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CW Complexes with Simplicial Structures

A A-complex can be defined as a CW complex X in which each cell e} is provided
with a distinguished characteristic map o,:A"™ — X such that the restriction of o,
to each face A" ! of A" is the distinguished og for some (n — 1)-cell efg“l. It is
understood that the simplices A™ and A" ! have a specified ordering of their vertices,
and the ordering of the vertices of A" induces an ordering of the vertices of each face,
which allows each face to be identified canonically with A" !, Intuitively, one thinks
of the vertices of each n-cell of X as ordered by attaching the labels 0,1, - - -, n near
the vertices, just inside the cell. The vertices themselves do not have to be distinct
points of X.

If we no longer pay attention to orderings of vertices of simplices, we obtain a
weaker structure which could be called an unordered A-complex. Here each cell
en has a distinguished characteristic map o,:A"— X, but the restriction of o, to
a face of A" is allowed to be the composition of 0p: A" ! = X with a symmetry of
A" permuting its vertices. Alternatively, we could say that each cell el has a family
of (n + 1)! distinguished characteristic maps A" — X differing only by symmetries
of A", such that the restrictions of these characteristic maps to faces give the dis-
tinguished characteristic maps for (n — 1)-cells. The barycentric subdivision of any
unordered A-complex is an ordered A-complex since the vertices of the barycentric
subdivision are the barycenters of the simplices of the original complex, hence have
a canonical ordering according to the dimensions of these simplices. The simplest
example of an unordered A-complex that cannot be made into an ordered A-complex
without subdivision is A with its three edges identified by a one-third rotation of A?
permuting the three vertices cyclically.

In the literature unordered A-complex structures are sometimes called general-
ized triangulations. They can be useful in situations where orderings of vertices are
not needed. One disadvantage of unordered A-complexes is that they do not behave
as well with respect to products. The product of two ordered simplices has a canoni-
cal subdivision into ordered simplices using the shuffling operation described in §3.B,
and this allows the product of two ordered A-complexes to be given a canonical or-
dered A-complex structure. Without orderings this no longer works.

A CW complex is called regular if its characteristic maps can be chosen to be
embeddings. The closures of the cells are then homeomorphic to closed balls, and so
it makes sense to speak of closed cells in a regular CW complex. The closed cells can
be regarded as cones on their boundary spheres, and these cone structures can be
used to subdivide a regular CW complex into a regular A-complex, by induction over
skeleta. In particular, regular CW complexes are homeomorphic to A-complexes. The
barycentric subdivision of an unordered A-complex is a regular A-complex. A sim-
plicial complex is a regular unordered A-complex in which each simplex is uniquely
determined by its vertices. In the literature a regular unordered A-complex is some-
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times called a simplicial multicomplex, or just a multicomplex, to convey the idea that
there can be many simplices with the same set of vertices. The barycentric subdivi-
sion of a regular unordered A-complex is a simplicial complex. Hence barycentrically
subdividing an unordered A-complex twice produces a simplicial complex.

A major disadvantage of A-complexes is that they do not allow quotient con-
structions. The quotient X/A of a A-complex X by a subcomplex A is not usually a
A-complex. More generally, attaching a A-complex X to a A-complex Y via a simpli-
cial map from a subcomplex A C X to Y is not usually a A-complex. Here a simplicial
map f:A—Y isone that sends each cell e}; of A onto a cell elg of Y so

(o
A'—2 A
that the square at the right commutes, with g a linear surjection send- ; l
ing vertices to vertices, preserving order. To fix this problem we need lk o
AN——Y

to broaden the definition of a A-complex to allow cells to be attached
by arbitrary simplicial maps. Thus we define a singular A-complex, or sA-complex,
to be a CW complex with distinguished characteristic maps o,:A" — X whose re-
strictions to faces are compositions Uﬁq:A"’laAkaX for g a linear surjection
taking vertices to vertices, preserving order. Simplicial maps between sA-complexes
are defined just as for A-complexes. With sA-complexes one can perform attaching
constructions in the same way as for CW complexes, using simplicial maps instead
of cellular maps to specify the attachments. In particular one can form quotients,
mapping cylinders, and mapping cones. One can also take products by the same
subdivision procedure as for A-complexes.

We can view any sA-complex X as being constructed inductively, skeleton by
skeleton, where the skeleton X" is obtained from X™ ! by attaching simplices A"
via simplicial maps dA™ — X" ! that preserve the ordering of vertices in each face of
A". Conversely, any CW complex built in this way is an sA-complex. For example, the
usual CW structure on S" consisting of one 0-cell and one n-cell is an sA-complex
structure since the attaching map of the mn-cell, the constant map, is a simplicial
map from 0A"™ to a point. One can regard this sA-complex structure as assigning
barycentric coordinates to all points of S other than the 0-cell. In fact, an arbitrary
sA-complex structure can be regarded as just a way of putting barycentric coordinates
in all the open cells, subject to a compatibility condition on how the coordinates
change when one passes from a cell to the cells in its boundary.

Combinatorial Descriptions

The data which specifies a A-complex is combinatorial in nature and can be for-
mulated quite naturally in the language of categories. To see how this is done, let
X be a A-complex and let X,, be its set of n-simplices. The way in which simplices
of X fit together is determined by a ‘face function’ which assigns to each element of
X,, and each (n — 1)-dimensional face of A" an element of X,,_;. Thinking of the
n-simplex A" combinatorially as its set of vertices, which we view as the ordered set
A, =1{0,1,---,n}, the face-function for X assigns to each order-preserving injec-
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tion A,_;—A,, amap X,,— X,,_,. By composing these maps we get, for each order-
preserving injection g: A, — A, amap g*: X,, — X, specifying how the k-simplices of
X are arranged in the boundary of each n-simplex. The association g — g* satisfies
(gh)* = h*g™*,and we can set 11* = 1, so X determines a contravariant functor from
the category whose objects are the ordered sets A,,, n = 0, and whose morphisms are
the order-preserving injections, to the category of sets, namely the functor sending A,
to X,, and the injection g to g*. Such a functor is exactly equivalent to a A-complex.
Explicitly, we can reconstruct the A-complex X from the functor by setting

X =, (X, xAM /(g" (x),») ~ (x,9.(»))

for (x,y) € X, X Ak, where g, is the linear inclusion Ak AT sending the ith vertex
of A¥ to the g (i) th vertex of A™, and we perform the indicated identifications letting
g range over all order-preserving injections A, —A,,.

If we wish to generalize this to sA-complexes, we will have to consider surjective
linear maps AK— A" as well as injections. This corresponds to considering order-
preserving surjections A, — A, in addition to injections. Every map of sets decom-
poses canonically as a surjection followed by an injection, so we may as well consider
arbitrary order-preserving maps A, —A,,. These form the morphisms in a category
A,., with objects the A, ’s. We are thus led to consider contravariant functors from
A, to the category of sets. Such a functor is called a simplicial set. This terminology
has the virtue that one can immediately define, for example, a simplicial group to be
a contravariant functor from A, to the category of groups, and similarly for simpli-
cial rings, simplicial modules, and so on. One can even define simplicial spaces as
contravariant functors from A, to the category of topological spaces and continuous
maps.

For any space X there is an associated rather large simplicial set S(X), the sin-
gular complex of X, whose n-simplices are all the continuous maps A" — X. For a
morphism g:A, —A,, the induced map g* from n-simplices of S(X) to k-simplices
of S(X) is obtained by composition with g, :AK— A™. We introduced S(X)in§2.1in
connection with the definition of singular homology and described it as a A-complex,
but in fact it has the additional structure of a simplicial set.

In a similar but more restricted way, an sA-complex X gives rise to a simplicial
set A(X) whose k-simplices are all the simplicial maps AK— X . These are uniquely
expressible as compositions ¢,q: A¥— A" X of simplicial surjections q (preserv-
ing orderings of vertices) with characteristic maps of simplices of X. The maps g*
are obtained just as for S(X), by composition with the maps g, :A¥— A", These
examples A(X) in fact account for all simplicial sets:

Proposition A.18. Every simplicial set is isomorphic to one of the form A(X) for

some sA-complex X which is unique up to isomorphism.
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Here an isomorphism of simplicial sets means an isomorphism in the category
of simplicial sets, where the morphisms are natural transformations between con-
travariant functors from A, to the category of sets. This translates into just what
one would expect, maps sending »-simplices to n-simplices that commute with the
maps g”*. Note that the proposition implies in particular that a nonempty simplicial
set contains simplices of all dimensions since this is evidently true for A(X). This
is also easy to deduce directly from the definition of a simplicial set. Thus simplicial
sets are in a certain sense large infinite objects, but the proposition says that their
essential geometrical core, an sA-complex, can be much smaller.

Proof: Let Y be a simplicial set, with Y,, its set of n-simplices. A simplex T in
Y, is called degenerate if it is in the image of g*:Y;,—Y,, for some noninjective
g:A,— Ay . Since g can be factored as a surjection followed by an injection, there is
no loss in requiring g to be surjective. For example, in A(X) the degenerate simplices
are those that are the simplicial maps A™ — X that are not injective on the interior of
A" . Thus the main difference between X and A(X) is the degenerate simplices.

Every degenerate simplex of Y has the form g* () for some nondegenerate sim-
plex T and surjection g:A, —A,. We claim that such a g and T are unique. For
suppose we have g; (T;) = g5 (T,) with T, and T, nondegenerate and g, :A, — A4,
and g,:A, — 4, surjective. Choose order-preserving injections h;:4A, —A, and
hy:Ay,—A, with gih; = 1 and g,h, = 1. Then gy (1;) = g5 (7,) implies that
h3giy(ty) = higy(t,) =T, and hig; (1,) = hig; (ty) = T{, so the nondegeneracy
of T, and T, implies that g,h, and g,h, are injective. This in turn implies that
k, =k, and g,h, = 1 = g,h,, hence 1, = 1,. If g, # g, then g,(i) # g,(i) for
some i, and if we choose h; so that h,g,(i) = i, then g,h,g,(i) = g,(i) = g, (i),
contradicting g,h,; = 1 and finishing the proof of the claim.

Just as we reconstructed a A-complex from its categorical description, we can
associate to the simplicial set Y an sA-complex |Y], its geometric realization, by
setting

Y| =11, (Y, xA™) /(g% (), 2) ~ (¥,94(2))

for (v,z) € Y,xA* and g:A,—A,,. Since every g factors canonically as a surjec-
tion followed by an injection, it suffices to perform the indicated identifications just
when g is a surjection or an injection. Letting g range over surjections amounts to
collapsing each simplex onto a unique nondegenerate simplex by a unique projection,
by the claim in the preceding paragraph, so after performing the identifications just
for surjections we obtain a collection of disjoint simplices, with one n-simplex for
each nondegenerate n-simplex of Y. Then doing the identifications as g varies over
injections attaches these nondegenerate simplices together to form an sA-complex,
which is |Y|. The quotient map from the collection of disjoint simplices to |Y| gives
the collection of distinguished characteristic maps for the cells of |Y].
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If we start with an sA-complex X and form |A(X)|, then this is clearly the same
as X. In the other direction, if we start with a simplicial set Y and form A(]Y]) then
there is an evident bijection between the n-simplices of these two simplicial sets, and
this commutes with the maps g* so the two simplicial sets are equivalent. O

As we observed in the preceding proof, the geometric realization |Y| of a sim-
plicial set Y can be built in two stages, by first collapsing all degenerate simplices by
making the identifications (g*(y),z) ~ (,94(2)) as g ranges over surjections, and
then glueing together these nondegenerate simplices by letting g range over injec-
tions. We could equally well perform these two types of indentifications in the oppo-
site order. If we first do the identifications for injections, this amounts to regarding
Y as a category-theoretic A-complex Y, by restricting Y, regarded as a functor from
A, to sets, to the subcategory of A, consisting of injective maps, and then taking
the geometric realization |Y,| to produce a geometric A-complex. After doing this,
if we perform the identifications for surjections g we obtain a natural quotient map
|YA|—1Y|. This is a homotopy equivalence, but we will not prove this fact here. The
A-complex |Y,]| is sometimes called the thick geometric realization of Y.

Since simplicial sets are very combinatorial objects, many standard constructions
can be performed on them. A good example is products. For simplicial sets X and
Y there is an easily-defined product simplicial set X xY, having (XxY),, = X, XY,
and g*(x,y) = (g*(x),g™(y)). The nice surprise about this definition is that it is
compatible with geometric realization: the realization | XX Y| turns out to be homeo-
morphic to |X|x|Y], the product of the CW complexes |X| and |Y| (with the com-
pactly generated CW topology). The homeomorphism is just the product of the maps
| XXY|—|X| and | XxY|—Y| induced by the projections of XxY onto its two fac-
tors. As a very simple example, consider the case that X and Y are both A(A!).
Letting [v,,v;] and [w,, w;] be the two copies of A', the
product X x Y has two nondegenerate 2-simplices: (v, w,) (v, w))

([vg, v, v1], [wg, wy, wy 1) = [(vg, wy), (v, wy), (v, wy)]

([UO,UO,’Ul], [wo,wlywl]) = [('Uo,w()), (Uo,wl), (U1yw1)]

These subdivide the square A'xA! into two 2-simplices.
There are five nondegenerate 1-simplicesin X x Y, as shown (vg, wy) (), wp)
in the figure. One of these, the diagonal of the square, is the
pair ([vy, v, ], [wg, w,]) formed by the two nondegenerate 1-simplices [v,, v;] and
[wy, w,], while the other four are pairs like ([v(, vy], [wy, w;]) where one factor is
a degenerate 1-simplex and the other is a nondegenerate 1-simplex. Obviously there
are no nondegenerate n-simplices in XxY for n > 2.

It is not hard to see how this example generalizes to the product A” x A%, Here

one obtains the subdivision of the product into (p + gq)-simplices described in §3.B
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in terms of the shuffling operation. Once one understands the case of a product of
simplices, the general case easily follows.

One could also define unordered sA-complexes in a similar way to unordered
A-complexes, and then work out the ‘simplicial set’ description of these objects. How-
ever, this sort of structure is more cumbersome to work with and has not been used

much.



