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S-1. THE CRITICAL BEHAVIOR OF THE EXTENDED-LOCALIZED TRANSI-

TION IN l-DIMENSION

In this section we shall derive more precise forms for equation (4) in the text. According

to the main text, the optimal localization length λ is determined by ∂E
∂λ

= 0, where E is

given by equation (3) in the text. Then we have equation for λ in l-dimension:

−2Al
1

λ3
+ lBl

α

λl+1
− 2lCl

β

λ2l+1
= 0. (S1)

where Al = l~2/4mI . For l = 1 (1D) and l = 2 (2D) we can solve λ from the above equation

directly and get the energy E:

l=1 :
1

λ
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B1α

2(C1β + A1)
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−B2
1α

2

4(C1β + A1)
(S2)
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1
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=

√
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2C2

(
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β

)
1
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−B2
2

4C2
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β
(S3)

where αc = A2/B2 for l = 2.

In 3D, by solving E = 0 and ∂E
∂λ

= 0 simultaneously, we have αc = (256π
3~6β

3
√
3m3

I

)
1
4 , λ−1c =

( A3

3C3β
)
1
4 . Near the critical point α = αc we have

1

λ
− 1

λc
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3
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4
√
β
, (S4)

E ≈ ∂E

∂α

∣∣
α=αc

(α−αc) =
B3(αc−α)

λ3c
, (S5)

where ∂λ−1

∂α

∣∣
α=αc

and ∂E
∂α

∣∣
α=αc

are determined by equation (S1) and (3) in the text.

S-2. THE SOLITON SOLUTIONS

In this section we show that equation (5) in the text has a series of soliton solutions. The

localized impurity moving along direction of r has the form of Ψ(r, t) = Ψ(r− vt)χ(r, t) =

Ψ(r − vt)e
i[k·r−(µ+ ~2k2

2mI
)t/~]

. The right-hand side of equation (5) can be written as

HeffΨ(r, t) = − ~2

2mI

χ(r, t)
∂2

∂r2
Ψ(r − vt)− ik~2

m
χ(r, t)

∂

∂r
Ψ(r − vt)

+[
~2k2

2m
− 2α|Ψ(r, t)|2 + 3β|Ψ(r, t)|4]Ψ(r, t)

= −i~vχ(r, t)
∂

∂r
Ψ(r − vt)

+{− ~2

2mI

χ(r, t)
∂2

∂r2
Ψ(r − vt) + [

~2k2

2m
− 2α|Ψ(r, t)|2 + 3β|Ψ(r, t)|4]Ψ(r, t)}
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Notice that in the second step we used relation v = ~k
m

. Since the localized wave function

Ψ(r − vt) satisfies equation (2) in the text, i.e.,

[− ~2

2mI

∂2

∂r2
− 2α|Ψ(r − vt)|2 + 3β|Ψ(r − vt)|4]Ψ(r − vt)]} = µΨ(r − vt),

we have

HeffΨ(r, t) = −i~vχ(r, t)
∂

∂r
Ψ(r − vt) + (µ+

~2k2

2mI

)Ψ(r, t) (S6)

= i~
∂

∂t
Ψ(r, t), (S7)

as the final form of equation (5).

S-3. CRITICAL PARAMETERS FOR MANY BOSONIC IMPURITIES

For N noninteracting Bosonic impurities, we assume that all the bosons are condensed

into a single state, and we have the trial wave function ΨN(r) =
√
NΨ(r). Now the total

energy in l-dimension in equation (3) in the text is

EN = N [Al
1

λ2
−Bl

Nα(N)

λl
+ Cl

N2β(N)

λ2l
]. (S8)

At the critical point for the transition between the extended and localized states, we have

∂EN
∂λ

= 0 and EN = 0. Then the critical values of α for different dimensions are obtained as

l = 1 : αc(N) = 0 (S9)

l = 2 : αc(N) =
A2

B2N
=
αc
N

(S10)

l = 3 : αc(N) = (
256π3~6β
3
√

3m3
IN

2
)
1
4 =

αc√
N
. (S11)

If there exits a weak repulsive interaction λIIδ(r − r′) between the background atoms, we

thus have an additional energy part N2BlλII
2λl

. This part can be directly absorbed into α term.

Therefore in these cases, the critical value of α gets a shift of λII/2, and especially, in 1D it

becomes

αc(N)− 1

2
λII = 0. (S12)
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S-4. ENERGY OF TWO CORRELATED FERMIONIC IMPURITIES

In this section we shall calculate the total energy of two localized fermionic impurities.

The trial wave functions in one, two and three dimension are respectively given by:

ψ±,1d =
1√

2λ
√
π(1± e−

a2

4λ2 )

[e−
x2

2λ2 ± e−
(x+a)2

2λ2 ] (S13)

ψ±,2d =
1√

2λ2π(1± e−
a2

4λ2 )

[e−
x2+y2

2λ2 ± e−
(x+a)2+y2

2λ2 ] (S14)

ψ±,3d =
1√

2λ3π
3
2 (1± e−

a2

4λ2 )

[e−
x2+y2+z2

2λ2 ± e−
(x+a)2+y2+z2

2λ2 ] (S15)

Here a is the distance between two localized impurities. Notice such trial wave functions

become ill-defined when a/λ � 1. When a/λ → ∞, which means two localized impurities

are far from each other, we have (ET − 2ES)→ 0. The total energies derived with the trial

wave functions are given by

El
T =

∑
i=+,−

∫
dlrψ∗i (r)[−

~2

2mI

∇2 − αnI(r) + βnI(r)
2]ψi(r) (S16)

where i = +,−. l = 1, 2, 3 represent the dimensions, and nI(r) = |ψ+|2 + |ψ−|2 is the local

density of the impurities. A direct calculation gives the energies for the two impurities in

1D, 2D and 3D.

El
T =− ~2

2mI

lλ2(1− η)− a2

2

(−1 + η)λ4
− α 2η2+2η−8η

3
4 +4

(2π)
l
2 (−1 + η)2λl

+ β
2η3−12η−6η

5
3 +24η

2
3−8

(3π2)
l
2 (−1 + η)3λ2l

(S17)

where η = e
a2

2λ2 . Notice when a/λ→∞, we have

El
T =

l~2

2mIλ2
− α

(2π)
l
2

2

λl
+

β

(3π2)
l
2

2

λ2l
, (S18)

which is exactly the twice of the energy of single localized impurity given by the Gaussian

trial wave function. With the units given by the table in the Methods section, the energies

in one, two and three dimension can be rewritten as functions of dimensionless parameters:

E1
T = −ζ2X1 − ζY1 + β′ζ2Z1 (S19)

E2
T = −ζ2X2 − α′ζ2Y2 + ζ4Z2 (S20)

E3
T = −ζ2X3 − α′ζ3Y3 + ζ6Z3 (S21)
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where ζ = a0/λ, and

Xl = −l +
a2

2λ2(1− η)
(S22)

Yl =
2η2 + 2η − 8η

3
4 + 4

(2π)
l
2 (−1 + η)2

(S23)

Zl =
2η3 − 12η − 6η

5
3 + 24η

2
3 − 8

(3π2)
l
2 (−1 + η)3

(S24)

S-5. MULTI FERMIONIC IMPURITIES IN A 2D LATTICE

In this section we shall solve equation (2) for fermionic impurities with total number N

in a two dimensional lattice. Consider a 2D lattice with lattice constant a0, equation (2)

can be rewritten as :

{− ~2

2mI

∇2 − 2
α

a20
[a20nI(x, y)] + 3

β

a40
[a40nI(x, y)]}[a0Ψk(x, y)] = µk[a0Ψk(x, y)], (S25)

Notice here k is the index for the k-th impurity. By defining t0 = ~2
2mIa

2
0
, nj = a20nI(xj, yj),

α̃ = α
a20

, β̃ = β
a40

and ukj = a0Ψk(xj, yj), we have the eigenvalue equations∑
j

(−t0,〈ij〉 − 2α̃njδij + 3β̃n2
jδij)u

k
j = µku

k
i , (S26)

where t0 is the hopping integral between nearest neighboring sites and nj =
∑N

k=1(u
k
j )
∗ukj is

the impurity density at the lattice site j. If we choose a0 as the length unit defined in the

Methods section, we have the dimensionless parameters α′ = 2mIα
~2 = α̃

t0
and β′ = 2mIβ

~2a20
=

β̃
t0

= 1. The total energy of N fermionic impurities can be written as

EN =
N∑
k=1

µk +
∑
j

[α̃n2
j − 2β̃n3

j ] (S27)

In our calculation, we use a 50× 50 lattice with periodic boundary condition.

S-6. SINGLE IMPURITY IN A 2D FERMI SUPERFLUID

Given a realistic 2D or 3D system, both of α and β are functions of the IB interaction.

According to the Methods section, we have α ∝ β2/3, and this function behavior always has

crossing point with the extended-localized transition boundaries in 2D and 3D(see Fig.S1).
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FIG. S1: Boundary of extended and localized impurity state in 2D and 3D. a, 2D. b,

3D. The black curves indicate the boundary of extended-localized transition, and the red lines

represent the relation between α and β in a realistic system. The shadowed regions mark the

parameter space for the localized state.

This indicates that the extended-localized transition always occurs in a 2D or 3D system

when we increase the IB interaction.

In the following we shall apply our theory to single impurity immersed in a two dimen-

sional Fermi superfluid. For a uniform s-wave superfluid, its ground state energy is given

by:

EB =
∑
k

(εk − µ−
√

(εk − µ)2 + ∆2) +
Ω∆2

V0
, (S28)

where εk = k2/2mB is the dispersion of the background atoms, µ is the chemical potential

and Ω is the volume of the system. In 2D, the bare attractive interaction of the superfluid

V0 can be regularized by V −10 =
∑

k(2εk + εB)−1, where εB is the two-body binding energy.

This gives[1]: µ = εF − 1
2
εB and ∆ =

√
2εBεF , where εF is the Fermi energy.

According to the Methods section, we have:

α =
1

Ω

∑
k

U2
IB∆2

2[(εk − µ)2 + ∆2]3/2
(S29)

β =
1

Ω

∑
k

U3
IB∆2(εk − µ)

2[(εk − µ)2 + ∆2]5/2
. (S30)

We define UIB = (1 + 1
x
)2π~

2aS
mBd

, where aS is the 3D scattering length between the impurities

and background, length d is due to the strong transverse confinement, and x = mI/mB.
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Inserting the results of µ and ∆ into equation (S29) and (S30) we have

α =
π~2

mB

[(1 +
1

x
)
aS
d

]2
4εF

2εF + εB
(S31)

β =
4π2~2

3mBk2F
[(1 +

1

x
)
aS
d

]3
16ε2F εB

(2εF + εB)3
. (S32)

Since the boundary of the extended-localized transition is determined by α′ = 2mIα/~2 =

2π, we have the parameter region for the localized state: x[(1 + 1
x
)aS
d

]2 > 1
2

+ εB
4εF

.
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