
 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
FieldML: concepts and implementation

BY G. RICHARD CHRISTIE
1,*, POUL M. F. NIELSEN

1, SHANE

A. BLACKETT
2, CHRIS P. BRADLEY

3
AND PETER J. HUNTER

1,3

1Auckland Bioengineering Institute, University of Auckland,
Auckland 1142, New Zealand

2Spark Dental Technology Ltd, North Shore City 0632, New Zealand
3Department of Physiology, Anatomy and Genetics, University of Oxford,

Oxford OX1 2JD, UK

The field modelling language FieldML is being developed as a standard for modelling and
interchanging field descriptions in software, suitable for a wide range of computation
techniques. It comprises a rich set of operators for defining generalized fields as functions
of other fields, starting with basic domain fields including sets of discrete objects and
coordinate systems. It is extensible by adding new operators and by their arbitrary
combination in expressions, making it well suited for describing the inherent complexity of
biological materials and organ systems. This paper describes the concepts behind FieldML,
including a simple example of a spatially varying finite-element field. It outlines current
implementations in established, open source computation and visualization software, both
drawing on decades of bioengineering modelling software development experience.

Keywords: field; modelling; computation; serialization; FieldML
On

*A
1. Introduction

A field is an abstraction of some quantity defined over a domain. To
mathematically model the physics of real-world bodies, fields describing physical
state and other properties at locations within the domain are approximated by
functions based on a finite set of parameter values.

The combinations of functions able to describe a field to ever greater accuracy
are without limits. However, this is balanced by a need to reduce the number
and complexity of functions and the corresponding size of parameter sets
to minimize storage and computation overhead. Complexity is frequently
reduced by assuming some degree of continuity in the representation of field
values and derivatives, but this must be physically justifiable. Such assumptions
may be reasonable at one scale but not at another: the deformation of muscle
tissue appears continuous at the macroscopic tissue scale but this may only be
the bulk behaviour of more detailed mechanisms at the scale of individual
sarcomeres and interconnecting collagen fibres. To support the widest gamut of
problems, field formats must not mandate the assumptions of continuity and the
other aspects of representation.
Phil. Trans. R. Soc. A (2009) 367, 1869–1884

doi:10.1098/rsta.2009.0025
e contribution of 15 to a Theme Issue ‘The virtual physiological human: tools and applications I’.

uthor for correspondence (r.christie@auckland.ac.nz).

1869 This journal is q 2009 The Royal Society

http://rsta.royalsocietypublishing.org/


G. R. Christie et al.1870

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
The field modelling language FieldML is being developed to represent fields
with few restrictions on function, domain type and dimension. FieldML intends to
address the requirements for representing fields for common modelling techniques
including finite elements, boundary elements, finite difference and finite volumes,
but also more general fields unrestricted by the current solution techniques.

FieldML avoids complex data structures for defining fields such as meshes
with fixed notions of connectivity, and instead defines fields in terms of more
abstract domains including sets and coordinate systems. These domains are
each a type of field whose values are object references or coordinate system
locations. The majority of fields are defined by mathematical operators or the
result of algorithms acting on values of other fields, whether they are prescribed
values of domain fields or computed from them. FieldML is expressive since the
value of each field at domain locations is explicitly stated by functions. It is also
extensible via the definition of new field operators or types, and their
combination in expressions. It supports software reuse because each field
operator need only know how to deal with the type of values of the fields it
operates on, irrespective of the ultimate domain they are defined over. FieldML
eliminates the need to have separate data formats for piecewise continuous fields,
tabulated parameters and discrete variables.

Although FieldML is primarily intended to describe the structure and
parametrization of spatial fields, its rich set of field operators including the
spatial and temporal operators of differential and integral calculus can in
combination also describe the physical principles that govern biological
behaviour such as reaction–diffusion processes, large-deformation elasticity
theory or computational fluid dynamics. For example, an elastic strain energy
function can be considered a field and expressed using FieldML. However, the
solution or minimization of these equations is not a part of FieldML.

FieldML is being developed as:

(i) a data model defining concepts and basic objects from which fields
are constructed,

(ii) open source software implementations and application programming
interfaces (APIs) for modelling fields following the data model, and

(iii) one or more native FieldML serialization formats and API to support
interchange of field descriptions.

The primary intention of this paper is to communicate the underlying data
model for FieldML, and to outline the development of software implementations
for computation and visualization. Concepts are illustrated with a mock-up
serialization of a spatially varying finite-element field, but the issue of developing
FieldML serialization formats is mostly left to later work and is reliant on
consensus on the data model, and the availability of software interfaces and
implementations. Also discussed is the overlap with the CellML markup
language (www.cellml.org), which has similar capabilities for describing
mathematical relationships between variables, but lacks spatial variation.

Many of the ideas presented here have already been successfully implemented
in software, but other areas are still at the proposal stage. The authors
invite feedback and other contributions towards the development of the
FieldML standard.
Phil. Trans. R. Soc. A (2009)

http://www.cellml.org
http://rsta.royalsocietypublishing.org/


1871FieldML: concepts and implementation

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
2. Background

A significant influence on FieldML has been the CMISS modelling software
(www.cmiss.org), which supports complicated representations of finite-
element fields using basis functions with high-order continuity and flexible
parameter mappings. CMISS models use fields to express most simulation
variables, including geometry, material properties as well as dependent
variables. It is able to use different basis functions for each field component
defined over the same topology. This contrasts with conventional finite-
element representations, which restrict fields to using just a few simple
element types, mixing function with topology. In addition, they often treat
geometry and material properties as special cases, distinct from other fields.
Examples include the GENERAL MESH VIEWER format (http://www-xdiv.lanl.
gov/XCM/gmv) and EXODUS II format (http://endo.sandia.gov/SEACAS/
Documentation/exodusII.pdf). The authors consider these formats to be
limiting for many of the problems being encountered in bioengineering.
Christie et al. (2002) showed the benefits of defining fields by mathematical
operations on other fields including cases where the fields have a nonlinear
relationship to field parameters, as illustrated later by the muscle fibres in
figure 7. It is noted that the more varied field representations in CMISS
come at the cost of greater software complexity, which FieldML intends to
reduce by replacing fixed-functionality codes with modular combinations of
basic field operations.

The LIBMESH project (Kirk et al. 2006, http://libmesh.sourceforge.net) is
noted as a modern framework for the numerical simulation of partial differential
equations, which supports distributed parallel systems and adaptive mesh
refinement. To model various physics problems, it is able to describe an arbitrary
number of spatially varying fields (here termed ‘variables’), which is a
requirement common with FieldML.

Like FieldML, the Sets and Fields (SAF) modelling system (see Miller et al.
2001) concludes that it is beneficial to construct complicated field represen-
tations out of a few reusable building blocks, namely sets, relations and fields.
Despite its generality, SAF has been able to replace more restrictive data
formats for model storage and interchange while maintaining a high per-
formance. FieldML packages its basic concepts differently, considering sets as
a specialized domain field type, while relations are either a field operator type
or in some cases expected to be communicated from a subsequent metadata
specification. A further difference is that parameters are also a field type in
FieldML. In contrast to SAF, FieldML is being developed as a basis for
modelling software, not just for serialization. Further discussion on combining
efforts with SAF appear worth while if SAF continues to be actively developed
under appropriate licensing terms.

Sandia National Laboratories’ SIERRA Framework (Edwards 2006, http://
csmr.ca.sandia.gov/projects/ftalg/Edwards02.pdf) is a further effort to find
common abstractions for modelling data structures. The project aims to unify
core data structures and facilities in several computation codes, reduce
maintenance costs, enhance performance across the suite of codes and facilitate
interoperability to support massively parallel multi-physics simulations.
Phil. Trans. R. Soc. A (2009)

http://www.cmiss.org
http://www-xdiv.lanl.gov/XCM/gmv
http://www-xdiv.lanl.gov/XCM/gmv
http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf
http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf
http://libmesh.sourceforge.net
http://csmr.ca.sandia.gov/projects/ftalg/Edwards02.pdf
http://csmr.ca.sandia.gov/projects/ftalg/Edwards02.pdf
http://rsta.royalsocietypublishing.org/


G. R. Christie et al.1872

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
3. FieldML concepts

(a ) Field

A field is commonly defined as some values varying over a spatial domain. For
computation, a field is often implemented as a function mapping the domain
locations over which it is defined to the field values. FieldML generalizes these
definitions in a few areas, which are as follows:

(i) The domain of a field need not be spatial in the literal sense; space could
alternatively represent time or any other solution variable.

(ii) Domains need not be continuous or connected spaces; hence valid domains
include sets of discrete objects and whole models considered as a single unit.

(iii) FieldML fields are considered as functions, but this is extended to domains
themselves whose values are prescribed rather than computed, in effect
implementing the identity function.

(iv) Field values are unlimited in type and may represent integers, strings, object
references and structures in addition to theusual scalar, vector and tensor real
numbers. Field functions ‘return’ values of a certain type.

True to the common definition, a FieldML field represents a family of related
values over some domain, but in software terms it is a mechanism to return values at
prescribed locations in its domain, be that space, time, continuous, discrete or other.

(b ) Field type

An important step towards the current thinking on FieldML was the idea of
deriving fields by simple mathematical operations on other fields. The result of a
field operator is another field; one could therefore consider each field to be an
instance of an operator acting on one or more input fields, so each type of field
operator could alternatively be considered as a ‘field type’.

This leads to a convenient implementation in object-oriented languages: the
field type is an abstract base class with pure virtual methods for evaluating its
values at domain locations, querying value types and other generic tasks. Actual
fields are created as instances of derived classes, which implement particular
mathematical operators acting on the values of other fields and objects. Even
complicated field representations such as a finite-element interpolation over a
mesh can be reduced to basic operators combining basis functions defined as
mathematical expressions of coordinate chart locations, and various operators for
extracting element parameters from fields defined over discrete ‘node’ objects.

Parameters are considered a special field type whose values are stored rather
than calculated. The ability to substitute a fixed parameter field with a
computed field is a powerful tool for constructing complex field representations.

Domain objects such as meshes and coordinate systems can also be treated as
fields at an abstract level. The range of permissible values of domain fields forms
a part of their definition. Values indicating locations in the domain must be
specified to evaluate other fields depending on them. Considering domain objects
as fields at an abstract level does not lead us to a dilution of their concepts. In
many cases, special field operators will be needed to work with particular domain
types, such as a piecewise function defined over a mesh domain. Each field type,
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


abstract field

domain field computed field

Figure 1. Class diagram showing main categories of FieldML field types.

1873FieldML: concepts and implementation

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
including domain fields, may have additional functionality (exposed via extra
software interfaces) as needed to fulfil its role. Software can evaluate fields
without knowing the details of the operations being performed, but needs to
know intimately how to work with domains, for example to iterate over elements
and integrate or visualize fields over element coordinate systems. Note that the
mathematical notion of the ‘domain of a field’ could be the range of another field,
so one has to be careful with terminology.

Figure 1 shows a skeleton class diagram for FieldML field types. The base
abstract field presents all common features of fields including the type of its
values, methods to determine which domain field it ultimately depends on and
methods for evaluating the field, given values of fields it depends on. The main
division below this point is into domain fields, owing to their special role at the
source of a chain of evaluation, and the remaining fields whose values are
computed, including stored value parameter fields.

The unified treatment of fields, parameters and domain objects permits the
consistent use of their values, and simplified specification of operators such as
derivatives, which can be evaluated with respect to fields or their components,
parameters and domain locations.

FieldMLfield types implement themost basic non-reducible operations to support
maximum reuse. The simplest field types to implement are common mathematical
operations on numerical-valued fields including add, subtract, multiply, divide,
trigonometric functions, vector functions, matrix functions and more.

Some of the main field operators and types proposed are as follows.

—Ensemble. A domain field consisting of a collection of objects treated as a
whole, which may represent a set of nodes, elements, particles or other objects.
This can be extended to allow ensembles of ensembles to support the types of
hierarchical domains described in §3f.

—Coordinate system. Declaration of an n-dimensional continuous domain,
possibly restricted to a subset of Rn. Section 3c describes several coordinate
systems and their combination with ensembles to define meshes.

—Piecewise. A field implemented by one or more operators defined over all or
parts of an ensemble domain. A common use is to define interpolation using
basis functions over a set of elements. Several piecewise fields are used in the
example in §4.

—Parameter. Stores literal field values per ensemble object it is defined over.
— Import. Imports a field from the same or other FieldML model but

substituting zero or more of its source fields with local fields. This is one of
the few ways in which fields from other models can be reused. It is important
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


G. R. Christie et al.1874

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
to control inter-model dependences to make it clear what information needs to
be serialized with a model, and to handle propagation of change messages from
other models in software implementations.

—Derivative. Calculates derivatives of fields with respect to other continuous
real-valued scalar or vector fields. Other derivative field types include vector
field divergence, gradient and curl operators.

—Function inverse and compose. Inverting a coordinate field to return a location
in its domain from coordinate values, then evaluating another field at that
location, can make a field effectively a function of another field as if it were its
domain. Practical uses include implementing time-dependent fields, arbitrary
texture coordinates in image-based fields and general embedding.

—Logical and conditional fields. These enable field values to depend on Boolean
expressions giving custom control of field values.

— Image and image processing fields. These fit elegantly into the field abstraction,
enabling integration with piecewise or finite-element representations.
(c ) Domain fields

A field definition is incomplete without the specification of the domain over
which it is defined, and whose values must be prescribed in order to evaluate the
field. FieldML domains are principally divided into sets of objects (ensembles)
and continuous coordinate systems or element charts, or their combination into
piecewise coordinate systems, referred to as an atlas or mesh.

Figure 2 illustrates several continuous and piecewise continuous domains.
Figure 2a shows a three-dimensional coordinate system covering all of R3,

while figure 2b shows a coordinate system restricted to part of R2. Each of these
domains is alternatively referred to as chart; locations within them are specified
by a number of coordinates equal to their dimension. Numerical problems over
complex geometries are usually solved using a mesh or atlas domain as shown in
figure 2c, which consists of a set of elements each with its own coordinate chart.
This is due to the ease with which the domain can be mapped by a set of charts of
simple shape, but also to support piecewise field functions.

Figure 2d shows that, without additional information, each element chart
is independent and unconnected. A FieldML mesh principally provides an
unambiguous coordinate system for identifying points in the domain. It is not
seen as a requirement that the domain objects (elements) maintain custom
information about inter-element connectivity, but rather that this be conveyed by
fields defined over these domain objects. Connectivity can be inferred for a field
from shared parameters and functions along element boundaries. Such mappings
can be changed during a simulation or be made a function of another field such as
the time domain. If it becomes necessary to communicate cached mesh
connectivity information in a more convenient format, this can be done via the
general return values allowed by fields, discussed in §3d. An example is a field
whose values are a list of shared global nodes (the element’s ‘local node list’—often
already part of a finite-element field definition) or references to matching face
elements for each element in a mesh. These generalized fields offer advantages over
hard-coded members of element objects in traditional modelling codes in that
connectivity can be described in multiple ways; it can be dynamically calculated or
omitted if not needed.
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


1 2

41 2

(a)

0

1

1

(b) (c) (d)

3 4

3

Figure 2. Continuous domains: (a) coordinate system chart covering R3; (b) chart restricted to
[0,1] in two dimensions; (c) mesh or atlas, a set of element charts; and (d ) mesh without
connectivity are shown.

1875FieldML: concepts and implementation

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
Ensemble fields without associated element charts are used to represent sets of
zero-dimensional objects such as nodes, particles, data points and other entities.
The example of §4 has a node ensemble with a parameter field defined over it,
supplying nodal coordinates for element interpolation.

Section 3e introduces the model object, which is a hierarchical container for
FieldML fields. Some fields consider the whole model as a point domain for the
definition of fields that are invariant across any subdomains making up the
model. These fields may represent model-wide constants or simple variables; they
are intended to allow FieldML to work as easily with lumped-parameter models
as with models requiring complex spatial and temporal variation.
(d ) Field values

Values of FieldML fields include real and complex scalar, vector,
matrix/tensor quantities, manipulated in software as floating-point numeric
types. The parameters from which fields are calculated are often stored at lower
precision to reduce storage requirements, and are sometimes not floating-point
values: integer values are common for image-based fields. Locations in domains
consist of references to discrete objects or, in the case of meshes, a combination
of element reference and element chart coordinates. Allowing fields to return
domain locations in other meshes and evaluating fields defined there enables
powerful concepts such as embedding and supports familiar constructs such
as element local node lists used in finite-element fields. These non-standard
field values are the mechanism by which FieldML avoids the use of hard-wired
data structures for defining fields, which are generally found to limit possible
field representations.

Field values are incomplete without additional attributes and metadata to aid
interpretation. This includes units for each field or field component, which
FieldML implementations will use to prevent operators combining incompatible
fields, and also to establish units of derived fields. Other important attributes
include whether values are to be interpreted as purely real numbers, complex
pairs, quaternion or other; whether components of vectors and tensors are
covariant, contravariant or mixed with respect to a basis set; and coordinate
systems with respect to which geometric fields are defined. Each of these has
a bearing on how certain field operators work. A proposal for working with
coordinate systems is presented in the example later, but other attributes are not
discussed further in this paper.
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


{root}

heart

torso

lungs

left lung right lung

(b)(a)

Figure 3. Example model hierarchies from bioengineering: (a) composite model of heart and lungs
and (b) hierarchy of skeleton lower limb.

G. R. Christie et al.1876

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
(e ) FieldML models

At the highest level, FieldML defines the model object, which is a hierarchical
container of fields and submodels. Models (termed ‘regions’ in the software
implementations of §5) enable encapsulation, separating field namespaces so that
multiple models and submodels may coexist without interference.

Modellers and modelling software may assign whatever meaning to each
model object as deemed appropriate. FieldML models may correspond to parts
and assemblies in computer-aided design data. In the modelling of organs and
other biological systems, it may be practicable to use a single model to represent
a whole organ or cell, or alternatively encapsulate distinct parts into submodels.
The musculoskeletal system fits well into model hierarchies matching traditional
anatomical classifications. Two examples of model hierarchies are given
in figure 3.

The CMGUI application (see §5) attaches a graphical rendition to each
model/region in order to visualize its fields. In a similar manner, computation
codes may associate solution matrices and other data with FieldML models.
(f ) Hierarchical meshes and fields

Two hierarchical mesh concepts are on the FieldML roadmap and are
described here to give an indication of the type of field representations FieldML
intends to be able to support.

The first is the construction of complex models out of template meshes and
fields as illustrated in figure 4.

Here, discretized models of a simple tube and a bifurcating tube section are
combined into an aggregate model, reusing mesh and field definitions in each
part. The model maintains a tree of constituent meshes, and couples degrees of
freedom on the common boundary.

The second hierarchical meshing concept is adaptive refinement, where the
density of piecewise functions making up a field is increased to approach a
solution to the desired accuracy. Figure 5a–c illustrates regular refinement of an
initially two-element mesh in selected elements while figure 5d illustrates
irregular refinement by triangles to fit the line of a cut to the body.
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


Figure 4. Hierarchical model construction by aggregation of template meshes and fields.

E1 E2

1 2 3

4 5 6

x

(a) (b)

(d )(c)

Figure 5. (a–d ) Adaptive refinement of a mesh to represent detail of a cut.

1877FieldML: concepts and implementation

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
Assuming the field in each element is interpolated from parameters held at
corner nodes (vertex points), at refinement (a) it is a function of parameters at
nodes 1–6, and at refinement (b) it has additional parameters for each new node,
such that the field description along the boundary between the two original
elements is a function of parameters at nodes 2, x and 5. If element E1 had not
been refined at state (b), x would be treated as a hanging node, meaning its
parameters are not stored, but calculated in terms of the parameters at nodes 2
and 5 to maintain continuity between the two elements.

It is important that the hierarchical relationships between these levels of mesh
refinement are maintained, in particular the mappings of element chart
coordinates. This supports cases where more than one field will be represented
by different patterns and levels of refinement, and also post-processing of a full
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


(a) (b)

Figure 6. Connectivity of coordinate field versus material property based on meshes from figure 5.
(a) Shaded material property shown on coarse mesh with cut line shown for reference and
(b) deformed geometry including cut, defined on highly refined mesh.

G. R. Christie et al.1878

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
time-varying simulation. The development of this type of hierarchical mesh
refinement in FieldML is likely to exploit the treatment of parameters as fields,
to map parameters of refined meshes back to coarse mesh parameters and handle
cases such as hanging nodes.

Figure 6 shows the situation of two fields defined over different mesh
refinements from figure 5. The shading indicates the variation of a material
property such as stiffness, which can be described throughout a simulation
on the original, unrefined mesh, even if the coordinate field is refined several
times to accurately describe a detailed deformation involving a cut in the mesh.
This shows that one has to be careful when talking about connectivity; it is not
a universal property of a hierarchical mesh, but a property of a field at the
particular mesh refinement it is defined over at any instant.

(g ) Field and domain combinations

Fields defined in different FieldML models are not compatible with each other
and mathematical combinations of them are not permitted. To work around this
restriction and reuse objects from other models, the use of the special import field
type is required.

Fields are not permitted to depend, even indirectly, on themselves. Being non-
cyclic (non-recursive) is a requirement for a declarative language such as FieldML.

Within a FieldMLmodel, certain rules of field and domain combination apply. A
field created using an operator acting on two or more fields defined over different
domains will be defined over the intersection of those domains. Rules and language
constructs to govern or enable operations on fields defined over unrelated domains
are still under discussion. An example is multiplying a spatially varying field by a
time-varying field with the intention of having the result defined over space and
time. Domain compatibility may be a requirement for certain field operators in the
same manner as units and value types. Note that the current thinking on model-
wide constants and simple variables is that they may be combined in operations
with any other field.
4. Example: finite-element interpolation

This section shows a simple mock-up of a FieldML data file to illustrate how
complex field descriptions can be constructed from simple building blocks. Be
aware that it is neither an existing format nor is it ready to be proposed as
a standard, and where it is not clear the accompanying comments should clarify
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


1879FieldML: concepts and implementation

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
the intended meaning. It is written in extensible markup language (XML) format
(www.w3.org/XML) since it is understood by many people and is a strong
candidate for use in the eventual standard.

The example defines a two-dimensional coordinate over the mesh in figure 5a.
It consists of only a singlemodel, hence all itemswithin themodel tag denote named
fields. Units are not used in this example and XML header information is omitted.

The key part of the example is the definition of a two-dimensional coordinate
field using the following interpolation functions:

yi Z
X4

jZ1

4jaji;

with bilinear basis functions 4j expressed in terms of the element coordinate
system components x1 and x2,

41 Z ð1K x1Þð1K x2Þ;
42 Z x 1ð1K x2Þ;
43 Z ð1K x1Þx2;
44 Z x 1x2

and given element field parameters aji.
Phil. Trans. R. Soc. A (2009)

http://www.w3.org/XML
http://rsta.royalsocietypublishing.org/


G. R. Christie et al.1880

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
Additional notes are as follows:

(i) The node ensemble is declared but the objects making it up are not
declared until used in the piecewise field ‘node.coordinates’.

(ii) Domain name prefixes are used to distinguish the names of parameter
field node.coordinates defined over the node domain, and the continuous
coordinate field ‘element.coordinates’ defined over the elements. It is
under consideration that this be extended to formally define fields within
the scope of parent fields. Both of these fields are embedded in the
coordinate system domain ‘coordsys’, indicating to the software how to
interpret or transform their values.

(iii) The ‘element’ ensemble domain gains only two-dimensional element
charts on definition of the piecewise domain field ‘element.x’. It is still
under debate whether a tighter coupling between the concepts making up
a FieldML mesh is needed.
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


1881FieldML: concepts and implementation

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
(iv) The ‘element.node’ parameter field takes an element reference and returns a
value consisting of a list of four references to objects in the node ensemble.

(v) The key part of the example is the definition of the interpolated field
element.coordinates, according to the equation above. In this example, the
basis functions are assumed to be imported from a library and mapped to
be in terms of the element coordinate system field element.x. The element
field parameters are evaluated as the values of the node.coordinates field
at each of the local nodes listed for the element.node field. This is the
standard finite-element field function, which is linearly dependent on
parameters, and only the basis function depends on locations in the element
chart. Note that any general function of element.x and other fields is
possible here, including countless mappings of element field parameters.
5. FieldML implementations

FieldML concepts are currently being implemented in two open source software
projects, both released under business friendly licenses.

The first is CMGUI (www.cmiss.org/cmgui), the field visualization component of
theAucklandBioengineering Institute’sCMISS software platform, nowdeveloped in
collaboration with other sites. CMGUI is a powerful visualization package offering
high-quality graphics, complex field representations with a large number of field
operators and manipulation tools, and is being extended to solve optimization
problems expressed via field operators. Defining new fields via operators has proved
itself as an extremelymodular approach to software development: new operators are
easy to add, and using them in clever combinations routinely solves complex
representation and visualization problems with no extra coding, as demonstrated
in figure 7 (see also Christie et al. 2002). The core functionality of CMGUI is
being exposed as anAPI enabling use by other software and scripting languages, and
can be embedded in web pages via its ZINC component.

CMGUI does not yet implement all parts of the FieldML proposal in this paper.
Most notably, it cannot describe fields with the generality offered by the ensemble
and piecewise operators described in §§3b and 4, and is limited to fixed element
chart shapes and a fixed, albeit rich, set of basis function types. However, it
supports image-based fields, image processing and other field operators, which
may remain extensions to any FieldML standard. Its implementation is oriented
towards interactive visualization that has the requirements for propagating field
change messages to automatically update graphics and other coupled features,
which is not necessarily needed in other applications. Complexity issues in field
visualization include handling time variation, possibly with mesh refinement, and
user demands to visualize every aspect of a model.

The second implementation is OPENCMISS (http://sourceforge.net/projects/
opencmiss), which is a computation engine designed to solve very large problems
in bioengineering and other arenas using finite-element, boundary-element and
other methods. Its implementation is oriented towards parallel computing
environments, notably distributed memory systems coordinated via the Message
Passing Interface (MPI) standard. OPENCMISS is also being developed
collaboratively between multiple organizations, and similar to CMGUI it partially
implements the FieldML ideas expressed in this paper. Particular complexity
Phil. Trans. R. Soc. A (2009)

http://www.cmiss.org/cmgui
http://sourceforge.net/projects/opencmiss
http://sourceforge.net/projects/opencmiss
http://rsta.royalsocietypublishing.org/


Figure 7. Visualization of a deforming heart in CMGUI, from a simulation performed using CMISS
(see Nash & Hunter 2001). Here the coordinate field is defined in a prolate spheroidal coordinate
system, and interpolated over finite elements using different basis functions for each component.
Streamlines show the muscle fibre coordinate system with respect to which material properties for
the simulation were defined; it is defined by interpolating Euler angles over elements, which
transform an orthonormal coordinate system relative to an initial orientation aligned to the
gradients of the coordinate field with respect to the element chart coordinates. Displacement
gradient operators applied to the coordinate field at various simulation times and relative to the
initial state are further converted into large strains; eigenvalues and eigenvectors of the resulting
matrix give the principal strains, which are visualized as arrows, blue and outward pointing for
extension, red and inward pointing for compression.

G. R. Christie et al.1882

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
issues for distributed parallel computation include mesh and field partitioning to
solve parts of problems on separate computation nodes, and the need to map
solution field parameters to a common distributed vector.

Current developments focus on building a common API for applications
working with FieldML models. This will be based in part on the CMGUI API. The
API will allow the client software to create and manipulate fields in the chosen
implementation and to serialize fields into and out of various data stores.
It would also act as an interface between implementations, enabling, for example,
a very large field to be stored on a compute cluster using OPENCMISS, yet
visualized from CMGUI on a remote workstation.

Library implementations of the API should be able to translate other data
formats to and from FieldML constructs. There is also a need to develop one or
more native FieldML serialization formats, one of which should be a text-based file
format useful for testing, learning and small problems, a likely candidate format
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


1883FieldML: concepts and implementation

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
being XML. Larger problems will require fast binary storage and retrieval in
parallel; at this time, a likely candidate for implementing this is the Hierarchical
Data Format, HDF5 (www.hdfgroup.com/HDF5). Finally, to support multiple
FieldML implementations and applications with their own data structures, the
FieldML library should be able to act as a translation layer with partial buffering
of field data as an alternative to a full in-memory representation.
6. Discussion

This paper has been written to communicate our current thinking on FieldML in
the hope of inspiring debate and participation from the broader modelling
community towards the ongoing development of a powerful standard for
modelling and interchanging fields.

The prime objective of FieldML is to ease the task of representing and
interchanging advanced computational field representations in software.
FieldML defines modular field operators acting on argument fields of particular
value types, but which usually do not know the ultimate domain over which
those fields are defined. FieldML calls the result of these operators a field, but
leaves its domain and other features to be discovered at run-time. This flexible
definition maximizes code reuse, since the operators can be applied to both
spatially varying fields and fields defined on discrete objects. The result is more
powerful field representations from less complex software and computation
environments where extra complexity can come by defining additional fields,
rather than custom data structures that are difficult to integrate completely.

The FieldML proposal is far from complete. There is much work to be done in
all areas including: defining operators; rules; units; field value-type specifications;
representing hierarchical meshes and fields; attributes and metadata to convey
additional meaning. Additional concepts and complexity may eventually need to
be added to the language, but this will only be done if it becomes clear that
existing concepts and metadata cannot effectively express the required
information or meaning. Even naming many of the major elements such as
model (or region) is an important task.

Contributions are also requested to develop the software libraries and
implementations of FieldML, which are currently several steps behind the
proposals in this paper. Performance optimization is an area of particular
importance, with potential for high-level FieldML models to be converted into
code optimized for current and future hardware architectures, be they
distributed or shared memory systems, with multi-core general-purpose
processors or special purpose co-processing units or some other configuration.
Inputs on requirements and priorities for software development are invited.

Questions and ideas about FieldML as well as general queries about software
implementations can be posted on the ‘FieldML specification’ section of the
Physiome Project tracker (http://tracker.physiomeproject.org). There is also a
FieldML website (www.fieldml.org) with some additional resources.

An important aspect to be resolved is the integration of CellML and FieldML.
There are ongoing efforts to integrate CellML-related tools into the FieldML
implementations of §5, but an intriguing idea is that in the long term the two
languages could merge. FieldML already has the basic idea of a lumped
Phil. Trans. R. Soc. A (2009)

http://www.hdfgroup.com/HDF5
http://tracker.physiomeproject.org
http://www.fieldml.org
http://rsta.royalsocietypublishing.org/


G. R. Christie et al.1884

 on April 8, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
parameter or variable, and its models are similar in concept to CellML models
and components (www.cellml.org/specifications). Even though FieldML serial-
ization formats are in development, CellML and other formats will remain
relevant for serializing restricted types of field data. For the time being, it is
anticipated that FieldML will leverage off many of the useful ideas from CellML
in the areas of units, MathML, code generation and the lessons learned in
creating a standard.

This work is a part of the IUPS Physiome Project, which is supported by a number of public
good funding agencies, including the Wellcome Trust as part of its Heart Physiome project, NIH,
the New Zealand Foundation for Research, Science and Technology and also the Virtual
Physiological Human project funded through the European Framework 7 program—for further
details see the VPH Network of Excellence website at www.vph-noe.eu and the euHeart project
website at www.euheart.eu.
The authors thank Dougal Cowan for creating several of the figures.
References

Christie, G. R., Bullivant, D. P., Blackett, S. A. & Hunter, P. J. 2002 Modelling and visualising the
heart. Comput. Vis. Sci. 4, 227–235. (doi:10.1007/s00791-002-0079-3)

Edwards, H. C. 2006 Managing complexity in massively parallel, adaptive, multiphysics
applications. Eng. Comput. 22, 135–155. (doi:10.1007/s00366-006-0032-z)

Kirk, B., Peterson, J. W., Stogner, R. H. & Carey, G. F. 2006 libMesh: a CCC library for parallel
adaptive mesh refinement/coarsening simulations. Eng. Comput. 22, 237–254. (doi:10.1007/
s00366-006-0049-3)

Miller, M. C., Reus, J. F., Matzke, R. P., Arrighi, W. J., Schoof, L. A., Hitt, R. T. & Espen, P. K.
2001 Enabling interoperation of high performance, scientific computing applications: modeling
scientific data with the sets and fields (SAF ) modeling system. In Computational Science, ICCS
2001, San Francisco, CA, 28–30 May, Part II. Lecture Notes in Computer Science, vol. 2074,
pp. 158–167. Berlin, Germany: Springer.

Nash, M. P. & Hunter, P. J. 2001 Computational mechanics of the heart. J. Elast. 61, 113–141.
(doi:10.1023/A:1011084330767)
Phil. Trans. R. Soc. A (2009)

http://www.cellml.org/specifications
http://www.vph-noe.eu
http://www.euheart.eu
http://dx.doi.org/doi:10.1007/s00791-002-0079-3
http://dx.doi.org/doi:10.1007/s00366-006-0032-z
http://dx.doi.org/doi:10.1007/s00366-006-0049-3
http://dx.doi.org/doi:10.1007/s00366-006-0049-3
http://dx.doi.org/doi:10.1023/A:1011084330767
http://rsta.royalsocietypublishing.org/

	FieldML: concepts and implementation
	Introduction
	Background
	FieldML concepts
	Field
	Field type
	Domain fields
	Field values
	FieldML models
	Hierarchical meshes and fields
	Field and domain combinations

	Example: finite-element interpolation
	FieldML implementations
	Discussion
	This work is a part of the IUPS Physiome Project, which is supported by a number of public good funding agencies, including the Wellcome Trust as part of its Heart Physiome project, NIH, the New Zealand Foundation for Research, Science and Technology a...
	References


