b ∨ d),

(a ∨ ¬b ∨ f ), (a ∨ ¬b ∨ ¬ f ), (a ∨ ¬b), (a), false.

Initially, one of the CLR-easy clauses in Π is (¬b ∨ ¬c) and ¬c is the empowering literal. If the solver assigns b = true
and then c = true, unit resolution will detect a conflict. In this case, (¬b ∨ ¬c) and (¬c ∨ d) are both asserting clauses.
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Suppose (¬b ∨ ¬c) is learned. After adding (¬b ∨ ¬c) to the knowledge base, (¬c ∨ d) and (¬b ∨ ¬c), for example, become
absorbed. Next, we force the solver to restart. Suppose we choose (¬a) as the next CLR-easy clause to absorb. We must
now force the solver to set a = true, which will immediately cause a conflict. In this case, (¬a) is derived. Once again, we
force the solver to restart. Suppose we select (a ∨ ¬b) as the next CLR-easy clause. We must now force the solver to set
a = false,b = true. Since ¬a is already implied by the last learned clause, the solver can skip the decision on a and only
needs to assert b = true to cause a conflict. From this conflict, assume that the asserting clause (a ∨ ¬b) is learned. Adding
this clause into the knowledge base will actually cause it to become 1-inconsistent. Hence, the solver can now terminate, as
unit resolution can derive false from the set of original and learned clauses. The whole extended branching sequence used
in this process is 〈b, c,R,a,R,¬a,b〉.

6. Generalization of the main result

In this section, we generalize our main result to some variations of clause-learning SAT solvers that have been studied
in the past. In particular, we show that the main result stated in Theorem 1 also holds for certain non-asserting learning
schemes and for restart policies with a certain property. This demonstrates that our result is applicable to a wide range of
practical SAT algorithms.

6.1. Beyond asserting clauses

The proof of Theorem 1 reveals that 1-empowerment is a key to the power of CLR. Yet, the main result presented in
the previous section requires that the clauses learned by the solvers always be asserting (every asserting clause is also
1-empowering). One obvious question that could be asked is whether any other 1-empowering learning scheme will be
sufficient for CLR to achieve its full potentials. In this section, we will show that, indeed, a certain class of 1-empowering
learning schemes also allows CLR to p-simulate general resolution. We first define this class of learning schemes then
present the result.

Definition 9. Let α and β be disjunctions of zero or more literals. The conflict clause C = (α ∨ β ∨ �) of a CLR state
S = (�,Γ, D) is k-asserting if there are exactly k literals (β ∨ �) falsified at level |D| and � ∧ Γ ∧ D |D|−1 ∧ ¬β �1 �.

In other words, a k-asserting clause contains exactly k literals falsified at the last level. Moreover, the clause is capable
of producing a new implication (�) under the set of decisions right before the conflict. Notice that the second condition
implies that a k-asserting clause is also 1-empowering, because, by the definition of conflict clauses, ¬α must be implied
from � ∧ Γ ∧ D |D|−1 (using unit resolution). Moreover, a literal (�) falsified at the last level is an empowering literal of
the clause. Note that the second condition above could also be interpreted as follows. Under the assignment D |D|−1, any
k-asserting clause reduces (i.e., simplifies) to a clause (β ∨ �) that is 1-empowering with respect to � ∧ Γ ∧ D |D|−1. The
notion of k-asserting clause generalizes the notion of asserting clause. In the case of asserting clause β is the empty clause.

Definition 10. A learning scheme LS is k-bounded-asserting if, for every 1-inconsistent CLR state S , there exists i � k such
that LS produces an i-asserting clause for S .

Essentially, a k-bounded-asserting learning scheme always learns an i-asserting clause, where i � k, for every conflict.
Clearly, every asserting learning scheme is 1-bounded-asserting. In [24], a learning scheme called bi-asserting clause was
proposed and showed to yield much smaller conflict clauses, which significantly improved performance of the solver on
unsatisfiable formulas. This learning scheme could be viewed as a practical variation of the 2-bounded-asserting learning
scheme.

In order to prove the result which generalizes Theorem 1, we need a generalized version of Proposition 3.

Proposition 5. Let � be a CNF with n variables and C be a clause that is 1-empowering and 1-provable with respect to �. For any
k-bounded-asserting learning scheme LS, there exists an extended branching sequence σ such that the following holds:

1. KB(CLRLS(�,σ )) absorbs C .
2. |DERLS(�,σ )| ∈ O (nk+3).

Proof. Let C = (α ∨ �) be the clause in question and � be an empowering literal. The proof has the same structure as the
proof of Proposition 3. First, we construct an extended branching sequence δ from the negation of the clause C in the same
manner. As soon as δ and ¬� are asserted, the solver must be in a 1-inconsistent state.

Let D be the k-asserting clause derived by the learning scheme. If �∧ D absorbs C , we are done. Otherwise, we add D to
the knowledge base. As in the proof of Proposition 3, the solver will go through at most n conflicts to get into a 1-consistent
state and produce resolution proof of size O (n2) here. Once it is in a 1-consistent state, we restart, and repeat this whole
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process. Now, instead of arguing that this process can only be repeated O (n) times (as in the proof of Proposition 3), we
will show that it can go on for at most O (nk) times.

Since every clause learned during this process is k-asserting, it must simplify to a 1-empowering clause C ′ under the
decision sequence δ (by definition). This implies that each of the clauses learned during this process must reduce to a
distinct sub-clause once δ is asserted, otherwise the clause that was learned later cannot be 1-empowering with respect to
the existing knowledge base.

This key observation implies that there can only be so many clauses that we can learn during this process. In particular,
the number of different clauses learned is at most the number of distinct clauses of size � k. Therefore, this process can
be repeated at most O (nk) times. Clearly, the size of the proof produced so far is in O (nk+2). At this point, we know
that � can no longer be an empowering literal of C (in the current knowledge base). In order to completely absorb C , we
need to repeat this procedure for each empowering literal of C . Since there are � n literals in C , the total proof size is in
O (nk+3). �

Again, when k = 1, the result in this proposition become identical to that of Proposition 3. With this result, we are now
ready show that CLR with any k-bounded-asserting learning scheme (where k is a constant) can also p-simulate general
resolution.

Theorem 3. CLR with any k-bounded-asserting learning scheme p-simulates general resolution.

Proof. This result can be immediately obtained by applying Proposition 5 instead of Proposition 3 in the proof of Theo-
rem 1. �

In our proof, the size of the proof produced by CLR will be bounded by O (nk+3|Π |), where Π is the given general
resolution proof. When k = 1 (asserting learning scheme), this result reduces to that of Theorem 1.

This generalized result is interesting because it shows that a much broader class of conflict clauses may be used by CLR
without compromising its strengths. One potential benefit of considering a larger set of clauses is that the set may contain
more clauses with some desirable properties (e.g., having fewer literals, containing fewer implication levels [3]), which may
allow the solver to derive fewer clauses in order to refute the input formula.

6.2. Practical restart policies

In the proof of our main result (Theorem 1), we require the solver to restart after deriving each conflict clause. While
this is a valid restart policy, it is not necessary for CLR to p-simulate general resolution.

In this section, we present a generalization of our main result with respect to the restart policy used by CLR. In particu-
lar, we identify a class of restart policies, which includes policies used by many state-of-the-art solvers, that is sufficient to
achieve the main result.

A restart policy is simply a set of rules, usually based on the number of conflicts experienced by the solver, that deter-
mine when the solver should restart. To simplify our discussion, in this section, we will assume that the choice on line 13
of Algorithm 1 (whether to restart or not) is determined by a restart policy, instead of by the given branching sequence. As
a result, the branching sequences used in the following discussion will no longer contain any restart symbols. In this work,
we consider only restart policies that determine their restarting points based on the number of conflicts experienced by
the solver. As reflected in Algorithm 1, we only allow CLR to restart when the CLR state is 1-consistent. This is also how
restarting is usually implemented in practice. As a result, it is possible for CLR to be in a 1-inconsistent state when there
are enough conflicts to trigger a restart. In such a situation, the solver cannot restart yet. Rather, it has to resolve the con-
flict(s) by going through lines 8–11 of Algorithm 1, possibly multiple times. Once the CLR state is 1-consistent, the solver
can restart (line 13). Since no new decision is made during this process, the number of additional conflicts experienced
before the solver gets into a 1-consistent state is no more than the number of variables.

We use φ(i) to denote the number of conflicts between the (i − 1)th and the ith restarts as specified by the considered
restart policy. Note that φ(1) denotes the number of conflicts before the first restart. The following definition characterizes
how frequently a restart policy restarts.

Definition 11. Given a function f : N → N, a restart policy is f -spaced if φ(i) � f (i), for all i � 1.

The above notion allows us to talk about the frequency of restarts of different policies. Roughly speaking, if a policy is f -
spaced, it means that its restart intervals cannot grow more quickly than f does. If f is a polynomial function, an f -spaced
restart policy is one whose restart intervals grow at most polynomially with the number of restarts. The proof system of
CLR that utilizes restart policy RP contains all refutation proofs that CLR can produce with RP in effect on line 13 of
Algorithm 1. In the following result, we use the phrase “CLR with a restart policy RP” to refer to the proof system obtained
by the aforementioned method.
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Theorem 4. Given any polynomial f , CLR with a k-bounded-asserting learning scheme and an f -spaced restart policy can p-simulate
general resolution.

Proof. Given any function f , it is not hard to see that we can always find a monotonically increasing function f ′ such
that f ′ � f . Any f -spaced restart policy must trivially be f ′-spaced as well. Hence, from now on, we assume that f is
monotonically increasing.

Let RP be any f -spaced restart policy. Because CLR produces a resolution proof of size at most n (number of variables)
at each conflict and RP is f -spaced, CLR may encounter at most f (i) + n conflicts between the (i − 1)th and ith restarts
(recall that the solver may need to deal with up to n conflicts to get into a state in which it can restart). Therefore, the
total resolution proof induced by CLR during a restart interval has size n( f (i)+n), where i is the index of the restart. Since
f is monotonically increasing, this size of the proof induced by CLR during any restart interval can be upper-bounded by
n( f (X) + n), where X is the total number of restarts CLR performed.

According to the proof of Theorem 3, the solver only needs to restart O (nk+1) times to completely absorb a clause. Since
there are at most |Π | clauses to absorb, the maximum number of restarts the solver needs to perform is in O (nk+1|Π |).
Therefore, the size of the refutation proof produced by CLR using a k-bounded-asserting learning scheme and restart policy
RP is in O (nk+2|Π |( f (nk+1|Π |) + n)), which is polynomial in the sizes of Π and �. �

Notice that when k = 1 and f (i) = 1, the size of the proof becomes O (n4|Π |), which is the same as the result obtained
in the proof of Theorem 1.

This result shows that any polynomially-spaced restart policy is sufficient to allow CLR to p-simulate general resolution.
For example, the restart policy used in the proof of Theorem 1 is f -spaced for f (i) = 1 (i.e., restart every 1 conflict). Many
commonly-used restart policies are polynomially-spaced. For instance:

• Arithmetic policies. These policies restart every X conflicts and this interval is incremented by Y after each restart.
These policies are f -spaced with f (i) = X + (i − 1)Y . Examples of solvers utilizing this type of policies are: zChaff
2004 (X = 700, Y = 0) [19], Berkmin (X = 550, Y = 0) [12], Siege (X = 16000, Y = 0) [27], and Eureka (X = 2000,
Y = 0) [22].

• Luby policies [17]. The restart intervals of this type of policies are based on a series proposed in [18], which can be
defined recursively as:

φ(i) =
{

2k+1 if i = 2k − 1,

φ(i − 2k−1 + 1) if 2k−1 � i < 2k − 1.

In practice, the series is scaled by a constant X (known as the unit run). This type of policies is f -spaced with f (i) =
2X(i + 1). Examples of solvers with this policy are Tinisat (X = 512) [16], Rsat (X = 512) [23], and Minisat 2.0 (X =
100) [10].

7. Related work

Early work in this direction was published by Beame et al. in [5]. In that work, the authors showed that a slight variation
of CDCL SAT solvers can simulate general resolution. However, one key modification required by the proof is to allow the
solvers to make decisions on variables that are already assigned. This requirement essentially introduces another degree of
freedom, which makes it harder to come up with a good decision heuristic and to actually implement in practice.

In [29], van Gelder proposed a different proof system called POOL for studying CDCL SAT solvers as resolution engines.
In that work, the author focused on understanding the strength of POOL and using it to model CDCL SAT solvers. The author
did not directly compare the power of the solvers against general resolution.

Nevertheless, POOL later became a basis of the work by Hertel et al. [15], which proved that CDCL SAT solvers can
effectively p-simulate general resolution. In other words, the authors showed that, with an additional preprocessing step,
CDCL SAT solvers can become as strong as general resolution. While the preprocessing is deterministic and independent of
the proof being simulated, it does not simplify the input formula and can be regarded as an extra component not utilized
by any solver in practice.

Buss et al. [7] also presented a similar argument. The authors showed that with a preprocessing step (different from the
one in [15]), a generalized version of clause-learning SAT solvers can p-simulate general resolution. Apart from requiring an
extra preprocessing step, the proof also needed the solver to make decisions on assigned variables.

One feature that all previous attempts in this direction had in common was that their proofs essentially forced the solver
to derive every clause (or a variation of every clause) in the given general resolution proof. Unfortunately, CDCL SAT solvers
can only derive clauses that are 1-empowering and 1-provable with respect to the current knowledge base. As a result,
the previous work had to resort to less practical models in order to get around this constraint. In particular, allowing the
solver to make decisions on assigned variables (as done in [5]) enables the resulting solver to learn clauses that are not
1-empowering. The preprocessor used by [15] transforms every clause in the original formula in order to artificially create
1-empowerment. Roughly speaking, as the solver goes after every clause C in the given general resolution proof, the solver



524 K. Pipatsrisawat, A. Darwiche / Artificial Intelligence 175 (2011) 512–525
is forced to derive C ′ , which is a transformed version of C instead. The transformation makes sure that, even though C may
not be 1-empowering with respect to the current knowledge base, C ′ will be. In [7], the authors showed that several proof
systems based on CDCL SAT solvers can effectively p-simulate general resolution. The proof required that some new variables
be introduced into the given CNF first. Moreover, the proof essentially relied on the fact that the solver was allowed to use
intermediate resolvents (which are not learned by normal solvers) in the derivation of future clauses. Note that while these
intermediate resolvents allow the proof to simulate the derivation of every clause in the given resolution proof, they may
not be 1-empowering.

8. Conclusions and discussion

In this paper, we proved that a broad class of CDCL SAT solvers corresponds to proof systems that are as powerful as
general resolution. Included in this class is the well-known CDCL SAT algorithm that learns asserting clauses. This result
improves on previous results by avoiding the needs for additional degree of non-determinism and preprocessing. Our proof
is made possible by the notions of 1-empowerment and 1-provability, which allow us to capture the power of CDCL SAT
solvers in a more direct and natural way, and to avoid the need for any special technique. The result presented in this paper
essentially shows that CDCL SAT solvers, as used in practice for many years now, are capable of polynomially simulating any
resolution proof, given the right branching and restarting heuristics.

Our result also allows us to finally view modern CDCL SAT solvers as full-fledged resolution engines that try to look
for short refutation proofs. Our main theorem (Theorem 1) shows that the components discussed in this paper are already
sufficient to achieve the full power of clause-learning SAT solvers. According to this perspective, any techniques not used
in the proof of Theorem 1 (including existing techniques such as CNF preprocessing, and any future techniques) can now
be viewed as simply heuristics for guiding resolution. This suggests that we should probably construct these components
(including the branching heuristic and restart policy) from resolution point-of-view rather than the search point-of-view,
which is usually taken in practice.

Finally, in spite of our result, more theoretical work still remains to be done in this research direction. The construction
of our proof relies heavily on the ability of the solver to restart at will. It still remains an open question whether far-
backtracking (or even chronological backtracking) without restarting is sufficient for CDCL SAT solvers to be as strong as
general resolution.
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