
Optimal Prefix-Free Codes for Unequal Letter
Costs: Dynamic Programming with the Monge

Property?

Phil Bradford1, Mordecai J. Golin2, Lawrence L. Larmore3, and
Wojciech Rytter4

1 Max-Planck-Institut für Informatik, 66123 Saarbruecken, Germany
2 Hong Kong UST, Clear Water Bay, Kowloon, Hong Kong. golin@cs.ust.hk

3 Department of Computer Science, University of Nevada, Las Vegas, NV
89154-4019. larmore@cs.unlv.edu

4 Instytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02–097 Warszawa,
Poland, and Department of Computer Science, University of Liverpool.

rytter@csc.liv.ac.uk

Abstract. In this paper we discuss a variation of the classical Huff-
man coding problem: finding optimal prefix-free codes for unequal letter
costs. Our problem consists of finding a minimal cost prefix-free code
in which the encoding alphabet consists of unequal cost (length) letters,
with lengths α and β. The most efficient algorithm known previously
required O(n2+max(α,β)) time to construct such a minimal-cost set of n
codewords. In this paper we provide an O(nmax(α,β)) time algorithm.
Our improvement comes from the use of a more sophisticated modeling
of the problem combined with the observation that the problem possesses
a “Monge property” and that the SMAWK algorithm on monotone ma-
trices can therefore be applied.

1 Introduction

The problem of finding optimal prefix-free codes for unequal letter costs (and
the associated problem of constructing optimal lopsided trees) is an old and
hard classical one. The problem consists of finding a minimal cost prefix-free
code in which the encoding alphabet consists of unequal cost (length) letters, of
lengths α and β, α ≤ β. The code is represented by a lopsided tree, in the same
way as a Huffman tree represents the solution of the Huffman coding problem.
Despite the similarity, the case of unequal letter costs is much harder then the
classical Huffman problem; no polynomial time algorithm is known for general
letter costs, despite a rich literature on the problem, e.g., [1,7]. However there
are known polynomial time algorithms when α and β are integer constants [7].

The problem of finding the minimum cost tree in this case was first studied
by Karp [9] in 1961 who solved the problem by reduction to integer linear pro-
gramming, yielding an algorithm exponential in both n and β. Since that time
? The work of the second author was partially supported by Hong Kong RGC CERG

grant 652/95E, that of the third author by NSF grant CCR-9503441

G. Bilardi et al. (Eds.): ESA’98, LNCS 1461, pp. 43–54, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

44 P. Bradford, M.J. Golin, L.L. Larmore, W. Rytter

there has been much work on various aspects of the problem such as; bounding
the cost of the optimal tree, Altenkamp and Mehlhorn [2], Kapoor and Reingold
[8] and Savari [15]; the restriction to the special case when all of the weights
are equal, Cot [5], Perl Gary and Even [14], and Choi and Golin [4]; and ap-
proximating the optimal solution, Gilbert [6]. Despite all of these efforts it is
still, surprisingly, not even known whether the basic problem is polynomial-time
solvable.

The only technique other than Karp’s for solving the problem is due to
Golin and Rote [7] who describe an O(nβ+2)-time dynamic programming al-
gorithm that constructs the tree in a top-down fashion. This is the the most
efficient known algorithm for the case of small β; in this paper we apply a dif-
ferent approach by constructing the tree in a bottom-up way and describing
more sophisticated attacks on the problem. The first attack permits reducing
the search space in which optimal trees are searched for. The second shows how,
surprisingly, monotone-matrix concepts, e.g., the Monge property [13] and the
SMAWK algorithm [3] can be utilized.

Combining these two attacks improves the running time of of [7] by a factor
of O(n2) down to O(nβ).

Our approach requires a better understanding of the combinatorics of lop-
sided trees; to achieve this we also introduce the new crucial concept of charac-
teristic sequences.

Let 0 ≤ α ≤ β. A tree T is a binary lopsided α, β tree (or just a lopsided
tree) if every non-leaf node u of the tree has two sons, the length of the edge
connecting u to its left son is α, and the length of the edge connecting u to its
right son is β. Figure 1 shows a 2-5 lopsided tree. Let T be a lopsided tree and
v ∈ T some node. Then

depth(T, v) = sum of the lengths of the edges connecting root(T) to v
depth(T) = max{depth(T, v) : v ∈ T}

For example, the tree in Figure 1 has depth 20. Now suppose we are given a
sequence of nonnegative weights P = {p1, p2, . . . , pn}. Let T be a lopsided tree
with n leaves labeled v1, v2, . . . , vn. The weighted external path length of the
tree is

cost(T, P) =
∑
i pi · depth(T, vi).

Given P, the problem that we wish to solve is to construct a labeled tree T that
minimizes cost(T, P).

As was pointed out quite early [9] this problem is equivalent to finding a
minimal cost prefix-free code in which the encoding alphabet consists of two
(or generally, more) unequal cost (length) letters, of lengths α and β. Also note
that if α = β = 1 then the problem reduces directly to the standard Huffman-
encoding problem.

Notice that, given any particular tree T , the cost actually depends upon the
labeling of the leaves of T, the cost being minimized when p1 ≤ p2 ≤ · · · ≤ pn
and depth(T, v1) ≥ depth(T, v2) ≥ · · · ≥ depth(T, vn). We therefore will always

Optimal Prefix-Free Codes for Unequal Letter Costs 45

10
12
13
14
15

2
4
6

9

10
9

7

15
16
16
17
17
17
17
17

level

0
1
2
3

snumbers of right children

Fig. 1. An example 2-5 tree T . The characteristic sequence B = sequence(T) is
(2,4,6,7,9,9,10,10,12,13,14,15,16,16,17,17,17,17,17).

assume that the leaves of T are labeled in nonincreasing order of their depth.
We will also assume that p1 ≤ p2 ≤ · · · ≤ pn.

Note: In this extended abstract we omit many technical proofs.

2 Combinatorics of Lopsided Trees and Monotonic
Sequences

The first crucial concept in this paper is the characteristic sequence of a tree
T . Denoted by sequence(T) this is the vector BT = (b0, b1, . . . , bd−1) in which
bi is the number of right children on or below level i for 0 ≤ i < d, where d is
the height of the tree. and the levels are enumerated from bottom to top (See
Figure 1).

Let n and P be fixed. Now let B = b0, b1, . . . , bd−1 be any sequence, not
necessarily one of the form B = BT defined by some tree T. B is said to be
monotonic if d ≥ β and

0 ≤ b0 ≤ b1 ≤ b2 ≤ · · · ≤ bd−1.

46 P. Bradford, M.J. Golin, L.L. Larmore, W. Rytter

Note that the number of right children on or below level i of tree T can not
decrease with i so for all trees T , BT is a monotonic sequence.

A monotonic sequence B of length d terminates in a β-tuple (γβ , γβ−1, . . . , γ1)
if ∀j, 0 ≤ j < β, bd−j = γj . Note that if T is a lopsided tree with n leaves then
T must have n−1 internal nodes and thus n−1 right children. Furthermore the
top β levels of T can not contain any right children. Thus if B = sequence(T)
for some T then B terminates in a β tuple (n− 1, n− 1, . . . , n− 1).

13

14
14
15

17

13
13
13
9
6
4
2

Numbers N

14
13
12
10
10

15

numbers b
i i

Fig. 2. The bottom forest F11 of the tree T from Figure 1.

For a monotonic sequence B = b0, b1, . . . , bd−1 define

Nk(B) = bk + bk−(β−α) − bk−β, Si =
∑
j≤i

pj, cost(B, P) =
∑

0≤k<d
SNk(B)

(1)
If i < 0 or i > n then Si = ∞. For a tree T , denote by Fk = forestk(T) the
forest resulting by taking all nodes at level k and below (See Figure 2). Denote
by Nk(T) the number of leaves in forestk(T). (Note that we have overloaded the
notation Nk() to apply to both trees and sequences.)

The following lemma collects some basic facts:

Lemma 1 Let T be a lopsided tree and B = sequence(T). Then
(P1) cost(T, P) =

∑
0≤k<depth(T)

SNk(T),
(P2) ∀ 0 ≤ i < d = depth(T), Ni(T) = bi + bi−(β−α) − bi−β
(where ∀ j < 0, we set bj = 0).
(P3) cost(T, P) = cost(B, P),

Proof.
We omit the proof of (P1) which is straightforward but tedious. To prove (P2),

Optimal Prefix-Free Codes for Unequal Letter Costs 47

note that Fi is a forest, hence

Ni(T) = {u ∈ Fi : u is a leaf in Fi} (2)
= Number of internal nodes in Fi + Number of trees in Fi (3)

The first summand in the last line is easily calculated. A node at height k is
internal in Fi if and only if it is the father of some right son at level k−β. Thus

Number of internal nodes in Fi = bi−β. (4)

The second summand is only slightly more complicated to calculate. The number
of trees in Fi is exactly the same as the number of tree-roots in Fi. Now note
that a node in Fi is a tree-root in Fi if and only if its father is not in Fi. Thus
a right son at height k in Fi is a tree-root if and only if i− β < k ≤ i and there
are exactly bi − bi−β such nodes.

Similarly a left son at height k is a tree-root if and only if i − α < k ≤ i.
This may occur if and only if the left son’s right brother is at height k, where
i− β < k ≤ i− (β − α). The number of such nodes is therefore bi−(β−α)− bi−β.

We have therefore just seen that

Number of trees in Fi = (bi − bi−β) + (bi−(β−α) − bi−β). (5)

Combining (4) and (5) completes the proof of (P2). (P3) follows from (P1) and
(P2).

Now define a sequence B to be legal if B is monotonic and B = sequence(T)
for some lopsided tree T. The lemma implies that minimizing cost over all legal
sequences is exactly the same as minimizing cost over all lopsided trees.

However, not all sequences are legal so this knowledge does not at first seem
to help us. In the next section we sketch a proof of the following fact. Given any
minimum-cost monotonic sequence that terminates in the β-tuple (n − 1, n −
1, . . . , n− 1) it is possible to build a legal sequence with the same cost. Since all
legal sequences are monotonic this legal sequence must be a minimal-cost legal
sequence and thus correspond to a minimum-cost tree. In other words, to find
a minimal-cost tree it will suffice to find a minimum-cost monotonic sequence
terminating in (n− 1, n− 1, . . . , n− 1).

3 Relation Between Minimum Sequences and Optimal
Trees

We start by assuming that B = sequence(T) for some T. In T the weight p1

is associated with some lowest leaf at level 0. The left sibling of this leaf is
associated with some other weight pk. How can such a k be identified?

Observe that this sibling can be the lowest leaf in the tree which is a left-son,
i.e., the lowest left node in T. Such a node appears on level β−α (see the left tree
in Figure 3). The number of leaves below this level is bβ−α−1, so assuming that

48 P. Bradford, M.J. Golin, L.L. Larmore, W. Rytter

we list items consecutively with respect to increasing levels, the lowest left-son
leaf has index k = FirstLeft(B), where

FirstLeft(B) = bβ−α−1 + 1

We state without proof the intuitive fact that if T is an optimal tree in which
p1, pk label sibling leaves, then the tree T ′ that results by (i) removing those
leaves and (ii) labeling their parent (now a leaf) with p1 + pk will also be an
optimal tree for the leaf set P ′ = P ∪ {p1 + pk} − {p1, pk} (see the right tree in
Figure 3), Also, calculation shows that

cost(T, P) = cost(T ′, P ′) + β · p1 + α · pk. (6)

The rest of this section will be devoted to translating this intuition into facts
about trees and sequences.

If p1, pk are siblings in a tree T then denote by T ′ = merge(T, 1, k) the tree
in which leaves p1, pk are removed and their parent is replaced by a leaf with
weight p1 + pk (see Figure 3). We also write unmerge(T ′, 1, k) = T . Thus

cost(unmerge(T ′, 1, k), P) = cost(T ′, P ′) + β · p1 + α · pk. (7)

For the sequence B = (b0, b1, . . . bd) denote

dec(B) = B′ = (b0 − 1, b1 − 1, b2 − 1, . . . bd − 1).

Note that (after any leading zeros are deleted) this sequence is the characteristic
sequence of T ′ = merge(T, 1, k).

Assume Γ is a sorted sequence of positive integers, x is a positive integer,
and insert(Γ, x) is the sequence Γ with x inserted and sorted (as in insertion
sort). Now denote by delete(P, p1, pk) the sequence P with elements p1 and pk
deleted, and define

P ′ = package merge(P, 1, k) = insert(delete(P, p1, pk), p1 + pk).

For example if P = {2, 3, 4, 5, 10} then

P ′ = delete(P, 2, 4) = {3, 5, 10}
insert(P ′, 6) = {3, 5, 6, 10}

package merge(P, 1, 3) = {3, 5, 6, 10}

After appropriate manipulations (deleted in this abstract) we derive the fol-
lowing essential fact:

Lemma 1 ((key-lemma)).
Let k = FirstLeft(B), P ′ = package merge(P, 1, k) and B′ = dec(B). Then

cost(B′, P ′) ≤ cost(B, P)− β · p1 − α · pk.

Optimal Prefix-Free Codes for Unequal Letter Costs 49

p tree T’tree T 1

p2

p p
p
5

p
1
 + p

34

3

β−α−1

β−α

b
β−α−1 leaves

on these levels

Fig. 3. The correspondence between trees T , T ′ and their sequences: T ′ =
merge(T, 1, 3) and sequence(T) = B = (1, 2, 2, 3, 3, 4, 4, 4, 4, 4) sequence(T ′) =
dec(B) = B′ = (0, 1, 1, 2, 2, 3, 3, 3, 3, 3); FirstLeft(B) = bβ−α−1 + 1 = b5−2−1 +
1 = 3 and cost(T) = cost(T ′) + 2p4 + 5p1.

This lemma permits us to prove that minimum-cost monotonic sequences
have the same cost as minimum cost trees and permit the construction of such
trees:

Theorem 1 ((correctness)).
Assume B is a minimum cost monotonic sequence terminating in (n − 1, n −
1, . . . , n− 1) for the sequence P. Then there is a tree T such that:
(1) cost(T, P) = cost(B, P).
Furthermore if n > 2 then
(2) FirstLeft(B) is the index of the left brother of p1 in T ,
(3) B′ = dec(B) is a minimum cost sequence for P ′ = package merge(P, 1, k).

Proof.
The proof is by induction with respect to the number n of items in P. If n = 2
then all legal sequences have the form

b0 = b1 = · · · = bd−1 = 1

where d ≥ β. The sequence with d = β has minimum cost and this sequence is
also the minimum-cost monotonic sequence.

So now suppose that n > 2. Let B′ = dec(B) and T ′ be a minimum cost tree
for P ′. P ′ has n−1 items, so by the induction hypothesis cost(T ′, P ′) equals the
minimum cost of a monotonic sequence for P ′. In particular, by Lemma 1, we
have

cost(T ′, P ′) ≤ cost(B′, P ′) ≤ cost(B, P)− α · pk − β · p1. (8)

Take T = unmerge(T ′, 1, k). Then by Equality (6) and Inequality (8) we have:

cost(sequence(T), P) = cost(T, P) = cost(T ′, P ′) + α · pk + β · p1 ≤ cost(B, P).

50 P. Bradford, M.J. Golin, L.L. Larmore, W. Rytter

B was chosen to be a minimal cost sequence so all of the inequalities must be
equalities and, in particular, we find that cost(T, P) = cost(B, P). Hence T is
the required tree, and this completes the proof of (1).

We also find that

cost(T ′, P ′) + α · pk + β · p1 = cost(B, P)

so plugging back into (8) we find that cost(T ′, P ′) = cost(B′, P ′). Since T ′ is
a minimal cost tree for P ′ the induction hypothesis implies B′ is a minimum
cost sequence for P ′ proving (3). The proof of (2) follows from the details of the
construction.

Note that this theorem immediately implies that, given a minimum-cost se-
quence B for P, we can construct a minimum-cost tree for P. If n = 2 the
tree is simply one root with two children. If n > 2 calculate B′ = dec(B) and
P ′ = package merge(P, 1, k) in O(n) time. Recursively build the optimal tree T ′

for P ′ and then replace its leaf labelled by p1 + pk by an internal node whose
left child is labelled by pk and whose right child is labelled by p1. This will be
the optimal tree. Unwinding the recursion we find that the algorithm uses O(n2)
time (but this can easily be improved down to O(n logn) with a careful use of
data structures).

4 The Monge Property and the Algorithm

We now introduce the weighted directed graphG whose vertices are monotonic β-
tuples of nonnegative integers in the range [0 . . .n−1]. There is an edge between
two vertices if and only they “overlap” in a (β−1)-tuple, precisely defined below.

Suppose i0 ≤ i1 ≤ i2 ≤ . . . iβ−1 ≤ iβ . Let u = (i0, i1, i2, . . . , iβ−1) and v =
(i1, i2, . . . , iβ−1, iβ). Then there is an edge from u to v if u 6= v, and furthermore,
the weight of that edge is

Weight(u, v) = EdgeCost(i0, i1, . . . , iβ) = Siβ+iα−i0

Observe that if (u, v) is an edge in G then the monotonicity of (i0, i1, i2, . . . ,
iβ−1, iβ) guarantees that u is lexicographically smaller as a tuple than v. In other
words the lexicographic ordering on the nodes is a topological ordering of the
nodes of G; the existence of such a topological ordering implies that G is acyclic.
Note that the β-tuple of zeros, (0, . . .0), is a source. We refer to this node as the
initial node of the graph. Note also that the β-tuple (n− 1, . . . , n− 1) is a sink;
we refer to it as the final node of the graph.

For any vertex u in the graph, define cost(u) to be the weight of a shortest
(that is, least weight) path from the initial node to u.

Suppose we follow a path from the source to the sink and, after traversing
an edge (u, v), output iβ, the final element of v. The sequence thus outputted is
obviously a monotonic sequence terminating in the β-tuple (n−1, n−1, . . . , n−1)
and from the definition of Weight(u, v) the cost of the path is exactly the cost

Optimal Prefix-Free Codes for Unequal Letter Costs 51

of the sequence. Similarly any monotonic sequence terminating in the β-tuple
(n− 1, n− 1, . . . , n− 1) corresponds to a unique path from source to sink in G.

In particular, given a tree T and B = sequence(T) Lemma 1 implies that the
cost of the path corresponding to B is exactly the same as cost(T).
Example.
The tree T from Figure 3 has B = sequence(T) = (1, 2, 2, 3, 3, 4, 4, 4, 4) and its
corresponding path in the graph G

(0, 0, 0, 0, 0) S1−→ (0, 0, 0, 0, 1) S2−→ (0, 0, 0, 1, 2)
S2−→ (0, 0, 1, 2, 2) S4−→ (0, 1, 2, 2, 3) S5−→ (1, 2, 2, 3, 3) S5−→ (2, 2, 3, 3, 4)
S5−→ (2, 3, 3, 4, 4) S5−→ (3, 3, 4, 4, 4) S5−→ (3, 4, 4, 4, 4) S5−→ (4, 4, 4, 4, 4)

The cost of this path and also of the tree T is

S1 + 2 · S2 + S4 + 6 · S5

The above observations can be restated as

Observation 2 Assume T is a tree and B = sequence(T). Then cost(T) =
cost(B) equals the cost of the path in G corresponding to B.

The correctness theorem and the algorithm following it can can now be re-
formulated as follows:

Theorem 2. The cost of a shortest path from the initial node to the final node
is the same as the cost of a minimum cost tree. Furthermore given a minimum
cost path a minimum-cost tree can be reconstructed from it in O(n2) time.

Observe that G is acyclic and has O(nβ+1) edges. The standard dynamic-
programming shortest path algorithm would therefore find a shortest path from
the source to the sink, and hence a min-cost tree, in O(nβ+1) time. We now
discuss how to find such a path in O(nβ) time. Our algorithm obviously cannot
construct the entire graph since it is too large. Instead we use the fact that,
looked at in the right way, our problem possesses a Monge property.

A 2-dimensional matrix A is defined to be a Monge matrix [13] if for all i, j
in range

A(i, j) + A(i+ 1, j + 1) ≤ A(i, j + 1) + A(i+ 1, j) (9)

Now let δ = (i1, i2, . . . , iβ−1) be any monotonic (β− 1)-tuple of integers. For
0 ≤ i ≤ i1 and iβ−1 ≤ j ≤ n− 1, define

EdgeCostδ(i, j) = EdgeCost(i, i1, . . . , iβ−1, j) = Sj+iα−i

Aδ(i, j) = cost(i, i1, . . . , iβ−1) + EdgeCostδ(i, j).

The important observation is that

Theorem 3 ((Monge-property theorem)).
For fixed δ, the matrix Aδ is a two-dimensional Monge matrix.

52 P. Bradford, M.J. Golin, L.L. Larmore, W. Rytter

Proof.
Let δ = (i1, i2, . . . , iβ−1). We prove Equation (9), where A = Aδ. If the right
hand side of Equation (9) is infinite, we are done. Otherwise, by the definitions
of the Sk, and of Aδ, canceling terms when possible, we have

Aδ(i, j + 1) +Aδ(i+ 1, j)−Aδ(i, j)−Aδ(i+ 1, j+ 1) = pj+iα−i+1− pj+iα−i ≥ 0

which completes the proof.

A 2×2 matrix A is defined to be monotone if either A11 ≤ A12 or A21 ≥ A22.
An n×m matrix A is defined to be totally monotone if every 2 × 2 submatrix
of A is monotone. The smawk algorithm [3] takes as its input a function which
computes the entries of an n×m totally monotone matrix A and gives as output
a non-decreasing function f , where 1 ≤ f(i) ≤ m for 1 ≤ i ≤ n, such that
Ai,f(i) is the minimum value of row i of A. The time complexity of the smawk

algorithm is O(n+m), provided that each computation of an Aij takes constant
time. Note that every Monge matrix is totally monotone so our matrices Aδ are
totally monotone. This fact permits us to prove:

Theorem 4 ((Shortest-path theorem)).
A shortest path from a source node to the sink node in G can be constructed in
O(nβ) time.

Proof.
The case where β = 1 requires an exceptional proof, because the proof below
fails if the sequence δ is a 0-tuple. However, that case is already proved in [11].
Thus, we assume β ≥ 2.

In this extended abstract we actually only show how to calculate the cost
of the shortest path. Transforming this calculation into the construction of the
actual path uses standard dynamic programming backtracking techniques that
we will leave to the reader.

Our approach is actually to calculate the values of cost(u) for all monotonic β-
tuples u = (i0, i1, . . . , iβ−1). In particular, this will calculate the value of cost(n−
1, n− 1, . . . , n− 1) which is what is really required.

For fixed δ = (i1, i2, . . . , iβ−1) note that

∀j ≥ iβ−1, cost(δ, j) = min{Aδ(i, j) : i ≤ i1}

Also note that Aδ(i, j) can be calculated in constant time provided the values of
cost(i, δ) is known. This means that, given a fixed δ, if the values of cost(i, δ) are
already known for all i then the values of cost(δ, j) for all j can be calculated in
total time O(n) using the SMAWK algorithm. We call this O(n) step processing
δ.

Our algorithm to calculate cost(i0, i1, . . . , iβ−1) for all β-tuples is simply to
process all of the (β − 1) tuples in lexicographic order. Processing in this order
ensures that at the time we process δ the values of cost(i, δ) are already known
for all i.

Using the SMAWK algorithm it thus takes O(n) time to process each of the
O(nβ−1) (β − 1)-tuples so the entire algorithm uses O(nβ) time as stated.

Optimal Prefix-Free Codes for Unequal Letter Costs 53

Algorithm Optimal Tree Construction
sequence construction phase:

compute a shortest path π from source to sink in G;
let B be the sequence corresponding to π;

tree reconstruction phase:
construct optimal tree T from B using
recursive algorithm described following the
Correctness Theorem

end of algorithm.

Theorem 5 ((main result)).
We can construct a minimum cost lopsided tree in O(nβ) time.

Proof.
If β = 1 use the basic Huffman encoding algorithm which runs in O(n) time.
Otherwise apply the algorithm Optimal Tree Construction. Theorem 4 tells us
that B can be computed in O(nβ) time.

The algorithm described following the Correctness Theorem for constructing
an optimal tree from B runs in O(n2) = O(nβ) time completing the proof of the
theorem.

We conclude by pointing out, without proof, that the algorithm
Optimal Tree Construction can be straightforwardly extended in two different
directions:

Theorem 6.
We can construct a minimum cost lopsided tree in O(n·log2 n) time with O(nβ−1)
processors of a PRAM.

Theorem 7 ((height limited trees)).
We can construct a minimum cost lopsided tree with height limited by L in
O(nβ · L) time.

(A tree with height limited by L is one in which no node has depth greater
than L.)

References

1. Julia Abrahams, “Code and Parse Trees for Lossless Source Encoding,” Se-
quences’97, (1997).

2. Doris Altenkamp and Kurt Mehlhorn, “Codes: Unequal Probabilities, Unequal
Letter Costs,” J. Assoc. Comput. Mach. 27 (3) (July 1980), 412–427.

3. A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications
of a matrix-searching algorithm, Algorithmica 2 (1987), pp. 195–208.

54 P. Bradford, M.J. Golin, L.L. Larmore, W. Rytter

4. Siu-Ngan Choi and M. Golin, “Lopsided trees: Algorithms, Analyses and Applica-
tions,” Automata, Languages and Programming, Proceedings of the 23rd Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 96).

5. N. Cot, “A linear-time ordering procedure with applications to variable length
encoding,” Proc. 8th Annual Princeton Conference on Information Sciences and
Systems, (1974), pp. 460–463.

6. E. N. Gilbert, “Coding with Digits of Unequal Costs,” IEEE Trans. Inform. The-
ory, 41 (1995).

7. M. Golin and G. Rote, “A Dynamic Programming Algorithm for Constructing
Optimal Prefix-Free Codes for Unequal Letter Costs,” Proceedings of the 22nd
International Colloquium on Automata Languages and Programming (ICALP ’95),
(July 1995) 256-267. Expanded version to appear in IEEE Trans. Inform. Theory.

8. Sanjiv Kapoor and Edward Reingold, “Optimum Lopsided Binary Trees,” Journal
of the Association for Computing Machinery 36 (3) (July 1989), 573–590.

9. R. M. Karp, “Minimum-Redundancy Coding for the Discrete Noiseless Channel,”
IRE Transactions on Information Theory, 7 (1961) 27-39.

10. Abraham Lempel, Shimon Even, and Martin Cohen, “An Algorithm for Optimal
Prefix Parsing of a Noiseless and Memoryless Channel,” IEEE Transactions on
Information Theory, IT-19(2) (March 1973), 208–214.

11. L. L. Larmore, T. Przytycka, W. Rytter, Parallel computation of optimal alpha-
betic trees, SPAA93.

12. K. Mehlhorn, “An Efficient Algorithm for Constructing Optimal Prefix Codes,”
IEEE Trans. Inform. Theory , IT-26 (1980) 513-517.

13. G. Monge, Déblai et remblai, Mémoires de l’ Académie des Sciences, Paris, (1781)
pp. 666-704.

14. Y. Perl, M. R. Garey, and S. Even, “Efficient generation of optimal prefix code:
Equiprobable words using unequal cost letters,” Journal of the Association for
Computing Machinery 22 (2) (April 1975), 202–214,

15. Serap A. Savari, “Some Notes on Varn Coding,” IEEE Transactions on Information
Theory, 40 (1) (Jan. 1994), 181–186.

16. Robert Sedgewick, Algorithms, Addison-Wesley, Reading, Mass.. (1984).

	Introduction
	Combinatorics of lopsided trees and monotonic sequences
	Relation between minimum sequences and optimal trees
	The Monge property and the algorithm

