GAME THEORETIC ANALYSIS OF CALL-BY-VALUE
COMPUTATION

KOHEI HONDA NOBUKO YOSHIDA

ABSTRACT. We present a general semantic universe of call-by-value computation
based on elements of game semantics, and validate its appropriateness as a semantic
universe by the full abstraction result for call-by-value PCF, a generic typed pro-
gramming language with call-by-value evaluation. The key idea is to consider the
distinction between call-by-name and call-by-value as that of the structure of in-
formation flow, which determines the basic form of games. In this way call-by-name
computation and call-by-value computation arise as two independent instances of
sequential functional computation with distinct algebraic structures. We elucidate
the type structures of the universe following the standard categorical framework de-
veloped in the context of domain theory. Mutual relationship between the presented
category of games and the corresponding call-by-name universe is also clarified.

1. INTRODUCTION

The call-by-value is a mode of calling procedures widely used in imperative and functional
programming languages, e.g. [1, 30], in which one evaluates arguments before applying
them to a concerned procedure. The semantics of higher-order computation based on
call-by-value evaluation has been widely studied by many researchers in the context of
domain theory, cf. [35, 23, 32, 12, 40, 11], through which it has become clear that the
semantic framework for the call-by-value computation has a basic difference from the one
for call-by-name computation (see [15, 42] for introduction to the topic). The difference
between the semantics of call-by-value and that of call-by-name in this context may
roughly be captured as the difference in the classes of involved functions: in call-by-
name, we take any continuous functions between pointed cpos, while, in call-by-value,
one takes strict continuous functions. The latter is also equivalently presentable as
partial continuous functions between (possibly bottomless) cpos. This distinction leads
to a basic algebraic difference of the induced categorical universes, cf.[11, 12].

The present paper offers a semantic analysis of call-by-value computation from a
different angle, based on elements of game semantics. In game semantics, computation
is modelled as specific classes of interacting processes (called strategies), which, together
with a suitable notion of composition, form a categorical universe with appropriate type
structures. One may compare this approach to Béhm trees or to sequential algorithms [6,
22], in both of which computation is modelled not by set-theoretic functions of a certain
kind but by objects with internal structures which reflect computational behaviour of
the concerned class of computation. Game semantics has its origin in Logics [7, 10]
and has been used for the semantic analysis of programming languages, especially for
characterising the notion of sequentiality [8, 34]. By concentrating on specific forms of
interaction which obey a few basic constraints, the approach makes it possible to extract
desired classes of interacting processes at a high-level of abstraction, offering suitable
semantic universes for varied calculi and programming languages, cf. [2, 3, 4, 19, 20, 24].
The forms of interaction in these universes are however inherently call-by-name: it has

LFCS, Department of Computer Science, University of Edinburgh. e-mail: kohei@dcs.ed.ac.uk,
ny@dcs.ed.ac.uk. Supported in part by EPSRC Fellowships and JSPS Research Fellowships.

not been clear how the call-by-value computation can be captured in the setting of game
semantics, in spite of its equally significant status as a mode of computation.

CBN CBV
nat — nat nat = nat

——O0A(Nn)
(PQ SPA(2N) o

PA(2n) — =
€Y (b)

Figure 1

In the present work it will be shown that a general semantic universe of the call-
by-value higher-order computation can indeed be simply constructed, employing basic
elements of the foregoing game semantics, but with a key difference in the structures
of interaction. More specifically, we find that the distinction between call-by-name and
call-by-value in game semantics arises as the one in the form of the flow of information.
Let us illustrate this point by simple examples. Figure 1 (a) depicts how a function
which doubles a given natural number is modelled in the foregoing game semantics (“O”
for Opponent, “P” for Player, “A” for Answer, and “Q” for Question). Computation
starts when Opponent asks a question on the right, requesting an answer: then Player
(the function) asks what the argument is on the left, from which the number is received,
and finally it returns to the right to answer the initial question by the double of the
received number. In Figure 1 (b), the same function is modelled in the call-by-value
game. This time the flow starts at the left component, which already carries a value:
then the function just returns the answer on the right. One may notice that this means
the interaction should start from an answer, which might be regarded as an anomaly in
the preceding convention in game semantics. However, it turns out that this parameter
of games — whether one initiates a game by answers or by questions — is orthogonal
to other basic elements of the game semantics, leading to a simple construction of a
categorical universe in which representative functional calculi based on call-by-value
evaluation can be faithfully interpreted. The independence of the parameter suggests
we may obtain a suitable universe to model, say, imperative call-by-value computation
by simply altering other parameters, cf. [4, 21]. We also note that the possibility to
model “data-driven computation” in contrast to “demand-driven computation” as games
is discussed in an early paper on game semantics by Abramsky and Jagadeesan [2].

The main technical contribution of the present work is the validation of the semantic
exactness with which the induced universe captures the call-by-value sequential higher-
order computation through the full abstraction result for the call-by-value version of
PCF [35, 40], a paradigmatic functional calculus. The result seems the first one in this
context! and is easily extendable to other languages as we shall indicate in Section
6. We also clarify the relationship between the present universe of games and the
corresponding call-by-name universe by showing they are faithfully embeddable to each
other. These results indicate, together with the preceding results on call-by-name PCF
[3, 19], that the two basic notions of calling procedures in higher-order computation are
representable in the game-based semantic framework in an exact way, and that they

!Tndependently and concurrently Riecke and Sandholm [38] obtained a similar result, see Section 6.

arise as two independent, though mutually related, semantic universes with equal status
(which parallels the findings in domain theory, cf. [11]). Tt is also notable that, as we
clarify later, the universe of call-by-value games assumes basic type structures which
have arisen through the categorical analysis of domain-theoretic universes for call-by-
value, or partial, computation, cf.[11, 12, 23, 31, 32, 36, 39], though with a strong
intensional flavour. This suggests an abstract notion of “call-by-value computation”
may be delineated apart from the standard domain theoretic constructions, cf. [11, 12].

The structure of games we shall use is a conservative extension of the construction
by Hyland and Ong [19]. The relationship is detailed in [18].

This is an extended abstract of [18]. The reader may refer to [18] for proofs and
detailed technical discussions. In the remainder, Section 2 introduces the basic notion of
games and strategies. Sections 3 and 4 outline the algebraic structures of the category
of games and its extensional quotient. Section 5 establishes the main result of the paper,
the inequational full abstraction for call-by-value PCF. Section 6 discusses further results
and remaining topics. Appendix briefly reviews call-by-value PCF.

2. (GAMES AND STRATEGIES

This section introduces the basic construction of games and strategies which are to
become objects and morphisms in the categorical universe. We start from sorting (the
terminology is from [29]), from which call-by-value types arise as its specific subclass.

2.1. Sorting and Type.

(i) (sorting) A sorting S is a triple of: (1) S, which is a collection of mutually disjoint
non-empty sets ranged over by 5,5, ... each called a sort, (2)A:S—={[, (,1],) }
a labelling function and (3) Obs: S — 25 the justification relation (if $" € Obs(S)
we say S justifies S), where §" € Obs(S) implies:
e A(S) = [then A(S") € { (,]}. Dually A(S) = (then A(S")e{[,) }.
e A(S) =] then A(S") = [always. Dually A(S) =) then A(S") = (always.
Elements of a sort are called actions, denoted x,y, ..., writing e.g. #° when z € S.
The set of initial sorts, denoted init(S), is given as {5 | for no S € S..5 € Obs(5")}.

(i) (type) A cbu-type, or simply a type, is a sorting such that all initial sorts are
labelled by “|” and any of its sorts is reachable from some initial sort, where
reachability is understood regarding sortings as graphs (nodes are sorts, directed
edges are given by Obs). Types are denoted by 4, B,C,....

An action of a sort labelled by each of “(, [,],)” is called, respectively, Player Question,
Opponent Question, Player Answer, and Opponent Answer, the first two collectively
Question, the last two Answer, the first and third P-action, and the second and fourth
O-action. Answers of initial sorts are often called signals. On labels we define a self-

inverse function (-), giving the dual of a label, satisfying: [= (and]=).

2.2. Examples. (sorting)

(i) 0 is the empty sorting, which is a type. 1 is a sorting whose unique]-labelled sort
is a singleton, which is again a type. nat is made as 1 replacing a singleton with
w (the set of natural numbers), similarly bool with {true, false}.

(ii) Given S, write S for the sorting which is the result of changing labels by U So
nat is the sorting with the same sort as nat which is however labelled by “)”. Next,
given S; and So, let S; W Sy denote their disjoint union, i.e. the sorts are the
disjoint union of S; and S, inheriting labelling and justification. Then nat W nat
is the sorting with two copies of w labelled by #)” and “]”.

(iii) We define nat=nat as a type with three sorts, one is a singleton written]natﬂnat

k)
another a copy of w written [nat’ and the third again a copy of w written]nat’
for which labels are given as these notations indicate. The justification is given so

that]natﬂnat only justifies [nat’ which in turn only justifies]nat‘

By a sequence from a set X we mean a partial function from w to X defined for a finite
initial segment of w (called indices) and undefined for the rest. As an example, abe has
{0,1,2} as its indices. We often confuse elements and their occurrences in a sequence.
¢ denotes the empty sequence. We are interested in sequences of actions representing a
certain kind of interaction between an agent (Player) and the outside (Opponent).

2.3. Action Sequence. Given a sorting S, an action sequence in S or often simply a
sequence in S is a sequence from actions in S (let is be zgxy...2p_1), together with the
relation on its indices denoted — (writing «; — x; for 7 — j), satisfying:
(consistency) (1) #; — z; = i < j, (2) (@i = @ A z; = 2) = 1= j, (3)
z? x,fl = 8 € 0bs(S), (4) ~Fw;. x; — J:]S = S initial (then x; occurs free),
(linearity in answers) (5) (z; — z; A #; — & A xp an answer) = j =k, (6) A
free O-answer (resp. a free P-answer) occurs at most once, and:
(strict alternation) (7) If #; is a P-action (resp. O-action), then z;41 is an O-action
(resp. P-action) for 0 <i<n— 2.
s,s',... range over action sequences, often leaving the associated — implicit. We say z;
Justifies x; when z; — x;. On action sequences we define two functions, "s, the P-view
of s, and Lsa, the O-view of s, as, inheriting — whenever possible: (pv0) T¢7 = ¢,
(pvl) "sxz;" = x; when z; is a free O-action, (pv2) "sox;s12;" = Tso ' @;2; when
#; — z; and z; is an O-action, and (pv3) "sox; ' = "so'»; if 2; is a P-action; s, is
defined dually, i.e. by exchanging “O-action” and “P-action” throughout. We then say:
(1) s is well-bracketed when: if soz;s12; is a prefix of s such that (1) z; is a question
(2) z; is an answer and (3) either x; occurs free or z; is justified by a question in
S0, then x; justifies an answer in sy.
(i) s satisfies the visibility condition when, in any of its prefix soz; where #; is a P-
action (resp. O-action) which is y; s.t. y; — z; always occurs in "so™ (resp. Lsoo).
An action sequence is legal when it is well-bracketed and satisfies the visibility condition.
Legal action sequences are sometimes called legal positions. We can verify the set of legal
sequences of any sorting is closed under prefix and view constructions.
We are now ready to give the main definition of this section, which determines the
class of interacting processes we are concerned with in the present study.

2.4. Definition. (strategy) An innocent strategy from A to B, or simply a strategy
from A to B, is a prefix-closed set o of legal positions in A W B, such that:

(O-initial) s € o implies the initial action of s (if any) is an O-action.
(contingency completeness) s € o and sx; is legal for an O-action z; imply sz; € o.
(innocence) If sz, s3 € o, x is a P-action and "s17 = "s37, then syy € o such that (1)
Ts127 = "say and (2) s22 €0 = s32 = s2y.
We write 0 : A— B when o is a strategy from A to B. f, denotes the partial function

determined by o, mapping even-length P-views to next actions (if any) with justification.
Given o,7: A— B, we set ¢ < 7 when o C 7, equivalently when f, C f..

Using the function representation, it is easy to see the set of strategies from A to B forms
a dI-domain under <, where compact elements are those with finite graphs. Further,

given sx;xi41 € 0 ¢ A — B, if ¥; and z;41 come from different types then z;41 is
necessarily a P-action (switching condition). Also the projection of s € o : A; — A,
onto A; (1 =1,2), written s [A4;, is always legal in A;.

2.5. Examples. (strategies)

(i) (undefined) For each A and B, there is a strategy from A to B which is totally
undefined, so that it is least w.r.t. the ordering <. We write this strategy —4_, p.

(i) (first-order function) The set of strategies from nat to nat precisely correspond to
the set of partial functions from w to w.

(iii) (higher-order function) We describe a strategy o : nat=nat — nat which corres-
ponds to the behaviour of an open call-by-value PCF-term, « : ¢ — ¢>succ(23) : ¢.
After receiving a signal on the left, which is a function, o asks the result of ap-
plying 3 to that function, and, on receiving the answer, returns its successor to
the right. Except the last free answer, each action is justified by the preceding one.

Strategies denote a certain kind of deterministic processes, and are, as such, precisely
representable as (name passing) synchronisation trees, see [18]. The presentation is
often useful for describing, and reasoning about, strategies: indeed the full abstraction
result was originally obtained in this setting [17]. The following inductive definition of
composition of strategies is suggested by such representation.

2.6. Definition. (composition) Given o: A— B and 7: B—=C, we set:

{s1382|s1 €0, s2€T, 51| B=sy| B}

where s1;s5 with s; and sy as above is given: (1) ;6 = &, (2) sy28;s5028 = 54559

(l‘_B is the corresponding dual action of), and (3) syz#; sy = (s1;52)2%, 517502 =
(s1;82)2“, in each case inheriting the justification relation from the original pair.

(3) above is well-defined since two cases are always disjoint due to the switching condi-
tion. We can also verify: (i) o;7 is a strategy from A to C, (ii) ; is associative with
identity given by the copy-cat strategy, i.e. that which exactly copies actions between
A and A, and (iii) ; is bi-continuous with respect to <. Thus we define:

2.7. Definition. CBY denotes the category of cbv-types and innocent strategies.

By the preceding discussions, CBY is enriched over CPO, the category of possibly bot-
tomless cpos and continuous functions. Each homset has a least element — for which
the composition is left strict, that is —;0 = — always.

3. INTENSIONAL UNIVERSE

Type structures of a semantic universe offer the basic articulation of its algebraic struc-
tures needed, for example, for interpreting various programming languages in it. This
section clarifies the basic type structure of CBY in the light of the distinction between
total and partial maps. We first introduce the notion of totality, cf. [13].

3.1. Definition. ¢ is total when ;0 = — implies 7 = —. We write o |} when o is total.

The totality of o : A — B is equivalent to any one of: (1) Vr: 1> A. 7 || = 7;0 |,
(2) the square (0 - A 5 B, 0 = 0 — B) is a weak pullback (notice 0 is initial and
weakly terminal), and (3) o immediately emits the P-signal for each initial O-signal. (1)
relates to a familiar idea of totality, (2) is a categorically basic one, and (3) gives the
behavioural characterisation, clarifying the dynamic aspect of totality.

3.2. Examples. (total maps)

(i) The unique arrow — from 0 to any type is total, by definition. All isomorphisms
are total. Also, there is no total map to 0, except from itself.

(ii) There is a unique total map !4 : A —1 for each A. Tt reacts to the initial signal
(if any) by the unique P-signal at 1, and no more action is possible.

(iii) o : nat—nat is total iff the underlying number-theoretic function is total.

Let us denote CBYVy for the category of types and total strategies. Since totality is closed
upwards w.r.t. <, CBV; again CPO-enriches. It has finite products: 3.2 (ii) above shows
1 is terminal, while the product of A and B is given by a type A ® B whose sorts are the
disjoint union of non-initial sorts of A and B together with, for each pair of S € init(A)
and S’ € init(B), a sort]S’SI = 5 x 5 (the set theoretic product), which justifies what
S and S’ justify in A and B, the rest as in A and B (4 ® 0 and 0 ® A are set as 0).
Projection maps are evidently given. ® is often denoted X in CBV¢. We also note that
CBYVy has arbitrary (small) products and co-products, but we do not need them here.

The relationship between total maps and usual (often called partial) maps is clarified
by the notion of lifting. Write A_ for the type given by adding two singleton sorts to A,
one initial which justifies the other one, the latter justifying all S € init(A4), the rest as
in A. Then we can see the set of total arrows from 1 to A_ is order-isomorphic to the set
of partial arrows from 1 to A. These two are mediated by two copy-cat like strategies,
up: A— A_ and dn: A_ — A, with obvious behaviours (up reacts to an initial action at
A by going though two added actions at A_ then does the copy-cat: dn just does the
dual). In a familiar way this induces the adjoint situation as described below.

3.3. Proposition.

(i) Let F be the inclusion functor from CBV¢ to CBY. Then F has the right adjoint T,
with T(A) = A_, the unit 4 = up, and the co-unit € = dn, which CPO-enriches.
The monad (T, 74, T(dn)) is denoted T, which has a tensorial strength sta g
and a co-strength (in the sense of [37]) st/ 5.

(i) The Kleisli category of T on CBV: is isomorphic to CBY. We write of for
up; T(0) : A— B_ where 0 : A — B is partial, and ot for o;dn : A — B where
o: A— B_ is total.

Using the monad T, we can now present the basic type structures of CBYV. In (iii) below
A= B is a type whose sorts are the disjoint union of those of A and B together with
new]A=B which is a singleton, with the label of each S € init(A) changed into [and
those of A’s non-initial sorts dualised. Justification is as in A and B, with the addition
of]AﬂB justifying what were in init(A), each of which in turn justifying what were in
init(B) (0=B is set as 1). Notice the similarity with the construction of AW B.

3.4. Definition and Proposition.

(i) (partial pairing [32]) Given o1 : C = A and o3 : C — B, their left pairing,
{o1, o201 : C = A® B, and the right paring, {1, o2))r : C > A @ B are given

as: (o1, o2l E (o], ob)svam)y and (on, ool € (o], ol)idap) where

Ya,p = stly pp;T(stapidn) and ap = starp; T (st p;dn).

(ii) (premonoidal tensor [37]) Given A, we define A® and A4 by: (i) A®-B=A®B

and B-@A=B®A,and (ii) A®c def {m1, w300, and o® A def {m1; 0, ma))

where 7; denote projections. Then A® and ®A both define functors on CBY

which CPO-enrich. We then define, foro: A= Band 7: C—=D: ()o@ 7=
(c@C);(Ber)and ()o@, 7= (A 0);(reC).

(iii) (partial exponential [23]) The functor - ® A : CBVy — CBY has the right adjoint
A=. : CBY — CBYV¢, which CPO-enriches. Equivalently, there exists an arrow
ev: (A=B) ® A— B such that, for any ¢ : C ® A — B, there is a unique total
arrow pA(o) : C'— B satisfying (pA(0)®id); ev = o, and pA is a continuous operator.

An outstanding fact on partial pairing is that the right and left pairings of the same
tuple do not coincide in general. This exhibits a strongly intensional character of CBY,
substantiating Moggi’s remark that {1, o2)) and {01, o2)), reflect the “order of evalu-
ation” [32]. This also implies the tensor in CBY does not give a bifunctor, cf. Corollary
4.3 of [37]. We write {1, o2)) when two versions coincide (as when either is total).

The final structure we need is recursion, here presented as an operator on each homset.
[18] gives an alternative presentation as constants. Below we say A is pointed when it
has a unique initial sort which is a singleton, equivalently when hom(1, 4) in CBV; is
a pointed cpo. For such A, dn’y : TA — A denotes the unique total map such that
up4;dn’y =id4. Pointed types are precisely objects in the category of Eilenberg-Moore
algebra of the monad T. Also, any type of form A= B is pointed.

3.5. Proposition. Let A be pointed and o : C' x A — A. Then there is a strategy
rec(d) : C'— A which satisfies: (i) mjrec(o) = 7; {id¢, rec(o));0 for 7:1-C (if o
is total we can take off 7 from the equation). (ii) rec(r ® ida;0) = 7;rec(s) for each
7:B—C,and: (iii) Given 7: 1= C, if {p; : 1 = A}ic, is defined as: (1) po = —, (2)
pit1 = {r, p;r; dn"Y); o, then {p;} is an increasing w-chain such that Lip; = 7;rec(o).

4. EXTENSIONAL UNIVERSE

CBY represents an abstract notion of execution of call-by-value computation. For the
interpretation of programming languages at the same abstraction level as in the standard
semantic universe like the category of domains, we may need a more abstract universe,
which we construct from CBY by a simple quotient construction. The universe is also
useful for understanding the behaviour of arrows in CBY in an abstract way. Below we
briefly outline the basic structure of this universe, leaving details to [18]. We start from

the following ordering (cf. [36, 11]):

o1 309 & vo, ' r: C—A, 7 :B=>C . myoi37 0 = o957).
Immediately = is a preorder for which the composition is monotone (thus the quotient is
well-defined), and <C <. We now define CBY as the category of types and =-equivalence
classes of strategies. f,g,... range over arrows in CBY. The induced partial order is still
denoted <. CBY is enriched over Poset, the category of posets with monotone maps,
since monotonicity carries over from CBY. Observing 0 is the zero object in CBY (i.e.
both terminal and initial), we define — : A — B as the unique map that factors through
0, cf. [13]. Then — is indeed the least element in each homset, and the composition
is strict at both sides. We can then define total maps as before: f |} when ¢; f = —
implies ¢ = — for each g, equivalently when the square (0 — A i) B, 00— B)
is a pullback, from which all properties of total maps as in CBY follow. Notice also
flevVoe f.olle doe f.oll. We write C/Iﬁ)t for the subcategory of total maps.

We can then show C/Iﬁ)t is well-pointed, with finite products (indeed all small products
and co-products) inducing Poset-enriched bi-functors, all inheriting from CBV¢. Again
as in CBY, the inclusion functor from C/Iﬁ)t to CBY has the right adjoint inheriting

constructions from 7', which we write again T', which Poset-enriches. The corresponding
monad, again denoted T, has strengths and is now commutative,i.e. ¥4 p = 1/;1473 in 3.4
(i). Again the Kleisli category of T on C/B\Vt is isomorphic to CBY. Using the monad,
we can now clarify the basic type structures of CBY. Thus, again from the general result
by Power and Robinson [37], we know CBY is a Poset-enriched symmetric monoidal
category, which has all type structures as given in Proposition 3.4 (i)(ii)(iii) inheriting
the constructions from CBY, where left and right pairings are identified. Finally the
recursion in CBY carries over to C/Iﬁ), though all 7:1—C in 3.5 can be replaced with
idc. We also note that CBY allows the treatment of recursive types for a large class of
functors, but we do not use them in the present paper.

5. INTERPRETATION OF PCFy

PCFv[35, 36] is a typed programming language based on call-by-value evaluation. The
syntax and evaluation rules can be found in the standard literature, cf.[15, 42, 40], which
are briefly reviewed in Appendix (following [15] except the recursion is only defined for
function types, cf.[42, 40]). CBY and its extensional quotient are conceived to represent
call-by-value, or partial, higher-order functional computation. Moreover it has a type
structure which does include that of PCFy. Thus we may seek to represent PCFy-terms
and its computation in these universes. We primarily consider the interpretation in CBY,
and only move to CBY at the last step. The interpretation follows.

5.1. Definition. First we define the mapping from the set of types and environments of

PCFv to objects in CBY as: [:] &f nat, [o] et bool, [a = 5] L [e]=15], [€] €71 and
[T,z :] def [T]® [@]. Then the mapping from PCFy-terms to arrows in CBY is given

inductively as follows, assuming either of the left/right pairings is selected uniformly.
() [Tyz:a,Avz:a] Lo [T] @ [e] ® [A], where = is an appropriate projection.

(i) [T Ae*M:a = f] & pA(o) : [T]—=[5], where [T,z :a> M : 8] = 0.

(iii) [T> MN : 5] = {o1, o2);ev s [T]—=[5], where [T>M:a = 5] =01 and

[T>N:a] =09
(iv) [T> pz*.M : o] = rec(d) : [T]—[e], where [T,2:a>M ::a]=0¢

(v) [Tecond L My My : a] Z (7, (o], od)ivr(qeny), ¢ [T]1— [a] where [T L :
o=, [ToMy:a]=01, [T>My:a] =02 and y4 :bool ® A @ A— A is a
strategy with an appropriate behaviour.

(vi) For a constant ¢ of type «, we set: [['>c:] &f ;€ : [I] =1 —[o] where

¢:1—[a] is given as a strategy with obvious behaviour for each c.

The descriptions of v and ¢ for each ¢ are given in [18]. As basic properties of the
mapping, we know [['>V :] is always total, where V' denotes a value, i.e. an abstraction
or a non- constant; [I'>M{V/x}: 3] = (idiry, m);0: [[]—=[6] for any 7= [I'>V :
o] and o = [T,z : > M : §]; and that T'> M | V implies [M] = [V]. We can then
verify the following key properties of the interpretation.

5.2. Proposition.
(i) (computational adequacy) [M] # — iff IV. M | V for a closed M.
(ii) (adequacy) [M] = [N] implies M <5, N for closed M, N of the same type.

Given the adequacy result, if we show its converse, i.e. <., implies < via the inter-
pretation, then we obtain the full abstraction. For the purpose it suffices to prove all
compact elements of appropriate types are PCFy-definable, cf.[25, 35]. The definability
argument is carried out using a subset of PCFy-terms defined as follows.

5.3. Definition. Finite canonical forms (FCFs for short) are inductively given as:
(i) T>Q:a and Ten:¢ are FCFs.
(i) ToAy* M:a—g isaFCFif T,y:avM : 3 is.
(iii) Trlety* =2V inN: 8 isaFCFif (1) T,y:a>N:§ isa FCF, (2) z hasa
type = o inT,and (3) >V :j isa FCF (which is also a value).
(iv) T (case z of ny: My [[ng: Mo [.Jng: My)« isa FCFif z:: €T and, for
each i, ' M; :a is a FCF.
where, in (iii), let y* = zM in N stands for (Ay*.N)(zM), and, in (iv), case y of ny:
My []..[]ni: My stands for cond (y = ny) Mi(...(cond (y = ni) My Q)..) , the latter
assuming the equality check is suitably encoded in PCFy.

FCFs faithfully capture the behaviour of compact strategies of PCF-types:
(i) ©Q denotes —. m : ¢ immediately returns m after an initial O-signal.

(ii) Ax*.M : o = (3 represents a strategy which, after an initial O-signal, does a
sequence of actions]O‘ﬂﬁ [* (here an annotated label denotes an action of that
kind) where]O‘ﬂﬁ > [%, then behaves as M.

(iii) T, a5t v1 = v2, Avlet y* = ;M in N : 3 first interacts at ; by (7, then Oppon-
ent may ask at M (when ~; is a higher-order type) which, after some interactions,
will be answered by Player, followed by an Opponent Answer)72. Then the ac-
tions move to /N. Here the “let” construct is used to make the order of evaluation
explicit (see [32] for a similar use of the construct in a different context).

(iv) The case statement corresponds to the situation when a strategy acts according
to the received ground values (here natural numbers). A vector of values can be
handled by nesting the construct.

Using FCFs we can prove:

5.4. Theorem. (definability) For each compact element o : 1— [«] for any PCFy-type
a in CBY, there is a FCF F : « such that [F : o] = 0. Conversely, the interpretation
of any FCF is a compact element in the respective type.

The proof is by induction on the cardinality of compact elements, translating the beha-
viour of strategies into the corresponding FCFs based on the correspondence between
actions and strategies we illustrated above. We note that, like FCFs themselves, the
argument is much simpler than the corresponding one in call-by-name PCF, ¢f.[19]. See
[18] for details. Write [T'> M : o] for [[T'> M : of]<. From the definability result we
can now conclude: -

5.5. Theorem. (full abstraction) For closed PCFy-terms M : « and N : «, we have
M:a<up N:aiff [M:a]. 2[N:a]e.

6. DISCUSSIONS

6.1. Further Results. First we briefly outline how call-by-name universe and the call-
by-value universe are mutually embeddable, as in the context of domains. Let cbn-types
be sortings in which (1) initial sorts are all opponent questions and (2) each sort is
reachable from some initial sort. The strategies are then as in Definition 2.4 with an

added condition which ensures the switching condition. The composition of strategies is
just as in Section 2, based on which we obtain the category of cbn-types and innocent
strategies which is cartesian-closed and is enriched over CPO, which we denote CBN.
There is a full embedding of CA of [19] in CBA and its extensional quotient allows
interpretation of call-by-name FPC as in the category in [24]. Now we say a CBA type
is pointed when it has a unique initial sort which is a singleton, just as in CBY. Let us
also say a strategy in CBA is lincar when, after the initial question at the codomain, it
immediately asks the question at the domain, and never asks an initial question at the
domain again. Writing CBAN1 for the subcategory of CBA of pointed types and linear
strategies, the embedding result says (i) CBA is isomorphic to the full subcategory of
CBVy of pointed types, and (ii) CBY is isomorphic to the full subcategory of CBA7 of
pointed types whose initial questions justify no questions. The proof is by the translation
of information flow. See [18] for details.

Next we discuss how we would extend the full abstraction result in Section 5 to
other call-by-value programming languages. Firstly it is straightforward to extend the
argument in Section 5 to PCFy with sums and products or to the untyped call-by-value
A-calculus. Recursively typed languages such as FPC [15] can also be handled (though
the premonoidal tensor in CBY poses a problem), as observed by Fiore and as will be
reported elsewhere. For the interpretation of imperative constructs, we would consider,
as noted in Introduction, variants of the present universe by changing parameters of
games following [4, 21], which does lead to coherent semantic universes. One interesting
topic in this context would be whether one needs refined type structures as in [4] for
the interpretation of the impure constructs: indeed a much simpler, and more direct,
approach seems possible in the present setting. Some results on these topics will be
reported elsewhere.

6.2. Related works. After completing the full version of this paper [18], the authors
were informed of an independent (and essentially concurrent) work by Riecke and Sand-
holm [38] in which they obtained a full abstraction for call-by-value FPC (which easily
implies that of PCFy). The construction is based on Kripke logical relations on pCPO,
and is thus quite different from the present one. No quotienting is necessary to reach
the semantic universe, while the construction of the universe itself is substantially more
complicated. In a brief comparison, one may say that their approach would give better
insights for understanding why some (continuous) function is not sequential; while their
construction does not directly model the dynamic aspects of sequential call-by-value
computation, thus may not lead to the insights in that context. Thus two methods
would play different roles in semantic analysis.

In game semantics, Abramsky and McCusker are working on game semantics on call-
by-value languages, based on McCusker’s early idea and also suggested by the present
work, which tries to extract call-by-value strategies from the universes of call-by-name
games in [24, 4] (personal communication).? In another vein, Harmer and Malacaria
are working on game semantics for call-by-value computation based on games originally
introduced in [3]. [16] gives a preliminary study in this direction.

6.3. Intensionality and relationship with process theories. The strongly inten-
sional character of CBY is not at the same level of abstraction as, say, pCPO. The same
can be said about its call-by-name counterpart and other categories of games, in the sense

2At the final stage of preparation of this camera-ready version, we obtained their typescript [5],
which exploits the type structures of the original universe in [4] to interpret a functional language
with a certain imperative feature. Detailed discussions, especially the comparison with an approach we
mentioned in 6.1, should be left for a future occasion.

that they reflect some notion of execution, albeit abstractly, cf. [9, 19]. From the view-
point that the primary purpose of semantic representation of programming languages
lies in giving (in)equations over programs as general as possible, this feature may be con-
sidered as a drawback. However we can take a different perspective, and ask whether
this novel way of representing programs can be put to a significant use, especially once
given the full abstraction result as the semantic justification of the representation. As
a first such step, one may exploit the representation for the development of abstract
theory of execution, including the formal optimisation techniques. Type structures as
we studied in Section 4 may be put to an effective use in this context. One interest in
this regard is that our interpretation of PCFvy in CBV already gives a concise abstract
implementation of the language in the form name passing processes. The representation
is comparable to Milner’s direct encoding in [27], performing the §,-reduction by three
name passing interactions. Such a “physical” character of the abstract universe suggests
we may study the execution of, say, call-by-value programming languages from a new
level of mathematical abstraction (this is in line with Girard’s studies on the semantics
of cut elimination [14]). Relatedly the induced encodings also suggest the possibility of
relating game semantics and process theories at the fundamental level. The study of
behavioural types by Milner [28] may suggest possible directions (from which the present
study actually started).

Acknowledgments. Special thanks go to Marcelo Fiore for his suggestions concerning
pertinent categorical structures. We thank Samson Abramsky, Paul Mellies, Pasquale
Malacaria, Guy McCusker, Jon Riecke and anonymous referees for comments and/or
discussions, and N. Raja for his hospitality in Bombay.

REFERENCES

[1] Abelson, H., Sussman, G.J., Structure and Interpretation of Computer Program, MIT Press, 1985.

[2] Abramsky, S. and Jagadeesan, R., Games and Full Completeness for Multiplicative Linear Logic,
Journal of Symbolic Logic, 59(2), pp. 543-574, 1994.

[3] Abramsky, S., Jagadeesan, R. and Malacaria, P., Full Abstraction for PCF, 1994. To appear.

[4] Abramsky, S. and McCusker, G., Linearity, Sharing and State: a fully abstract game semantics for
Idealized Algol with active expressions, ENTCS, Vol.3, North Holland, 1996.

[5] Abramsky, S. and McCusker, G., Call-by-value games, a typescript, 12p, Apr. 1997.

[6] Berry, G. and Curien, P. L., Sequential algorithms on concrete data structures. T'C'S Vol.20, pp.265—

321, North-Holland, 1982.
[7] Blass, A., A game semantics for linear logic, Annuals of Pure and Applied Logic, 56:183-220, 1992.
[8] Curien, P. L., Sequentiality and full abstraction. In Proc. of Application of Categories in Computer
Science, LNM 177, pp.86-94, Cambridge Press, 1995.
[9] Danos, V. and Regnier, L., Games and abstract machines. LIC'S’96, IEEE, 1994.
[10] Felshcer, W., Dialogue games as a foundation for intuitionistic logic, Handbook of Philosophical
logic, Vol.3, pp.341-372, D. Reidel Publishing Company, 1986.
[11] Fiore, M., Awiomatic Domain Theory in Category of Partial Maps, PhD thesis, ECS-LFCS-94-307,
Univ. of Edinburgh, 1994.
[12] Fiore, M. and Plotkin, G., An Axiomatisation of Computationally Adequate Domain Theoretic
Models of FPC, LICS’94, pp.92-102, IEEE, 1994.
[13] Freyd, P., Algebraically Complete Categories, In Proc. of Como. Category Theory Conference,
LNM 1488, pp.95-104, Springer Verlag, 1991.
] Girard, J.-Y., Linear Logic, TCS, Vol.50, pp.1-102, North-Holland, 1987.
5] Gunter, C., Semantics of Programming Languages: Siructures and Techniques, MIT Press, 1992.
6] Harmer, R., Malacaria, P., Linear foundations of game semantics, a typescript, Sep. 1996.
7] Honda, K., Yoshida, N., Name-Passing Games: a functional universe, a typescript, 35p, Nov. 1996.
] Honda, K. and Yoshida, N., Game-theoretic Analysis of Call-by-value Computation (full version of
this paper), ftp-able at ftp.dcs.ed.ac.uk/export/kohei/cbvfull.ps.gz, Feb, 1997.
[19] Hyland, M. and Ong, L., On Full Abstraction for PCF: I, II and III, 130 pages, ftp-able at
theory.doc.ic.ac.uk/papers/Ong, 1994.
[20] Hyland, M. and Ong, L., Pi-calculus, dialogue games and PCF, FPCA’93, ACM, 1995.

[21] Laird, J., Full abstraction for functional languages with control, LICS’97, IEEE, 1997.

[22] Kahn, G. and Plotkin, D., Domaines Concrets. INRIA Report 336, 1978.

[23] Longo, G. and Moggi, E., Cartesian closed categories of enumarations for effective type-structures,
LNCS 173, Springer-Varlag, 1984.

[24] McCusker, G., Games and Full Abstraction for FPC. LICS’96, IEEE, 1996.

[25] Milner, R., Fully abstract models of typed lambda calculi. TCS, Vol.4, 1-22, North-Holland, 1977.

[26] Milner, R., A Calculus of Communicating Systems, LNCS 76, Springer-Verlag, 1980.

[27] Milner, R., Functions as Processes. MSCS, 2(2), pp.119-146, 1992.

[28] Milner, R., Sorts and Types of m-Calculus, a manuscript, 43pp, 1990.

[29] Milner, R., Polyadic #-Calculus: a tutorial. Proceedings of the International Summer School on

Logic Algebra of Specification, Marktoberdorf, 1992.

[30] Milner, R., Tofte, M. and Harper, R., The Definition of Standard ML, MIT Press, 1990.

[31] Moggi, E., Partial morphisms in categories of effective objects, Info.&Comp., 76:250-277, 1988.

[32] Moggi, E., Notions of Computations and Monads. Info.&Comp., 93(1):55-92, 1991.

[33] Nickau, M., Hereditarily Sequential Functionals, LNCS 813, pp.253-264, Springer-Verlag, 1994.

[34] Ong, L., Correspondence between Operational Semantics and Denotational Semantics, Handbook

of Logic in Computer Science, Vol.4, pp.269-356, Oxford University Press, 1995.

[35] Plotkin, G., LCF considered as a programming language, TCS, 5:223-255, North-Holland, 1975.

[36] Plotkin, G., Lecture on Predomains and Partial Functions. Notes for a course given at the Center
for the Study of Language and Information, Stanford, 1985.

[37] Power, J., Robinson, E., Premonoidal Categories and Notions of Computation, To appear in MSCS.

[38] Riecke, J., and Sandholm,A. Relational Account of Call-by-value Sequentiality, LICS’97, 1997.

[39] Robinson, E. and Rosolini, P., Categories of Partial Maps, Info.&Comp., 79:95-130, 1938.

[40] Sieber, K., Relating Full Abstraction Results for Different Programming Languages, F'ST/TCS’10,

pp. 373-387, LNCS 472, Springer-Verlag, 1990.

[41] Winskel, G., Synchronization Trees, TCS, Vol.34, pp. 33-82, North-Holland, 1985.

[42] Winskel, G., The Formal Semantics of Programming Languages, MIT Press, 1993.

AprpENDIX: PCFy

We give a brief review of syntax and operational semantics of the call-by-value PCF
[15, 42, 40]: our treatment is nearest to [15]. Given an infinite set of variables, ranged
over by z,y, z, ..., the syntax of the language is given as follows.

ax=1]o|la=p Mu==z|X*M| MM |cond L M; My | pz®=%.M | ¢
where ¢ is a constant. An environment is a list of pairs of a variable and a type, where
all variables are distinct, ranged over by I'; A, ... The typing rules of PCFy is given as:
¢ is a constant of type o l'eM:a=p I'bN:a

Mz:o,'vz:a

I'be:a I's>MN:pj3
Lx:avM: 3 I'sL:o ToM:a0 TN« Le:a=pgoM:a=0
X M:a=0 Fbcond LM N :« FvpeM:a= 0

As a set of constants, we assume: n : ¢ for each numeral n, Q : « for each «a, succ : ¢+ = ¢,
and zero? : ¢ = o. Terms of form >M : « (often written M : «) are called closed terms.
Abstractions and constants except €2 are called values.

On the set of terms we define an evaluation relation |} in the style of natural semantics.

ViV MUyieMy NIV Mo{V/e} VU M{pzM/x} |V Mln
v MN U pe.M |V succ M | n+1
M0 M{n+1 L{true MV L false M, U

zero?M |} true zero? M |} false cond L My My |V cond L My My | U
Finally an observational preorder on closed terms is defined as follows: M <., N iff,
for any well-typed context of a program type C[-], we have C[M] { n iff C[N] | n. We
note that this is the same thing as considering convergence at all types, a situation quite
different from the case of call-by-name evaluation.

