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Functional magnetic resonance imaging can measure distributed and
subtle variations in brain responses associated with task perform-
ance. However, it is unclear whether the rich variety of responses
observed across the brain is functionally meaningful and consistent
across individuals. Here, we used a multivariate clustering approach
that grouped brain regions into clusters based on the similarity of
their task-evoked temporal responses at the individual level, and
then established the spatial consistency of these individual clusters
at the group level. We observed a stable pseudohierarchy of task-
evoked networks in the context of a delayed sequential motor task,
where the fractionation of networks was driven by a gradient of in-
volvement in motor sequence preparation versus execution. In line
with theories about higher-level cognitive functioning, this gradient
evolved in a rostro-caudal manner in the frontal lobe. In addition, par-
cellations in the cerebellum and basal ganglia matched with known
anatomical territories and fiber pathways with the cerebral cortex.
These findings demonstrate that subtle variations in brain responses
associated with task performance are systematic enough across
subjects to define a pseudohierarchy of task-evoked networks. Such
networks capture meaningful functional features of brain organiz-
ation as shaped by a given cognitive context.

Keywords: clustering analysis, fMRI, functional connectivity, motor
preparation and execution, multiscale task-evoked networks

Introduction

In the past two decades, task-based functional magnetic reson-
ance imaging (fMRI) has been used to uncover brain substrates
of a myriad of cognitive processes. However, in the vast
majority of fMRI studies, activation maps provide a sparse rep-
resentation of brain function: Only a handful of brain areas are
reported as significantly engaged in a task. Yet, it is unlikely
that only brain areas withheld by an arbitrary statistical
threshold are involved in stimulus processing. Indeed, a large
number of brain areas might falsely be described as nonactive.
This is in part due to the differential contrasts commonly used
in analysis models, and can also be attributed to limited statisti-
cal power resulting from a limited number of task trials and/or
participants and the use of rigid predictive response models.
Accordingly, Worsley (2004), a pioneer of fMRI statistics,
stated that, “in reality, every voxel must be affected by the
stimulus, perhaps by a very tiny amount; it is impossible to
believe that there is never any signal at all.”

Worsley’s statement was recently tested by Gonzalez-Castillo
et al. (2012), who collected nearly 10 h of fMRI data in 3

participants engaged in a visual task. A model-free analysis of
this massive amount of data demonstrated significant
task-evoked responses across the entire brain, and thus not
limited to visual cortex. In addition, brain regions exhibited an
overwhelming variety in the shape of their task-evoked
response. A critical implication is that determining whether a
brain region is active or inactive is an ill-posed problem and a
paradigm shift in studying cognition with task-based fMRI is
warranted. Instead of indexing brain activity in an “on versus
off” fashion, the challenge becomes to systematically describe
the organization of this rich variety of task-evoked dynamics
across the brain. In their approach, Gonzalez-Castillo et al.
(2012) demonstrated the possibility of grouping brain regions
with similar dynamics into task-evoked networks at the single-
subject level. Networks were derived at multiple scales, ranging
from 2 to 70 networks, in line with the notion that the brain is
hierarchically organized (Smith et al. 2009; Meunier et al. 2010;
Power et al. 2011; Yeo et al. 2011; Kelly et al. 2012).

At present, it is unclear to which extent those task-evoked
hierarchies capture meaningful organizational features of the
brain in action. It is also unknown whether the spatial distri-
bution of such hierarchical networks and their associated tem-
poral dynamics are consistent across subjects. In this work, we
sought to determine whether stable multiscale task-evoked
networks could be inferred at the group level. We investigated
a motor control task that has been extensively documented in
monkey and human research. This allowed to evaluate the bio-
logical plausibility of the derived task-evoked networks.

To study the variety of brain dynamics, we relied on the
well-established finite impulse response (FIR) estimation (Dale
and Buckner 1997). This model-free analysis derives a non-
parametric estimate of the task-evoked response by averaging
multiple events. In practice, however, the FIR technique is
usually applied to only a few a priori brain regions, because
task-evoked dynamics are too rich to be reviewed and inter-
preted at every possible location in the brain. Multivariate tech-
niques such as independent component analysis, principal
component analysis, or clustering approaches can be used to
reduce the spatial dimensionality of task-evoked brain activity
(Calhoun et al. 2001; Svensén et al. 2002; d’Avossa et al. 2003;
Smolders et al. 2007; Metzak et al. 2011). However, these
studies only reported coarse levels of decomposition at the
group level, that is, describing around 5 task-evoked networks.
Here, we used a recently developed method, called bootstrap
analysis of stable clusters (BASC), that has the potential to
identify stable, group-level task-evoked networks at multiple
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scales, up to tens or even hundreds of networks (Bellec et al.
2010). Applied to FIR estimates, BASC uses hierarchical
clustering at the individual level, to identify networks of
regions exhibiting similar FIR shapes. Then, at the group level,
BASC delineates networks that are spatially consistent across
subjects.

We applied BASC to event-related fMRI data of 17 partici-
pants who performed a delayed sequential motor task. Task
trials were composed of a preparation period followed by self-
initiated execution of a sequence of finger movements. We
pursued 2 main objectives with our analyses. First, we con-
ducted exploratory analyses aimed at evaluating the spatial
stability of task-evoked networks and examined whether
meaningful differences in temporal dynamics could be ob-
served at the group level. We examined task-evoked networks
using different clustering scales, ranging from two to several
hundreds of networks, that were determined using an auto-
mated, data-driven strategy (Bellec 2013). Secondly, we con-
ducted hypothesis-driven analyses to assess the biological
relevance of the observed task-evoked networks. In particular,
previous studies using electrophysiology in monkeys have
illustrated that, in the frontal lobe, the presupplementary
motor area (pSMA), the SMA proper, the lateral premotor
cortex (Pmd), and the primary motor cortex (PMC) all contain
neurons that fire in response to both motor preparation and
execution (Okano and Tanji 1987; Romo and Schultz 1987;
Mushiake et al. 1991). However, they do so in different pro-
portions following a rostro-caudal functional gradient, from
regions involved in the high-level cognitive processes support-
ing preparation to those tightly coupled with motor execution
(Passingham et al. 2002; Nachev et al. 2008; Badre and D’Espo-
sito 2009). In accordance with these observations, we pre-
dicted that numerous task-evoked networks would emerge
driven by their relative implication in the preparation versus
execution phases, not only in the frontal lobe but also through-
out the cortex. Finally, in accordance with the organization of
long-range anatomical pathways (Alexander and Crutcher
1990; Middleton and Strick 2000; Bostan et al. 2013), we
hypothesized that the gradient observed at the cortical level
would propagate to subcortical structures such as the cerebel-
lum and basal ganglia.

Materials and Methods
All scripts used to conduct the analysis reported in this paper can be
found on github: http://github.com/pbellec/basc_fir_paper, last ac-
cessed on 24 March 2014. See the README.md file for licensing and a
description of content.

Experimental Set-up

Population
A total of N = 17 volunteers (12 men and 5 women), aged between 21
and 28 years, gave informed consent to participate in this study, which
was approved by the local ethics committee at the Research Center of
the Geriatric Institute, University of Montreal, Canada. All subjects
were right-handed and without a history of neurological or psychiatric
disorder.

Experimental Task
A delayed sequential finger-tapping task was administered in a single
run, with 60 trials interspersed with rest epochs lasting 13 s on average
( jittering ranging from 8 to 18 s). We used a motor control task that

requires the execution of internally triggered rather than externally trig-
gered movements, because the former is associated with enhanced
activity in the frontal lobe (Boecker et al. 2008). Each trial was composed
of 2 components: A preparation period followed by the execution of an
8-element finger-tapping sequence (1 2 3 4 1 2 3 4; where 1, 2, 3, and 4,
respectively, refer to the index, middle, ring, and little fingers). Move-
ments were performed with the left, nondominant hand. After each rest
epoch, during which a black screen was displayed, the brief appearance
(500 ms) of a yellow square indicated that subjects had to mentally plan
to self-initiate the sequential movements, without further external
cueing (mean preparation duration = 7.4 ± 0.7 s). As soon as the first
finger movement was initiated, a blue square displayed for 500 ms at the
center of the black screen, confirmed the beginning of the execution
phase (mean execution duration = 3.7 ± 0.2 s). Subjects were instructed
to start tapping after a period of a few seconds (∼7 s) and to produce
finger taps at a comfortable pace without external constraint (∼2 Hz).
A prescanning training session was conducted to reduce variability in
duration for each task component, and to ensure that a minimal duration
of a few seconds was reached for proper analysis of fMRI data. Trials
with preparation or execution durations beyond 1.96 standard devi-
ations of the individual means, and those that contained an erroneous
finger tap, were excluded from further analysis. An average of 47.4
(±5.7) trials per subject were included as events of interest in all fMRI
data analyses.

Imaging
Brain imaging data were acquired on a 3-T MRI scanner (Magnetom
Tim Trio, Siemens) with a 12-channel head coil. An average total of
702 functional volumes (range 658–753) were recorded per subject
while they performed the motor task. T2*-weighted images were ob-
tained using a blood oxygen level-dependent sensitive, single-shot
echo planar sequence (repetition time = 2000 ms; echo time = 30 ms;
flip angle = 90°; matrix size = 64 × 64; voxel size = 3 × 3 × 4 mm3; gap =
15%; 33 slices). Structural T1*-weighted scans were acquired using a
turbo flash sequence with an inversion pulse (repetition time = 2300
ms; echo time = 3 ms; flip angle = 9°; matrix size = 256 × 256; voxel size
= 1 × 1 × 1 mm3; 176 slices).

Preprocessing of Imaging Data

Realignment and Artifact Reduction
The fMRI data were preprocessed using the fMRI preprocessing
pipeline implemented in the neuroimaging analysis kit, NIAK version
0.6.4.3 (http://www.nitrc.org/plugins/mwiki/index.php/niak:FmriPre
processing064, last accessed on 24 March 2014) (Bellec et al. 2012).
Each dataset was corrected of interslice difference in acquisition time,
rigid body motion, and slow time drifts (high-pass filter with a 0.01 Hz
cutoff). For each subject, the mean motion-corrected volume of all the
datasets was coregistered with a T1 individual scan using Minctracc
(Collins et al. 1994), which was itself nonlinearly transformed to the
Montreal Neurological Institute (MNI) nonlinear template using the
CIVET pipeline (Zijdenbos et al. 2002). The functional volumes were re-
sampled to MNI space at a 3-mm isotropic resolution and spatially
smoothed with a 6-mm isotropic Gaussian kernel.

Region Growing
For each voxel and each event, the fMRI time samples following the
onset of the event were interpolated on a fixed temporal grid (length:
20 s and step: 1 s). The FIR estimate at each voxel was the average of all
aligned events, normalized to an unit energy (sum of squares of all
time points) (Supplementary Fig. 1). This normalization was applied to
ensure that the subsequent clustering would be driven by the shape of
the FIR rather than the absolute amplitude of the response. To reduce
the computational burden of the analysis, we analyzed FIR responses
for 957 regions covering the gray matter. These regions were derived
using a region-growing algorithm (Bellec et al. 2006) applied on voxel-
wise FIR estimates, with regions of a controlled size (threshold: 1000
mm3). All subsequent cluster analysis was performed on de novo FIR
estimates derived from average regional fMRI time series.
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Bootstrap Analysis of Stable Clusters

Consensus Clustering
Next, we applied a cluster analysis on the regional FIR estimates to
identify networks that consistently exhibited similar FIR shapes in indi-
vidual subjects, and were spatially stable across subjects. This analysis
was carried using the BASC framework (Bellec et al. 2010) aimed at
quantifying the reproducibility of a cluster analysis, while providing a
cluster solution that captures the most stable features across many re-
plications. BASC proceeds by repeating a clustering operation (here, a
hierarchical agglomerative clustering with Ward’s criterion) 1000
times, and computes the frequency with which each pair of regions
was assigned to the same cluster, called pairwise stability. The set of all
pairwise stability measures forms a region × region matrix, which is in
turn fed into a clustering procedure to derive consensus clusters. The
consensus clusters are composed of regions with a high average prob-
ability of being assigned to a certain cluster across all replications,
hence the name consensus.

Multilevel (Individual and Group) Cluster Analysis
We first applied the consensus clustering technique at an individual
level, to quantify the stability of the FIR-driven clusters. In this case,
the clustering applied to the similarity of average FIR across regions
and the average FIR estimates were replicated through the bootstrap of
individual trials. Subsequently, consensus clustering was applied to
the average of all individual stability matrices to identify group clusters,
with stable association across subjects. The stability of these group
clusters was itself assessed by replicating the group cluster via boot-
strapping of subjects in the group. Finally, we generated a final consen-
sus clustering based on the group stability matrix. Schematics of the
BASC analysis and more details on the algorithm can be found in Sup-
plementary Figures 2 and 3.

Scale Selection
It is important to note that, at each level, the consenus clustering was
carried out with a specific number of clusters (scales). Accordingly, 3
parameters needed to be selected in our multilevel clustering pro-
cedure: K, L, and M, which correspond to the individual, group, and
final numbers of clusters, respectively. Using a “multiscale stepwise se-
lection” method, we determined a subset of scales that provided an ac-
curate summary of the stable clusters across all scales (Bellec 2013).
The selected values for K/L/M were 2/2/2, 5/4/4, 10/10/9, 30/27/34,
120/84/115, and 250/250/283.

Pseudohierarchical Decomposition
Although the clustering algorithm applied at each level is hierarchical,
the stable features at each scale (or the number of clusters) are not
necessarily hierarchical. In practice, there is still a great degree of
overlap between clusters generated at different scales. Accordingly, it
is possible to match clusters generated at different scales in a pseudo-
hierarchical way, through inclusive masking. Specifically, we deter-
mined the overlap between each pair of clusters (across scales). Each
cluster at scale N (higher scale, for example N = 34) was associated
with the cluster at scale M (lower scale, for example M = 4), with which
it had a maximal overlap (with M <N). Based on this correspondence,
we were able to display the decomposition of each cluster from scale M
to N.

Spatial and Temporal Consistencies of Task-evoked Networks
We implemented a series of statistical tests to assess the consistency of
task-evoked networks across subjects both in the spatial domain (in
terms of maps) and the temporal domain (in terms of FIR shape).

Spatial Consistency
We derived the average group stability between any region in the brain
and all the regions in each of the group networks, resulting into a full
brain stability map. To limit the influence of parts of the brain with
loosely defined cluster assignment, the regions within each cluster
were ordered by descending average stability, and the top 50% (called

“stable cores”) were retained. The stability maps were recomputed
using only the stable cores for averaging. We observed that even in the
absence of any task (i.e., resting-state data), BASC-FIR would identify
stable task-evoked networks because of the spatial similarity of noise
fluctuations (Supplementary Fig. 4). To ensure that nonsignificant FIR
would not drive stable clusters, we added “judo” noise to the original
dataset for each bootstrap sample, at the individual level. The judo
noise was generated by shuffling the event times, using the same shuf-
fling for all brain regions. The judo noise was called this way because
the technique rests upon the idea of turning the opponent’s strength
(the structured noise) to one’s own advantage. By construction, no FIR
estimate would be significant in the judo noise, but the spatial structure
of task-independent fluctuations would be preserved. In addition to
randomly permuting event times, the judo noise was also randomly
permuted in space, such that a clustering based on this noise alone
would exhibit absolutely no stability across replications. We found that
an amplification factor of 4 for the additive noise was strong enough to
be in a regime where nonsignificant FIR would hardly be associated
with stable clusters, while significant FIR would still exhibit a strong
enough amplitude to drive stable clusters (Supplementary Fig. 4).
Based on this experiment, all exploratory analyses were conducted
with an amplification factor of the judo noise of 4 and a stability
threshold of 0.5. We verified that the arbitrary choice of a threshold of
0.5 on stability did not markedly impact the conclusions reported in
the Results section (Supplementary Fig. 5).

Temporal Consistency
Although regions within a network share some similarity in their
associated FIR shapes at the individual level, there is no guarantee that
the FIR shapes are consistent across subjects for a group network. We
implemented bootstrap-based tests to assess the significance of
network-level FIR estimates at the group level, as well as the signifi-
cance of the differences in FIR estimation between networks at the
group level. For each scale, the average FIR across all subjects was
derived based on the stable core of each group cluster. A confidence in-
terval on the average FIR as well as on the difference between 2
average FIR associated with different clusters was derived by boot-
strapping the subjects (Efron and Tibshirani 1994), with 10 000
samples. The bootstrap probability that the average FIR (or the differ-
ence in average FIR between 2 clusters) was equal to zero was derived
using a bilateral (symmetric) test. Multiple comparisons across all clus-
ters and time points were corrected by a false-discovery rate procedure
(Benjamini and Yekutieli 2001), with a significance level of q < 0.05. As
expected, we observed empirically that the amount of judo noise did
not have an impact on the FIR tests in the temporal domain, both in the
task data and in a control “rest” experiment (Supplementary Fig. 6).

Results

Our first objective was to demonstrate using cluster analysis
that the richness of task-evoked responses is patterned enough
to be systematically characterized across participants and mul-
tiple scales. Because of the exploratory nature of these ana-
lyses, results are shown for stability thresholded maps to
assess the spatial consistency of task-evoked networks at the
group level. We also report group-level statistics for the tem-
poral dynamics of all reported networks and for their pairwise
comparisons. Of note, we will refer to specific clusters as cXsY,
where c stands for cluster and s denotes the scale used, for
example, c1s4 refers to cluster 1 observed at scale 4 (see
Table 1, for a list of representative brain areas composing each
cluster/network).

Four Main Networks and Their Associated Task-Evoked
Temporal Dynamics
To get an understanding of the broad variety of dynamics eli-
cited by the task, we first examined networks detected at scale 4
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(Fig. 1). Two networks exhibited a negative (below baseline)
response during movement execution (c1s4 and c2s4). Network
c1s4 included primary and secondary visual regions in the
occipital lobe. Network c2s4 was an extended default mode
network including the medial prefrontal cortex, posterior cingu-
late cortex, and bilateral inferior parietal cortex. The other 2 net-
works exhibited a positive response to both motor preparation
and execution (c3s4 and c4s4), as reflected by 2 successive
bumps in the group average FIR. Both networks differed by
their relative involvement in each task component: c3s4 was
composed of associative brain areas that responded more to the
preparation phase, whereas c4s4 included sensorimotor areas
that responded more to the execution phase. These 2 task-
positive networks encompassed both cortical and subcortical
regions. Of note, the spatial distribution of stable networks at
scale 4 closely matched a standard activation analysis performed
using a fixed canonical hemodynamic response function (Sup-
plementary Fig. 7).

Decomposition of the Task-Positive Networks Is Driven by
a Gradient of Involvement in Motor Preparation
Versus Execution
The decomposition from scale 4 to 9 was pseudohierarchical,
that is, networks at scale 9 were approximately splits of the net-
works at scale 4 (Fig. 1 and Table 1; see also Supplementary
Fig. 8 for surface-based representations). For example, the
visual network was split into primary and secondary visual
areas (c1s9 and c3s9). At scale 9, many between-network
differences in task-evoked temporal dynamics remained sig-
nificant. As an example, the medial visual areas showed a posi-
tive inflection at execution onset, significantly higher than the
activation level of lateral visual areas. Furthermore, networks
c5s9 and c6s9 appeared as a split of the associative network
c3s4, whereas networks c8s9 and c9s9 were a split of the sen-
sorimotor network c4s4. Compared with networks c5s9 and
c9s9, networks c6s9 and c8s9 exhibited a much more balanced
contribution between the preparation and execution phases,

Table 1
Multiscale partition of the brain into stable task-evoked networks

Scale Root Cluster MNI coordinates of slices in figures Nomenclature—networks or key regions

z y x

S4 C1 −6 −75 −22 Visual network (occipital regions)
C2 −19 −55 2 Default mode network (e.g., medial prefontal cortex, posterior

cingulate cortex and inferior parietal lobule)
C3 51 1 30 Motor preparation network (e.g., premotor cortical and subcortical

regions)
C4 53 −59 31 Motor execution network (e.g., sensorimotor cortical and

subcortical regions)
S9 C1 −6 −80 22 Secondary visual areas

C3 0 −75 7 Primary visual areas
C4 −19 −55 2 Inferior parietal lobule, posterior cingulate cortex, medial prefrontal

cortex, medial temporal lobe, temporal pole, cerebellar lobule 9
C5 −23 −65 11 Superior medial parietal lobule, cerebellar crus 1/2
C6 53 1 −3 pSMA, rostral cingulate motor area, rostro-Pmd, basal ganglia
C7 10 −20 48 Auditory cortex
C8 53 −55 11 SMA, caudal cingulate motor area, caudo-Pmd, superior lateral

parietal lobule, cerebellar lobule/vermis 6
C9 53 −62 −26 Sensorimotor cortex, cerebellar lobules/vermis 5 and 8

S34 C1S4 C1 −5 5 v3
C2 5 Medial bank of sensorimotor cortex
C3 15 v4
C8 25 v2
C9 v1
C21 Inferior temporal lobe, orbitofrontal cortex
C24 Anterior cingulate cortex, insula

C2S4 C5 −35 5 Parieto-temporal junction
C6 −15 Parahippocampus, cerebellar lobule 9, inferior parietal cortex
C7 0 Cerebellar crus 2
C10 30 Temporal lobe
C11 Posterior cingulate cortex, precuneus
C12 Hippocampus, temporal pole
C13 Anterior medial prefrontal cortex
C14 Ventral medial prefrontal cortex, inferior parietal cortex
C17 Dorsal medial prefrontal cortex
C20 Superior temporal lobe

C3S4 C15 28 −8 54 Ventral premotor cortex
C16 45 41 −13 Superior medial parietal lobule
C19 −27 −66 12 Medial cerebellar crus 1
C23 21 20 −10 Frontopolar prefrontal cortex
C27 2 5 27 Striatum, thalamus
C28 −27 −65 −26 Lateral cerebellar crus 1

C4S4 C30 53 0 5 (pre)SMA, cingulate motor area
C31 13 −19 51 Auditory cortex
C32 55 −53 −24 Superior lateral parietal lobule, cerebellar lobules/vermis 6 and 8
C33 53 −11 −39 Left sensorimotor cortex
C34 53 −55 51 Right sensorimotor cortex, cerebellar lobule/vermis 5

Note: Description of the results presented in Figures 1–3 (scales 4 and 9, as well as decompositions at scale 34 of the 4 clusters seen at scale 4). MNI coordinates (z, y, x) are given for slices represented
in the Figures 1–3 following the same order. A basic network nomenclature or a list of the most notable brain regions is provided.
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although each network still exhibited a marked preference
(preparation for c6s9 and execution for c8s9). Scale 9 thus re-
vealed a gradient of involvement in the preparation versus
execution phases of the task, reflected in separate task-evoked
networks.

Higher Decomposition of Task-Positive Networks Is
Associated with Subtle Differences in Task-Evoked
Dynamics
Following the observation of a preparation versus execution
gradient in larger-scale networks, we investigated how the
preparation versus execution gradient further influenced the
decomposition of the 2 main task-positive networks (c3s4 and
c4s4) into subnetworks at scale 34 (Fig. 2 and Table 1). Most
clusters remained symmetrical, but were much less distributed
compared with lower scale decompositions (4 and 9). Impor-
tantly, networks still exhibited significant differences in
task-evoked group dynamics.

To highlight the complex gradient of task-evoked acti-
vations, we ordered the networks based on the difference in
their peak responses during preparation versus execution.
This representation clearly showed that the associative and

sensorimotor networks seen at scale 4 (c3s4 and c4s4)
precisely matched the cutoff between networks that respond
more to preparation than execution at scale 34 (Fig. 2).
However, subtle differences in task-evoked temporal dy-
namics were not only related to the gradient of involvement
in preparation versus execution. For instance, the gain of
response amplitude for preparation was significantly faster in
c16s34 than in c19s34, although these 2 clusters had very
similar differences in peak responses to preparation versus
execution.

Spatially stable task-positive networks were thus associated
with significant differences in task-evoked dynamics at scale 34,
whether related to the difference of involvement in preparation
versus execution or to subtle variations in temporal delays. This
is worth emphasizing since our multivariate analysis was only
designed to capture spatially consistent networks across sub-
jects, regardless of the temporal consistency of task-evoked dy-
namics at the group level. In contrast to the task-positive
network decompositions described above, both the visual
cortex and default mode network were decomposed into
spatially stable subnetworks at scale 34, but we observed fewer
significant differences between the clusters’ temporal dynamics

Figure 1. Group-level task-evoked networks. Group task-evoked networks at scales 4 and 9 (threshold based on a stability of >0.5). The order of networks is defined based on the
difference value between the response peaks for the preparation and execution components of the task. Axial, coronal, and sagittal slices are superimposed onto the MNI nonlinear
template. The mean estimated response profile for each network is given with its 95% confidence interval (color-matched shadowed area) on the adjacent diagonal. Time points of
the task-evoked response that significantly differ from 0 are highlighted with a gray background (q<0.05). Pairwise comparisons of the clusters’ evoked responses are shown in
off-diagonal squares, the gray background indicating in this case the significance of the difference at each time point (q< 0.05). Note that network c2s9 is not included in this figure
because no region survived a stability threshold of 0.5.
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at the group level (Fig. 3). Importantly, the decompositions still
revealed plausible, stable clusters. First, the network that in-
cludes the occipital cortex at scale 4 (c1s4) was notably split at
scale 34 into 4 symmetrical networks that correspond well with
visual areas v1, v2, v3, and v4. Secondly, the extended default
mode network observed at scale 4 (c2s4) was split into 10 net-
works at scale 34, covering for instance the medial prefrontal
cortex (which was further divided into 3 parts along a ventro-
dorsal axis), the hippocampus and parahippocampus, the

temporal pole, the posterior cingulate cortex, the inferior parie-
tal cortex, and lobule 9 of the cerebellum.

In the next sections, we proceeded with testing several pre-
dictions to assess the biological relevance of the observed
task-evoked networks. Because these analyses were hypothesis-
driven and we already established the stability of the observed
group-level networks, we now report stability unthresholded
(consensus) maps and do not further assess the significance of
temporal dynamics within and between networks.

Figure 2. Decomposition of task-positive networks into subnetworks. The group-level networks (threshold based on a stability of >0.5) at scale 34 that overlapped with the 2
task-positive networks from scale 4 (c3s4, preparation > execution, and c4s4, execution > preparation) are presented. For reference, the networks c3s4 and c4s4 from scale 4 are
shown as stroke white maps. Networks are shown with their response profiles (mean; confidence interval, color-matched shadowed area; test of significance against baseline at
q<0.05, gray background) as well as with pairwise comparisons between them (test of significance at q< 0.05). Axial, coronal, and sagittal slices are superimposed onto the
MNI nonlinear template. The order of the networks is defined based on the difference in response peaks to the preparation and execution components of the task. This gradient is
further highlighted in the right-side plot, where the magnitude of color-matched bars is determined by the subtraction of the peaks at execution minus preparation for each cluster
(error bars show the 95% confidence interval on the mean).

Cerebral Cortex September 2015, V 25 N 9 2663



Rostro-caudal Functional Gradient in the Frontal Lobe
We first tested whether regions in the frontal cortex adhered to
a gradient on an anterior–posterior axis, evolving from sup-
porting higher-level cognitive processes serving motor prep-
aration toward a tight coupling with motor execution. To test
this hypothesis, we examined the 4 consensus networks that
responded positively to the task at scale 9 (i.e., excluding the
default mode network) and best overlapped with a series of
anatomical areas of interest: Brodmann areas BA3 (postcentral

gyrus), BA4/6/8 (superior frontal gyrus), BA9/46/10 (middle
frontal gyrus), and BA24/32 (anterior cingulate gyrus) (i.e., ex-
cluding the visual networks). Each consensus network was
color-coded based on the difference in the peak responses to
execution minus preparation (Fig. 4). With only 2 instances
that contradict our prediction, the overall pattern of results
showed that the relative hemodynamic response to execution
versus preparation overall increased when moving posteriorly
from the prefrontal cortex to the hand region of the PMC.

Figure 3. Decompositions of the visual and default mode networks into subnetworks. Group-level task-evoked networks (threshold based on a stability of >.5) at scale 34 that
overlapped with the visual network (c1s4) and default mode network (c2s4) at scale 4 are presented in compound maps. The networks c1s4 and c2s4 from scale 4 are shown as
stroke white maps for reference. Response profiles (mean; confidence interval, color-matched shadowed area; test of significance against baseline at q< 0.05, gray background)
are shown for each cluster using the same color code, as well as with pairwise comparisons between them (test of significance at q<0.05). Axial and sagittal slices are
superimposed onto the MNI nonlinear template.
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Specifically, network c2s9 showed higher activation during
motor preparation than execution, with the response inflection at
execution onset remaining below baseline activity. This network
was located in the most anterior frontal areas (BA9 and BA8), but
also posteriorly in the medial wall of BA4 contrary to our predic-
tion. Network c6s9 exhibited a higher response to preparation
than execution, but significantly responded to execution too. It
covered the most anterior portions of the pSMA (BA6), and of the
ventral and dorsal cingulate motor areas (BA24 and BA32). Of
note, it also extended laterally into the dorsolateral prefrontal
cortex (BA46), anterior to network c2s9 contrary to our hypoth-
esis. Next, network c8s9 responded more to execution than prep-
aration and was located posteriorly in Pmd and SMA proper
(BA6). This network also extended into the caudal portion of the
ventral and dorsal cingulate motor areas (BA24 and BA32).
Finally, the network that showed the highest relative response to
motor execution (c9s9) covered the most caudal (pre)motor
cortex (BA6 and BA4) and somatosensory cortex (BA3). Note
that the spatial extent of this motor execution network in the
PMCwas restricted to the hand area of the right hemisphere, con-
tralateral to the (left) fingers used to perform the motor task.

Large-Scale Task-Evoked Cerebro-cerebellar Networks
We next examined the 6 task-evoked consensus networks that
spread into both the cerebrum and cerebellum at scale 9
(Fig. 5). Our results indicated that the “motor” cerebellum was
functionally connected to (pre)motor areas, while the “cogni-
tive” cerebellum was functionally coupled with more cognitive
regions such as the prefrontal and parietal cortical regions. The
cerebellar lobule IX showed a task-evoked response similar to
that of the default mode cerebral network (c4s9). Cerebellar
crus II was part of a network that notably included the ventro-
lateral prefrontal cortex, the hippocampal complex, dorsal
fronto-parietal areas, and the posterior cingulate cortex (c2s9).
Crus I and lobule VIIb of the cerebellum were functionally
connected to the ventromedial prefrontal cortex and medial

superior parietal cortex (c5s9). In network c6s9, a limited
lateral area of crus I was functionally coupled with the rostral
portion of the premotor and anterior cingulate cortices as well
as the basal ganglia. Subregions of the cerebellar lobule VI
were essentially connected to the caudal regions of the pre-
motor and anterior cingulate cortical regions (c8s9). Finally,
the lobules V, VI, and VIII of the cerebellum were part of the
network covering the sensorimotor cortex (c9s9). Of note, the
only task-evoked networks that did not also include cerebellar
territories at scale 9 were the primary visual and auditory
cortices (c1s9, c3s9, and c7s9).

Fine-Grained Parcellation of the Basal Ganglia
Finally, we expected that the pseudohierarchy of task-evoked net-
works reflected the organization of cortico-basal ganglia loops,
akin to the result obtained for task-evoked cortico-cerebellar
loops. In contrast with the cerebellum, however, the basal ganglia
was not split into distinct distributed clusters at any of the scales re-
ported so far (i.e., scales 4, 9, and 34). Clusters in the basal ganglia
turned out to be most stable at higher scales with local, rather than
distributed, networks (Supplementary Fig. 5). Therefore, we
explored scales 115 and 283 to determine whether distinct terri-
tories within the basal ganglia could nonetheless be unraveled.

Stable parcellations were similarly found at both scales and
provided redundant findings. Here, we only report findings at
scale 283. At this scale, several consensus networks isolated the
putamen, caudate nucleus, and thalamus, each of these subcorti-
cal structures being further subdivided into 3 symmetrical parcels
(Fig. 6). Symmetrical anterior and posterior territories of the
putamen were dissociated from one another. Similarly, distinct
bilateral subregions of the caudate nucleus were distinguished
along the rostro-caudal axis. Most subregions in the basal ganglia
showed a higher response to motor preparation than execution.
However, this relative preference for motor preparation versus
execution diminished from anterior to posterior subregions, akin
to the functional gradient seen in the frontal lobe.

Figure 4. Rostro-caudal functional gradient in frontal areas. A composite consensus (stability unthresholded) map is shown at scale 9 for 4 clusters extending into the middle/
superior frontal lobe. The functional gradient is highlighted in the bar plot, where the magnitude of color-matched bars is determined by the subtraction of the peaks at execution
minus preparation for each cluster (error bars show the confidence interval on the mean). The response profiles (mean; confidence interval, color-matched shadowed area; test of
significance against baseline at q<0.05, gray background) are shown separately for each of the 4 clusters. Consensus maps are inclusively masked with a selected series of
Brodmann areas (BA3, 4, 6, 8, 9, 10, 24, 32, and 46). The Brodmann areas template is part of mricron (http://www.nitrc.org/projects/mricron, last accessed on 24 March 2014).
MNI coordinates are given for representative axial slices superimposed onto the MNI nonlinear template.
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Figure 6. Discrete divisions of basal ganglia components. Three consensus (stability unthreshold) networks at scale 283 are shown along with their response profiles for each of 3
basal ganglia regions: the caudate nucleus, the putamen/pallidum complex, and the thalamus. Clusters are colored based on the relative involvement of each region’s territories in
the preparation versus execution components of the task. This gradient is reflected in the bar plots, where the magnitude of color-matched bars is determined by the subtraction of
the peaks at execution minus preparation for each cluster (error bars show the 95% confidence interval on the mean). MNI coordinates are given for informative axial and coronal
slices. Maps are superimposed onto the MNI nonlinear template.

Figure 5. Distributed cerebro-cerebellar task-evoked networks. Six consensus (stability unthresholded) clusters that extend into both the cerebrum and cerebellum at scale 9 are
shown along with their response profiles (mean; confidence interval, color-matched shadowed area; test of significance against baseline at q<0.05, gray background). Maps are
superimposed onto sections of the MNI nonlinear template. The same axial, coronal, and sagittal slices (MNI coordinates) are selected to display the 6 clusters, either in the
cerebrum or cerebellum. White delineations of cerebellar territories are obtained from a probabilistic atlas of the cerebellum (Diedrichsen et al. 2009), with the legends highlighting
those lobules that best overlap with the spatial map of each cluster.
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Discussion

Uncovering the Spatio-temporal Organization of
Task-Evoked Activity
Our findings show that the rich variety of hemodynamic
responses elicited by a motor task is systematic enough to de-
compose the whole human brain into stable task-evoked net-
works at the group level. Recent work by Gonzalez-Castillo
et al. (2012) demonstrated the existence of distinct task-evoked
networks across the entire brain in individual subjects using
massive averaging of extremely long time series. In their
simple visual task, it was however difficult to evaluate whether
those task-evoked networks reflected general principles of
brain organization or simply idiosyncratic individual differ-
ences. Here, by leveraging the stability of networks across sub-
jects, we derived group-level networks using a sample size
typical in a task-based fMRI study (∼20 subjects) and with a
reasonable task duration per subject (∼50 trials).

We derived a pseudohierarchy of task-evoked networks, in
line with evidence suggesting that the brain adheres to a hier-
archical organization (Smith et al. 2009; Meunier et al. 2010;
Power et al. 2011; Yeo et al. 2011; Kelly et al. 2012). Two
aspects of our multiscale decompositions strongly suggested
that they were functionally meaningful. First, the network
decomposition was largely driven by a gradient of involvement
in motor preparation versus execution. This gradient evolved
on a rostro-caudal axis for several areas in the frontal lobe. Sec-
ondly, the spatial network arrangement of various regions of
the cortex and cerebellum was consistent with known cerebro-
cerebellar fiber tracts. Likewise, task-evoked parcellations of
the basal ganglia corresponded well to anatomical subterri-
tories known to be connected with distinct cortical areas. The
present work thus establishes that subtle differences in
task-evoked dynamics reflect biologically meaningful mechan-
isms.

Insights Into the Brain Correlates of Motor Control
The spatial distribution of the 2 task-positive networks ob-
served at scale 4 was consistent with binarized activation maps
reported for delayed sequential motor tasks (Gerardin et al.
2004; Boecker et al. 2008; Jankowski et al. 2009; Supplemen-
tary Fig. 7). However, our task-evoked networks exhibited
different temporal characteristics compared with classical acti-
vation maps. Typical activation maps reveal little overlap
between brain areas activated by both motor preparation and
execution. In contrast, the 2 task-positive networks observed
at scale 4 exhibited significant responses to both task com-
ponents, with a gradient of involvement in preparation versus
execution.

The functional organization observed at scale 9, and above,
supports the idea that this functional gradient evolved along a
rostro-caudal axis in frontal regions. This was especially true
for networks that were primarily involved in both components
of the task, as they showed decreasing responses to prep-
aration and increasing responses to execution when moving
from prefrontal to sensorimotor cortex. However, in the case
of the one network that did not show a significant response to
motor execution, a contradictory pattern was observed for the
area 9 of the dorsolateral prefrontal cortex and the medial
bank of the sensorimotor cortex. Using a data-mining method
as in the present work may thus reveal that not all areas of the

frontal lobe follow a strict antero-posterior gradient. However,
this conclusion must be taken with some caution because this
network was characterized by a low stability and associated
with a high variance of its task-evoked response at the group
level. Hence, the observed organization of task-evoked activity
is overall in line with predicted properties of the frontal lobe
(Nachev et al. 2008; Badre and D’Esposito 2009), as supported
by FIR analyses in selected regions (Richter et al. 1997; Wild-
gruber et al. 1997; Weilke et al. 2001). This result is also remi-
niscent of monkey electrophysiology studies, showing that
numerous regions in the frontal lobe contain neurons that
respond to both motor preparation and execution (Okano and
Tanji 1987; Romo and Schultz 1987; Mushiake et al. 1991). Yet,
the proportion of specific neurons varied smoothly from one
region to another (Passingham et al. 2002).

Few fMRI studies on internally generated movements have
characterized task-evoked dynamics outside the frontal lobe.
Specific examinations focused on selected regions within the
parietal lobe, the basal ganglia or cerebellum (Cui et al. 2000;
Elsinger et al. 2006). The present results showed that stable
task-evoked networks covered extensive cortical and subcorti-
cal territories. Our findings thus highlight the relevance of
studying task-evoked activity in the entire brain, and suggest a
large specificity in how a given cognitive context translates
into the modulation of activity for numerous brain regions.

Neurophysiological Basis of Task-Evoked Networks
The distributed task-evoked networks observed at low scales
were governed by large-scale connectivity. Our decompo-
sitions grouped the lobules IV, V, VI, and VIII of the cerebel-
lum and (pre)motor areas. In contrast, crus I and II as well as
lobules VII and IX of the cerebellum were associated with
more cognitive regions, such as prefrontal and parietal cortical
regions. These findings are in good agreement with known
properties of cerebro-cerebellar circuits (Middleton and Strick
2000; Bostan et al. 2013) shown in humans with resting-state
fMRI (O’Reilly et al. 2010; Buckner et al. 2011) and diffusion-
weighted imaging (Salmi et al. 2010), or virus transneuronal
tracers in nonhuman primates (Hoover and Strick 1999; Kelly
and Strick 2003; Akkal et al. 2007). Of note, only the primary
visual and auditory networks (c1s9, c3s9, and c7s9) did not
include cerebellar territories at scale 9. This result fits well with
previous evidence for an absence of cerebellar representation
for those 2 cortical networks (Buckner et al. 2011).

In the basal ganglia, we did not observe different subterri-
tories associated with distinct cortical areas at low scales. This is
likely due to the fact that task-evoked responses in the basal
ganglia were dominated by motor preparation, in contrast with
the large variety of responses seen in the cortex and cerebellum.
A secondary cause might be the impact of local smoothness in a
set of spatially isolated areas, a factor that has less impact in cor-
tical and cerebellar territories. Yet, the structures of the basal
ganglia (putamen, caudate nucleus, and thalamus) did each de-
compose into several bilateral task-evoked parcels at high
scales. The obtained parcels matched well with subterritories of
the basal ganglia associated with different functions, for in-
stance supporting associative versus sensorimotor processes
(Alexander and Crutcher 1990; Middleton and Strick 2000). In
the literature, similar subterritories were defined by cortico-
subcortical pathways, as shown in humans by resting-state fMRI
(Zhang et al. 2010; Choi et al. 2012) and diffusion-weighted
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imaging (Draganski et al. 2008), or neuroanatomical research in
monkeys (Hoover and Strick 1999; Akkal et al. 2007).

A Network Approach to Task-Based fMRI
Recent research clearly supports the notion that extrinsic,
task-evoked networks exhibit many similarities with intrinsic,
resting-state networks. Connectivity methods applied to large
meta-analyses of task-based fMRI data have described net-
works that can be related to many general cognitive domains
while exhibiting good correspondence to commonly observed
resting-state networks (Toro et al. 2008; Smith et al. 2009;
Laird et al. 2013). Accordingly, it is worth noting that the
task-evoked default mode and visual subnetworks observed
here match with parcellations derived using resting-state fMRI
(Andrews-Hanna et al. 2010; Wilms et al. 2010).

Although extrinsic and intrinsic functional brain architec-
tures exhibit great similarity, they are not equivalent (Mennes
et al. 2013), and it is clear that task performance does modulate
functional interactions in the brain (Mennes et al. 2011;
Gordon et al. 2012). The use of a motor task in the current
study translated into a highly asymmetric sensorimotor
task-evoked network, while the sensorimotor network derived
from resting-state fMRI is generally symmetrical (Bellec et al.
2010; Power et al. 2011; Yeo et al. 2011). Similarly, while
resting-state fMRI studies typically do not reveal a subdivision
of the intrinsic motor network, the task-evoked networks ob-
tained here reveal several (pre)motor subnetworks even at low
scales with 4 or 9 networks. Hence, studying the richness of
task-evoked networks provides a unique window into the
brain in action, with the advantage that specific inferences can
be drawn regarding the roles of particular networks in specific
cognitive contexts.

Task-based fMRI is often viewed as a characterization of
brain segregation, with a limited number of brain regions selec-
tively engaged in a cognitive process. In contrast, resting-state
fMRI has become increasingly popular to map functional inte-
gration processes and to describe fundamental properties of
brain organization. Our work shows that mining task-evoked
responses derived from a single task-based fMRI experiment
can capture the multiscale network organization of the brain. A
notable advantage of task-evoked networks is that they are
interpretable with respect to the mental processes and specific
modulations associated with the experimental paradigm. In
addition, our approach is attractive to characterize the effect of
a given task in a group of individuals, but also allows investi-
gating differences in task-evoked responses between different
tasks or populations. The ability to accurately characterize
task-evoked dynamics through the exploration of extrinsic
network hierarchies could therefore provide new insights into
the neural basis of cognition.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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