
GAME THEORETIC ANALYSIS OF CALL-BY-VALUECOMPUTATIONKOHEI HONDA NOBUKO YOSHIDAAbstract. We present a general semantic universe of call-by-value computationbased on elements of game semantics, and validate its appropriateness as a semanticuniverse by the full abstraction result for call-by-value PCF, a generic typed pro-gramming language with call-by-value evaluation. The key idea is to consider thedistinction between call-by-name and call-by-value as that of the structure of in-formation
ow, which determines the basic form of games. In this way call-by-namecomputation and call-by-value computation arise as two independent instances ofsequential functional computation with distinct algebraic structures. We elucidatethe type structures of the universe following the standard categorical framework de-veloped in the context of domain theory. Mutual relationship between the presentedcategory of games and the corresponding call-by-name universe is also clari�ed.1. IntroductionThe call-by-value is a mode of calling procedures widely used in imperative and functionalprogramming languages, e.g. [1, 30], in which one evaluates arguments before applyingthem to a concerned procedure. The semantics of higher-order computation based oncall-by-value evaluation has been widely studied by many researchers in the context ofdomain theory, cf. [35, 23, 32, 12, 40, 11], through which it has become clear that thesemantic framework for the call-by-value computation has a basic di�erence from the onefor call-by-name computation (see [15, 42] for introduction to the topic). The di�erencebetween the semantics of call-by-value and that of call-by-name in this context mayroughly be captured as the di�erence in the classes of involved functions: in call-by-name, we take any continuous functions between pointed cpos, while, in call-by-value,one takes strict continuous functions. The latter is also equivalently presentable aspartial continuous functions between (possibly bottomless) cpos. This distinction leadsto a basic algebraic di�erence of the induced categorical universes, cf.[11, 12].The present paper o�ers a semantic analysis of call-by-value computation from adi�erent angle, based on elements of game semantics. In game semantics, computationis modelled as speci�c classes of interacting processes (called strategies), which, togetherwith a suitable notion of composition, form a categorical universe with appropriate typestructures. One may compare this approach to B�ohm trees or to sequential algorithms [6,22], in both of which computation is modelled not by set-theoretic functions of a certainkind but by objects with internal structures which re
ect computational behaviour ofthe concerned class of computation. Game semantics has its origin in Logics [7, 10]and has been used for the semantic analysis of programming languages, especially forcharacterising the notion of sequentiality [8, 34]. By concentrating on speci�c forms ofinteraction which obey a few basic constraints, the approach makes it possible to extractdesired classes of interacting processes at a high-level of abstraction, o�ering suitablesemantic universes for varied calculi and programming languages, cf. [2, 3, 4, 19, 20, 24].The forms of interaction in these universes are however inherently call-by-name: it hasLFCS, Department of Computer Science, University of Edinburgh. e-mail: kohei@dcs.ed.ac.uk,ny@dcs.ed.ac.uk. Supported in part by EPSRC Fellowships and JSPS Research Fellowships.

not been clear how the call-by-value computation can be captured in the setting of gamesemantics, in spite of its equally signi�cant status as a mode of computation.
CBVCBN

nat nat

OQ
PQ

OA(n)
PA(2n)

OA(n)
PA(2n)

nat nat

(a) (b) Figure 1In the present work it will be shown that a general semantic universe of the call-by-value higher-order computation can indeed be simply constructed, employing basicelements of the foregoing game semantics, but with a key di�erence in the structuresof interaction. More speci�cally, we �nd that the distinction between call-by-name andcall-by-value in game semantics arises as the one in the form of the
ow of information.Let us illustrate this point by simple examples. Figure 1 (a) depicts how a functionwhich doubles a given natural number is modelled in the foregoing game semantics (\O"for Opponent, \P" for Player, \A" for Answer, and \Q" for Question). Computationstarts when Opponent asks a question on the right, requesting an answer: then Player(the function) asks what the argument is on the left, from which the number is received,and �nally it returns to the right to answer the initial question by the double of thereceived number. In Figure 1 (b), the same function is modelled in the call-by-valuegame. This time the
ow starts at the left component, which already carries a value:then the function just returns the answer on the right. One may notice that this meansthe interaction should start from an answer, which might be regarded as an anomaly inthe preceding convention in game semantics. However, it turns out that this parameterof games | whether one initiates a game by answers or by questions | is orthogonalto other basic elements of the game semantics, leading to a simple construction of acategorical universe in which representative functional calculi based on call-by-valueevaluation can be faithfully interpreted. The independence of the parameter suggestswe may obtain a suitable universe to model, say, imperative call-by-value computationby simply altering other parameters, cf. [4, 21]. We also note that the possibility tomodel \data-driven computation" in contrast to \demand-driven computation" as gamesis discussed in an early paper on game semantics by Abramsky and Jagadeesan [2].The main technical contribution of the present work is the validation of the semanticexactness with which the induced universe captures the call-by-value sequential higher-order computation through the full abstraction result for the call-by-value version ofPCF [35, 40], a paradigmatic functional calculus. The result seems the �rst one in thiscontext1 and is easily extendable to other languages as we shall indicate in Section6. We also clarify the relationship between the present universe of games and thecorresponding call-by-name universe by showing they are faithfully embeddable to eachother. These results indicate, together with the preceding results on call-by-name PCF[3, 19], that the two basic notions of calling procedures in higher-order computation arerepresentable in the game-based semantic framework in an exact way, and that they1Independently and concurrently Riecke and Sandholm [38] obtained a similar result, see Section 6.

arise as two independent, though mutually related, semantic universes with equal status(which parallels the �ndings in domain theory, cf. [11]). It is also notable that, as weclarify later, the universe of call-by-value games assumes basic type structures whichhave arisen through the categorical analysis of domain-theoretic universes for call-by-value, or partial, computation, cf.[11, 12, 23, 31, 32, 36, 39], though with a strongintensional
avour. This suggests an abstract notion of \call-by-value computation"may be delineated apart from the standard domain theoretic constructions, cf. [11, 12].The structure of games we shall use is a conservative extension of the constructionby Hyland and Ong [19]. The relationship is detailed in [18].This is an extended abstract of [18]. The reader may refer to [18] for proofs anddetailed technical discussions. In the remainder, Section 2 introduces the basic notion ofgames and strategies. Sections 3 and 4 outline the algebraic structures of the categoryof games and its extensional quotient. Section 5 establishes the main result of the paper,the inequational full abstraction for call-by-value PCF. Section 6 discusses further resultsand remaining topics. Appendix brie
y reviews call-by-value PCF.2. Games and StrategiesThis section introduces the basic construction of games and strategies which are tobecome objects and morphisms in the categorical universe. We start from sorting (theterminology is from [29]), from which call-by-value types arise as its speci�c subclass.2.1. Sorting and Type.(i) (sorting) A sorting Sis a triple of: (1) S, which is a collection of mutually disjointnon-empty sets ranged over by S; S0; : : : each called a sort, (2) � :S! f [; (;];) g,a labelling function and (3) Obs :S! 2S, the justi�cation relation (if S0 2 Obs(S)we say S justi�es S0), where S0 2 Obs(S) implies:� �(S) = [then �(S0) 2 f (;] g. Dually �(S) = (then �(S0) 2 f [;) g.� �(S) =] then �(S0) = [always. Dually �(S) =) then �(S0) = (always.Elements of a sort are called actions, denoted x; y; : : : , writing e.g. xS when x 2 S.The set of initial sorts, denoted init(S), is given as fS j for no S0 2S:S 2 Obs(S0)g.(ii) (type) A cbv-type, or simply a type, is a sorting such that all initial sorts arelabelled by \]" and any of its sorts is reachable from some initial sort, wherereachability is understood regarding sortings as graphs (nodes are sorts, directededges are given by Obs). Types are denoted by A;B;C; : : : .An action of a sort labelled by each of \(; [;];)" is called, respectively, Player Question,Opponent Question, Player Answer, and Opponent Answer, the �rst two collectivelyQuestion, the last two Answer, the �rst and third P-action, and the second and fourthO-action. Answers of initial sorts are often called signals. On labels we de�ne a self-inverse function (�), giving the dual of a label, satisfying: [= (and] =).2.2. Examples. (sorting)(i) 0 is the empty sorting, which is a type. 1 is a sorting whose unique]-labelled sortis a singleton, which is again a type. nat is made as 1 replacing a singleton with! (the set of natural numbers), similarly bool with ftrue; falseg.(ii) Given S, write Sfor the sorting which is the result of changing labels by (�). Sonat is the sorting with the same sort as nat which is however labelled by \)". Next,given S1 and S2, let S1] S2 denote their disjoint union, i.e. the sorts are thedisjoint union of S1 and S2, inheriting labelling and justi�cation. Then nat] natis the sorting with two copies of ! labelled by \)" and \]".

(iii) We de�ne nat**nat as a type with three sorts, one is a singleton written]nat**nat,another a copy of ! written [nat, and the third again a copy of ! written]nat,for which labels are given as these notations indicate. The justi�cation is given sothat]nat**nat only justi�es [nat, which in turn only justi�es]nat.By a sequence from a set X we mean a partial function from ! to X de�ned for a �niteinitial segment of ! (called indices) and unde�ned for the rest. As an example, abc hasf0; 1; 2g as its indices. We often confuse elements and their occurrences in a sequence." denotes the empty sequence. We are interested in sequences of actions representing acertain kind of interaction between an agent (Player) and the outside (Opponent).2.3. Action Sequence. Given a sorting S, an action sequence in Sor often simply asequence in Sis a sequence from actions in S(let is be x0x1:::xn�1), together with therelation on its indices denoted 7! (writing xi 7! xj for i 7! j), satisfying:(consistency) (1) xi 7! xj) i � j, (2) (xi 7! xk ^ xj 7! xk)) i = j, (3)xSi 7! xS0k) S0 2 Obs(S), (4) :9xi: xi 7! xSj) S initial (then xj occurs free),(linearity in answers) (5) (xi 7! xj ^ xi 7! xk ^ xk an answer)) j = k, (6) Afree O-answer (resp. a free P-answer) occurs at most once, and:(strict alternation) (7) If xi is a P-action (resp. O-action), then xi+1 is an O-action(resp. P-action) for 0 � i � n� 2.s; s0; : : : range over action sequences, often leaving the associated 7! implicit. We say xijusti�es xj when xi 7! xj. On action sequences we de�ne two functions, psq, the P-viewof s, and xsy, the O-view of s, as, inheriting 7! whenever possible: (pv0) p"q = ",(pv1) psxiq = xi when xi is a free O-action, (pv2) ps0xis1xjq = ps0qxixj whenxi 7! xj and xj is an O-action, and (pv3) ps0xiq = ps0qxi if xi is a P-action; xsy isde�ned dually, i.e. by exchanging \O-action" and \P-action" throughout. We then say:(i) s is well-bracketed when: if s0xis1xj is a pre�x of s such that (1) xi is a question(2) xj is an answer and (3) either xj occurs free or xj is justi�ed by a question ins0, then xi justi�es an answer in s1.(ii) s satis�es the visibility condition when, in any of its pre�x s0xi where xi is a P-action (resp. O-action) which is yj s.t. yj 7! xi always occurs in ps0q (resp. xs0y).An action sequence is legal when it is well-bracketed and satis�es the visibility condition.Legal action sequences are sometimes called legal positions. We can verify the set of legalsequences of any sorting is closed under pre�x and view constructions.We are now ready to give the main de�nition of this section, which determines theclass of interacting processes we are concerned with in the present study.2.4. De�nition. (strategy) An innocent strategy from A to B, or simply a strategyfrom A to B, is a pre�x-closed set � of legal positions in A] B, such that:(O-initial) s 2 � implies the initial action of s (if any) is an O-action.(contingency completeness) s 2 � and sxi is legal for an O-action xi imply sxi 2 �.(innocence) If s1x; s2 2 �, x is a P-action and ps1q = ps2q, then s2y 2 � such that (1)ps1xq = ps2yq and (2) s2z 2 �) s2z = s2y.We write � : A!B when � is a strategy from A to B. f� denotes the partial functiondetermined by �, mapping even-length P-views to next actions (if any) with justi�cation.Given �; � : A!B, we set � � � when � � � , equivalently when f� � f� .Using the function representation, it is easy to see the set of strategies fromA to B formsa dI-domain under �, where compact elements are those with �nite graphs. Further,

given sxixi+1 2 � : A ! B, if xi and xi+1 come from di�erent types then xi+1 isnecessarily a P-action (switching condition). Also the projection of s 2 � : A1 ! A2onto Ai (i = 1; 2), written s � Ai, is always legal in Ai.2.5. Examples. (strategies)(i) (unde�ned) For each A and B, there is a strategy from A to B which is totallyunde�ned, so that it is least w.r.t. the ordering �. We write this strategy ?A!B.(ii) (�rst-order function) The set of strategies from nat to nat precisely correspond tothe set of partial functions from ! to !.(iii) (higher-order function) We describe a strategy � : nat**nat! nat which corres-ponds to the behaviour of an open call-by-value PCF-term, x : �! � . succ(x3) : �.After receiving a signal on the left, which is a function, � asks the result of ap-plying 3 to that function, and, on receiving the answer, returns its successor tothe right. Except the last free answer, each action is justi�ed by the preceding one.Strategies denote a certain kind of deterministic processes, and are, as such, preciselyrepresentable as (name passing) synchronisation trees, see [18]. The presentation isoften useful for describing, and reasoning about, strategies: indeed the full abstractionresult was originally obtained in this setting [17]. The following inductive de�nition ofcomposition of strategies is suggested by such representation.2.6. De�nition. (composition) Given � : A!B and � : B!C, we set:fs1; s2 j s1 2 �; s2 2 �; s1 � B = s2 � Bgwhere s1; s2 with s1 and s2 as above is given: (1) "; " = ", (2) s1xB; s2xB = s1; s2(xB is the corresponding dual action of xB), and (3) s1xA; s2 = (s1; s2)xA, s1; s2xC =(s1; s2)xC , in each case inheriting the justi�cation relation from the original pair.(3) above is well-de�ned since two cases are always disjoint due to the switching condi-tion. We can also verify: (i) �; � is a strategy from A to C, (ii) ; is associative withidentity given by the copy-cat strategy, i.e. that which exactly copies actions betweenA and A, and (iii) ; is bi-continuous with respect to �. Thus we de�ne:2.7. De�nition. CBV denotes the category of cbv-types and innocent strategies.By the preceding discussions, CBV is enriched over CPO, the category of possibly bot-tomless cpos and continuous functions. Each homset has a least element ? for whichthe composition is left strict, that is ?;� = ? always.3. Intensional UniverseType structures of a semantic universe o�er the basic articulation of its algebraic struc-tures needed, for example, for interpreting various programming languages in it. Thissection clari�es the basic type structure of CBV in the light of the distinction betweentotal and partial maps. We �rst introduce the notion of totality, cf. [13].3.1. De�nition. � is total when � ;� = ? implies � = ?. We write � + when � is total.The totality of � : A!B is equivalent to any one of: (1) 8� : 1!A: � +) � ;� +,(2) the square h0! A �! B; 0! 0! Bi is a weak pullback (notice 0 is initial andweakly terminal), and (3) � immediately emits the P-signal for each initial O-signal. (1)relates to a familiar idea of totality, (2) is a categorically basic one, and (3) gives thebehavioural characterisation, clarifying the dynamic aspect of totality.

3.2. Examples. (total maps)(i) The unique arrow ? from 0 to any type is total, by de�nition. All isomorphismsare total. Also, there is no total map to 0, except from itself.(ii) There is a unique total map !A : A!1 for each A. It reacts to the initial signal(if any) by the unique P-signal at 1, and no more action is possible.(iii) � : nat!nat is total i� the underlying number-theoretic function is total.Let us denote CBVt for the category of types and total strategies. Since totality is closedupwards w.r.t. �, CBVt again CPO-enriches. It has �nite products: 3.2 (ii) above shows1 is terminal, while the product of A and B is given by a type A
B whose sorts are thedisjoint union of non-initial sorts of A and B together with, for each pair of S 2 init(A)and S0 2 init(B), a sort]S;S0 = S � S0 (the set theoretic product), which justi�es whatS and S0 justify in A and B, the rest as in A and B (A
 0 and 0
 A are set as 0).Projection maps are evidently given.
 is often denoted � in CBVt. We also note thatCBVt has arbitrary (small) products and co-products, but we do not need them here.The relationship between total maps and usual (often called partial) maps is clari�edby the notion of lifting. Write A? for the type given by adding two singleton sorts to A,one initial which justi�es the other one, the latter justifying all S 2 init(A), the rest asin A. Then we can see the set of total arrows from 1 to A? is order-isomorphic to the setof partial arrows from 1 to A. These two are mediated by two copy-cat like strategies,up : A!A? and dn : A?!A, with obvious behaviours (up reacts to an initial action atA by going though two added actions at A? then does the copy-cat: dn just does thedual). In a familiar way this induces the adjoint situation as described below.3.3. Proposition.(i) Let F be the inclusion functor from CBVt to CBV. Then F has the right adjoint T ,with T (A) = A?, the unit �A = up, and the co-unit � = dn, which CPO-enriches.The monad hT; �A; T (dn)i is denoted T, which has a tensorial strength stA;Band a co-strength (in the sense of [37]) st0A;B .(ii) The Kleisli category of T on CBVt is isomorphic to CBV. We write �y forup;T (�) : A! B? where � : A!B is partial, and �y for �; dn : A!B where� : A!B? is total.Using the monad T, we can now present the basic type structures of CBV. In (iii) belowA**B is a type whose sorts are the disjoint union of those of A and B together withnew]A**B which is a singleton, with the label of each S 2 init(A) changed into [andthose of A's non-initial sorts dualised. Justi�cation is as in A and B, with the additionof]A**B justifying what were in init(A), each of which in turn justifying what were ininit(B) (0**B is set as 1). Notice the similarity with the construction of A]B.3.4. De�nition and Proposition.(i) (partial pairing [32]) Given �1 : C ! A and �2 : C ! B, their left pairing,hh�1; �2iil : C!A
 B, and the right paring, hh�1; �2iir : C!A
 B are givenas: hh�1; �2iil def= (h�y1; �y2i; A;B)y and hh�1; �2iir def= (h�y1; �y2i; ~ A;B)y where A;B = st0A;TB ;T (stA;B; dn) and ~ A;B = stA;TB ;T (st0A;B ; dn).(ii) (premonoidal tensor [37]) Given A, we de�ne A
 and
A by: (i) A
 �B = A
Band B �
A = B
A, and (ii) A
 � def= hh�1; �2;�ii, and �
A def= hh�1;�; �2iiwhere �i denote projections. Then A
 and
A both de�ne functors on CBV

which CPO-enrich. We then de�ne, for � : A!B and � : C!D: (i) �
l � =(�
C); (B
 �) and (ii) �
r � = (A
 �); (�
C).(iii) (partial exponential [23]) The functor �
 A : CBVt !CBV has the right adjointA**� : CBV ! CBVt, which CPO-enriches. Equivalently, there exists an arrowev : (A**B)
 A!B such that, for any � : C
 A!B, there is a unique totalarrow p�(�) : C!B satisfying (p�(�)
id); ev = �, and p� is a continuous operator.An outstanding fact on partial pairing is that the right and left pairings of the sametuple do not coincide in general. This exhibits a strongly intensional character of CBV,substantiating Moggi's remark that hh�1; �2iil and hh�1; �2iir re
ect the \order of evalu-ation" [32]. This also implies the tensor in CBV does not give a bifunctor, cf. Corollary4.3 of [37]. We write hh�1; �2ii when two versions coincide (as when either is total).The �nal structure we need is recursion, here presented as an operator on each homset.[18] gives an alternative presentation as constants. Below we say A is pointed when ithas a unique initial sort which is a singleton, equivalently when hom(1; A) in CBVt isa pointed cpo. For such A, dn0A : TA! A denotes the unique total map such thatupA; dn0A = idA. Pointed types are precisely objects in the category of Eilenberg-Moorealgebra of the monad T. Also, any type of form A**B is pointed.3.5. Proposition. Let A be pointed and � : C � A! A. Then there is a strategyrec(�) : C!A which satis�es: (i) � ; rec(�) = � ; hhidC ; rec(�)ii;� for � : 1!C (if �is total we can take o� � from the equation). (ii) rec(�
 idA;�) = � ; rec(�) for each� : B!C, and: (iii) Given � : 1!C, if f�i : 1!Agi2! is de�ned as: (1) �0 = ?, (2)�i+1 = hh�; �yi ; dn0ii;�, then f�ig is an increasing !-chain such that t�i = � ; rec(�).4. Extensional UniverseCBV represents an abstract notion of execution of call-by-value computation. For theinterpretation of programming languages at the same abstraction level as in the standardsemantic universe like the category of domains, we may need a more abstract universe,which we construct from CBV by a simple quotient construction. The universe is alsouseful for understanding the behaviour of arrows in CBV in an abstract way. Below webrie
y outline the basic structure of this universe, leaving details to [18]. We start fromthe following ordering (cf. [36, 11]):�1 - �2 def, 8C; C 0; � : C!A; � 0 : B!C 0: � ;�1; � 0 +) � ;�2; � 0 + :Immediately- is a preorder for which the composition is monotone (thus the quotient iswell-de�ned), and ��-. We now de�ne dCBV as the category of types and --equivalenceclasses of strategies. f; g; : : : range over arrows in dCBV . The induced partial order is stilldenoted -. dCBV is enriched over Poset, the category of posets with monotone maps,since monotonicity carries over from CBV. Observing 0 is the zero object in dCBV (i.e.both terminal and initial), we de�ne ? : A!B as the unique map that factors through0, cf. [13]. Then ? is indeed the least element in each homset, and the compositionis strict at both sides. We can then de�ne total maps as before: f + when g; f = ?implies g = ? for each g, equivalently when the square h0! A f! B; 0! 0! Biis a pullback, from which all properties of total maps as in CBV follow. Notice alsof +, 8� 2 f: � +, 9� 2 f: � +. We write dCBVt for the subcategory of total maps.We can then show dCBVt is well-pointed, with �nite products (indeed all small productsand co-products) inducing Poset-enriched bi-functors, all inheriting from CBVt. Againas in CBV, the inclusion functor from dCBVt to dCBV has the right adjoint inheriting

constructions from T , which we write again T , which Poset-enriches. The correspondingmonad, again denoted T, has strengths and is now commutative, i.e. A;B = ~ A;B in 3.4(i). Again the Kleisli category of T on dCBVt is isomorphic to dCBV . Using the monad,we can now clarify the basic type structures of dCBV . Thus, again from the general resultby Power and Robinson [37], we know dCBV is a Poset-enriched symmetric monoidalcategory, which has all type structures as given in Proposition 3.4 (i)(ii)(iii) inheritingthe constructions from CBV, where left and right pairings are identi�ed. Finally therecursion in CBV carries over to dCBV , though all � : 1!C in 3.5 can be replaced withidC . We also note that dCBV allows the treatment of recursive types for a large class offunctors, but we do not use them in the present paper.5. Interpretation of PCFvPCFv[35, 36] is a typed programming language based on call-by-value evaluation. Thesyntax and evaluation rules can be found in the standard literature, cf.[15, 42, 40], whichare brie
y reviewed in Appendix (following [15] except the recursion is only de�ned forfunction types, cf.[42, 40]). CBV and its extensional quotient are conceived to representcall-by-value, or partial, higher-order functional computation. Moreover it has a typestructure which does include that of PCFv. Thus we may seek to represent PCFv-termsand its computation in these universes. We primarily consider the interpretation in CBV,and only move to dCBV at the last step. The interpretation follows.5.1. De�nition. First we de�ne the mapping from the set of types and environments ofPCFv to objects in CBV as: [[�]] def= nat, [[o]] def= bool, [[�) �]] def= [[�]]**[[�]], [["]] def= 1 and[[�; x : �]] def= [[�]]
 [[�]]. Then the mapping from PCFv-terms to arrows in CBV is giveninductively as follows, assuming either of the left/right pairings is selected uniformly.(i) [[�; x : �;� . x : �]] def= � : [[�]]
 [[�]]
 [[�]], where � is an appropriate projection.(ii) [[� . �x�:M : �) �]] def= p�(�) : [[�]]! [[�]], where [[�; x : � .M : �]] = �.(iii) [[� . MN : �]] def= hh�1; �2ii; ev : [[�]]! [[�]], where [[� . M : �) �]] = �1 and[[� . N : �]] = �2.(iv) [[� . �x�:M : �]] def= rec(�) : [[�]]! [[�]], where [[�; x : � .M : �]] = �(v) [[� . cond L M1 M2 : �]] def= (hh�; hh�y1; �y2iiii;
T ([[�]]))y : [[�]]! [[�]] where [[� . L :o]] = � , [[� . M1 : �]] = �1, [[� . M2 : �]] = �2 and
A : bool
 A
 A!A is astrategy with an appropriate behaviour.(vi) For a constant c of type �, we set: [[� . c : �]] def= ![[�]]; c : [[�]]!1! [[�]] wherec : 1! [[�]] is given as a strategy with obvious behaviour for each c.The descriptions of
 and c for each c are given in [18]. As basic properties of themapping, we know [[�.V : �]] is always total, where V denotes a value, i.e. an abstractionor a non-
 constant; [[�.MfV=xg : �]] = hhid[[�]] ; � ii;� : [[�]]! [[�]] for any � = [[�.V :�]] and � = [[�; x : � . M : �]]; and that � . M + V implies [[M]] = [[V]]. We can thenverify the following key properties of the interpretation.5.2. Proposition.(i) (computational adequacy) [[M]] 6= ? i� 9V: M + V for a closed M .(ii) (adequacy) [[M]] - [[N]] impliesM �obs N for closed M;N of the same type.

Given the adequacy result, if we show its converse, i.e. �obs implies - via the inter-pretation, then we obtain the full abstraction. For the purpose it su�ces to prove allcompact elements of appropriate types are PCFv-de�nable, cf.[25, 35]. The de�nabilityargument is carried out using a subset of PCFv-terms de�ned as follows.5.3. De�nition. Finite canonical forms (FCFs for short) are inductively given as:(i) � .
 : � and � . n : � are FCF's.(ii) � . �y�:M : �!� is a FCF if �; y : � .M : � is.(iii) � . let y� = zV in N : � is a FCF if (1) �; y : � . N : � is a FCF, (2) z has atype �) � in �, and (3) � . V : � is a FCF (which is also a value).(iv) � . (case x of n1 :M1 []n2 :M2 []::[]nk :Mk) : � is a FCF if x : � 2 � and, foreach i, � .Mi : � is a FCF.where, in (iii), let y� = zM in N stands for (�y�:N)(zM), and, in (iv), case y of n1 :M1 []::[]nk :Mk stands for cond (y = n1) M1(:::(cond (y = nk) Mk
)::) , the latterassuming the equality check is suitably encoded in PCFv.FCFs faithfully capture the behaviour of compact strategies of PCF-types:(i)
 denotes ?. m : � immediately returns m after an initial O-signal.(ii) �x�:M : �) � represents a strategy which, after an initial O-signal, does asequence of actions]�**� [� (here an annotated label denotes an action of thatkind) where]�**� 7! [�, then behaves as M .(iii) �; xi :
1)
2;�.let y� = xiM in N : � �rst interacts at xi by (
i , then Oppon-ent may ask at M (when
1 is a higher-order type) which, after some interactions,will be answered by Player, followed by an Opponent Answer)
2 . Then the ac-tions move to N . Here the \let" construct is used to make the order of evaluationexplicit (see [32] for a similar use of the construct in a di�erent context).(iv) The case statement corresponds to the situation when a strategy acts accordingto the received ground values (here natural numbers). A vector of values can behandled by nesting the construct.Using FCFs we can prove:5.4. Theorem. (de�nability) For each compact element � : 1! [[�]] for any PCFv-type� in CBV, there is a FCF F : � such that [[F : �]] = �. Conversely, the interpretationof any FCF is a compact element in the respective type.The proof is by induction on the cardinality of compact elements, translating the beha-viour of strategies into the corresponding FCFs based on the correspondence betweenactions and strategies we illustrated above. We note that, like FCFs themselves, theargument is much simpler than the corresponding one in call-by-name PCF, cf.[19]. See[18] for details. Write [[� . M : �]]e for [[[� . M : �]]]-. From the de�nability result wecan now conclude:5.5. Theorem. (full abstraction) For closed PCFv-terms M : � and N : �, we haveM : � �obs N : � i� [[M : �]]e - [[N : �]]e.6. Discussions6.1. Further Results. First we brie
y outline how call-by-name universe and the call-by-value universe are mutually embeddable, as in the context of domains. Let cbn-typesbe sortings in which (1) initial sorts are all opponent questions and (2) each sort isreachable from some initial sort. The strategies are then as in De�nition 2.4 with an

added condition which ensures the switching condition. The composition of strategies isjust as in Section 2, based on which we obtain the category of cbn-types and innocentstrategies which is cartesian-closed and is enriched over CPO, which we denote CBN .There is a full embedding of CA of [19] in CBN and its extensional quotient allowsinterpretation of call-by-name FPC as in the category in [24]. Now we say a CBN typeis pointed when it has a unique initial sort which is a singleton, just as in CBV. Let usalso say a strategy in CBN is linear when, after the initial question at the codomain, itimmediately asks the question at the domain, and never asks an initial question at thedomain again. Writing CBNl for the subcategory of CBN of pointed types and linearstrategies, the embedding result says (i) CBN is isomorphic to the full subcategory ofCBVt of pointed types, and (ii) CBV is isomorphic to the full subcategory of CBNl ofpointed types whose initial questions justify no questions. The proof is by the translationof information
ow. See [18] for details.Next we discuss how we would extend the full abstraction result in Section 5 toother call-by-value programming languages. Firstly it is straightforward to extend theargument in Section 5 to PCFv with sums and products or to the untyped call-by-value�-calculus. Recursively typed languages such as FPC [15] can also be handled (thoughthe premonoidal tensor in CBV poses a problem), as observed by Fiore and as will bereported elsewhere. For the interpretation of imperative constructs, we would consider,as noted in Introduction, variants of the present universe by changing parameters ofgames following [4, 21], which does lead to coherent semantic universes. One interestingtopic in this context would be whether one needs re�ned type structures as in [4] forthe interpretation of the impure constructs: indeed a much simpler, and more direct,approach seems possible in the present setting. Some results on these topics will bereported elsewhere.6.2. Related works. After completing the full version of this paper [18], the authorswere informed of an independent (and essentially concurrent) work by Riecke and Sand-holm [38] in which they obtained a full abstraction for call-by-value FPC (which easilyimplies that of PCFv). The construction is based on Kripke logical relations on pCPO,and is thus quite di�erent from the present one. No quotienting is necessary to reachthe semantic universe, while the construction of the universe itself is substantially morecomplicated. In a brief comparison, one may say that their approach would give betterinsights for understanding why some (continuous) function is not sequential; while theirconstruction does not directly model the dynamic aspects of sequential call-by-valuecomputation, thus may not lead to the insights in that context. Thus two methodswould play di�erent roles in semantic analysis.In game semantics, Abramsky and McCusker are working on game semantics on call-by-value languages, based on McCusker's early idea and also suggested by the presentwork, which tries to extract call-by-value strategies from the universes of call-by-namegames in [24, 4] (personal communication).2 In another vein, Harmer and Malacariaare working on game semantics for call-by-value computation based on games originallyintroduced in [3]. [16] gives a preliminary study in this direction.6.3. Intensionality and relationship with process theories. The strongly inten-sional character of CBV is not at the same level of abstraction as, say, pCPO. The samecan be said about its call-by-name counterpart and other categories of games, in the sense2At the �nal stage of preparation of this camera-ready version, we obtained their typescript [5],which exploits the type structures of the original universe in [4] to interpret a functional languagewith a certain imperative feature. Detailed discussions, especially the comparison with an approach wementioned in 6.1, should be left for a future occasion.

that they re
ect some notion of execution, albeit abstractly, cf. [9, 19]. From the view-point that the primary purpose of semantic representation of programming languageslies in giving (in)equations over programs as general as possible, this feature may be con-sidered as a drawback. However we can take a di�erent perspective, and ask whetherthis novel way of representing programs can be put to a signi�cant use, especially oncegiven the full abstraction result as the semantic justi�cation of the representation. Asa �rst such step, one may exploit the representation for the development of abstracttheory of execution, including the formal optimisation techniques. Type structures aswe studied in Section 4 may be put to an e�ective use in this context. One interest inthis regard is that our interpretation of PCFv in CBV already gives a concise abstractimplementation of the language in the form name passing processes. The representationis comparable to Milner's direct encoding in [27], performing the �v-reduction by threename passing interactions. Such a \physical" character of the abstract universe suggestswe may study the execution of, say, call-by-value programming languages from a newlevel of mathematical abstraction (this is in line with Girard's studies on the semanticsof cut elimination [14]). Relatedly the induced encodings also suggest the possibility ofrelating game semantics and process theories at the fundamental level. The study ofbehavioural types by Milner [28] may suggest possible directions (from which the presentstudy actually started).Acknowledgments. Special thanks go to Marcelo Fiore for his suggestions concerningpertinent categorical structures. We thank Samson Abramsky, Paul Mellies, PasqualeMalacaria, Guy McCusker, Jon Riecke and anonymous referees for comments and/ordiscussions, and N. Raja for his hospitality in Bombay.References[1] Abelson, H., Sussman, G.J., Structure and Interpretation of Computer Program, MIT Press, 1985.[2] Abramsky, S. and Jagadeesan, R., Games and Full Completeness for Multiplicative Linear Logic,Journal of Symbolic Logic, 59(2), pp. 543{574, 1994.[3] Abramsky, S., Jagadeesan, R. and Malacaria, P., Full Abstraction for PCF, 1994. To appear.[4] Abramsky, S. and McCusker, G., Linearity, Sharing and State: a fully abstract game semantics forIdealized Algol with active expressions, ENTCS, Vol.3, North Holland, 1996.[5] Abramsky, S. and McCusker, G., Call-by-value games, a typescript, 12p, Apr. 1997.[6] Berry, G. and Curien, P. L., Sequential algorithmson concrete data structures.TCSVol.20, pp.265{321, North-Holland, 1982.[7] Blass, A., A game semantics for linear logic, Annuals of Pure and Applied Logic, 56:183{220, 1992.[8] Curien, P. L., Sequentiality and full abstraction. In Proc. of Application of Categories in ComputerScience, LNM 177, pp.86{94, Cambridge Press, 1995.[9] Danos, V. and Regnier, L., Games and abstract machines. LICS'96, IEEE, 1994.[10] Felshcer, W., Dialogue games as a foundation for intuitionistic logic, Handbook of Philosophicallogic, Vol.3, pp.341{372, D. Reidel Publishing Company, 1986.[11] Fiore, M., Axiomatic Domain Theory in Category of Partial Maps, PhD thesis, ECS-LFCS-94-307,Univ. of Edinburgh, 1994.[12] Fiore, M. and Plotkin, G., An Axiomatisation of Computationally Adequate Domain TheoreticModels of FPC, LICS'94, pp.92{102, IEEE, 1994.[13] Freyd, P., Algebraically Complete Categories, In Proc. of Como. Category Theory Conference,LNM 1488, pp.95{104, Springer Verlag, 1991.[14] Girard, J.-Y., Linear Logic, TCS, Vol.50, pp.1{102, North-Holland, 1987.[15] Gunter, C., Semantics of Programming Languages: Structures and Techniques, MIT Press, 1992.[16] Harmer, R., Malacaria, P., Linear foundations of game semantics, a typescript, Sep. 1996.[17] Honda, K., Yoshida, N., Name-Passing Games: a functional universe, a typescript, 35p, Nov. 1996.[18] Honda, K. and Yoshida, N., Game-theoretic Analysis of Call-by-value Computation (full version ofthis paper), ftp-able at ftp.dcs.ed.ac.uk/export/kohei/cbvfull.ps.gz, Feb, 1997.[19] Hyland, M. and Ong, L., On Full Abstraction for PCF: I, II and III, 130 pages, ftp-able attheory.doc.ic.ac.uk/papers/Ong, 1994.[20] Hyland, M. and Ong, L., Pi-calculus, dialogue games and PCF, FPCA'93, ACM, 1995.

[21] Laird, J., Full abstraction for functional languages with control, LICS'97, IEEE, 1997.[22] Kahn, G. and Plotkin, D., Domaines Concrets. INRIA Report 336, 1978.[23] Longo, G. and Moggi, E., Cartesian closed categories of enumarations for e�ective type-structures,LNCS 173, Springer-Varlag, 1984.[24] McCusker, G., Games and Full Abstraction for FPC. LICS'96, IEEE, 1996.[25] Milner, R., Fully abstract models of typed lambda calculi. TCS, Vol.4, 1{22, North-Holland, 1977.[26] Milner, R., A Calculus of Communicating Systems, LNCS 76, Springer-Verlag, 1980.[27] Milner, R., Functions as Processes. MSCS, 2(2), pp.119{146, 1992.[28] Milner, R., Sorts and Types of �-Calculus, a manuscript, 43pp, 1990.[29] Milner, R., Polyadic �-Calculus: a tutorial. Proceedings of the International Summer School onLogic Algebra of Speci�cation, Marktoberdorf, 1992.[30] Milner, R., Tofte, M. and Harper, R., The De�nition of Standard ML, MIT Press, 1990.[31] Moggi, E., Partial morphisms in categories of e�ective objects, Info.&Comp., 76:250{277, 1988.[32] Moggi, E., Notions of Computations and Monads. Info.&Comp., 93(1):55{92, 1991.[33] Nickau, M., Hereditarily Sequential Functionals, LNCS 813, pp.253{264, Springer-Verlag, 1994.[34] Ong, L., Correspondence between Operational Semantics and Denotational Semantics, Handbookof Logic in Computer Science, Vol.4, pp.269{356, Oxford University Press, 1995.[35] Plotkin, G., LCF considered as a programming language, TCS, 5:223{255, North-Holland, 1975.[36] Plotkin, G., Lecture on Predomains and Partial Functions. Notes for a course given at the Centerfor the Study of Language and Information, Stanford, 1985.[37] Power, J., Robinson, E., Premonoidal Categories and Notions of Computation, To appear inMSCS.[38] Riecke, J., and Sandholm,A. Relational Account of Call-by-value Sequentiality, LICS'97, 1997.[39] Robinson, E. and Rosolini, P., Categories of Partial Maps, Info.&Comp., 79:95{130, 1988.[40] Sieber, K., Relating Full Abstraction Results for Di�erent Programming Languages, FST/TCS'10,pp. 373{387, LNCS 472, Springer-Verlag, 1990.[41] Winskel, G., Synchronization Trees, TCS, Vol.34, pp. 33{82, North-Holland, 1985.[42] Winskel, G., The Formal Semantics of Programming Languages, MIT Press, 1993.Appendix: PCFvWe give a brief review of syntax and operational semantics of the call-by-value PCF[15, 42, 40]: our treatment is nearest to [15]. Given an in�nite set of variables, rangedover by x; y; z; : : : , the syntax of the language is given as follows.� ::= � j o j �) � M ::= x j �x�:M j MM j cond L M1 M2 j �x�)�:M j cwhere c is a constant. An environment is a list of pairs of a variable and a type, whereall variables are distinct, ranged over by �;�; ::. The typing rules of PCFv is given as:�; x : �;�0 . x : � c is a constant of type �� . c : � � .M : �) � � . N : �� .MN : ��; x : � .M : �� . �x�:M : �) � � . L : o � .M : � � . N : �� . cond L M N : � �; x : �) � .M : �) �� . �x:M : �) �As a set of constants, we assume: n : � for each numeral n,
 : � for each �, succ : �) �,and zero? : �) o. Terms of form .M : � (often written M : �) are called closed terms.Abstractions and constants except
 are called values.On the set of terms we de�ne an evaluation relation + in the style of natural semantics.V + V M + �x:M0 N + V M0fV=xg + UMN + U Mf�x:M=xg + V�x:M + V M + nsucc M + n+ 1M + 0zero?M + true M + n+ 1zero?M + false L + true M1 + Vcond L M1 M2 + V L + false M2 + Ucond L M1 M2 + UFinally an observational preorder on closed terms is de�ned as follows: M �obs N i�,for any well-typed context of a program type C[�], we have C[M] + n i� C[N] + n. Wenote that this is the same thing as considering convergence at all types, a situation quitedi�erent from the case of call-by-name evaluation.

