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Abstract A number of sensor applications in recent years collect data which can
be directly associated with human interactions. Some examples of such
applications include GPS applications on mobile devices, accelerome-
ters, or location sensors designed to track human and vehicular traffic.
Such data lends itself to a variety of rich applications in which one can
use the sensor data in order to model the underlying relationships and
interactions. This requires the development of trajectory mining tech-
niques, which can mine the GPS data for interesting social patterns.
It also leads to a number of challenges, since such data may often be
private, and it is important to be able to perform the mining process
without violating the privacy of the users. Given the open nature of
the information contributed by users in social sensing applications, this
also leads to issues of trust in making inferences from the underlying
data. In this chapter, we provide a broad survey of the work in this
important and rapidly emerging field. We also discuss the key problems
which arise in the context of this important field and the corresponding
solutions.
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1. Introduction

The proliferation of numerous online social networks such as Facebook,
LinkedIn and Google+ has lead to an increased awareness of the power of
incorporating social elements into a variety of data-centric applications.
Such networks are typically data rich, and contain heterogeneous data
along with linkage stricture, which can be mined for a variety of purposes
[39, 98, 108]. In particular, it has been observed that the use of a
combination of social structure and different kinds of data can be a very
powerful tool for mining purposes [136, 175, 182]. A natural way to
enhance the power of such social applications is to embed sensors within
such platforms in order to continuously collect large amounts of data for
prediction and monitoring applications. This has lead to the creation
of numerous social sensing systems such as Biketastic [142], BikeNet
[55], CarTel [88] and Pier [148], which use social sensors for a variety of
transportation and personal applications. The fusion of mobile, social,
and sensor data is now increasingly being seen as a tool to fully enable
context-aware computing [20].

A number of recent hardware platforms have extended the data-centric
capabilities of social networks, by providing the ability to embed sensor
data collection directly into the social network. Therefore, it is natu-
ral to explore whether sensor data processing can be tightly integrated
with social network construction and analysis. For example, methods
such a crowd-sourcing are a natural approach for improving the ac-
curacy of many socially-aware search applications [168]. Some of the
afore-mentioned data types on a conventional social network are static
and change slowly over time. On the other hand, sensors collect vast
amounts of data which need to be stored and processed in real time.
There are a couple of important drivers for integrating sensor and social
networks:

One driver for integrating sensors and social networks is to allow
the actors in the social network to both publish their data and
subscribe to each other’s data either directly, or indirectly after
discovery of useful information from such data. The idea is that
such collaborative sharing on a social network can increase real-
time awareness of different users about each other, and provide un-
precedented information and understanding about global behavior
of different actors in the social network. The vision of integrating
sensor processing with the real world was first proposed in [177].

A second driver for integrating sensors and social networks is to
provide a better understanding and measurement of the aggre-
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gate behavior of self-selected communities or the external environ-
ment in which these communities function. Examples may include
understanding traffic conditions in a city, understanding environ-
mental pollution levels, or measuring obesity trends. Sensors in
the possession of large numbers of individuals enable exploiting
the crowd for massively distributed data collection and processing.
Recent literature reports on several efforts that exploit individuals
for data collection and processing purposes such as collection of ve-
hicular GPS trajectories as a way for developing street maps [78],
collectively locating items of interest using cell-phone reports, such
as mapping speed traps using the Trapster application [190], use
of massive human input to translate documents [145], and the de-
velopment of protein folding games that use competition among
players to implement the equivalent of global optimization algo-
rithms [21].

The above trends are enabled by the emergence of large-scale data
collection opportunities, brought about by the proliferation of sensing
devices of every-day use such as cell-phones, piedometers, smart energy
meters, fuel consumption sensors (standardized in modern vehicles), and
GPS navigators. The proliferation of many sensors in the possession of
the common individual creates an unprecedented potential for build-
ing services that leverage massive amounts data collected from willing
participants, or involving such participants as elements of distributed
computing applications. Social networks, in a sensor-rich world, have
become inherently multi-modal data sources, because of the richness of
the data collection process in the context of the network structure. In
recent years, sensor data collection techniques and services have been in-
tegrated into many kinds of social networks. These services have caused
a computational paradigm shift, known as crowd-sourcing [23, 47], re-
ferring to the involvement of the general population in data collection
and processing. Crowd-sourcing, arguably pioneered by programs such
as SETI, has become remarkably successful recently due to increased
networking, mobile connectivity and geo-tagging [1]. We note that the
phenomenon of crowd-sourcing is not exclusive to sensor data, but is also
applied to other tagging and annotation processes, in which the knowl-
edge is sourced from a social network of users. A classic example of a
crowd-sourcing application is the Amazon Mechanical Turk [192], which
allows users to submit data records for annotation at the payment of a
fee for annotation purposes. Thus, the Amazon Mechanical Turk serves
as an intermediary for crowd-sourcing of annotations for data records.

In the case of social sensing which is also often referred to as people-
centric sensing [6, 26, 123] or participatory sensing [24], this crowd-



240 MANAGING AND MINING SENSOR DATA

sourcing is generally achieved through sensors which are closely attached
to humans, either in wearable form, or in their mobile phones. Some
examples of integration of social and sensor networks are as follows:

A variety of applications can be created to collect real time in-
formation from large groups of individuals in order to harness the
wisdom of crowds in a variety of decision processes. For example,
the Google Latitude application [184] collects mobile position data
of uses, and uses this in order to detect the proximity of users with
their friends. This can lead to significant events of interest. For
example, proximity alerts may be triggered when two linked users
are within geographical proximity of one another. This may itself
trigger changes in the user-behavior patterns, and therefore the
corresponding sensor values. This is generally true of many ap-
plications, the data on one sensor can influence data in the other
sensors. Numerous other GPS-enabled applications such as City
sense, Macrosense, and Wikitude [185, 195, 191] serve as gps-based
social aggregators for making a variety of personalized recommen-
dations. The approach has even been used for real-time grocery
bargain hunting with the LiveCompare system [46].

Vehicle Tracking Applications: A number of real-time automotive
tracking applications determine the important points of congestion
in the city by pooling GPS data from the vehicles in the city. This
can be used by other drivers in order to avoid points of congestion
in the city. In many applications, such objects may have implicit
links among them. For example, in a military application, the
different vehicles may have links depending upon their unit mem-
bership or other related data. Two classic examples of vehicular
applications in the context of participatory sensing are the CarTel
[88] and GreenGPS [64] systems.

Trajectory Tracking: In its most general interpretation, an actor
in a social network need not necessary be a person, but can be any
living entity such as an animal. Recently, animal tracking data is
collected with the use of radio-frequency identifiers. A number of
social links may exist between the different animals such as group
membership, or family membership. It is extremely useful to uti-
lize the sensor information in order to predict linkage information
and vice-versa. A recent project called MoveBank [186] has made
tremendous advances in collecting such data sets. We note that
a similar approach may be used for commercial product-tracking
applications, though social networking applications are generally
relevant to living entities, which are most typically people.
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Applications to Healthcare: In recent years, numerous medical sen-
sor devices can be used in order to track the personal health of
individuals, or make other predictions about their lifestyle [41, 65,
84, 119, 121, 122, 150]. This can be used for emergency response,
long term predictions about diseases such as dementia, or other life
style influence analysis of factors such as eating habits and obesity.

Social sensing applications provide numerous research challenges from
the perspective of analysis. We list some of these challenges below:

Since the collected data typically contains sensitive personal data
(eg. location data), it is extremely important to use privacy-
sensitive techniques [61, 133] in order to perform the analysis.
A recent technique called PoolView [61] designs privacy-sensitive
techniques for collecting and using mobile sensor data.

Sensors, whether wearable or embedded in mobile devices, are typi-
cally operated with the use of batteries, which have limited battery
life. Certain kinds of sensor data collection can drain the battery
life more quickly than others (eg. GPS vs. cell tower/WiFi lo-
cation tracking in a mobile phone). Therefore, it is critical to
design the applications with a careful understanding of the un-
derlying tradeoffs, so that the battery life is maximized without
significantly compromising the goals of the application.

The volume of data collected can be very large. For example, in
a mobile application, one may track the location information of
millions of users simultaneously. Therefore, it is useful to be able
to design techniques which can compress and efficiently process
the large amounts of collected data.

Since the data are often collected through sensors which are error-
prone, or may be input by individuals without any verification,
this leads to numerous challenges about the trustworthiness of the
data collected. Furthermore, the goals of privacy and trust tend
to be at odds with one another, because most privacy-preservation
schemes reduce the fidelity of the data, whereas trust is based on
high fidelity of the data.

Many of the applications require dynamic and real time responses.
For example, applications which trigger alerts are typically time-
sensitive and the responses may be real-time. The real-time as-
pects of such applications may create significant challenges, con-
sidering the large number of sensors which are tracked at a given
time.
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This chapter is organized as follows. Section 2 briefly discusses some
key technological advances which have occurred in recent years, which
have enabled the design of such dynamic and embedded applications.
Section 3 discusses a broad overview of the key system design questions
which arise in these different contexts. One of the important issues
discussed in this section is privacy, which is discussed in even greater
detail in a later section. Section 4 discusses some important privacy
issues which arise in the context of social networks with embedded sen-
sors. Section 5 discusses the trust-worthiness issues which arise in such
crowd-sourcing systems. Section 6 introduces techniques for social net-
work modeling from dynamic links which are naturally created by the
sensor-based scenario. Since such dynamic modeling often requires tra-
jectory mining techniques, we present methods for trajectory mining in
section 7. Section 8 introduces some of the key applications associated
with social sensing. Section 9 discusses the conclusions and research
directions.

2. Technological Enablers of Social Sensing

A number of recent technological advances in hardware and software
have enabled the integration of sensors and social networks. One such
key technological advance is the development is small mobile sensors
which can collect a variety of user-specific information such as audio or
video. Many of the applications discussed are based on user-location.
Such location can easily be computed with the use of mobile GPS-
enabled devices. For example, most of the recent smart-phones typically
have such GPS technology embedded inside them. Some examples of
such mobile sensor devices may be found in [117, 100].

Sensors typically collect large amounts of data, which must be con-
tinuously stored and processed. Furthermore, since the number of users
in a social network can be very large, this leads to natural scalability
challenges for the storage and processing of the underlying streams. For
example, many naive solutions such as the centralized storage and pro-
cessing of the raw streams are not very practical, because of the large
number of streams which are continuously received. In order to deal
with this issue, a number of recent hardware and software advances
have turned out to be very useful.

Development of Miniaturized Sensor Technology: The development
of miniaturized (wearable) sensors and batteries have allowed their
use and deployment in a number of different social settings. For
example, the development of miniaturized sensors, which can be
embedded within individual attire can be helpful in a wide vari-
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ety of scenarios [42, 100, 63, 33, 34]. A classic example is the
spec mote, which is an extremely small sensor device that can be
embedded in the clothing of a user, while remaining quite unob-
trusive.

Advancement of smartphone technology: In recent years, there has
been considerable advancement in smartphone technology, which
are now fairly sophisticated devices containing a wide array of
sensors such as GPS, compass, accelerometers, bluetooth capabil-
ities etc. In addition, these are convergent devices, with consider-
able computational capabilities, internet connectivity, and differ-
ent modes of user interaction and content upload, such as social
tweets, ability to record pictures and videos etc. All of these ca-
pabilities create a rich content-based and sensing environment for
a wide variety of applications.

Increased Bandwidth: Since sensor transmission typically requires
large wireless bandwidth, especially when the data is in the form
of audio or video streams, it is critical to be able to transmit large
amounts of data in real time. The increases in available bandwidth
in recent years, have made such real time applications a reality.

Increased Storage: In spite of the recently designed techniques for
compressing the data, the storage challenges for stream processing
continue to be a challenge. Recent years have seen tremendous
advances in hardware, which allow much greater storage, than was
previously possible.

Development of Fast Stream Processing Platforms: A number of
fast stream processing platforms, such as the IBM System S plat-
form [187] have been developed in recent years, which are capable
of storing and processing large volumes of streams in real time.
This is a very useful capability from the perspective of typical
cyber-physical applications which need a high level of scalability
for real-time processing.

Development of Stream Synopsis Algorithms and Software: Since
the volume of the data collected is very large, it often cannot be
collected explicitly. This leads to the need for designing algorithms
and methods for stream synopsis construction [7]. A detailed dis-
cussion of a variety of methods (such as sketches, wavelets and
histograms) which are used for stream synopsis construction and
analysis is provided in [7].
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The sensing abilities of miniaturized devices and smartphones have
also increased considerably in recent years. For example, the one of the
earliest systems, which is referred to as a sociometer [33, 34], a small
wearable device is constructed, which can detect people nearby, provide
motion information and accelerometers, and also has microphones for
detection of speech information. In addition, the device has the flexi-
bility to allow for the addition of other kinds of sensors such as GPS
sensors and light sensors. These sensors can be used in order to detect
implicit links between people, and the corresponding community behav-
ior. The aim of collecting a large number of such interactive behaviors is
to be able to effectively model interactions, between different users, and
then model the dynamics of the interaction with the use of the collected
information.

Since the work in [33], much of these sensing capabilities are now avail-
able in commodity hardware such as mobile phones. For example, the
Virtual Compass system [18] uses the sensors available in mobile phones
in order to sense the interactions between different actors. Virtual Com-
pass is a peer-based relative positioning system that uses multiple radios
to detect nearby mobile devices and places them in a two-dimensional
plane. It uses different kinds of scanning and out-of-band coordination
to explore tradeoffs between energy consumption, and the latency in
detecting movement. Methods are designed for using different kinds of
sensor signals in Virtual Compass in order to reduce the energy footprint.
More details may be found in [18].

3. Data Collection, Architectural and System
Design Challenges

The aforementioned monitoring and social computing opportunities
present a need for a new architecture that encourages data sharing and
efficiently utilizes data contributed by users. The architecture should
allow individuals, organizations, research institutions, and policy mak-
ers to deploy applications that monitor, investigate, or clarify aspects
of socio-physical phenomena; processes that interact with the physical
world, whose state depends on the behavior of humans in the loop.

An architecture for social data collection should facilitate distillation
of concise actionable information from significant amounts of raw data
contributed by a variety of sources, to inform high-level user decisions.
Such an architecture would typically consist of components that sup-
port (i) privacy-preserving sensor data collection, (ii) data model con-
struction, and (iii) real-time decision services. (iv) effective methods
for recruitment, and (v) energy efficient design. For example, in an ap-
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plication that helps drivers improve their vehicular fuel-efficiency, data
collection might involve upload of fuel consumption data and context
from the vehicle’s on-board diagnostics (OBD-II) interface and related
sensors; a model might relate the total fuel consumption for a vehicle on
a road segment as a function of readily available parameters (such as av-
erage road speed, degree of congestion, incline, and vehicle weight); the
decision support service might provide navigation assistance to find the
most fuel-efficient route to a given destination (as opposed to a fastest or
shortest route). Of course, none of these can be effectively implemented
without energy-efficient data collection and participant recruitment. Be-
low, we elaborate on the above functions.

3.1 Privacy-Preserving Data Collection

In a grassroots application that is not managed by a globally trusted
authority, an interesting challenge becomes ensuring the privacy of data
shared. Anonymity is not a sufficient solution because the data them-
selves (such as GPS traces) may reveal the identity of the owner even if
shared anonymously. One interesting direction is to allow individuals to
“lie” about their data in a way that protects their privacy, but without
degrading application quality. For example, in a traffic speed monitoring
application reconstruction of community statistics of interest (such as av-
erage traffic speed on different streets) should remain accurate, despite
use of perturbed data (“lies” about actual speed of individual vehicles) as
input to the reconstruction process. This is possible thanks to deconvo-
lution techniques that recover the statistical distribution of the original
signals, given the statistical distribution of perturbed data and the sta-
tistical distribution of noise. Solutions to this and related problems can
be found in literature on privacy-preserving statistics [9]. Recently, spe-
cial emphasis was given to perturbing time-series data [61], since sensor
data typically comprise a correlated series of samples of some continuous
phenomenon. Perturbing time-series data is challenging because correla-
tions among nearby samples can be exploited to breach privacy. Recent
results demonstrate that the frequency spectrum of the perturbation
signal must substantially overlap with the frequency spectrum of the
original data time-series for the latter to be effectively concealed [61].
Generalizations to perturbation of correlated multi-dimensional time-
series data were proposed in [133]. The main challenge addressed in this
work was to account for the fact that data shared by different sensors are
usually not independent. For example, temperature and location data
can be correlated, allowing an attacker to make inferences that breach
privacy by exploiting cross-sensor correlations.
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A related interesting problem is that of perturbation (i.e., noise) en-
ergy allocation. Given a perturbation signal of a particular energy bud-
get (dictated perhaps by reconstruction accuracy requirements), how to
allocate this energy budget across the frequency spectrum to optimally
conceal an original data signal? A recent technique defines privacy as
the amount of mutual information between the original and perturbed
signals. Optimality is defined as perturbation that minimizes the upper
bound on such (leaked) mutual information. The technique describes
how optimal perturbation is computed, and demonstrates the funda-
mental trade-off between the bound on information leak (privacy) and
the bound on reconstruction accuracy [132]. We note that the privacy
protection issues for social sensing data arise both during trajectory data
collection, and trajectory data management [38]. Since this section is
focussed only on the data collection and system design issues, we will
discuss this issue in a more holistic and algorithmic way in a later section
of this chapter.

3.2 Generalized Model Construction

Many initial participatory sensing applications, such as those giving
rise to the above privacy concerns, were concerned with computing com-
munity statistics out of individual private measurements. The approach
inherently assumes richly-sampled, low-dimensional data, where many
low-dimensional measurements (e.g., measurements of velocity) are re-
dundantly obtained by individuals measuring the same variable (e.g.,
speed of traffic on the same street). Only then can good statistics be
computed. Many systems, however, do not adhere to the above model.
Instead, data are often high-dimensional, and hence sampling of the
high-dimensional space is often sparse. The more interesting question
becomes how to generalize from high-dimensional, sparsely-sampled data
to cover the entire input data space? For instance, consider a fuel-
efficient navigation example, where it is desired to compute the most
fuel-efficient route between arbitrary source and destination points, for
an arbitrary vehicle and driver. What are the most important gen-
eralizable predictors of fuel efficiency of current car models driven on
modern streets? A large number of predictors may exist that pertain to
parameters of the cars, the streets and the drivers. These inputs may
be static (e.g., car weight and frontal area) or dynamic (e.g., traveled
road speed and degree of congestion). In many cases, the space is only
sparsely sampled, especially in conditions of sparse deployment of the
participatory sensing service. It is very difficult to predict a priori which
parameters will be more telling. More importantly, the key predictors
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might differ depending on other parameters. For example, it could be
that the key predictors of fuel efficiency for hybrid cars and gas-fueled
cars are different. It is the responsibility of the model construction ser-
vices to offer not only a general mechanism for applications to build
good models quickly from the data collected, but also a mechanism for
identifying the scope within which different predictors are dominant. A
single “one-size-fits-all” prediction model, computed from all available
data, is not going to be accurate. Similarly computing a model for each
special case (e.g., a model for each type of car) is not going to be useful
because, as stated above, the sampling is sparse. Hence, it is key to be
able to generalize from experiences of some types of vehicles to predic-
tions of others. Recent work combined data mining techniques based on
regression cubes and sampling cubes to address the model generalization
problem for sparse, high-dimensional data [64].

3.3 Real-time Decision Services

Ultimately, a generalized model, such as that described above, may
be used as an input to an application-specific optimization algorithm
that outputs some decisions for users in response to user queries. For
example, estimates of fuel consumption on different roads on a map can
be input to Dijkstra’s algorithm to find the minimum fuel route between
points specified by the user. This route constitutes a decision output.
Hence, support for real-time stream processing and decision updates
must be provided as part of the social sensing architecture.

A key property of real-time decision services is the involvement of
humans in the loop. A significant challenge is therefore to design appro-
priate user interfaces. End-user devices will act as data custodians who
collect, store, and share user data. The level at which these custodians
interact with the user, as well as the nature of interactions, pose signifi-
cant research problems with respect to minimizing inconvenience to the
user while engaging the user appropriately. Context sensing, collabora-
tive learning, persuasion, and modeling of socio-sensing systems (with
humans in the loop) become important problems. Participation incen-
tives, role assignment, and engagement of users in modeling and network
learning become important application design criteria that motivate fun-
damental research on game theoretic, statistical, machine learning, and
economic paradigms for application design.

3.4 Recruitment Issues

The quality of the social experience gained from a sensor-based frame-
work is dependent on the ability to recruit high quality participants for
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sensor collection and sharing. Many sensing systems such as those in
geo-tagging applications user completely open frameworks in which any
participant who wishes to contribute is allowed to join the sensing envi-
ronment. This may of course result in numerous issues in terms of the
quality of the final results:

The participants who join may not be sufficiently trustworthy.
This may impact the quality of the results. We will formally dis-
cuss the issue of trust in a later section.

The act of participants choosing to join may bias the final variables
which are being tracked by the application. For example, when
the sensing is used in order to obtain feedback of a particular
type, urban participants are more likely to join because of greater
prevalence of smart phones. This kind of skew may also affect the
quality of the final results.

We note that when the recruitment is performed at the initiative of the
designer of the sensing system, a greater amount of control is achieved.
This tends to reduce the self-selection bias, which is naturally inherent in
a purely voluntary system. The work in [143] observes that the process
of recruiting volunteers for participatory sensing campaigns is analogous
to recruiting volunteers or employees in non-virtual environments. This
similarity is used in order to create a three stage process for recruitment:

Qualifier: This refers to the fact that the participants must meet
minimum requirements such as availability and reputation. This
ensures that high quality responses are received from the partici-
pants.

Assessment: Once participants that meet minimum requirements
are found, the recruitment system then determines which candi-
dates are most appropriate based on both diversity and coverage.
This ensures that bias is avoided during the recruitment process.

Progress Review: Once the sensing process starts, the recruit-
ment system must check participants’ coverage and data collection
reputation to determine if they are consistent with their base pro-
file. This check can occur periodically, and if the similarity of
profiles is below a threshold, this is used as a feedback to an addi-
tional recruitment process.

We note that the above process is quite similar to that of an employee
hiring process in an organization, which is designed to maximize diver-
sity, reduce bias, and maximize quality of the volunteers.
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3.5 Energy Efficient Design

Since sensors often have limited battery power, it is critical to design
the participatory sensing systems in order to maximize the life of the
system. Many critical sensing components such as GPS tend to consume
a lot of power, and can therefore result in a short life-cycle for the
system. A number of tricks can be used in order to reduce the energy
consumption, which may involve a reduction in the sampling rate at
which the data is collected. This reduction in the sampling rate can
often be achieved with the use of side-information which is collected
through more efficient means. Some examples of common tricks which
are used in order to improve the energy efficiency are as follows:

In the Sensloc system proposed in [97], a GPS device, an accelerom-
eter, and a WiFi scanner are simultaneously used in order to de-
tect particular variables such as location with good accuracy. We
note that the energy requirement of different kinds of sensors may
vary, and the accuracy of the different sensors may also vary in
a time dependent way. The typical tradeoff is that while GPS is
extremely power hungry, it is also more accurate. Therefore, at a
given time, the data is selectively sampled at varying rates from
different sensors in order to fuse the measurements together, and
provide an accurate estimation of the desired variable without too
much energy consumption.

A rate-adaptive positioning system known as RAPS is proposed
in [129]. The system is based on the observation that GPS is gen-
erally less accurate in urban areas, and therefore it makes sense
to turn it on only as often as necessary to achieve this accuracy.
The RAPS system uses the location-time history of the user to
estimate user velocity and adaptively turn on GPS only if the es-
timated uncertainty in position exceeds the accuracy threshold. It
also estimates user movement using a duty-cycled accelerometer,
and utilizes Bluetooth communication to reduce position uncer-
tainty among neighboring devices. In addition, the system em-
ploys celltower-RSS blacklisting to detect GPS unavailability, in
which case it is not turned on at all. Thus, the use of context-
sensitive information in order to adaptively turn on GPS results
in a considerable about of power savings [129].

Often, a large amount of rich context sensitive information is avail-
able, which can be used to improve the accuracy of the sensing
measurements without spending additional energy. For example,
if the last known GPS location is overlaid on a map, then the fu-
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ture location within a specific time period may be limited both by
the time elapsed and the layout of that location. This can be used
to estimate the location more accurately with the use of a smaller
number of samples [40].

One major issue, which has been observed in [183] is that the
requests for GPS may come from Location Based Applications
(LBA), and therefore, it is critical to design the energy saving
strategies in the context of the LBA requests, which may not nec-
essarily be synchronized with one another. The framework uses
four design principles corresponding to substitution. Substitu-
tion makes use of alternative location-sensing mechanisms, such
as network-based location sensing, which consume less power than
GPS. Suppression uses less power-intensive sensors such as an ac-
celerometer to suppress unnecessary GPS sensing for a statitionary
user. Piggybacking synchronizes the location sensing requests from
multiple running LBAs. Adaptation aggressively adjusts system-
wide sensing parameters such as time and distance, when battery
level is low.

In addition to software solutions, it is also possible to implement
hardware solutions. For example, simple operations can be directly
performed in main memory with dedicated hardware, without ac-
tually using the (more energy-intensive) main processor [135].

In addition to the power efficiency of the sensing process, issues also
often arise about the power-efficiency of the data transmission process.
Typically, data transmission is significantly more expensive, as com-
pared to the sensing process itself. For example, many applications are
enabled by the ability to capture videos on a smartphone and to have
these videos uploaded to an internet connected server. This capability
requires the transfer of large volumes of data from the phone to the
infrastructure. Typically smartphones have multiple transfer interfaces
such as 3G, Edge, and Wifi, all of which vary considerably in terms
of availability, data transfer rates and power consumption. In many
cases, the underlying applications are naturally delay-tolerant, so that
it is possible to delay data transfers until a lower-energy WiFi connection
becomes available. This tradeoff is explored in some detail in the SALSA
system proposed in [137]. An online algorithm is proposed, which can
automatically adapt to channel conditions and it requires only local in-
formation to decide whether and when to defer a transmission. Such an
approach has been shown to result in considerable power savings without
significantly affecting the operation of the underlying system.
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3.6 Other Architectural Challenges

Proper design of the above system components gives rise to other
important challenges that must be solved in order to enable development
and deployment of successful mobile sensing applications that adequately
meet user needs. The following relates challenges described in a recent
NSF-sponsored report1 on social sensing.

From the application perspective, mobile sensing applications depend
significantly on social factors (user adoption, peer pressure, social norms,
social networks, etc) as well as the nature of physical phenomena being
monitored or controlled. Exciting interdisciplinary research challenges
exist in describing the properties of distributed socio-physical applica-
tions. For example, what are the dynamics of information propaga-
tion in such systems? What are closed-loop properties of interaction
involving social and physical phenomena? What are some fundamental
bounds on capacity, delivery speed, and evolution of socio-sensing sys-
tems? Answering such questions is fundamental to informed design and
performance analysis of sensing applications involving crowd-sourcing.

From the underlying physical network perspective, mobile sensing ap-
plications herald an era where many network clients are embedded de-
vices. This motivates the investigation of a network architecture, where
the main goal from networking shifts from offering a mere communica-
tion medium to offering information distillation services. These services
bridge the gap between myriads of heterogeneous data feeds and the
high-level human decision needs. In a network posed as an information
service (as opposed to a communication medium), challenges include
division of responsibilities between the end-device (e.g., phone) and net-
work; paradigms for data collection on mobile devices, architectural sup-
port for data management, search, and mining; scalability to large-scale
real-time information input and retrieval; improved context-awareness;
support for predictability; and investigation of network and end-system
support for reduction of cognitive overload of the information consumer.
Other challenges in the design of network protocols for mobile sensing in-
clude energy management, integration of network storage, personalized
search and retrieval, support for collaborative sensing, and exploitation
of a rich realm of options in information transfer modalities and timing,
including deferred information sharing and delay-tolerant communica-
tion.

1National Science Foundation Workshop Report on Future Directions in Networked Sens-
ing Systems: Fundamentals and Applications, The Westin Arlington Gateway, Arlington, VA,
November 12-13, 2009.
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While several social sensing applications are already deployed, ex-
citing research opportunities remain in order to help understand their
emergent behavior, optimize their performance, redesign the networks
on which they run, and provide guarantees to the user, such as those on
bounding unwanted information leakage.

4. Privacy Issues in Social Sensing

Social sensing offers interesting new challenges pertaining to privacy
assurances on data. General research on privacy typically focuses on
electronic communication as opposed to ramifications of increasing sen-
sory instrumentation in a socio-physical world. In contrast, traditional
embedded systems research typically considers computing systems that
interact with physical and engineering artifacts and belong to the same
trust domain. A need arises to bridge the gap in privacy research by
formulating and solving privacy-motivated research challenges in the
emerging social sensing systems, where users interact in the context of
social networks with embedded sensing devices in the physical world.

Sharing sensor data creates new opportunities for loss of privacy
(and new privacy attacks) that exploit physical-side channels or a priori
known information about the physical environment. Research is needed
on both privacy specification and enforcement to put such specification
and enforcement on solid analytic foundations, much like specification
and enforcement of safety requirements of high-confidence software.

Specification calls for new physical privacy specification interfaces that
are easy to understand and use for the non-expert. Enforcement calls for
two complementary types of privacy mechanisms; (i) protection mech-
anisms from involuntary physical exposure, and (ii) control of volun-
tary information sharing . The former enforce physical privacy . They
are needed to prevent “side-channel” attacks that exploit physical and
spatio-temporal properties, characteristic of embedded sensing systems,
to make inferences regarding private information. Control of voluntary
information sharing must facilitate privacy-preserving exchange of time-
series data. A predominant use of data in social sensing applications is
for aggregation purposes such as computing statistical information from
many sources. Mathematically-based data perturbation and anonymiza-
tion schemes are needed to hide user data but allow fusion operations
on perturbed or partial data to return correct results to a high degree
of approximation.

While privacy-preserving statistics and privacy-preserving data min-
ing are mature fields with a significant amount of prior research, shar-
ing of sensor data offers the additional challenge of dealing with cor-
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related multi-dimensional time-series data represented by sensory data
streams. Correlations within and across sensor data streams and the
spatio-temporal context of data offer new opportunities for privacy at-
tacks. The challenge is to perturb a user’s sequence of data values such
that (i) the individual data items and their trend (i.e., their changes with
time) cannot be estimated without large error, whereas (ii) the distri-
bution of the data aggregation results at any point in time is estimated
with high accuracy. For instance, in a health-and-fitness social sensing
application, it may be desired to find the average weight loss trend of
those on a particular diet or exercise routine as well as the distribution
of weight loss as a function of time on the diet. This is to be accom-
plished without being able to reconstruct any individual’s weight and
weight trend without significant error.

Examples of data perturbation techniques can be found in [14, 13,
59]. The general idea is to add random noise with a known distribu-
tion to the user’s data, after which a reconstruction algorithm is used to
estimate the distribution of the original data. Early approaches relied
on adding independent random noise. These approaches were shown
to be inadequate. For example, a special technique based on random
matrix theory has been proposed in [95] to recover the user data with
high accuracy. Later approaches considered hiding individual data val-
ues collected from different private parties, taking into account that
data from different individuals may be correlated [86]. However, they
do not make assumptions on the model describing the evolution of data
values from a given party over time, which can be used to jeopardize pri-
vacy of data streams. Perturbation techniques must specifically consider
the data evolution model to prevent attacks that extract regularities in
correlated data such as spectral filtering [95] and Principal Component
Analysis (PCA) [86]. In addition to data perturbation, numerous group-
based anonymization methods have been proposed such as k-anonymity
and �-diversity [9]. In k-anonymity methods, the data features are per-
turbed, so that adversarial attacks always retain an ambiguity level over
k-different participants. In �-diversity, criteria are imposed over a group
to ensure that the values of the sensitive attributes are sufficiently diverse
within a group. This is motivated by the observation that k-anonymity
may sometimes not preserve the truth about individual sensitive values,
when all sensitive values within an anonymized group are the same.

In work discussed earlier in this chapter [61], it was shown that privacy
of time-series data can be preserved if the noise used to perturb the
data is itself generated from a process that approximately models the
measured phenomenon. For instance, in the weight watchers example,
we may have an intuitive feel for the time scales and ranges of weight
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evolution when humans gain or lose weight. Hence, a noise model can
be constructed that exports realistic-looking parameters for both the
direction and time-constant of weight changes. The resulting perturbed
stream can be aggregated with that of others in the community. Since
the distributions of noise model parameters are statistically known, it is
possible to estimate the sum, average and distribution of added noise (of
the entire community) as a function of time. Subtracting that known
average noise time series from the sum of perturbed community curves
will thus yield the true community trend. The distribution of community
data at a given time can similarly be estimated (using de-convolution
methods) since the distribution of noise (i.e., data from virtual users) is
known. The estimate improves with community size.

The approach preserves individual user privacy while allowing accu-
rate reconstruction of community statistics. Several research questions
arise that require additional work. For example, what is a good up-
per bound on the reconstruction error of the data aggregation result as
a function of the noise statistics introduced to perturb the individual
inputs? What are noise generation techniques that minimize the for-
mer error (to achieve accurate aggregation results) while maximizing the
noise (for privacy)? How to ensure that data of individual data streams
cannot be inferred from the perturbed signal? What are some bounds
on minimum error in reconstruction of individual data streams? What
noise generation techniques maximize such error for privacy? Privacy
challenges further include the investigation of attack models involving
corrupt noise models (e.g., ones that attempt to deceive non-expert users
into using perturbation techniques that do not achieve adequate privacy
protection), malicious clients (e.g., ones that do not follow the correct
perturbation schemes or send bogus data), and repeated server queries
(e.g., to infer additional information about evolution of client data from
incremental differences in query responses). For example, given that it
is fundamentally impossible to tell if a user is sharing a properly per-
turbed version of their real weight or just some random value, what
fractions of malicious users can be accommodated without significantly
affecting reconstruction accuracy of community statistics? Can damage
imposed by a single user be bounded using outlier detection techniques
that exclude obviously malicious users? How does the accuracy of out-
lier detection depend on the scale of allowable perturbation? In general,
how to quantify the tradeoff between privacy and robustness to malicious
user data? How tolerant is the perturbation scheme to collusion among
users that aims to bias community statistics? Importantly, how does the
time-series nature of data affect answers to the above questions com-
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pared to previous solutions to similar problems in other contexts (e.g.,
in relational databases)?

Furthermore, how can the above perturbation techniques, defense so-
lutions, and bounds be extended to the sharing of multiple correlated
data streams, or data streams with related context? For example, con-
sider a social sensing application where users share vehicular GPS data
to compute traffic speed statistics in a city. In this case, in order to
compute the statistics correctly as a function of time and location, each
vehicle’s speed must be shared together with its current GPS location
and time of day. Perturbing the speed alone does not help privacy if
the correct location of the user must be revealed at all times. What
is needed is a perturbation and reconstruction technique that allows a
user to “lie” about their speed, location, and time of day, altogether, in
a manner that makes it impossible to reconstruct their true values, yet
allow an aggregation service to average out the added multi-dimensional
noise and accurately map the true aggregate traffic speed as a function
of actual time and space. This problem is related to the more general
concern of privacy-preserving classification [158, 176], except that it is
applied to the challenging case of aggregates of time-series data. Other
methods for centralized and distributed privacy preservation in time se-
ries include the methods discussed in [130, 141], though these methods
are generally offline, and cannot easily perform the privacy preservation
in real time, as would be needed for a typical social sensing application.

In many participatory sensing applications, users may upload differ-
ent kinds of data such as images, text, or other feeds to the system. Such
data are often tagged with location (WiFi or GPS) and the time-stamp,
which can have serious consequences in terms of location privacy. Alter-
natively, the users may have to continuously provide their location to an
untrusted service provider, or provide responses to queries which may
compromise their privacy. Some of the earliest work on location privacy
[152] focusses only on user identity suppression, while preserving the full
fidelity of the location data. This approach of course suffers from the
well known problem of adversarial attacks with background information
about approximate location. The work in [66, 75, 94, 131] avoids this pit-
fall by using a k-anonymity approach for the spatio-temporal scenario.
The work in [94] proposed a technique called tessellation, in which a
point location is enlarged to a tile which contains at least k users. This
is essentially a spatio-temporal version of the generalization technique
which is often used in k-anonymity applications. It was observed in [87],
that tessellation is not useful in applications where the large tiles do
not provide the fine grained information about the location for a par-
ticular user (such as the road information). Therefore, the work in [87]
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uses a clustering (micro-aggregation) approach, which is able to preserve
more fine grained information about the location. In this context, the
method of [2] also treats the trajectory of an object as a cylinder in 3-
dimensional space, where the radius of the cylinder is non-zero because
of the uncertainty in the GPS position of the object. The key here is
to understand is that the uncertainty is inherent to the method of col-
lecting the data, since all GPS collection methods have a certain level of
error associated with them. In this context, the work in [2] defines the
concept of (k, δ)-anonymity, which is a set S of at least k trajectories,
such that all of these trajectories lie within a distance of at most δ/2
of the average position of these different trajectories. We note that it
may not be possible to create (k.δ)-anonymized groups from the original
data set, if some of the trajectories are somewhat isolated. Therefore,
the work in [2] proposes the Never Walk Alone (NWA) algorithm, in
which the positions of some of the objects is distorted with space trans-
lation, so that it is possible to construct such (k, δ)-anonymized groups
from the data. The approach constructs these anonymized groups while
minimizing the total distortion in the data.

Many mobile applications can infer the context of a user from GPS
(e.g. whether a user is at home or work). It has become increasingly
common for many mobile applications to aggressively collect such con-
text data [56] for a variety of applications. Such context can sometimes
be very sensitive from a release perspective. For example, a user may
not wish anyone to know whether they are currently in a hospital. The
afore-mentioned k-anonymization does not necessarily help protect the
sensitivity of context, if all of the k users within a group are at the same
sensitive location. A number of methods use full suppression techniques
[83, 157] in which the location or context of the user is suppressed when
they are at a sensitive location. However, it has been observed in [74]
that the fact of the suppression itself can be sensitive information, in the
presence of a powerful adversary with greater background knowledge.

Another issue with mobile sensing applications is that considerable
temporal correlations exist between the different locations of a single
or multiple users. Such correlations can be used in order to perform
privacy attacks which can infer the sensitive locations of different users.
In this context, a number of methods [30, 68, 69, 76, 126] have been
designed which utilize the temporal correlations in the privacy preserva-
tion process. The work in [76] observes that one can use linear interpola-
tion to infer suppressed locations. Therefore, the work in [76] works by
constructing zones which contain multiple sensitive locations, and the
anonymization process introduces a sufficient amount of uncertainty in
each zone. It has been observed in [30] that information about the veloc-
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ity of a user can be used in order to infer their location during successive
time instants. For example, for two successive zones containing a user,
the velocity of the user provides implicit limits on where they may or
may not be found at any given time. The work in [30] protects against
such kinds of privacy attacks. The work in [68] improves these methods
by introducing temporal delays. However, none of these methods can
provably protect privacy, when an adversary knows the system that is
used for anonymization. The work in [74] designs a scheme which can
preserve the privacy of sensitive user locations in the presence of such
powerful background knowledge.

Location privacy systems can also be understood in terms of Quality of
Service (QoS) models in response to user location queries. Such models
consider the fact that the use of generalization (eg. spatial and tem-
poral cloaking) and suppression (eg. dropping a trajectory from query
output) for privacy preservation reduces the accuracy of responses to
user-queries. Therefore, a significant amount of research has also been
focussed on performing the privacy-preservation with a focus on main-
taining certain levels of QoS for privacy preservation [17, 67, 125, 149].
These methods generally work with optimizing common models for k-
anonymity and �-diversity, with a specific focus on improving the QoS
for user queries.

Finally, it has been recognized, that in many mobile sensing applica-
tions, it is not required to collect the individual sensor streams, but one
may only desire to compute the aggregate statistics from these sensors.
For example, many location-based vehicular services are designed into
the national transportation infrastructure in many countries. These in-
clude usage- or congestion-based road pricing, traffic law enforcement,
traffic monitoring, and vehicle safety systems. Such applications often
require the computation of aggregate statistics, but poorly chosen im-
plementations can result in violations of privacy. For example, the GPS
monitoring of cars as they arrive, or the use of surveillance cameras and
toll transponders can result in privacy violations.

In the context of such applications, the following functionalities need
to be provided:

In many applications, some centralized server needs to compute a
function of a car’s path, which is essentially a list of time-position
tuples. A system called VPriv [134] provides a protocol to compute
path functions in a way, such that it does not reveal anything
more than the result of the function to the server. In addition, an
enforcement mechanism is provided (using random spot checks)
that allows the server and application to handle misbehaving cars.
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The PrivStats system computes aggregate statistics on user loca-
tion information and guarantees location privacy even in the face
of side information about user location and movement patterns. It
is also resistant to large amounts of spurious data upload by users.

Many applications require the computation of a specific function on the
data, and therefore, it is critical to design methods for computing the
function accurately on the perturbed data. For example, the problem of
privacy-preserving regression modeling of sensor data has been discussed
in [3].

5. Trust in Social Sensing

At the broadest level, social sensing systems can be considered multi-
agent systems, that interact with one another and provide a variety of
data-centric services to one another. Therefore, a number of issues of
trust arise in the context of such large-scale social-centric applications,
which are common to many traditional peer-to-peer applications [138].
Such issues typically deal with the the aspect of designing trustworthy
protocols for interactions between different agents, both in terms of the
choice of interactions, and the time of these interactions. A detailed
survey of the (more traditional) literature along this direction may be
found in [138]. The more recent social sensing work has focussed on the
data-centric aspects of trust, rather than the interaction-centric aspects.

The openness of participatory sensing systems provides them with a
tremendous amount of power in collecting information from a wide vari-
ety of sources, and distilling this information for data mining purposes.
However, it is this very openness in data collection, which also leads to
numerous questions about the quality, credibility, integrity, and trust-
worthiness of the collected information [45, 51, 71, 72]. Furthermore, the
goals of privacy and trust would seem to be at odds with one another,
because all privacy-preservation mechanisms reduce the fidelity of the
data for the end-user, whereas the end-user trust is dependent on high
fidelity of the data. Numerous questions may arise in this respect:

How do we know that the information available to the end user is
correct, truthful and trustworthy?

When multiple sources provide conflicting information, how do we
know who to believe?

Have errors been generated in the process of data collection, be-
cause of inaccuracy or hardware errors?

The errors which arise during hardware collection are inherent to the
device used, and their effect can be ameliorated to some extent by care-
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ful design of the underlying application. For example, the LiveCompare
[46] application (described in detail in the application section), which
is used for comparison shopping of grocery products, works by allowing
individuals to transmit photographs taken in stores of grocery products,
and then presents similar pictures of products taken in nearby stores.
The approach allows the transmitting of product photos taken by indi-
vidual users of competing products, but does not automatically try to
extract the pricing information from the price tags in the photograph.
This is because the extraction process is known to be error-prone, and
this design helps avoid the inaccuracy of reporting the pricing of com-
peting products. It also avoids manual user input about the product
which reduces error and maximizes trustworthiness.

For the case of specific kinds of data such as location data, a variety of
methods can be used in order to verify the truthfulness of the location
of a mobile device [107]. The key idea is that time-stamped location
certificates signed by wireless infrastructure are issued to co-located mo-
bile devices. A user can collect certificates and later provide them to
a remote party as verifiable proof of his or her location at a specific
time. The major drawback of this approach is that the applicability
of these infrastructure based approaches for mobile sensing is limited
as cooperating infrastructure may not be present in remote or hostile
environments of particular interest to some applications. Furthermore,
such an approach can be used only for particular kinds of data such as
location data.

In the context of participatory sensing, where raw sensor data is col-
lected and transmitted, a basic approach for ensuring the integrity of the
content has been proposed in [51], which guards whether the data pro-
duced by a sensor has been maliciously altered by the users. Thus, this
approach relies on the approach of platform attestation which vouches
that the software running on the peripheral has not been modified in an
unintended manner. This kind of approach is more useful for sensors
in which the end data is produced by the device itself, and an auto-
mated software can be used for detection of malicious modification. In
essence, the approach allows the trusted sensing peripherals to sign their
raw readings, which allows the remote entity to verify that the data was
indeed produced by the device itself and not modified by the user.

An additional challenge which naturally arises in the context of data
trustworthiness is that the goals of data integrity and authenticity run
contrary to the goals of user privacy. Almost all privacy-preserving data
mining algorithms reduce the data fidelity in some way in order to reduce
the ability to identify sensitive information about the user. Clearly,
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such an approach will not work in the context of systems such as those
proposed in [51].

Trusted Platform Module (TPM) hardware [71], commonly provided
in commodity PCS, can be leveraged to help provide this assurance. To
address the problem of protecting the privacy of data contributors, tech-
niques such as requiring explicit authorization for applications to access
local resources and formulating and enforcing access control policies can
be used. A TPM is a relatively inexpensive hardware component used to
facilitate building trusted software systems. It is possible to leverage the
TPM functionality of attesting to the integrity of software running on
a device to a remote verifier. The TPM can attest to the software plat-
form running on the machine by providing a signed quote of its PCR(s)
in response to a challenge from a remote verifier.

In many cases, user actions may change the data (such as the cropping
of an image), but this may not actually affect the trust of the underly-
ing data. The work in [72] proposes YouProve, which is a partnership
between a mobile device’s trusted hardware and software that allows
un-trusted client applications to directly control the fidelity of data they
upload and services to verify that the meaning of source data is pre-
served. The approach relies on trusted analysis of derived data, which
generates statements comparing the content of a derived data item to
its source. For example, the work in [72] tests the effectiveness of the
method on a variety of modifications on audio and photo data, and shows
that it is possible to verify which modifications may change the meaning
of the underlying content.

A more critical question about trustworthiness arises when the data
is collected through the actions of end users. In such cases, the user
responses may have an inherent level of errors which may need to be
evaluated for their trustworthiness. The issue of truthfulness and trust
arises more generally in any kind of application, where the ability to
contribute information is open. Such openness is a double-edged sword,
in that it greatly increases information availability at the expense of
trust. Aside from social and participatory sensing platforms, any web-
enabled platforms which allow the free contribution of information may
face such issues.

In this context, the problem of trustworthiness has been studied for
resolving multiple, conflicting information provision on the web. The
earliest work in this regard was proposed in [170], where the problem
of studying conflicting information from different providers was studied
[170]. Subsequently, the problem of studying trustworthiness in more
general dynamic contexts was studied in [48, 49].
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A number of recent methods [103, 159–162] address this issue, in which
a consistency model is constructed in order to measure the trust in user
responses in a participatory sensing environment. The key idea is that
untrustworthy responses from users are more likely to be different from
one another, whereas truthful methods are more likely to be consistent
with one another. This broad principle is used in order to model the
likelihood of participant reliability in social sensing with the use of a
Bayesian approach [159, 160, 162]. A system called Apollo [103] has
been proposed in this context in order to distill the likely truth from
noisy social streams.

Such social streams are also often used in the context of applications,
where alarms are raised in response to specific events. The nature of the
alarm may vary with the application scenario. For example, in a military
network, the alarm may be raised because of enemy threats, whereas in
a patient monitoring application, the alarm may be raised because of
a medical emergency. Such applications are inherently error prone and
raise many false alarms because of technology limitations. For example,
errors in the collection of the sensor readings, or an innocuous activity
may trigger a false alarm. In [153], the problem of trustworthiness of such
alarms has been studied, and a number of methods have been proposed
in order to provide more accurate and trustworthy alarms.

6. Implied Social Networks: Inference and
Dynamic Modeling

In the case of an explicitly linked social network, the relationships
between different entities are quite clear, and therefore the dynamics of
the interaction can be modeled relatively easily. However, in the case of
a participatory sensing environment, the links between different entities
may change rapidly and dynamically. Furthermore, such links may either
be explicit or implicitly derived based on the dynamic interactions be-
tween participants. For example, the Google Latitude application allows
for explicit links between different agents. On the other hand, in many
social applications [52, 34], the links and communities between different
agents may need to be derived based on their location and behavior. In
such cases, the structure of the social network itself and the underlying
communities [53, 35, 36, 163] can be derived directly from the details
of the underlying interaction. This is a challenging problem, especially
when the number of agents are large, and the number of interactions
between them is even larger and dynamically evolving. Furthermore, a
variety of context-specific information such as organizational rhythms,
socially significant location and daily activity patterns may need to be
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simultaneously derived and used [52] for inferring the significant links.
The work in [44] derives the links between users based on their mobility
patterns from GPS trajectories. In order to achieve this goal, the work in
[44] divides the spatial regions into a grid, and constructs nodes for each
cell. An edge exists between a pair of nodes, if a trajectory exists which
starts at one cell and ends at another. By performing the discretization
at varying levels of granularity, it is possible to analyze different char-
acteristics of the underlying users. The work in [44] specifically shows
how the approach can be used for effective community detection.

An interesting work in [173] examines the common patterns in the
activities of different geo-tracked users, and makes friendship or linkage
recommendations on the basis of significant overlaps in activity patterns.
It has also been observed in [115] that different kinds of sharing in ac-
tivity patterns may have different significance for different users. For
example, it is possible that two individuals that are friends may not
spend a lot of time together, but only a couple of hours on a Saturday
night. On the other hand, a pair of co-workers who are not friends may
share a lot of time together. Thus, it is critical to be able to learn the im-
portance of different kinds of commonality in patterns in the prediction
process [115]. Such trajectory analysis is useful not just for determin-
ing useful relationships, but also interesting places, travel sequences or
activities which are relevant to such relationships [27, 181]. In particu-
lar, an interesting authority-based model for relating social behavior and
location behavior has been proposed in [27]. The essential idea is to
construct a graph which models relationships of the trajectories of the
different users to the different locations. The idea is that authoritative
users are also likely to visit authoritative places and vice-versa. This is
used in order to construct a page-rank like model in order to determine
both the authoritative users and authoritative locations simultaneously.

Many sensing platforms such as those discussed in [33], yield sensor
data which is varied, and is of a multi-modal nature. For example, the
data could contain information about interactions, speech or location.
It is useful to be able analyze such data in order to summarize the in-
teractions and make inferences about the underlying interactions. Such
multi-modal data can also be leveraged in order to make predictions
about the nature of the underlying activities and the corresponding so-
cial interactions. This also provides a virtual technique to perform link
inferences in the underlying network.

The collection of activity sensing data is not very useful, unless it can
be leveraged to summarize the nature of the activities among the differ-
ent participants. For example,in the case of the techniques discussed in
[34], the IR transceiver is used to determine which people are in prox-
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imity of one another. However, this cannot necessarily be used in order
to determine whether the corresponding people are interacting with an-
other. A knowledge of such interactions can be determined with the
use of speech segmentation techniques in which it is determined which
participants are interacting with one another. The speech portions are
segmented out of the ambient noise, and then segmented into conver-
sations. The knowledge of such face-to-face interactions can be used to
build dynamic and virtual links among the different participants.

We note that a dynamically linked social network can be modeled in
two different ways:

The network can be modeled as a group of dynamic interacting
agents. The stochastic properties of these agents can be captured
with the use of hidden markov models in order to characterize var-
ious kinds of behaviors. This is the approach used for community
modeling as discussed in [15, 36].

The interactions of the participants can be modeled as links which
are continuously created or destroyed depending upon the nature
of the underlying interactions. as a graph stream, in which the
nodes represent the participants, and the edges represent the in-
teractions among these different participants. Recently, a number
of analytical techniques have been designed in order to determine
useful knowledge-based patterns in graph streams [8]. These in-
clude methods for dynamically determining shortest-paths, con-
nectivity, communities or other topological characteristics of the
underlying network.

The inherently dynamic nature of such interactions in an evolving and
dynamic social network leads to a number of interesting challenges from
the perspective of social network analysis. Some examples of such chal-
lenges are discussed below.
(1) Determination of dynamic communities in graph streams:
Communities are defined as dense regions of the social network in which
the participants frequently interact with one another over time. Such
communities in a dynamically evolving social network can be determined
by using agent-based stochastic analysis or link-based graph stream anal-
ysis. Methods for modeling such a social network as a group of dynam-
ically evolving agents are discussed in [15, 36]. In these techniques, a
hidden markov model is used in conjunction with an influence matrix in
order to model the evolving social network.

A second approach is to model the underlying face-to-face interactions
as dynamic links. This creates an inherently dynamic network scenario
in which the structure of the communities may continuously evolve over
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time. Therefore, a key challenge is to determine such communities in dy-
namic networks, when the clustering patterns may change significantly
over time. Methods for determining evolving clusters and communities
in networks have been discussed in [10, 12, 31, 28, 79, 151]. Many of
these methods determine communities in the underlying data by incor-
porating concepts of temporal smoothness, wherein the structure of the
communities is allowed to evolve only in a smooth way over time. On
the other hand, when the data is of very high volume (such as a graph
stream), it is also critical to design very efficient methods for commu-
nity maintenance. Graph streams pose a special challenge because of
the rapid nature of the incoming edges, and their use for determination
of evolving communities.
(2) Mining Structural Patterns in Time-Evolving Social Net-
works: Aside from the common problem of community detection, an-
other interesting problem is that of mining structural patterns of differ-
ent kinds in time evolving graphs. Some common methods for finding
such patterns typically use matrix and tensor-based tools, which are
comprehensively described in a tutorial in [60]. Common problems in
time-evolving graphs include those of frequent pattern determination,
outlier detection, proximity tracking [156], and subgraph change detec-
tion [118].
(3) Modeling spatio-temporal dynamics: Many of the approaches
discussed above model the dynamics of the interactions as dynamic links.
While this provides greater generality, it does not capture the spatio-
temporal nature of the underlying agents. For example, the data re-
ceived in a GPS application often contains spatio-temporal information
such as the positions of different agents, and their underlying interac-
tions. Therefore, an interesting and important challenge is to model the
aggregate spatio-temporal dynamics in order to determine the underly-
ing patterns and clusters. Such spatio-temporal dynamics can be used
in order to make interesting spatial predictions such as future regions
of activity or congestions. Many methods for clustering, community
detection, classification, and outlier detection from such data have been
proposed in [104, 105, 112–115, 109, 110] and are discussed in some detail
in the application section of this chapter. In many cases, such data may
even be combined with other content-based data such as GPS-tagged
images and documents in order to further improve the quality of the
underlying inference [172].
(4) Modeling Influential Community Members: This problem is
essentially that of determining the members of the participatory sensor
network, who have the greatest influence on their peers in the commu-
nity. Alternatively, it may also be interesting to trace back the spread of
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rumors or other information in the community. In a static network such
as Facebook, the problem of influence analysis is much more straight-
forward, because it depends upon the static connections between the
different communities [96]. In a dynamic network, the underlying net-
work structure may change rapidly over time, depending upon the in-
teractions between the underlying entities. Some recent work on dy-
namic influence analysis addresses this scenario of interactions between
dynamic and evolving entities [11]. This method can determine either
influential nodes or determine the most likely points of release, based
on a given influence pattern and also a given pattern of interactions. A
classic example of a dynamic network in the context of social sensing
is the face-to-face interaction network, in which it may be desirable to
determine the influence of such interactions on specific behaviors. For
example, the work in [122] used a mobile phone-based sensing platform to
examine the influence of face-to-face interactions in the life-style choices
of participants such as obesity, eating and exercise habits. It was shown
that the use of sensing platforms can be very effective at modeling the
influence effects of such interactions (which turned out to be significant
for this scenario).

As discussed earlier, the determination of dynamic interactions can
sometimes require the real-time modeling of implied interactions (such
as face-to-face interactions), which are hard to infer from sensor data
can also sometimes be sensitive information. This also leads to nu-
merous privacy challenges, especially since the interactions between the
participants may be considered personal information. As mentioned ear-
lier, privacy continues to be an important issue for such social sensing
applications. A number of privacy-sensitive approaches for face-to-face
activity modeling and conversation segmentation have been discussed in
[164–167].

The dynamic modeling of social sensing applications, naturally lead
to a lot of trajectory data in real applications. Therefore, significant
amount of research has been devoted to determining spatio-temporal
patterns from such trajectories. Such patterns may be derived with or
without additional content information. A number of these methods will
be discussed in the next section.

7. Trajectory Mining for Social Sensing

Social sensing applications have naturally lead to the collection of tra-
jectory database from the rich GPS data, which is collected in a wide
variety of applications. The increasing popularity and availability of
mobile phones also enables the collection of trajectory data from willing
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participants with the use of widely downloadable mobile applications, as
long as appropriate privacy-protection mechanisms are in place. A clas-
sic example of such a data set is the well known GeoLife data set [194].
Such data sets are not just collected for humans, but even from animals
for tracking purposes. An example of such an animal tracking database
is the Movebank database [186], which contains detailed data about an-
imal trajectories in the data. Finally, many recent document and image
creation hardware such as GPS-enabled cameras and cellphones auto-
matically stamp the content with GPS locations. This creates a very
rich data set containing both content and (implicit) trajectories. The
availability of such data makes it important to design more effective and
efficient methods for trajectory mining.

Trajectory data is particularly useful from the perspective of mining
aggregate community movement patterns. A variety of interesting pat-
terns can be mined in such trajectory data sets, which provide insights
into the aggregate movements. The aggregate movements are best rep-
resented by clusters, which are variously referred to as flocks, convoys,
or swarms [22, 77, 91, 102, 104, 113], depending upon the model which
is used to characterize these clusters. Typically, the goal is to either
determine objects with trajectories of similar shape, or objects which
move together in clusters. The major difference between these different
kinds of moving clusters are as follows:

Flocks: These correspond to groups of objects which move within
a fixed disc of a particular size over consecutive time-stamps [77,
102]. As a result, the underlying trajectories will often have a
similar geometric shape.

Moving Cluster: This refers to a group of objects which have con-
siderable overlap between successive time-stamps [93]. As in the
previous cases, the constraint on the objects moving together in
successive time stamps leads to trajectories of similar shape.

Convoys: In this case, we again find groups of objects which move
together, except that the concept of density is used in order to
define the objects that move together. As before, the objects need
to move together over consecutive time stamps [90, 91]. In many
scenarios, the use of density provides a flexible way of modeling
the movement of significant masses of objects together.

Swarms: In the case of swarms, the objects are required to move
together as before, except that we do not impose the requirement
that the objects should be together over consecutive time stamps
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[113]. In such a case, the shapes of the trajectories of the dif-
ferent objects may sometimes be quite different. The approach
discussed in [113] first uses an off-the-shelf spatial clustering al-
gorithm to partition the objects into clusters at each time-stamp.
This transforms the spatial trajectories into data which represents
membership of objects in clusters. Subsequently, a frequent pat-
tern mining-like approach is applied to this transformed data into
order to determine those objects which belong to the same spatial
cluster for a significant number of time-stamps. An Apriori-like
approach is used for this purpose, in combination with a number
of additional pruning tricks, which use the temporal characteristics
of the data. Since the consecutiveness of the membership informa-
tion is not used in the pattern-mining phase, the swarms are based
on significant levels of co-location at any period in time.

The problem of clustering is particularly useful from the perspective of
trajectory mining, because it provides summary information which can
be used for other applications. For example, the TraClass method pro-
posed in [105] uses two kinds of clustering in order to provide additional
summary information, which enables more effective classification. One
kind uses the characteristics of different regions in the clustering, but
it does not use the movement patterns. The other kind uses the char-
acteristics of different trajectories in the clustering. The two kinds of
clusters provide useful complementary information in the classification
process. It has been shown in [105], how this additional information can
be leveraged for a more effective classification process.

While clustering determines the typical movement patterns, a related
problem is that of determining unusual (or atypical) movement patterns
[105, 109, 110]. Such movement patterns are also referred to as outliers.
Another variation on the problem is the determination of periodic pat-
terns [114], which we wish to determine common patterns of movement
which repeat periodically in the trajectory data, or hot routes in road
networks [111]. A comprehensive range of trajectory mining techniques
have been developed in the context of the MoveMine project at UIUC
[115].

While much of this work has been performed in the context of ani-
mals, similar techniques can be generalized to the case of humans. Hu-
man movements are of course somewhat more complex, because of the
greater complexity of social interactions as compared to animals. Some
recent work has been performed on studying the trajectory patterns of
humans, which were collected from mobile phones [73]. It was shown
that human trajectories show a high degree of temporal and spatial
regularity, and each individual shows a highly time-independent charac-
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teristic travel distance and a significant probability to return to a few
highly frequented locations. On further simplification, it was shown that
individual travel patterns collapse into a single spatial probability distri-
bution. This suggests that humans follow simple reproducible patterns.
This simple observation has consequences for all phenomena driven by
human mobility, such as epidemic prevention, emergency response, ur-
ban planning and agent-based modeling.

A key area of research for mobile trajectory analysis is to determine
frequent and repetitive trajectories in the data. The most basic analy-
sis from this perspective is to determine similar trajectories to a given
target trajectory. A variety of methods on the topic of indexing mov-
ing object databases may be found in [80]. The problem has also been
studied in the context of the gps trajectories created by mobile phones
[43, 174]. A method for performing user-oriented trajectory search for
trip recommendations has been proposed in [147].

More generally, the work in [70] explores the sequential pattern min-
ing problem in the context of trajectory pattern mining. The idea is
to determine sequences of places in the data, which occur together fre-
quently in the data, and with similar transition times. The sequential
pattern mining paradigm can be extended to this case by incorporating
temporal constraints into successive elements of the sequence.

Trajectory patterns can also be derived from geo-tagged photos, in
which users utilize gps-enabled mobile phones to take photos and up-
load them. Since the user location and time is recorded, when they take
the photo, this provides natural way to derive the trajectory of the user.
For example, the work in [171] mines frequent sequential trajectory pat-
terns from such geo-tagged social media. However, the number of pat-
terns may be too large to be informative to a user. Therefore, a ranking
mechanism is introduced in order to determine the importance of the
different reported patterns. The relationships between users, locations
and patterns and their importance are utilized for ranking purposes. For
example, trajectories are considered important, if they are followed by
important users, and contain important locations. The vice-versa re-
lationships also hold in this case. These importance relationships are
modeled in [171] with the use of matrices representing the pairwise rela-
tionships between users, locations and patterns. A system of equations
is set up with these matrices and solved in order to determine the impor-
tance values of the different trajectories. In addition, a diversification
criterion is introduced in order to ensure that trajectories with large seg-
ments in common are not reported simultaneously. This is done in order
to maximize the amount of useful in information in a small number of
presented results. The GPS data can also be used in order to determine
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interesting locations, trajectories, or even the transportation modes of
the different users [180, 181].

While social sensing applications are generally defined for the case of
people, a similar analysis can be applied to the case of online tracking
of animals. For example, animals which are drawn from the same com-
munity or family may be considered to have implicit links among them.
Such links can be utilized for the perspective of detailed understanding
of how community and family membership affects geographical patterns.
Such information can be very useful for a variety of applications, such
as building disease propagation models among animals.

7.1 Integrating Sensor Data with Heterogeneous
Media for Enhanced Mining and Inference

Many of the devices (such as mobile phones), which enable social
sensing applications are convergent devices, which provide multiple func-
tionalities in recording different kinds of media data. For example, most
mobile phones today provide the capability to record photos, videos, text
blogging and tweets, and upload them directly in real time. Thus, such
media data automatically becomes geo-tagged, and this additional infor-
mation provides a rich source of information for improving the mining
process.

For example, the problem of providing location and activity recom-
mendations on the basis of user contributed comments and their GPS
trajectories has been studied in [179]. The user comments provide deeper
insights into their activity histories, which can be leveraged for a better
mining process. The collective wisdom of the trajectories and comments
of different users can be leveraged in order to provide answers to ques-
tions such as the following:

For a particular activity, what are the most appropriate places to
visit?

For a particular location, which a user has already visited, what
are the other activities that can be performed at that location?

In order to achieve this goal, the user location and activity histories
are used as the input. We note that the activity histories can only be
indirectly derived from user comments, by mining the relevant words
in the comments, which are related to specific activities. The location
features and activity-activity correlations are mined in order to obtain
additional knowledge. A collective matrix factorization methods was
applied in [179] in order to mine interesting locations and activities and
recommend them to users. Location information is also useful for rec-
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ommending specific non-spatial products or items on the basis of spatial
history, as discussed in [101].

This general principle can also be applied for geographical topic dis-
covery and comparison from GPS-associated documents [172]. While
topic modeling of documents is widely known, the use of geographic
information in the process provides rich opportunities for adding addi-
tional insights into the process. Many interesting concepts, including
cultures, scenes, and product sales, correspond to specialized geographi-
cal distributions. The goal of geographical topic discovery is to discover
such interesting concepts. The two main questions in this context are as
follows:

What are the coherent topics of interest in the different geograph-
ical regions?

How can the different topics be compared across the different ge-
ographical regions?

The work in [172] proposes and compares three different models which
use pure location, pure text, and a joint model of location and text,
which is referred to as LGTA (Latent Geographical Topic Analysis).
The approach is used on several data sets from the Flickr web site. It
is shown that the first two methods work in some data sets but fail in
others, whereas LGTA works well in all data sets at finding regions of
interest and also providing effective comparisons of the topics across dif-
ferent locations. This suggests that geographical data and content data
provide complimentary information to one another for the mining pro-
cess. Further work along this direction in the context of topic evolution
is proposed in [169]. From a real-time perspective, it is often useful to
utilize location information for providing context-sensitive newsfeeds to
users [19].

An interesting application in [32] shows that the latent information
in user trajectories, which are extracted from the GPS data in photos
can even be used to generate travel itineraries. For example, the media
sharing site Flickr, allows photos to be stamped by the time of when
they were taken and be mapped to points of interest with the use of
geographical and tag meta-data. This information can be used to con-
struct itineraries with a two-step approach. First, the photo streams of
individual users are extracted. Each photo stream provides estimates on
where the user was, how long he stayed at each place, and what was the
transit time between places. In the second step, all user photo streams
are aggregated into a Point of Interest (POI) graph. Itineraries are then
automatically constructed from the graph based on the popularity of the
POIs, and subject to the user time and destination constraints.
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8. Social Sensing Applications

In this section, we will discuss a number of recent applications which
have been designed in the context of sensors and social networks. Many
of these applications are related to storage and processing of mobile data
which is continuously collected over time. Such mobile data can be used
in order to provide real time knowledge of the different users to one
another, trigger alerts, provide an understanding of social trends, and
enable a variety of other applications. In this section, we will discuss
a number of social-centric applications, which have been developed in
recent years. These include specific systems which have been designed
by companies such as Google, Microsoft, and SenseNetworks, as well as
a number of generic applications, which have not yet been fully commer-
cialized.

8.1 CrowdSourcing Applications for
User-Centered Activities

A number of crowdsourcing applications have recently been designed
for providing feedback in a number of user-centered activities such as
buying behavior, location trends, or other miscellaneous user activ-
ity. Examples of such applications include Google Latitude, CitySense,
Macrosense and Wikitude applications. The Citysense and Macrosense
applications both collect real-time data from a variety of GPS-enabled
cell phones, cell phone tower triangulation, and GPS-enabled cabs. The
two applications share a number of similarities in terms of the under-
lying methodology, but they have different features which are targeted
towards different kinds of audiences. We describe them below:

8.1.1 The Google Latitude Application. The Google Lat-
itude Application uses GPS data which is collected from Google map
users on mobile cell phones. It is also possible to collect more approx-
imate data with the use of cell phone tower location data (in case the
mobile phones are not GPS enabled), or with the use of IP addresses
of a computer which is logged into the personalized google page called
iGoogle. The Latitude application enables the creation of virtual friends,
who are essentially other users that carry the same location-enabled de-
vice, or use other devices such as personal computers which can transmit
approximate location data such as IP-addresses. A number of other ap-
plications which enabled by the Google Latitude master application are
as follows:

Location Alerts: The application allows the triggering of alerts
when someone is near their latitude friends. The alerts are trig-
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gered only when something interesting is being done. This is done
on the basis of both time and location. For example, an alert could
be triggered when two friends are at a routine place, but an un-
usual time. Alternatively, it could be triggered when two friends
are at a routine time but unusual place.

Public Location Badge: It is possible to post one’s location
directly on blog or social network. This in turn increases the visi-
bility of one’s information to other users of the site.

Use with Chat Applications: The mobile location can also be
used in conjunction with the Google Talk application which allows
users to chat with one another. Users who are chatting with one
another can see each other’s location with the use the embedded
latitude functionality.

It is clear that all of the above techniques change the nature and dy-
namics of social interactions between users. For example, the triggering
of alerts can itself lead to a changed pattern of interaction among the
different users. The ability to mine the dynamics of such interactions is
a useful and challenging task for a variety of applications.

While Google Latitude is perhaps the most well known application,
it is by no means the only one. A number of recent applications have
been designed which can track mobile devices on the internet through
GPS tracking. Some of these applications have been designed purely for
the purpose of tracking a device which might be lost, whereas others
involve more complex social interactions. Any software and hardware
combination which enables this has the potential to be used for social
sensing applications. Some examples of such applications are as follows:

Navizon Application: This application [188] uses GPS in order
to allow social interactions between people with mobile phones. It
allows the tracking of mobile friends, coverage of particular areas,
and trails followed by a particular user.

iLocalis Application: This application [189] is currently de-
signed only for particular mobile platforms such as the iPhone,
and it allows the tracking of family and friends. In addition, it is
also designed for corporate applications in which a group of mo-
bile employees may be tracked using the web. Once friendship links
have been set up, the application is capable of sending a message
to the friends of a particular user, when they are nearby.

8.1.2 CitySense Application. The citysense application is
designed for the broad consumer base which carries mobile cell phones.
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The Citysense application is designed to track important trends in the
behavior of people in the city. For example, the application has been
deployed in San Francisco, and it can show the busiest spots in the city
on a mobile map.

The CitySense application also has a social networking version of a
collaborative filtering application. The application stores the personal
history of each user, and it can use this personal history in order to
determine where other similar users might be. Thus, this can provide
recommendations to users about possible places to visit based on their
past interests.

A very similar application is the WikiCity project [25] which collects
real time information with the use of GPS and mobile devices. These
are then used to collect the location patterns of users, and their use in
a variety of neighborhoods.

8.1.3 MacroSense Application. The MacroSense applica-
tion [195] is similar in terms of the data it collects and kind of function-
ality it provides; however it is focussed towards the commercial segment
in predicting consumer behavior. The application can predict the be-
havior of customers based on their location profile and behavior. The
application can predict what a particular customer may like next. The
broad idea is to segment and cluster customers into marketing groups
based on their behavior, and use this information in order to make pre-
dictions. For example, the popularity of a product with users who are
most like the target can be used for predictive purposes. Thus, this ap-
proach is somewhat like collaborative filtering, except that it uses the
behavior of customers rather than their feedback. The effectiveness of
particular behaviors which predict the interests are also used. This anal-
ysis can be performed in real time, which provides great value in terms
of predictive interactions. The analytics can also be used in order to
predict group influences for the behaviors of the underlying subjects.

8.1.4 LiveCompare for Grocery Bargain Hunting. A
system called LiveCompare [46] has been proposed for grocery bargain
hunting with the use of participatory sensing. LiveCompare works with
participating grocery store shoppers with camera-enabled mobile phones
with internet access. Virtually, all smart phones today are camera- and
internet-enabled, and therefore this requirement is quite a reasonable
one, which does not require any additional expenditure from participat-
ing users. The camera phones are used in order to snap a picture of
the product’s price tag. We note that this price tag, typically contains
a UPC bar code, from which information about the product can be ex-
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tracted. The barcodes can be decoded from the photograph with the
use of barcode libraries such as ZXing[193]. At this point, the numerical
UPC value and the just-taken photograph are transferred to LiveCom-
pare’s central server. This data is stored in LiveCompare’s database for
use in future queries, and the UPC value determines the unique product
for which price comparisons are requested. The client also sends its GPS
or GSM cell information to the server so that the current store can be
identified. This location information allows LiveCompare to limit query
results to include only nearby stores. Results include store information
and the option to view the time-stamped photographs associated with
the specific product in question at each store. Users are not required
to manually input pricing data in order to improve trustworthiness; this
low burden of participation improves the ability to recruit participants
during deployment. In any participatory system, it is recognized that
to contribute data, users give up their time, attention, and mobile de-
vice’s battery power. Therefore, it is critical to ensure that users have
sufficient incentive to participate. LiveCompare directly addresses this
challenge through its query protocol. When a user submits a query from
a grocery store, he identifies the product for which he wants price com-
parison information by snapping a photograph of the product’s price
tag (including bar code). The server appends the photograph submitted
during the query to its database. Thus, by requiring that a geotagged
photograph be uploaded as part of a query, LiveCompare automatically
populates its database whenever a user initiates a query. Thus, the
principle of increasing incentive and participation is: “To use, you must
contribute.”

The problem of sharing consumer prices with the use of mobile phones
has started gaining attention recently. For example, the Mobishop sys-
tem for sharing consumer prices with mobile phones has been proposed
in [146]. Methods for sharing fuel prices with the help of a network of
mobile phone cameras has been proposed in [50].

8.1.5 Location-Aware Search, Feedback, and Product Rec-
ommendation. Virtually all mobile phones have applications
which enable GPS-based searches for popular businesses such as restau-
rants, coffee shops, gas stations, or department stores. For example,
the Y ellowPages application on most mobile phones is now GPS en-
abled. Furthermore, many social review systems (which allow users to
share their opinions about businesses) such as Yelp [199] integrate the
social reviews with GPS-enabled search. This allows a user to not only
search for business of interest, but even businesses which have positive
reviews associated with them. These applications also allow users to
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enter their feedback about their own experiences into the system. This
unique combination of user-based text feedback and mobile sensing is
powerful combination, which provides unprecedented information and
flexibility in terms of combining location information with the social
opinions of other users.

For shopping applications, the ability to perform recommendations is
a useful functionality in a wide variety of scenarios. Since spatial lo-
cation is highly corrected to user-buying behavior, it is natural to use
GPS information for such applications. An important observation in
this work is that some items or products (eg. restaurants) are spatial
in nature, whereas others (eg. movies) are non-spatial in nature, since
the user-experience with the product in not locality dependent. Simi-
larly, ratings of a user may sometimes be spatial in nature, when some
locations (eg. FourSquare) allow location-based check in and ratings.
The work in [101], which uses location-based ratings for the recommen-
dation process. The LARS [101] suppots a taxonomy of three classes
of location-based ratings– (i) spatial ratings for non-spatial items, (ii)
non-spatial ratings for spatial items, and (iii) spatial ratings for spatial
items. LARS uses spatial partitioning in order to utilize spatially closer
users for the recommendation process. This maximizes system scalabil-
ity without affecting the recommendation quality. Furthermore, since
users prefer closer locations for the purpose of their buying behavior,
the spatial nature of items is used in order to recommend items which
are closer to querying users. This is modeled with the use of a travel
penalty. It has been shown in [101], that these features can be used
either separately or together in order to maximize the effectiveness of
the recommendation process.

8.1.6 Wikitude Augmented Reality Application. The
wikitude application [191] is designed for mobile phones (such as Black-
berry and iPhone, and uses the GPS location and the compass within
mobile phones in order to provide an “augmented reality” experience
from the mobile phone, by pointing it in different directions. The appli-
cation is connected with social networking application such as Facebook
and Twitter, and can collect messages, tweets and events from users
within a particular neighborhood, and can be made available to the
user. In addition, by pointing the device in a particular direction, it
may be possible to find useful points of interest such as restaurants,
shopping places, or movie theaters. It is even possible to determine mo-
bile coupons and discounts from shops within a particular neighborhood
with this kind of application.
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8.1.7 Microsoft SensorMap. Most of the applications dis-
cussed above are based on location data, which is automatically collected
based on user behavior. The SensorMap project [127] at Microsoft al-
lows for a more general framework in which users can choose to publish
any kind of sensor data, with the understanding that such shared knowl-
edge can lead to interesting inferences from the data sets. For example,
the sensor data published by a user could be their location information,
audio or video feeds, or text which is typed on a keyboard. The goal of
the SensorMap project is to store and index the data in a way such that
it is efficiently searchable. The application also allows users to index
and cache data, so that users can issue spatio-temporal queries on the
shared data.

The SensorMap project is part of the SenseWeb project, which allows
sharing and exploring of sensor streams over geo-centric interfaces. A
number of key design challenges for managing such sensor streams have
been discussed in [120]. Other key challenges, which are associated with
issues such as the privacy issues involved with continuously collecting
and using the sensors which are only intermittently available is discussed
in [99].

8.2 RFID Technology: The Internet of Things

The general idea of social sensing can also be extended to applica-
tions which use RFID technology to track objects, as opposed to “so-
cial” sensing paradigms, which track people. This technology is also
transformative for social sensing, because of the close relations between
people and objects in many scenarios, and the social inferences, which
may be possible with the use of such tracking technology. The idea is
that radio frequency tags are attached to commercial products or other
objects to be tracked, and these tags do little more than provide their
unique Electronic Product Code (EPC) to nearby sensor readers. Thus,
the movements of objects of interest can be identified by appropriate
receivers at checkpoints where the object movement is tracked. Further-
more, these readers can be connected to the internet, where they can
publish the data about the objects, and enable effective search, query-
ing, and indexing of these objects with the use of the semantic web
framework [82].

Animals, commercial products, baggage and other high volume items
are often tracked with the use of Radio Frequency Identification (RFID)
tags. For example, RFID technology has been used to track the move-
ment of large animals such as whales with chips embedded in them.
Such chips may sometimes even have transmitters embedded in them,
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which can be picked up by satellite. RFID technology has even found
application in a number of medical applications, in which RFID chips
are embedded in patients in order to track their case history. RFID
Technology has lead to the general vision of the internet of things [16],
in which uniquely identifiable objects can be continuously tracked over
time. In the case of commercial applications, the products may have im-
plicit links among them which correspond to shared batches or processes
during the production and transportation process. Such tracking data
can be used in conjunction with linkage analysis in order to determine
the causality and origin of tainted products. It can also be used to track
the current location of other products which may be tainted. Such data
is typically quite noisy, error-prone, incomplete, and massive in volume.
Thus, this leads to numerous challenges in data compression, storage
and querying. A detailed tutorial on RFID methods may be found in
[81]. The technology is also discussed in some detail in a later chapter
of this book [4, 5].

8.3 Vehicular Participatory Sensing

In vehicular participatory sensing, a variety of sensor data from vehi-
cles such as mobile location, or other vehicular performance parameters
may be continuously transmitted to users over time. Such data may be
shared with other users in the aggregate in order to preserve privacy.
This is the social aspect of such applications, since they enable useful
individual decisions based on global patterns of behavior. In addition,
vehicular participatory sensing may be used in order to enable quick
responses in case of emergencies involving the vehicle operation. We
note that much of the work discussed above for animal and moving ob-
ject trajectory mining [104, 105, 112–115, 109, 110] are also applicable
to the case of vehicular data. In addition, vehicular data poses unique
challenges in terms of data collection, sensing, transmission and privacy
issues. Classic examples of vehicular participatory sensing include the
CarTel [88] and GreenGPS systems [64]. While we will focus on a de-
tailed discussion of these systems as the most well known representatives
of vehicular participatory sensing, a number of other sensing systems
have been designed for different applications such as traffic monitoring
and road conditions [124], cyclist experience mapping [55, 142], and the
determination of transportation modes [144].

The problem of sharing bike track paths by different users has been
explored in [142]. The problem of finding bike routes is naturally a trial-
and-error process in terms of finding paths which are safe and enjoyable.
The work in [142] designs Biketastic, which uses GPS-based sensing on
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a mobile phone application in order to create a platform which enables
rich sharing of biker experiences with one another. The microphone and
the accelerometer embedded on the phone are sampled to infer route
noise level and roughness. The speed can also be inferred directly from
the GPS sensing abilities of the mobile phone. The platform combines
this rich sensor data with mapping and visualization in order to provide
an intuitive and visual interface for sharing information about the bike
routes. A different application uses the time-stamped location infor-
mation in order to determine the mobility profiles of individuals [144].
Next, we will discuss the Cartel and GreenGPS systems.

8.3.1 CarTel System. The CarTel project at MIT [88] is de-
signed for mining and managing large amounts of sensor data, which are
derived from vehicular participatory sensing. The most common data is
vehicular position data, from which large amounts of information about
road congestion, conditions, and other violations may be determined.
The project focusses on the collection and use of such data in an ef-
ficient and privacy-preserving way. The actual data may be collected
either from mobile phones in the car or from embedded devices within
the car itself. For example, the Onboard Diagnostics Interface (OBD-II)
equipped on modern cars can be used to collect tremendous amounts
of useful data in this context. The OBD-II is a diagnostic system that
monitors the health of the automobile using sensors that measure ap-
proximately 100 different engine parameters. Examples of monitored
measurements include fuel consumption, engine RPM, coolant tempera-
ture and vehicle speed. Vehicles that have been sold in the United States
after 1996 are mandatorily equipped with a sensing subsystem called the
On-Board Diagnostic (OBD-II) system. A number of key components
of the CarTel system are as follows:
Traffic Mitigation: In this case, two systems VTrack and CTrack
[154, 155] have been proposed for processing error-prone position streams
for estimating trajectory delays accurately. Since the location data is
typically error-prone as a result of transmission errors, or outages, the
technique is designed to be resistant to errors. In particular, the CTrack
system [154] can work with the position data from cellular base stations,
in which the location error is much higher than GPS data. The system
continuously collects the data, and combines real-time and historic de-
lay estimates to produce predictions of future delays at various points
in time in the future. The results of the predictive model are sent to a
commute portal where users can view the data along with appropriate
traffic routing strategies.
Road Conditions: The idea in this approach [58] is to use the oppor-
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tunistic mobility of sensor-equipped vehicles to detect and report the
surface conditions of roads. Each car in the system carries 3-axis ac-
celeration and GPS sensors, gathering location-tagged vibration data.
The system uses uses CarTel’s opportunistic wireless protocols to de-
liver the data over whatever wireless network is available to a back-end
server (discussed in detail below). The server processes this vibration
data using machine learning techniques in order to predict the surface
conditions.
Data Muling and Networking: The data collected in a vehicle (such
as information about the road surface conditions) may sometimes need
to be routed to a back-end server, even in cases where a continuous
mobile connection is not available. In such cases, intermittent wifi ac-
cess points may be available along the route of the vehicle. should use
wireless networks opportunistically [57, 29]. The idea is to use a com-
bination of WiFi, Bluetooth, and cellular connectivity, using whatever
mode is available, while being completely transparent to underlying ap-
plications. In some cases, cars may be used as mules in order to carry
the data, when direct connectivity is not available [29].
Query Processing of Intermittently Connected Data: Participa-
tory sensing sensor network applications must cope with a combination
of node mobility and high data rates when media-rich data such as au-
dio, video or images are being captured by a sensors. As a result of
the mobility, the sensor networks may display intermittent and variable
network connectivity, and often have to deliver large quantities of data
relative to the bandwidth available during periods of connectivity. In or-
der to handle this challenge, a system known as ICEDB (Intermittently
Connected Embedded Database) [178] was proposed, which incorporates
a delay-tolerant continuous query processor, coordinated by a central
server and distributed across the mobile nodes. The system contains
algorithms for prioritizing certain query results to improve application-
defined utility metrics.
Privacy Protection: The process of tracking the position of individ-
ual vehicles is fraught with numerous challenges from a privacy perspec-
tive. Therefore, techniques are needed to be able to compute appropri-
ate functions on the location data, without violating individual privacy.
The CarTel system provides excellent privacy protection of user location
data, while being able to compute aggregate functions on the location
statistics. This is called the VPriv system [134]. More details on this
system are discussed in the section on privacy in this chapter.

8.3.2 Green GPS. Green GPS [64] is a participatory sensing
navigation service that allows drivers to find the most fuel-efficient routes
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for their vehicles between arbitrary end-points. Green GPS relies on data
collected by individuals from their vehicles as well as on mathematical
models to compute fuel efficient routes.

The most fuel efficient route may depend on the vehicle and may be
different from the shortest or fastest route. For example, a fast route
that uses a freeway may consume more fuel because fuel consumption
increases non-linearly with speed. Similarly, the shortest route that tra-
verses busy city streets may be suboptimal because of downtown traffic.
The data collected by the different drivers can be used in conjunction
with mathematical models in order to make effective predictions. A
natural question arises as to the nature of the data which can be col-
lected by the different individuals for this purpose. The service exploits
measurements of standard vehicular sensor interfaces that give access to
most gauges and engine instrumentation.

To build its fuel efficiency models, Green GPS utilizes a vehicle’s
OBD-II system and a typical scanner tool in conjunction with a partic-
ipatory sensing framework. The team is collecting data from vehicles
driven by research participants to determine what factors influence fuel
consumption. The data collected by the participants is driving the cre-
ation of a mathematical model that enable computing fuel consumption
of different cars on different road segments. Early studies have shown
that a 13% reduction in consumer gas consumption is possible over the
shortest path and 6% over the fastest path.

8.4 Participatory Sensing in Healthcare

A variety of participatory sensing techniques can be used for enabling
real-time services. In participatory sensing, users agree to allow data
about them to be transmitted in order to enable a variety of services
which are enabled in real time. The ability to carry such devices allows
its use for a variety of healthcare applications involving the elderly. For
example, elderly patients can use this in order to call for care when
necessary. Similarly, such sensing devices can be utilized for a variety of
safety and health-care related applications.

Several companies such as Vivometrics, Bodymedia, and Mini-mitter
have [196–198] have designed enhanced versions of the Holter ECG mon-
itoring device [85], which is commonly used for ambulatory services.
These enhanced devices are able to monitor a patient’s ECG for longer
periods of time, and transmit them remotely to the physician. Such a
concept is very useful for high-risk populations (such as elderly patients),
because it allows quick and time-critical responses, which has the poten-
tial to save lives. While inpatient mobile sensing is quite common in
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medical domains, the advancement of this natural concept to more pro-
active applications such as round-the-clock monitoring has only been a
recent development.

A method called LiveNet is proposed in [150], in which a flexible dis-
tributed mobile platform that can be deployed for a variety of proactive
healthcare applications that can sense one’s immediate context and pro-
vide feedback. This system is based on standard PDA hardware with
customized sensors and a data acquisition hub, which provides the ability
for local sensing, real-time processing, and distributed data streaming.
This integrated monitoring system can also leverage off-body resources
for wireless infrastructure, long-term data logging and storage, visual-
ization/display, complex sensing, and computation-intensive processing.
The LiveNet system also allows people to receive real-time feedback from
their continuously monitored and analyzed health state. The system can
also communicate health information to caregivers and other members
of an individual’s social network for support and interaction. One of the
attractive features of this system is that it can combine general-purpose
commodity hardware with specialized health/context sensing within a
networked environment. This creates a multi-functional mobile health-
care device that is at the same time a personal real-time health monitor,
which provides both feedback to the patient, the patient’s social network,
and health-care provider.

We note that a significant number of predictions can also be made
without collecting data which is clinical in nature. In particular, the
daily activities of an individual can provide key insights into their health.
Smartphones have now become sophisticated enough that the data from
the different sensors can be fused in order to infer the daily activities of
an individual [65]. For example, the presence of illness and stress can af-
fect individuals in terms of their total communication, interactions with
respect to the time of day, the diversity and entropy of face-to-face com-
munications and their movement. In order to achieve this goal, the work
in [121] uses mobile phone based co-location and communication sensing
to measure different attributes about the daily activity of an individual.
It has been shown in [121], that the collection of even simple day-to-day
information has a powerful effect on the ability to make an accurate
diagnosis. Methods have also been proposed for finding sequential pat-
terns from human activity streams, in order to determine the key activity
trends over time. Furthermore, such activity monitoring cane be used
to model the influence of different individuals on each other in terms of
their daily activities. The work in [122] used a mobile phone platform
to examine how individuals are influenced by face-to-face interactions
in terms of their obesity, exercise and eating habits. It was shown that
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such interactions do have a significant influence over individuals, which
may propagate in the social network over time. Such an approach [54,
139, 140] has also been applied to the problem of geriatric care. This
is because medical conditions such as dementia in older patients show
up as specific kinds of activity patterns over time. It has been shown in
[54], how such activity recognition methods can be used in the context
of geriatric care.

From a predictive modeling perspective, a key challenge which arises
is that a large amount of data may potentially need to be collected simul-
taneously from a large number of patients in order to make accurate real
time predictions. This requires the design of fast data stream processing
algorithms [7]. A recent paper [89] proposes a number of real-time data
stream mining methods for fast and effective predictive modeling from
sensor data. This kind of approach can be used for a wide variety of
medical conditions, though the nature of the data collected and the pre-
dictive modeling would depend upon the nature of the disease modeling
at hand. For example, the work in [84] discusses a variety of methods
which can be used for diabetes monitoring with the use of collected data.
Another interesting method for health and fitness monitoring has been
developed in [119], in which modern mobile phones are used in order to
both sense and classify the activities of an individual in real time. It
has been shown that such machine learning algorithms can be used in
conjunction with the collected data in order to provide effective moni-
toring and feedback. A discussion of some of the challenges in selecting
sensors for health monitoring with the use of participatory sensing may
be found in [41].

9. Future Challenges and Research Directions

In this chapter, we examined the emerging area of integrating sensors
and social networks. Such applications have become more commonplace
in recent years because of new technologies which allow the embedding
of small and unobtrusive sensors in clothing. The main challenges of
using such technologies are as follows:

Such applications are often implemented on a very large scale. In
such cases, the database scalability issues continue to be a chal-
lenge. While new advances in stream processing have encouraged
the development of effective techniques for data compression and
mining, mobile applications continue to be a challenge because of
the fact that both the number of streams and rate of data collection
may be extremely large.
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A major challenge in sensor-based social networking are the pri-
vacy issues inherent in the underlying applications. For example,
individuals may not be willing to disclose their locations [66] in
order to enable applications such as proximity alerts. In many
cases, such constraints can greatly reduce the functionality of such
applications. A major challenge in such applications is to provide
individual hard guarantees on their privacy level, so that they be-
come more willing to share their real time information.

The trust issues continue to be a challenge for such applications,
because of the openness of such systems in allowing participants
to contribute information. Furthermore, the goals of privacy and
trust seem to be at odds with one another, because the former is
achieved by lowering data fidelity, and the latter requires higher
data fidelity.

Battery life continues to be a severe constraint in such applica-
tions. Therefore, it is critical to tailor application design to work
efficiently in power-constrained scenarios.

The architectural challenges for such systems continue to be quite
extensive. For example, the use of centralized processing methods
for such large systems does not scale well. Therefore, new methods
[120, 127] have moved away from the centralized architecture for
stream collection and processing.

The future challenges of such research include the development of new
algorithms for large scale data collection, processing and storage. Some
advancements [7, 120, 127] have already been made in this direction.
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